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1 Introduction

In this paper, after having summarized the main results we obtained in [2], we
suggest some ideas which may lead to future developments.

The reader may wonder at the very particular nature of our subject, and
whether it is inconsistent with the generality of category theory; but as empha-
sized in [6] the peculiar nature of mathematics resides exactly in the force it
gains by contrasting general ideas to ‘facts’ in a never ending dialectics.

André Weil loved to quote Euler’s maxim: “nihil est in numerico quod non
est in algebraico”.

In fact, even the most trivial numerical identity may be the starting point for
a deep understanding of the mathematical structure upon which it may depend
in a subtle and unforeseeable way. On the other hand, no abstract mathematical
structure is meaningful if it isn’t able to generate concrete and particular results.

Vincent’s theorem originally appeared as a sort of complement to Lagrange’s
method to approximate the roots of algebraic equations via continued fractions.
We described in great detail this aspect of the theorem in [2]. In this paper we
underline its geometrical features which, in principle, make it applicable also in
other situations to obtain different kinds of algorithms.

We conclude our work by giving an example in terms of Farey sequences
(which are very similar to continued fractions...) to emphasize the independence
of the theorem from the particular kind of approximation we devise for the roots.

The polynomials considered throughout the paper have real coefficients and,
for the sake of simplicity, they are assumed to have simple roots, even if (as we
have shown in [2]) this is not a real limitation.
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2 Positive real roots and variations

The number of sign variations of a polynomial® gives precise information about
its roots only in the cases it has the value 0 or 1.

The value 0, the absence of variations, points out that the polynomial has
no positive roots, while the value 1 indicates the presence of a single positive
root.

But how can it happen that a polynomial has a number of variations greater
than the number of its positive roots 7 In this case, how are its complex roots
located in the complex plane 7

The examination of the number of variations of a third degree polynomial
gives a precise suggestion about a general situation.

Consider the polynomial p (z) which has the real positive root a and the
roots a + 0.

Then

p(z) =12 — 2a+a)2® + (& + 5% + 2aa) z —a (&® + 5°) . (1)
The possibility that p () has 3 variations corresponds to
20+a>0 A o+ +2aa>0. (2)

Let us look at (2) from a geometrical point of view, with reference to the
following figure:

LGiven the sequence of the real coefficients of a polynomial
QO, 01,02, - -,

we say that a sign variation exists between two coefficients o and aq if one of the following
conditions holds:

1) g = p+ 1 and ap and a4 have opposite signs;

2) ¢ > p+1 and the numbers apy1, pt2, ..., 0q—1 are all zero while oy, and aq have opposite
signs. We will say ‘a variation of the polynomial’ to mean a variation in the sequence of its
coefficients.
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Fig. 1

The possibility that the polynomial (1) has 3 variations corresponds to the
fact that the points o+ are ‘on the right ’ of the line parallel to the imaginary
axis through the point —§ and at the same time to the fact that they are exterior
to the circle having equation

|z +a|l =a.

The points P and @, in which the line and the circle intersect, have co-
ordinates (—%,i?a). Hence independently of the value a they are on the
lines

Imz = +V3Rez. (3)

Suppose that the points o & i3 are in the interior of the sector S, 5 defined
by
Sﬁ:{z|Rez<o A |Imz|<\/§|Rez|}. (4)

Then the polynomial (1) has exactly one variation.
This sector is the particular case for 7 = 1 of Obreschkoff’s definition:

T
S: = — ; Si 9 >0’ <5 5
{zz p(cosp+ising), p ] 7“—1—2} (5)

The result for the third degree polynomials suggests a general behavior.



A Lemma contained in [7, p.81], implies that a real polynomial which has
only one positive root while all the other roots are in the sector S sz defined by
(4) has ezactly one variation. We gave a simple and constructive proof of this
result in [2].

More generally we proved the

Lemma 1 A polynomial which has r positive real roots and all the other roots
within the sector (5) has exactly r variations.
Proof. See [2, section 8.2]. m

3 The properties of a simple geometrical trans-
formation

We expose some geometrical properties of the transformation T': C — C, de-
fined by

z—a
T(z) = . 6
() = = (6)
where a and b are positive real numbers.
1) The circle

a+b|l |b—al
T T

whose diameter lies on the real axis, with endpoints a and b, is mapped by the
transformation (6) onto the imaginary axis. The exterior points are mapped
into the half-plane Re(z) < 0.
2) The lines
Im(z) =+sRe(z) (seR)

are the images of the circles having center

L a+b  .|b—gd
= +
¢ 2 T o5

|b— al 1
S L Y S
" 2 +s2

It easily follows (see Fig. 2) that the sector Sg of the complex plane defined
by

and radius

Ss={z]Re(z) <0and [Im(z)] <s-|Re(z)|} (7)

is the image of the exterior of the eight-shaped figure R given by the union of
the two disks
|z — Ci| <.
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Fig. 2

4 How the geometrical transformation influences
the number of variations

Given the real polynomial f (z), without multiple roots, let A be the minimum
distance of its roots z1, z9,..., 2, i.e.:

A =min|z; — zg] .
i<k

Let the numbers a and b of the previous section be such that:

b—a| < ?A. 8)

Then, in particular, |b—a| < A, and the circle whose diameter is (a,b)
contains no complex roots and at most one positive root of the equation

f(z)=0.

Let now R be the union of the two disks centered at

; a+b . |b—ada
c = +1

2 24/3
B |b — al
_7\/§ ,

with radius

r

(10)



which correspond to the half-planes bounded by the lines
Im (2) = +V3Re(z2).

It follows from (8) that R contains at most one real root: indeed, the maxi-
mum distance between points of R and points of the interval (a,b) is

b —a
V3

The following alternative is then possible:

2r =2 < A.

e all the roots of f (z) = 0 lie outside the circle whose diameter is (a, b);

e if a (necessarily unique and real) root lies inside this circle, then all the
other roots lie in the complement of R.

In the first case T maps all the roots of f (z) = 0 into the left complex half-
plane, while in the second case the image of the positive root is still positive
and all the other roots are mapped into the sector:

S\/gz{z|Rez<O A |Imz|<\/§|Rez|}.

The inverse transformation of T is:

a+ bz
142’

S(z) =

hence the polynomial

b(x)=(1+2)" f (“ljbj)

has no variations in the former case, while it has exactly one variation in the
latter.

Example 2 The polynomial
fz)=22—22—2242

has the roots :I:\/E, 1. The least distance is
A=+2-1~041421,

and

V3 1
A7 ~ 0.3587 > 3

The length of the interval [1 — %, 1+ %} = [%, %] is less than % and it contains
only one root. We see that

749
R
142

1+ 2)° L
(+Z)f( 5127 5127 5127 T 512



has only one variation. The interval [%, %] does not contain any root and we
see that

2,3
i) W W,
142

1+2)° =
(1+2) f< 512° 2567 1287 " 64

has no variations.

5 Vincent’s Theorem

We observed at the beginning that Vincent’s theorem was originally formulated
in terms of continued fractions. But, as we ourselves learned by experience, its
original formulation looks rather enigmatic.

We prefer to formulate Vincent’s result in the following form:

Theorem 3 (Vincent) Let f (z) be a real polynomial of degree n which has only
simple roots. It is possible to determine a positive quantity § so that for every
pair of positive real numbers a,b with |b — a| < ¢, every transformed polynomial
of the form

o=+ f (%) (1)

has ezactly 0 or 1 variations. The second case is possible if and only if f (z) has
a single root within (a,b) .

Proof. Let A denote the least distance of the roots of f (z), and set
=LA =

Remark 4 Usually, every algorithm to isolate the real roots of a polynomial
equation depends on a scan of an interval, which contains all the roots, by sub-
intervals of decreasing amplitude.

Lagrange’s famous ‘équation au carré des différences’ may be used (in principle,
but it is a highly impractical tool) to find an upper bound for the least distance of
the roots, and hence to divide the original interval into subintervals of amplitude
less than the least distance. The presence of a real root is marked by the fact that
the polynomial must have opposite signs at the endpoints of every sub interval
containing a root.

Vincent’s theorem, without any need of knowing a priori the least distance of the
roots, gives a test to determine when an arbitrary method based on a subdivision
into subintervals reaches its goal.

Remark 5 Let us look at the form of the polynomial ¢ (x) in (11). Since

st =+as (o457,

by the help of the Taylor formula we get

B n Fr)ya—b  fb) (a—b)?
o (z)=(1+2) {f(b)+ 1 1+z+ 51 (1+Z)2+...} (12)




From (12) it is quite easy to obtain a vector representation of the coefficients of
¢. Let us write
d(z)=artarz+ ...+ ayz".

Then

[0 ] [ @ (0 (") ][t o o 7]
@ M ) ) 0 0 a-b 0
ax | T (3) () () 0 0 0

L _ (Z) 0 0 0 I 0 0 (a_b)n ||

A look at the previous formula shows that the vector of the coefficients is obtained
by the product of the matriz

(G ) () (o) ]
1) D ) 0
) (") ("%7) 0 | (13)
which depends only on the degree n, by the matrix
1 0 0
0 a—-5b 0
0 0 (14)
0 0 " - b)”
which depends only on a and b, and at last by the vector
F (b)
HONAURNEE

which collects all the information about the polynomial f (z) at b.
This representation of the transformed polynomial, which was the one originally
used by Vincent to prove his theorem (see [2, section 4]), might be exploited to
obtain the same kind of results which are usually obtained by the help of Sturm’s
theorem. Just to give the most obvious example: Newton rule to find an upper
bound of the positive Toots appears as an obvious corollary.?
Suppose

b<a

2In fact, we use a more general result. If the polynomial ¢ (z) has no variations, the
polynomial f (z) cannot have roots in (a,b).




and that
F(b)>0,....,f™ (b)>o0.

Then the matrices (13) and (14) have only positive coefficients as well as their
product. The polynomial ¢ (z) has no variations and hence f (z) has no roots
between b and a. Since a can be chosen arbitrarily, f (z) has no roots greater
than b.

An idea of the future developments we devise may be given by the following

Proposition 6 Suppose f (z) has only real roots and let a, b be positive real
numbers. Then the number of variations of the polynomial (12) is exactly the
number of real roots of f (z) contained in the interval (a,b).

Proof. Since all the roots are real, the eight-shaped figure R of Fig. 2
does not contain any root. Hence all the roots exterior to the interval (a,b)
are mapped by T (z) onto the negative real axis. The application of Lemma 1
concludes the proof. m

Corollary 7 The number of variations of the polynomial (12) is greater than
the number of real roots in (a,b), and the difference is an even number.

Proof. Tt is enough to decompose f (z) as f1 (2)- f2 (z) where f1 () contains
all the real roots of f(z). The result follows from Lemma 1(observe that the
zero degree coefficient of f3 () is positive. The parity of the number of roots of
f (2) is the same as the one of f1 (2)). m

We give an example to show how the proposition and the corollary may be
used.

Example 8 Consider the symmetric matrix

1 0 -2 3
0 2 1 5
-2 1 0 7
3 5 7 1

The roots of the characteristic polynomial
f(z) =2* —42% — 832% + 2162 — 36,

are all real. We want to find the number of the roots in (0,1).
Considering what we explained in Remark 5, we set b = 0, a = 1 and conse-
quently we simply consider the matriz product

111 11 —36 94
4 3 2 10 216 334
6 31 00 —-83 | = | 349
4 1 0 00 —4 72
1 0 0 0O 1 —36

Since the resulting vector has one variation, we have one root in (0,1).



Example 9 Consider the polynomial
f(2)=2% =525 4724 =523 4+ 922 — 152 + 17, (15)

We want to determine the mazimum number of its roots in (1,4). We have

1 1 1 1 111 1 0 0 0 0 0 0
6 5 4 3 2 1 0 0 -3 0 0 0 0 0
15 10 6 3 1 0 O 0o 0 9 0 0 0 0
20 10 4 1 0 0 O 0 0 0 =27 O 0 0 =
5 5 1 0 0 0 0 0 0 0 0 381 0 0
6 1 0 0 0 0O 0o 0 0 © 0 —-243 0
1.0 000 O0O0OfJ[O0O O O O 0 0 729 |
1 -3 9 —27 81 —243 729 |
6 —15 36 —-81 162 —-243 0
15 —-30 54 -—-81 381 0 0
20 —30 36 —27 O 0 0
15 —-15 9 0 0 0 0
6 -3 O 0 0 0 0
1 0 0 0 0 0 0 |
Since the sequence of values
() F )
£, 7 el
18
9,-3,1,-7,-3,1,1, (16)
and the product
[ 1 -3 9 —27 81 243 729 ][ 9 | [ 459 |
6 —15 36 —81 162 —243 0 -3 27
15 =30 54 —-81 81 0 0 1 603
20 —30 36 —-27 O 0 0 -7 | = | 495
15 —-15 9 0 0 0 0 -3 189
6 -3 0 0 0 0 0 1 63
1 0 0 0 0 0 o |1 1 | L9 ]

gives a vector which has two variations, we may have at most 2 roots in (1,4).
On the other hand, the sequence of values

f(4) 9 4)
[ L )

f(4)

5
549, 1353, 1261, 587, 147,19, 1. (17)

Since the difference of the number of variations of the two sequences (16) and
(17) is 4, the theorem of Budan and Fourier allows to conclude that there are

10



at most 4 roots in (1,4). The polynomial (15) actually has two roots in (1,4),
hence the estimate given by Vincent’s algorithm is, at least in this case, more
precise. But the comparison of the two algorithms will be a matter for future
developments.

6 Algorithms

A Farey series of order N, which we denote by Fy (we take the definition
from [5, p. 118]), is the set of all reduced fractions between 0 and 1 whose
denominators are N or less, arranged in increasing order.

For example, for N = 3 we have

01121
f3{173727371}'

Recalling that a mediant of two fractions 7 < % is given by ZLT"’(? and that

o< % < %, it is evident that we can obtain Fy from Fy_; by inserting

mediants whenever it is possible to do so without getting a denominator greater
than N (see [5, ibidem)]).
Hence

00+1 1122411 11123
*7:4: T97 [ o'alalolo , 101 = 0,77777a77751 .
1"14+3°'3'2°3'3+1'1 4°3°2°3° 4

The Farey series, or even better the Stern-Brocot tree, gives an interesting
way to obtain all the reduced fractions within (0, 1).

It is possible that Vincent’s Theorem might be connected with the Farey
series in the same fruitful way it was connected with continued fractions. This
may be a direction of future research, but for the moment we content ourselves
to present an example of its use to separate the roots.?

Example 10 Consider the polynomial
f(z) =122% +542% — 342 + 5. (18)

We want to find its roots in the interval (0,1)
We begin with Fo = {O, %, 1} Then

0+%z

11
(z+1)3f(z+1 ) :32'3—?22—22—&—5

1
5+ 2z 47
D3 f (2 =373 + 5622+ —2 + 3.
(z+)f<1+z> 27 45627 + Sz +

3We are indebted to Donato Saeli, who, at the end of a conference where we described the
contents and applications of Vincent’s theorem, suggested to look at its connections with the
Farey series.
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The second polynomial has no variations, hence there are no roots in [%, 1] while
the presence of two variations in the first polynomial shows the possibility of two
700ts N [O, %]

Now F3 = {%, %, %, %, %} and we have to consider the intervals [O, %] and [%, %} .
We have

R N
142 SR R

0+ 32 _lg 5, 11
9 3 3

(z+1)‘°’f<

1 1
3 +352 25 4 1
1) 3 "2 _ 2.3 2, = -
(z+)f(1+z> 3z+6z +t3rtg

We are reduced to the consideration of the interval [0 1], The further intervals

1°3
we need of Fy are simply obtained by the insertion of the mediant: [0, i] , [%, %} .

0+ %z 1 11 13
1)3 4 _ - .3, 0.2, 2 5
(Z+)f(1+z) 67 TRF Tyt

1,1

+ 32 1 1 5 1
1)3 1737y _1t3_ 1.2 2 iy
(z+)f<1+z> 9° T 6" 247716

1 2
se(ata2\__ 9 5 1., 1 1
(Z+1)f< )_ 337 14° Tt T 16

2 1
241\ 1 13 9
13 7T3%Y_1.23 2 _ _
(z+1) f( ) o To1F Tt 33

FEach polynomial has a single variation, hence every interval [i, %}, [%, %] con-
tains exactly one root.
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