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Using Mathematica to Illustrate the
Race Track Principle in Calculus
by Alkiviadis G. Akritas and Zamir Bavel

A n astonishing innovation in the teaching of Cal-
culus is the use of the race track principle. This
little-known principle is elegantly used in the Cal-

culus and Mathematica (C&M) series of books ([1], [2], [4])
to explain and prove many concepts. Below we present
two different versions of this principle and, using Mathe-
matica, we show how it is used to explain the power
series expansion of a function and the round-off errors
that appear in certain computations.

Although implicitly used in most Calculus books (see
for example [5] and [6]) the Race Track Principle is ex-
tensively used in the Calculus and Mathematica (C&M)
book series by Davis, Porta and Uhl ([1]–[4]). This series
of books is a valuable and well thought-out method for
teaching Calculus. As indicated by the title of this series
of books, Mathematica facilitates the exploration.

Following their lead, we use Mathematica to present
two versions of the Race Track Principle and then, in the
two sections that follow, we show how this principle is
applied.

First Version of the Race Track Principle
Horses: If two horses start a race at the same point, then
the faster horse is always ahead.
Functions: If f [a] = g[a] and f ¢[x] ³ g¢[x] for x ³ a then
f [x] ³ g[x] for x ³ a.

This version of the Race Track Principle is good for ex-
plaining why one function plots out above another func-
tion. For example, consider the functions f [x] = Sin[x]+
ArcSin[x] and g[x] = x and look at their plot for 0 £ x £ 1
(Figure 1):
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FIGURE 1: The function f [x] = Sin[x] + ArcSin[x] (dashed line) plots
above the function g[x] = x.

Clear[f,g,x]

f[x ] = Sin[x] + ArcSin[x];

g[x ] = x;

Plot[{f[x],g[x]},{x,0,1},

PlotStyle ® {{RGBColor[1,0,0],Thickness[0.01],

Dashing[{0.05,0.05}]},Thickness[0.01]},

AspectRatio ® 1/GoldenRatio,AxesLabel ®

{"x", " "}];

The reason the plot in Figure 1 turned out this way can
be easily explained using (the first version of) the Race
Track Principle. Since f [0] = g[0] = 0,
{f[0],g[0]}

{0,0}

the two functions start their race at x = 0 together. Now,
f ¢[x] and g¢[x] for x ³ 0 come into play:

{f¢[x],g¢[x]}; 10
1 - x2

+ Cos[x],1?
For 0 £ x £ 1 we have f ¢[x] ³ 2 > 1 = g¢[x]; that is to
say, f [x] = Sin[x] + ArcSin[x] grows faster than g[x] = x
for 0 £ x £ 1. By the Race Track Principle, f [x] ³ g[x]
for 0 £ x £ 1 and this explains the plot.

Second Version of the Race Track Principle
Horses: If two horses are tied at one point, and they
run at the same speed at this point, then they run close
together near this point.
Functions: If f [a] = g[a] and f ¢[a] = g¢[a], then the two
functions plot out nearly the same as x advances from a
little bit to the left of x = a to a little bit to the right of
x = a.

(The usage of the expressions “nearly,” “from a little bit
to the left of x” and “to a little bit to the right of x” is based
on intuition. With the help of Mathematica students can
“zoom in” and get a clear estimate of the numerical values
involved. We do not present the zooming process in this
article.)

This version of the Race Track Principle is good for
explaining why at the point x = a we have a smooth
transition from f [x] to g[x] (or vice-versa) as x advances
accross x = a. For example, consider the functions f [x] =
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Cosh[x] + Cos[x] and g[x] = 2 and look at their values and
the values of their first few derivatives at x = 0:

Clear[f,g,x]

f[x ] = Cosh[x] + Cos[x];

g[x ] = 2;

{f[0],g[0]}

{2,2}

{f¢[0],g¢[0]}

{0,0}

{f¢¢[0],g¢¢[0]}

{0,0}

{f¢¢¢[0],g¢¢¢[0]}

{0,0}

{f¢¢¢¢[0],g¢¢¢¢[0]}

{2,0}

The first three derivatives are the same at x = 0. Both
functions start their race at x = 0 together and their growth
rates are the same at x = 0. According to (the second
version of) the Race Track Principle the two functions
plot out nearly the same as x advances from a little bit
to the left of x = 0 to a little bit to the right of x = 0.
Moreover, at the point x = 0 we have a smooth transition
from f [x] to g[x] (or vice-versa) as x advances accross
x = 0 (Figure 2).

Plot[{f[x],g[x]},{x, - 0.5,0.5},

PlotStyle ® {{RGBColor[1,0,0],Thickness[0.01],

Dashing[{0.05,0.05}]},Thickness[0.01]},

AspectRatio ® 1/GoldenRatio,AxesLabel ®

{"x," " "}];

Clear[fg];

fg[x ] := f[x]/;x £ 0;

fg[x ] := g[x]/;x > 0;

first = Plot[fg[x],{x, - 0.5,0.5},AspectRatio ® 1/

GoldenRatio,PlotStyle ® {Thickness[0.03]},

DisplayFunction- > Identity];
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FIGURE 2: At the point x = 0 we have a smooth transition from the
function f [x] = Cosh[x] + Cos[x] to the function g[x] = 2 (or vice-versa)
as x advances from the left of x = 0 to the right of x = 0. (See also the
next plot, Figure 3.)
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FIGURE 3: At the point x = 0 we see smooth transitions from the
function f [x] = Cosh[x] + Cos[x] to the function g[x] = 2, and
vice-versa, as x advances accross x = 0.

Clear[fg];

fg[x ] := f[x]/;x > 0;

fg[x ] := g[x]/;x £ 0;

second = Plot[fg[x],{x, - 0.5,0.5},AspectRatio ® 1/

GoldenRatio,PlotStyle ® {Thickness[0.03]},

DisplayFunction- > Identity];

Show[GraphicsArray[{first,second}],

DisplayFunction- > $DisplayFunction];

THE RACE TRACK PRINCIPLE AND COMPUTATION OF
THE POWER SERIES EXPANSION OF A FUNCTION
We begin this section with the observation that some-
times functions whose formulas are strikingly different
have plots that are strikingly similar. For example, con-

sider the functions f [x] = Cos[x] and g[x] = 1 - x2

2 and
their plots as shown in Figure 4 below

Clear[f,g,x]

f[x ] = Cos[x];

g[x ] = 1 -
x2

2
;

Plot[{f[x],g[x]},{x, - 2.5,2.5},

PlotStyle ® {{RGBColor[1,0,0],Thickness[0.01],

Dashing[{0.05,0.05}]},Thickness[0.01]},

AspectRatio ® 1/GoldenRatio,AxesLabel ®

{"x," " "}];
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FIGURE 4: The functions f [x] = Cos[x] (dashed line) and g[x] = 1 - x2

2
have strikingly similar plots for -1 ≤ x ≤ 1.

The two functions are nearly identical near x = 0. As
x advances from the left of 0 to the right of 0, we can
smoothly transfer from one curve to the other.
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This phenomenon has to do with derivatives. Consider
the two functions at x = 0 and their first four derivatives
there:

{f[0],g[0]}

{1,1}

{f¢[0],g¢[0]}

{0,0}

{f¢¢[0],g¢¢[0]}

{-1, - 1}

{f¢¢¢[0],g¢¢¢[0]}

{0,0}

{f¢¢¢¢[0],g¢¢¢¢[0]}

{1,0}

Both functions go through {0, 1} and they have the
same first, second, and third derivatives at x = 0. They
differ only when we get to the fourth derivatives.

We are now ready for the following definition: We say
that f [x] and g[x] have order of contact m at x = a if:

f [a] = g[a],
f ¢[a]= g¢[a],
f ¢¢[a]= g¢¢[a],
. . .
f (m-1)[a] = g(m-1)[a], and
f (m)[a] = g(m)[a],

so that the functions and their first m derivatives agree at
x = a.

Now, according to (the second version of) the Race
Track Principle, if f [a] = g[a] and f ¢[a] = g¢[a], then the
two functions plot out nearly the same as x advances from
a little bit to the left of x = a to a little bit to the right of x
= a. This explains why, when we have order of contact 1
at x = a, then we have a smooth transition as x advances
from the left of x = a to the right of x = a. (See also the
example in the second version of the Race Track Principle
in the Introduction.)

To see why it is that, when we have order of contact 2
at x = a, then we can expect an even smoother transition
as x advances from the left of x = a to the right of x = a,
recall that order of contact 2 at x = a means

f [a] = g[a],
f ¢[a] = g¢[a], and
f ¢¢[a] = g¢¢[a].

The fact that f ¢¢[a] = g¢¢[a] and f ¢[a] = g¢[a] ensures
that f ¢[x] is very close to g¢[x] as x advances accross x =
a. This, in turn, means that f [x] is very, very close to g[x]
as x advances from the left of x = a to the right of x = a.
(It is even more so for order of contact 3 at x = a as was
the case for the above example.)

It is now a simple matter to compute the power series
expansion of a function. Given a function f [x], the ex-
pansion of f [x] in powers of x is the expression

a[0] + a[1] x + a[2]x2 + a[3]x3 + × × × +a[k]xk

+ a[k + 1]xk+1 + × × ×

where the numbers
a[0],a[1],a[2], a[3], . . . ,a[k], a[k + 1], . . .

are chosen so that for every positive integer m, the func-
tion f [x] and the polynomial

a[0] + a[1] x + a[2]x2 + a[3]x3 + × × × + a[m-1]xm-1

+ a[m]xm

have order of contact m at x = 0.
Let us expand the function f [x] = Cos[x] in powers of

x, up to degree 4. Notice that Mathematica has the special
function Series for obtaining such expansions up to any
degree. Below we expand Cos[x] up to degree 6:

Series[Cos[x],{x,0,6}]//Normal

1 -
x2

2
+
x4

24
-

x6

720

and note that 24 = 4! and 720 = 6!.
To get an idea how this algorithm works, we start by

entering f [x] and the fourth degree polynomial of the
form a[0] + a[1]x + a[2]x2 + a[3]x3 + a[4]x4:

Clear[f,g,x,a,k]

f[x ] = Cos[x];

g[x ] =
4â
k=0

a[k]xk

a[0] + xa[1] + x2a[2] + x3a[3] + x4a[4]

According to the preceding discussion we need the
following equations:

eq1 = f[0] == g[0]

1 == a[0]

and

eq2 = f¢[0] == g¢[0]

0 == a[1]

eq3 = f¢¢[0] == g¢¢[0]

-1 == 2a[2]

eq4 = f¢¢¢[0] == g¢¢¢[0]

0 == 6a[3]

eq5 = f¢¢¢¢[0] == g¢¢¢¢[0]

1 == 24a[4]

Now we have five equations with five unknowns a[0],
a[1], a[2], a[3], and a[4]. We next solve the equations, to
obtain:

coefficients = Solve[{eq1,eq2,eq3,eq4,eq5}]::a[0] ® 1,a[1] ® 0,a[2] ® -
1

2
,a[3] ® 0,a[4] ®

1

24
>>

The fourth degree polynomial we seek is then

Clear[polynomial]

polynomial[x ] = g[x]/.coefficients[[1]]

1 -
x2

2
+
x4

24

Vol. 9 No. 2 2000 Mathematica in Education and Research 89



                               U S I N G M A T H E M A T I C A T O I L L U S T R A T E T H E R A C E T R A C K P R I N C I P L E I N C A L C U L U S

Indeed, it checks out that f [x] and polynomial[x] have
order of contact 4:

Table[{D[f[x],{x,k}],D[polynomial[x],{x,k}]}

/.x ® 0,{k,0,4}]

{{1,1},{0,0},{-1, - 1},{0,0},{1,1}}

In Figure 5 below we see the plots of f [x] and polyno-
mial [x] in the interval -2 £ x £ 2:

Clear[f,polynomial,x]

f[x ] = Cos[x];

polynomial[x ] = 1 -
x2

2
+
x4

24
;

Plot[{f[x],polynomial[x]},{x, - 2.5,2.5},

PlotStyle ® {{RGBColor[1,0,0],Thickness[0.01],

Dashing[{0.05,0.05}]},Thickness[0.01]},

AspectRatio ® 1/GoldenRatio,AxesLabel ®

{"x," " "}];
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FIGURE 5: The functions f [x] = Cos[x] (dashed line) and polynomial

[x] = 1 - x2

2 + x4

24 have strikingly similar plots for -2 ≤ x ≤ 2.
(Compared to Figure 4, the interval is wider now.)

We close this section with the following observations:

The first three terms of the polynomial [x] = 1 - x2

2 + x4

24
we computed matches the first three (lower) terms of the

expansion of Cos[x] = 1 - x2

2 + x4

24 - x6

720 we computed earlier.
In general, working as above we can compute an arbitrary
number of terms.

As we use more and more terms from the expansion
in powers of x, we increase the order of contact between
f [x] and the corresponding polynomial at x = 0.

As we increase the order of contact at x = 0, we increase
the quality of the transition from one curve to the other
at x = 0.

THE RACE TRACK PRINCIPLE AND ESTIMATION OF
ROUNDOFF ERRORS
Roundoff errors and calculators do not mix very well. For
example, note what happens when we feed 8 decimals
of 10 e into a calculator and then compute (10e)2 on that
basis:

N[10 E,10]

27.1828

Compute the square of the above number and compare the result with

e2 to 7 decimals. (Computing e2 and then rounding is a more accurate

procedure.)

{N[(27.18281828) ˆ 2,10],N[(10 E) ˆ 2,10]}

{738.906,738.906}

Only the first 6 decimals match.

This behavior can be explained with (the first version
of) the Race Track Principle. More precisely, we can use
(the first version of) the Race Track Principle to predict
the accuracy of a needed to maintain a desired accuracy
of f [a], where f [x] can be any function.

We use the squaring function f [x] = x2 and plot its
derivative on the interval a - 1 £ x £ a + 1, for a = 10 e
in Figure 6:

Clear[x,f]

f[x ] = x2;

a = 10e;

growthplot =

Plot[f¢[x],{x,a - 1,a + 1},PlotRange- > All,

PlotStyle- > {RGBColor[1,0,0],Thickness[0.01]},

AspectRatio- > 1/GoldenRatio,

AxesLabel- > {"x," " "}];
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FIGURE 6: A plot of the derivative of f [x] = x2 on the interval 10 e -
1 ≤ x ≤ 10 e + 1.

From the plot it is clear that |f ¢[x]| < 100 = 102 for all
the values of x with 10 e - 1 £ x £ 10 e + 1. In Figure 7
we plot, on the same interval, f [x] and the lines through
the point {10 e, f [10e]} with slopes 102 and -102:

Clear[bowtie,lines,downline,pointplot,upline];

upline[x ] = 102(x - a) + f[a];

downline[x ] = -102(x - a) + f[a];

lines =

Plot[{f[x],upline[x],downline[x]},

{x,a - 1,a + 1},
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PlotStyle- >

{{RGBColor[1,0,0],Dashing[{0.05,0.02}],

Thickness[0.01]},RGBColor[1,0,0],

RGBColor[1,0,0]},

DisplayFunction- > Identity];

pointplot = Graphics[{RGBColor[1,0,1],

PointSize[0.03],

Point[{a,f[a]}]}];

bowtie =

Show[lines,pointplot,AxesLabel- > {‘‘x¢¢,‘‘ ¢¢},

AspectRatio- > 1/GoldenRatio,

DisplayFunction- > $DisplayFunction];
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FIGURE 7: The derivative off [x] = x2 on the interval 10 e - 1 ≤ x ≤ 10
e + 1 is “trapped” between the two lines with slopes 102 and -102.

Since |f ¢[x]| < 100 = 102 for all the values of x with
10 e - 1 £ x £ 10 e + 1, (the first version of) the Race
Track Principle asserts that f ¢[x] has no choice but to be
“trapped” between these two lines.

Next, Figure 8, shows the discrepancy between f [x]
and f [10e] for values of x in the interval 10 e - 1 £ x £
10 e + 1. (We use as an example x = 10 e + 0.5).

b = a + 0.5;
otherpointplot = Graphics[{PointSize[0.03],

Point[{b,f[b]}]}];
discrepancy =
Show[bowtie,otherpointplot,

Graphics[Line[{{a,f[a]},{b,f[a]}}]],
Graphics[Line[{{b,f[a]},{b,f[b]}}]]];
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FIGURE 8: The discrepancy between f [a] and f [x] is the length of the
little vertical line segment on the right.

Note that the discrepancy betweenf [x] and f [10e] in
Figure 9 is smaller than 1

2 the length of the new vertical
segment plotted:

bigdiscrepancy =
Show[Graphics[{RGBColor[1,0,0],Thickness[0.009],

Line[{{b,downline[b]},{b,upline[b]}}]}],
discrepancy,Axes->True,
AspectRatio->1/GoldenRatio];

26.5 27.5 28

700

750

800

FIGURE 9: Bounding the discrepancy between f [a] and f [x].

We have:
| upline [x]- lowline[x] | / 2

= |(102(x - a) + f [a]) - (-102(x - a) + f [a])| / 2
= | 2 ø 102|x - a|| / 2
= 102|x - a|

Thus, for a = 10 e, the discrepancy between f [x] and
f [a] is smaller than 102 | x - a |.

Now we use this information to determine the number
of decimals of 10 e we need in order to guarantee ac-
curacy to 4 decimals off [10e]. The discrepancy between
f [x] and f [a] is no more than 102|x - a|. Therefore, if x
is accurate to 6 decimals, that is |x - a| £ 10-6, then the
discrepancy betweenf [x ] and f [a] is less than 102 ø 10-6

= 10-4.
Consequently, if x approximates a to 6 decimals, then

f [x] approximates f [a] to 4 decimals.
In the actual computation:

a

10e

N[a,8]

27.1828

27.1828 is a = 10e to 6 decimals; compare:

{N[f[a],8],N[f[27.182818],8]}

{738.906,738.906}

If we round these to 4 decimals, the results are the
same, just as predicted.

In the same manner, the (first version of the) Race
Track Principle may be used to determine the accuracy
needed for a desired accuracy in computing any function
evaluated at any point. (However, care should be taken
not to introduce other rounding errors when calculating
by machine.)
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CONCLUSION
We have presented only two versions and examples of
the use of the Race Track Principle. Additional versions
and examples may be found in [1]–[4].
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