
Can your computer do complex analysis?

Helmer Aslaksen
Department of Mathematics

National University of Singapore
Singapore 119260

Republic of Singapore
aslaksen@math.nus.edu.sg

1 Introduction

The purpose of this paper is to elaborate on the results in my earlier paper on
multiple-valued complex functions ([Aslak96]) using the unwinding number
notation introduced by Corless and Jeffrey ([Corle96]).

2 Basic problems of multiple-valued complex
functions

For z = x+ iy, the complex exponential function is defined by

ez = ex(cos y + i sin y).

We define the principal argument by z = |z|eiArg z where Arg z ∈ (−π, π]. We
do not define the principal argument of 0, and we will from now on assume
that z is different from 0. Notice that we have defined the principal argument
on the negative axis, too, but it is not continuous there. We have instead
what is called “Counter-Clockwise Continuity”. We then define the principal
logarithm Log z by

Log z = ln |z|+ iArg z,

1

where ln |z| denotes the usual real logarithm of |z|. We finally define the
general power/exponential function by

zw = ew Log z. (1)

In complex analysis, the logarithm and power/exponential functions are
considered to be multiple-valued functions that are made single-valued by
choosing a branch of the logarithm. When doing computer algebra, we choose
the principal logarithm for all our computations. One disadvantage of this is
that formulas that in complex analysis are interpreted as identities between
multiple-valued functions are now not always true. We clearly have ez+w =
ezew and eLog z = z, but consider the following five formulas:

Question 1

Log ez = z, (2)
Log zw = Log z + Logw, (3)
Log zw = w Log z, (4)
(zw)a = zawa, (5)

(za)b = zab. (6)

If all the numbers involved are real, and we take Log z to be the real
logarithm, then all the formulas are true whenever they are defined. But
for complex numbers using the principal logarithm, all five formulas are in
general wrong! Let us look at some quick counter-examples and paradoxes.

For (2), we have Log ei2π = Log 1 = 0 rather than i2π. For (3), we have
Log(−i) = −iπ/2 while Log(−1) + Log i = iπ+ iπ/2 = i3π/2. For (4), start
with (−z)2 = z2. Taking the logarithm and assuming that (4) holds, we get
2 Log(−z) = 2 Log z, or Log(−z) = Log z. If (5) holds, we would have

1 =
√

1 =
√

(−1)(−1) = ii = −1. (7)

For (6), we consider a paradox due to the Danish mathematician Thomas
Clausen ([Claus27], [Remme91]). It was published as an exercise in Crelle’s
journal in 1827.

Let n be an integer. Then

e1+2nπi = e,

2

and

(e1+2nπi)1+2nπi = e1+2nπi = e.

If we assume (6), we get

(e1+2nπi)1+2nπi = e1+4nπi−4n2π2
= ee−4n2π2

,

and it follows that

e−4n2π2
= 1.

Another way to see that (6) is problematic, is to set z = e and observe
that eab is just the usual (single-valued) exponential function, while in order
to evaluate (ea)b, we need to consider an exponential function with base ea.
In order to get a single-valued function we use (1), which involves making a
choice of branch for the logarithm. It is therefore not reasonable to expect
(6) to always be true.

In my earlier paper ([Aslak96]), I gave correct versions of the formulas in
Question 1 using several auxiliary functions. Corless and Jeffrey derived sim-
ilar formula independently in [Corle96], but they used only one new function,
namely the “unwinding number” K(z) defined by

Log ez = z + i2πK(z). (8)

We have

Log ex+iy = ln |exeiy|+ iArg(exeiy) = x+ iArg eiy,

so
K(z) = (Arg eiy − y)/2π.

It follows that

K(z) = −n if (2n− 1)π < Im z ≤ (2n + 1)π.

Formula (8) gives the correct version of formula (2). It is now also easy to
derive the correct version of formulas (3) – (6). The following theorem was
stated in [Corle96].

3

Theorem 1 We have

Log ez = z + i2πK(z), (9)
Log zw = Log z + Logw + i2πK(Log z + Logw), (10)
Log zw = wLog z + i2πK(wLog z), (11)
(zw)a = zawa exp[ai2πK(Log z + Logw)], (12)

(za)b = zab exp[bi2πK(aLog z)]. (13)

Proof : Formula (9) is now just a definition. To prove (10) we write

Log zw = Log(eLog z+Logw) = Log z + Logw + i2πK(Log z + Logw).

To prove (11) we write

Log zw = Log ew Log z = w Log z + i2πK(wLog z).

To prove (12) we write

(zw)a = exp[Log(zw)a] = exp[aLog zw + i2πK(aLog zw)] =
exp[a(Log z + Logw + i2πK(Log z + Logw))] =

zawaeia2πK(Log z+Logw).

To prove (13) we write

(za)b = exp[Log(za)b] = exp[bLog za + i2πK(bLog za)] =

exp[b(aLog z + i2πK(aLog z))] = zabeib2πK(aLog z). 2

Let us next address the question of when exactly the formulas from Ques-
tion 1 do hold. (This is related to the concept of clearcut region introduced
by Corless and Jeffrey in [Corle96].)

Theorem 2 We have

Log ez = z ⇐⇒−π < Im z ≤ π, (14)

Log zw = Log z + Logw ⇐⇒ −π < Arg z + Argw ≤ π, (15)

Log zw = wLog z ⇐⇒−π < ln |z| Imw + Arg zRew ≤ π. (16)

If a is an integer, then (zw)a = zawa for all z and w, (17)

4

if a is not an integer, then
(zw)a = zawa ⇐⇒ −π < Arg z + Argw ≤ π.

(18)

If b is an integer, then (za)b = zab for all z, (19)

if b = p/q with p, q ∈ Z and gcd(p, q) = 1, then

(za)b = zab ⇐⇒
(2kq − 1)π < ln |z| Ima+ Arg zRe a ≤ (2kq + 1)π

for some k ∈ Z,

(20)

if b is irrational, then

(za)b = zab ⇐⇒−π < ln |z| Ima+ Arg zRe a ≤ π.
(21)

Proof : Recall that K(z) = 0 if and only if −π < Im z ≤ π. This gives
us formula (14), and applying the same method to K(Log z + Logw) and
K(wLog z) we get (15) and (16). For (17) and (18) we need to determine
when aK(Log z+ Logw) ∈ Z. If a is an integer, then aK(Log z+ Logw) will
also be an integer. Since −2π < Arg z+ Argw ≤ 2π for all z and w, we have
K(Log z + Logw) ∈ {0,±1}. It follows that the unwinding number cannot
cancel out the denominator if a is rational. So if a is not an integer, then
aK(Log z + Logw) can only be an integer if the unwinding number is 0, i.e.,
if −π < Arg z + Argw ≤ π.

For (19)–(21) we need to determine when bK(aLog z) ∈ Z. The argument
is straightforward. 2

I would like to finish this section with some general comments. First of all,
I think it would be very interesting to include the formulas from Question 1
in an exam in a complex analysis course. I believe that a lot of students
would be confused. I believe that it is important for students to be aware
that these formulas do not always hold.

I have shown the formulas from Theorem 1 to several people in complex
analysis, and they are usually not very interested. I think the reason is
simply that this an example of how computers are changing mathematics. In
traditional complex analysis the emphasis was never on computations, but
thanks to computers, new problems become interesting.

5

3 Computer tests

Many people have attempted to test the capabilities of different computer
algebra systems. The most well known is probably the tests developed by
Michael Wester ([Weste94]). While such tests definitely serve a purpose, I
am sometimes troubled by their use in comparing different systems. It is not
clear to me that the way a program performs on such problems truly reflects
its capabilities. There is nothing canonical about the choice of problems, and
a different choice of problems could give different results.

The purpose of this short article is rather to look at the theoretical issues
behind some of the problems that computer algebra systems (and humans)
face when they try to do computational complex analysis. My goal is simply
to make the readers aware of some of the problems and their solutions, and
to encourage the readers to sit down and experiment with their favorite
programs. I hope the following eight tests (adapted from [Stout91]) will
serve as a starting point for interesting explorations.

Computer algebra systems are in general much better at reducing the
difference between two equivalent expressions to 0, rather than simplifying an
expression to a specific form. Notice that some programs simplify expressions
automatically, while others only do so when you use an explicit simplify
command. Sometimes you can control the behavior by using a special option
to the simplify command, or a different command such as PowerExpand.
In some programs you can explicitly restrict the domain of a variable, use
statements like on expandlogs or program your own transformation rules to
change the behavior.

For each of these tests, I will first state the correct formula then state
when the “wrong” formula is right, and then state what I consider to be
reasonable behavior from the computer.

Test 1 We have
√
zw =

√
z
√
weiπK(Log z+Logw), so

√
zw−

√
z
√
w = 0 if and

only if −π < Arg z + Argw ≤ π. (Recall that K(Log z + Logw) ∈ {0,±1}.)

(a)
√
zw −

√
z
√
w should not simplify when z and w are complex.

(b)
√
zw −

√
z
√
w should simplify to 0 when z and w are both positive.

Test 2 We have
√
z2 = zeiπK(2 Log z), so

√
z2 − z = 0 if and only if −π/2 <

Arg z ≤ π/2.

(a)
√
z2 should not simplify, or simplify to csgn(z)z when z is complex.

6

(b)
√
z2 should not simplify, or simplify to sgn(z)z = |z| when z is real.

(c)
√
z2 should simplify to z when z is positive.

Test 3 We have
√

1/z = 1/
√
zeiπK(−Log z), so

√
1/z−1/

√
z = 0 if and only

if z is not on the negative real axis.

(a)
√

1/z − 1/
√
z should not simplify when z is complex.

(b)
√

1/z − 1/
√
z should simplify to 0 when z is not real (Im z 6= 0).

(c)
√

1/z − 1/
√
z should not simplify, or simplify to (sgn(z) − 1)/

√
z

when z is real.

(d)
√

1/z − 1/
√
z should simplify to 0 when z is positive.

Test 4 We have
√
ez = ez/2eiπK(z), so

√
ez − ez/2 = 0 if and only if (4k −

1)π < Im z ≤ (4k + 1)π for some k ∈ Z.

(a)
√
ez − ez/2 should not simplify when z is complex.

(b)
√
ez − ez/2 should simplify to 0 when z is real.

Test 5 We have Log zw = Log z+Logw+i2πK(Log z+Logw), so Log zw−
Log z − Logw = 0 if and only if −π < Arg z + Argw ≤ π.

(a) Log zw−Log z−Logw should not simplify when z and w are com-
plex.

(b) Log zw− Log z − Logw should simplify to 0 when z and w are both
positive.

Test 6 We have Log z2 = 2 Log z + i2πK(2 Log z), so Log z2 − 2 Log z = 0
if and only if −π/2 < Arg z ≤ π/2.

(a) Log z2 − 2 Log z should not simplify when z is complex.

(b) Log z2 − 2 Log z should simplify to 0 when z is positive.

Test 7 We have Log(1/z) = −Log z+i2πK(−Log z), so Log(1/z)+Log z =
0 if and only if z is not on the negative real axis.

7

(a) Log(1/z) + Log z should not simplify when z is complex.

(b) Log(1/z) + Log z should simplify to 0 when z is positive.

Test 8 We have Log ez = z + i2πK(z), so Log ez − z = 0 if and only if
−π < Im z ≤ π.

(a) Log ez − z should not simplify when z is complex.

(b) Log ez − z should simplify to 0 when z is real.

References

[Aslak96] Helmer Aslaksen, Multiple-valued complex functions and com-
puter algebra, SIGSAM Bull. 30 (1996), 12–20.

[Claus27] Thomas Clausen, Aufgabe 53, J. Reine Angew. Math. 2 (1827),
286–287.

[Corle96] Robert M. Corless and David J. Jeffrey, Editor’s Corner: The Un-
winding number, SIGSAM Bull. 30 (1996), 28–35.

[Remme91] Reinhold Remmert, Theory of Complex Functions, Graduate
Texts in Math., vol. 122, Springer-Verlag, 1991.

[Stout91] David R. Stoutemyer, Crimes and misdemeanors in the computer
algebra trade, Notices Amer. Math. Soc. 38 (1991), 778–785.

[Weste94] Michael Wester, A review of CAS mathematical capabilities, Com-
puter Algebra Nederland 13 (1994), 41–48.

8

