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VC.01 Vectors Point the Way 
Basics

B.1)  Vectors: 

How you move them, how you add them, how you subtract 

them, and how you multiply them by numbers
A vector X in the plane is a stick with: 
®  one end (its tail) at 80, 0< and 
®  the other end (its tip) at a specified location 8x@1D, x@2D<.
Most folks like to draw a vector as an arrow with the arrowhead at its 
tip.
Here's a look at the vector running from 80, 0< to 83, 4<:

X = 83, 4 <;
Show@Arrow @X, Tail ® 80, 0 <, VectorColor ® Blue D, Axes ® True,

PlotRange ® All, AxesOrigin ® 80, 0 <D;
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Most folks like to see the arrowhead at the tip so they can tell which 
end of the stick is the tip. Here is the vector running from
       80, 0< (tail) to 8-5, 4< (tip):

 

X = 8-5, 4 <;
Show@Arrow @X, VectorColor ® RedD, Axes ® True, PlotRange ® All,

AxesLabel ® 8"x", "y" <, AxesOrigin ® 80, 0 <D;
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Here are some others:
X = 8-2, -4<;
Show@Arrow @XD, Axes ® True, PlotRange ® All, AxesLabel ® 8"x", "y" <,

AxesOrigin ® 80, 0 <D;
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X = 83, -1<;
Show@Arrow @XD, Axes ® True, PlotRange ® All, AxesLabel ® 8"x", "y" <,

AxesOrigin ® 80, 0 <D;

0.5 1 1.5 2 2.5 3
x

-1

-0.8

-0.6

-0.4

-0.2

y

Play with these by rerunning with vectors of your own choice.
A vector 
       X= 8x@1D, x@2D< 
is  written the same as the coordinates of its tip because everyone 
knows its tail is at 80, 0<.
You can also work with three-dimensional vectors by writing 
       X= 8x@1D, x@2D, x@3D< 

 

for the vector whose tail is at 80, 0, 0< and whose tip is at    
       8x@1D, x@2D, x@3D<.
Here's the vector 81.5, 5.3, 2.0< shown along with the 
three-dimensional coordinate axes:

X = 81.5, 5.3, 2.0 <;
spacer = 0.2;
h = 1;

threedims = Axes3D@h, spacer D;

Show@Arrow @X, VectorColor ® RedD, threedims, PlotRange ® All,
ViewPoint ® CMView, Boxed ® False D;
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Here's another:
X = 81, -3, 1 <;
Show@Arrow @X, VectorColor ® RedD, threedims, PlotRange ® All,

ViewPoint ® CMView, Boxed ® False D;
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Here's a vector parallel to the yz-plane:
X = 80, 2, 1 <;
Show@Arrow @X, VectorColor ® RedD, threedims, PlotRange ® All,

ViewPoint ® CMView, Boxed ® False D;
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Play by rerunning with three-dimensional vectors of your own choice.

áB.1.a.i) Moving vectors

How do you move vectors to new positions?

áAnswer:

Very easily.

Here is a vector in two dimensions with its tail at 80, 0<:
X = 83, 4 <;
Show@Arrow @X, Tail ® 80, 0 <D, AxesLabel ® 8"x", "y" <, Axes ® True,

AxesOrigin ® 80, 0 <D;
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Here's the same vector X shown twice, once with its tail at 80, 0< and 

once with its tail at 82, 1<:
X = 83, 4 <;
Show@Arrow @X, Tail ® 80, 0 <D, Arrow @X, Tail ® 82, 1 <D,

Axes ® True, AxesLabel ® 8"x", "y" <, PlotRange ® All,
AxesOrigin ® 80, 0 <D;
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The two arrows have equal lengths and they both point in the same 

direction.

They're parallel.

Try it again for a different vector and a different tail:
X = 8-1, 4 <;
Show@Arrow @X, Tail ® 80, 0 <D, Arrow @X, Tail ® 8-2, 3 <D,

Axes ® True, AxesLabel ® 8"x", "y" <, PlotRange ® All,
AxesOrigin ® 80, 0 <D;
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Same length; same direction.

Here's a vector X shown with its tail at 80, 0<, and shown with a whole 

squadron of its transplants:
X = 82, 3 <;
Clear @tail, k D;
tail @1D = 80, 0 <;
tail @2D = 86, 4 <;
tail @3D = 86, 6 <;
tail @4D = 86, 8 <;
tail @5D = 84, 8 <;
tail @6D = 82, 8 <;

 

squadron =
Table @Arrow @X, Tail ® tail @kD, VectorColor ® RedD, 8k, 1, 6 <D;

Show@squadron, Axes ® True, AxesLabel ® 8"x", "y" <, PlotRange ® All,
AxesOrigin ® 80, 0 <D;
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Check it out for a different X:
X = 8-3, -2<;
Clear @tail, k D;
tail @1D = 80, 0 <;
tail @2D = 86, 4 <;
tail @3D = 86, 6 <;
tail @4D = 86, 8 <;
tail @5D = 84, 8 <;
tail @6D = 82, 8 <;

squadron =
Table @Arrow @X, Tail ® tail @kD, VectorColor ® RedD, 8k, 1, 6 <D;

Show@squadron, Axes ® True, AxesLabel ® 8"x", "y" <, PlotRange ® All,
AxesOrigin ® 80, 0 <D;
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Check it out in three dimensions:
X = 83, 0, 2 <;
Clear @tail, k D;
tail @1D = 80, 0, 0 <;

 

tail @2D = 81, 0, 0 <;
tail @3D = 8-1, 0, 0 <;
tail @4D = 80, 1, 0 <;
tail @5D = 80, -1, 0 <;
tail @6D = 80, 0, 1 <;
tail @7D = 81, 0, 1 <;

squadron =
Table @Arrow @X, Tail ® tail @kD, VectorColor ® RedD, 8k, 1, 7 <D;

Show@squadron, threedims, PlotRange ® All, ViewPoint ® CMView,
Boxed ® False D;
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Same length; same direction.

áB.1.a.ii)

Are there any rules about moving vectors to new positions?

áAnswer:

You can put the tail anywhere you like, but you must be careful not to 

change the direction or the length of the vector.

áB.1.b) Adding vectors

How do you add vectors?
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áAnswer:

Very easily.

For instance, if X = 83, 8< and Y = 85, 4< are vectors, then you add 

them to get

     X + Y = 83, 8< + 85, 4< = 88, 12<
just by adding the corresponding components.

Mathematica can do this too:
X = 83, 8 <;
Y = 85, 4 <;
X + Y

88, 12 <

You can add three-dimensional vectors:
X = 83, -5, 2 <;
Y = 83, 4, -7<;
X + Y

86, -1, -5<

You cannot add vectors from different dimensions:
X = 83, -5<;
Y = 83, 4, -7<;
X + Y

Thread::tdlen  :  Objects of unequal length in 83, -5< + 83, 4, -7< cannot be combined.

83, -5< + 83, 4, -7<

Here is a way of seeing what's happening in two dimensions:

Look at a picture of X = 83, 10< and Y = 88, 2< and X + Y: 
X = 83, 10 <;
Y = 88, 2 <;

ShowA

Arrow @X, Tail ® 80, 0 <, VectorColor ® RedD, Graphics AText A"X",
X
�����
2
EE,

Arrow @Y, Tail ® 80, 0 <, VectorColor ® RedD, Graphics AText A"Y",
Y
�����
2
EE,

Arrow @X + Y, Tail ® 80, 0 <, VectorColor ® RedD,

Graphics AText A"X +Y",
X + Y
�������������

2
EE, Axes ® Automatic E;
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X + Y represents the combined push of X and Y.

See what happens when you move Y without changing its direction, so 

that its tail is at the tip of X:
ShowA

Arrow @X, Tail ® 80, 0 <, VectorColor ® RedD, Graphics AText A"X",
X
�����
2
EE,

Arrow @Y, Tail ® X, VectorColor ® RedD, Graphics AText A"Y", X +
Y
�����
2
EE,

Arrow @X + Y, Tail ® 80, 0 <, VectorColor ® Blue D,

Graphics AText A"X +Y",
X + Y
�������������

2
EE, Axes ® Automatic E;
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A triangle!

This triangle shows that you have your choice of ways of getting from 

80, 0< to the tip of X + Y.

®  Route 1: You can walk directly on the vector X + Y from its tail to 

its tip.

®  Route 2: You can walk on X to the tip of X, and then hook the tail 

 

of Y on the tip of X, and finish the trip by walking along Y to its tip.

Lazy folks usually take Route 1.

Rerun this for two-dimensional vectors of your own choice.

Now check out what happens in three dimensions:
X = 83, -4, 7 <;
Y = 81, 2, 3 <;

ShowAArrow @X, Tail ® 80, 0, 0 <, VectorColor ® RedD,

Graphics3D AText A"X",
X
�����
2
EE, Arrow @Y,

Tail ® 80, 0, 0 <, VectorColor ® RedD, Graphics3D AText A"Y",
Y
�����
2
EE,

Arrow @X + Y, Tail ® 80, 0, 0 <, VectorColor ® RedD,

Graphics3D AText A"X +Y",
X + Y
�������������

2
EE, threedims, PlotRange ® All,

ViewPoint ® CMView, Boxed ® False E;
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Again, in three dimensions, X + Y represents the combined push of X 

and Y.

See what happens when you move Y without changing its direction so 

that its tail is at the tip of X:
ShowAArrow @X, Tail ® 80, 0, 0 <, VectorColor ® RedD,

Graphics3D AText A"X",
X
�����
2
EE,

Arrow @Y, Tail ® X, VectorColor ® RedD, Graphics3D AText A"Y", X +
Y
�����
2
EE,

 

Arrow @X + Y, Tail ® 80, 0, 0 <, VectorColor ® Blue D,

Graphics3D AText A"X +Y",
X + Y
�������������

2
EE, threedims, PlotRange ® All,

ViewPoint ® CMView, Boxed ® False E;
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Another triangle.

Just as in two dimensions, this triangle shows that you have your 

choice of ways of getting from 80, 0< to the tip of X + Y.  

®  Route 1: You can walk directly on the vector X + Y from its tail to 

its tip.

®  Route 2: You can walk on X to the tip of X, and then hook the tail 

of Y on the tip of X, and finish the trip by walking along Y to its tip.

Rerun the pictures above for different vectors X and Y until you get the 

hang of vector addition.

áB.1.c)

How do you subtract vectors?

áAnswer:

With no trouble.

For instance, if X = 88, 2< and Y = 83, 4< are vectors, then you subtract 

Y from X to get

       X - Y = 88, 2< - 83, 4< = 85, -2<.
Mathematica can do this too:
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X = 88, 2 <;
Y = 83, 4 <;

X - Y

85, -2<

Here is a way of seeing what's happening.

Look at a picture of X = 88, 2<, Y = 83, 4<, and X - Y: 
X = 88, 2 <;
Y = 83, 4 <;

ShowA

Arrow @X, Tail ® 80, 0 <, VectorColor ® RedD, Graphics AText A"X",
X
�����
2
EE,

Arrow @Y, Tail ® 80, 0 <, VectorColor ® RedD, Graphics AText A"Y",
Y
�����
2
EE,

Arrow @X - Y, Tail ® 80, 0 <, VectorColor ® RedD,

Graphics AText A"X -Y",
X - Y
�������������

2
EE, Axes ® Automatic E;
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This time X is the combined push of Y and X - Y.

See what happens when you move X - Y without changing its 

direction so that its tail is at the tip of Y:
ShowAArrow @X, Tail ® 80, 0 <, VectorColor ® Blue D,

Graphics AText A"X",
X
�����
2
EE, Arrow @Y, Tail ® 80, 0 <, VectorColor ® RedD,

Graphics AText A"Y",
Y
�����
2
EE, Arrow @X - Y, Tail ® Y, VectorColor ® RedD,

Graphics AText A"X -Y", Y +
X - Y
�������������

2
EE, Axes ® Automatic E;
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Another triangle.

You can get to the tip of X by going directly along X, or you can go 

from the tail of Y to the tip of Y, and then ride on X - Y to the tip of X.

This is not a surprise because X = HX - YL + Y.

Rerun for some other vectors of your own choice.

Here it is in three dimensions:
X = 84, 2, 8 <;
Y = 8-2, 6, -3<;

spacer = 0.2;
h = 1;
threedims = Axes3D@h, spacer D;
CMView = 82.7, 1.6, 1.2 <;

ShowAArrow @X, Tail ® 80, 0, 0 <, VectorColor ® Blue D,

Graphics3D AText A"X",
X
�����
2
EE,

Arrow @Y, Tail ® 80, 0, 0 <, VectorColor ® RedD,

Graphics3D AText A"Y",
Y
�����
2
EE,

Arrow @X - Y, Tail ® Y, VectorColor ® RedD,

Graphics3D AText A"X -Y", Y +
X - Y
�������������

2
EE,

threedims, PlotRange ® All, ViewPoint ® CMView, Boxed ® False E;
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Here it is for two random vectors in three dimensions:
X = 2 8Random@D, Random@D, Random@D<;
Y = 2 8Random@D, Random@D, Random@D<;

spacer = 0.2;
h = 1;
threedims = Axes3D@h, spacer D;
CMView = 82.7, 1.6, 1.2 <;

ShowAArrow @X, Tail ® 80, 0, 0 <, VectorColor ® Blue D,

Graphics3D AText A"X",
X
�����
2
EE,

Arrow @Y, Tail ® 80, 0, 0 <, VectorColor ® RedD,

Graphics3D AText A"Y",
Y
�����
2
EE,

Arrow @X - Y, Tail ® Y, VectorColor ® RedD,

Graphics3D AText A"X -Y", Y +
X - Y
�������������

2
EE,

threedims, PlotRange ® All, ViewPoint ® CMView, Boxed ® False E;
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Rerun for other X and Y of your own choice until you get the picture 

down pat.

 

áB.1.d)

How do you multiply vectors by numbers?

áAnswer:

You just do it.

For instance, if X = 83, 1< , then 2 X = 86, 2<.   
Mathematica can do this too:

X = 83, 1 <;
2 X

86, 2 <

Here are X and 2 X both shown with their tails at 80, 0<:
X = 83, 1 <;

ShowAArrow @2 X, Tail ® 80, 0 <, VectorColor ® RedD,

Graphics AText A"2X",
3 X
���������

2
EE,

Arrow @X, Tail ® 80, 0 <, VectorColor ® Blue D,

Graphics AText A"X",
X
�����
2
EE, Axes ® Automatic E;
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2 X points the same direction as X, but 2 X is twice as long as X.  That 

makes some sense because 2 X is the same thing as X + X.

Here are X and 0.3 X both shown with their tails at 80, 0<:
ShowAArrow @0.3 X, Tail ® 80, 0 <, VectorColor ® RedD,

Graphics AText A"0.3 X",
0.3 X
���������������

2
EE,

Arrow @X, Tail ® 80, 0 <, VectorColor ® Blue D,

Graphics AText A"X",
X
�����
2
EE, Axes ® Automatic E;
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0.3 X points in the same direction as X points. 

The only difference is that the length of 0.3 X is 0.3 times the length of 

X.

The same idea carries over to three dimensions as well.

B.2)  Tangent vectors, velocity vectors, and tangent lines

áB.2.a.i) Tangent and velocity vectors

Here's a curve in two dimensions:
Clear @x, y, t, P D;
x@t_ D = 3 Sin @t D;
y@t_ D = Cos@t D;
P@t_ D = 8x@t D, y @t D<;

curveplot = ParametricPlot @8P@t D<, 8t, 0, 5 <, AspectRatio ® Automatic,
PlotStyle ® 88Thickness @0.01 D, Blue <<D;

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

Here's what you get when you add plots of the vectors 
       P¢@tD = 8x¢@tD, y¢@tD< 
with their tails at P@tD for some choices of t: 

hotplot = ShowAcurveplot,

Table AArrow @P¢@t D, Tail ® P@t D, VectorColor ® RedD,

9t, 0, 5,
5
�����
6
=EE;
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Hot plot.
Describe what you see in terms of tangent vectors and velocity vectors.

áAnswer:

The vectors you see are 

       P¢@tD = 8x¢@tD, y¢@tD< 
plotted with their tails at 

       P@tD = 8x@tD, y@tD< 
for selected t's.  The vectors are tangent to the curve. 

If you imagine t to be time, and you agree that you are at 

       P@tD = 8x@tD, y@tD< 
at time t, then the vector P¢@tD measures your velocity at time t.

Take another look at the plot:
Show@hotplot D;
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The direction of P¢@tD measures the instantaneous direction you are 

moving at time t.

The length of P¢@tD measures your instantaneous speed at time t.  The 

plot above shows that you start at the top at time t = 0, moving rather 

quickly to the right. As you enter the turn on the right, you slow down 

 

until the curve flattens out. Then you speed up, slowing down as you 

go into the turn on the left.

áB.2.a.ii)

Does this good stuff work in three dimensions as well?
áAnswer:

Try it and see:
Clear @x, y, z, t, P D;

x@t_ D =
�!!!!!!!!!!

t + 1 Cos@t D;

y@t_ D =
�!!!!!!!!!!

t + 1 Sin @t D;
z@t_ D = t;
P@t_ D = 8x@t D, y @t D, z @t D<;

curveplot =
ParametricPlot3D @P@t D, 8t, 0, 10 <, DisplayFunction ® Identity D;

tangentvectors =
Table @Arrow @P¢@t D, Tail ® P@t D, VectorColor ® RedD, 8t, 0, 10 <D;

threedims = Axes3D@2, 0.2 D;

Show@threedims, curveplot, tangentvectors, ViewPoint ® CMView,
Boxed ® False, DisplayFunction ® $DisplayFunction D;
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z

Sure it does.

áB.2.b.i) Tangent lines

Here's a curve shown with a certain point on the curve:
Clear @x, y, t, P D;

x@t_ D = t 2 ;
y@t_ D = t + Cos@3 t D;

 

P@t_ D = 8x@t D, y @t D<;

curveplot = ParametricPlot @8P@t D<, 8t, 0, 3 <,
PlotStyle ® 88Thickness @0.01 D, Blue <<, AxesLabel ® 8"x", "y" <,
Epilog ® 8PointSize @0.05 D, Red, Point @P@1.9 DD<D;
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The special point is:
P@1.9 D

83.61, 2.73471 <
Plot the line tangent to this curve at this special point.  

áAnswer:

As a first step, show the plot above along with the tangent vector at 

P@1.9D:
Show@curveplot, Arrow @P¢@1.9 D, Tail ® P@1.9 D, VectorColor ® RedDD;

2 4 6 8
x

1

2

3

4

5

y

The line tangent to the curve at P@1.9D runs right through the shaft of 

the arrow. Here's how you can use the tangent vector P¢@1.9D to come 

up with a plot of the tangent line. 
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Clear @tanline, s D
tanline @s_D = P@1.9 D + s P¢@1.9 D;

tanlineplot = ParametricPlot @tanline @sD, 8s, 0, 2 <,
PlotStyle ® Thickness @0.01 D, DisplayFunction ® Identity D;

Show@curveplot, Arrow @P¢@1.9 D, Tail ® P@1.9 D, VectorColor ® RedD,
tanlineplot D;
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That's only part of the tangent line; you got it by plotting 

       P@1.9D + s P¢@1.9D 
with s running from 0 to 2. To get the stuff on the left, run s through 

some negative numbers as well as positive numbers:
Clear @tanline, s D
tanline @s_D = P@1.9 D + s P¢@1.9 D;

tanlineplot = ParametricPlot @tanline @sD, 8s, -2, 2 <,
PlotStyle ® Thickness @0.01 D, DisplayFunction ® Identity D;

Show@curveplot, Arrow @P¢@1.9 D, Tail ® P@1.9 D, VectorColor ® RedD,
tanlineplot D;
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There's that tangent line in all its glory.

The upshot of all this is:

If you have a curve described by the plot of P@tD for a £ t £ b and you 

want to plot the tangent line through a point P@cD on the curve, you plot 

       P@cD + s P¢@cD
and run s from negative to positive.

Here's how it goes for a different curve:
Clear @x, y, s, t, tanline, P D;
a = -4;
b = 3;
c = 1.7;

x@t_ D = t + Sin @3 t D;
y@t_ D = 2 Cos@t D;
P@t_ D = 8x@t D, y @t D<;

tanline @s_D = P@cD + s P¢@cD;

curveplot = ParametricPlot @P@t D, 8t, a, b <,
PlotStyle ® 88Thickness @0.01 D, Blue <<, DisplayFunction ® Identity D;

tanlineplot = ParametricPlot @tanline @sD, 8s, -2, 2 <,
PlotStyle ® 88Thickness @0.01 D, Red <<, DisplayFunction ® Identity D;

pointplot = Graphics @8PointSize @0.05 D, Red, Point @P@cDD<D;

Show@curveplot, tanlineplot, pointplot, AxesLabel ® 8"x", "y" <,
DisplayFunction ® $DisplayFunction D;
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Play with this.

 

áB.2.b.ii)

Does this work in three dimensions too?
áAnswer:

Get a life!

Of course it works in three dimensions. Take a look:
Clear @x, y, s, t, tanline, P D;
a = 0;
b = 2;
c = 0.5;

x@t_ D = t + Sin @3 t D + 1;
y@t_ D = 2 Cos@t D;
z@t_ D = t;
P@t_ D = 8x@t D, y @t D, z @t D<;

tanline @s_D = P@cD + s P¢@cD;

curveplot =
ParametricPlot3D @P@t D, 8t, a, b <, DisplayFunction ® Identity D;

tanlineplot = ParametricPlot3D @
tanline @sD, 8s, -1.5, 1.5 <, DisplayFunction ® Identity D;

pointplot = Graphics3D @8PointSize @0.03 D, Red, Point @P@cDD<D;

threedims = Axes3D@1.2, 0.2 D;

Show@threedims, curveplot, tanlineplot, pointplot, ViewPoint ® CMView,
Boxed ® False, PlotRange ® All, DisplayFunction ® $DisplayFunction D;
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Hard to resist.

 

B.3)  Length of a vector, dot product, and distance between 

two points

áB.3.a) Dot products

Here are two cleared vectors   
       X= 8x@1D, x@2D< and Y= 8y@1D, y@2D<
 in two dimensions: 

Clear @X, Y, x, y D
X = 8x@1D, x @2D<

8x@1D, x @2D<
Y = 8y@1D, y @2D<

8y@1D, y @2D<
Here is the dot product, X . Y, of these vectors:   

X . Y

x@1D y@1D + x@2D y@2D
Here are two vectors   
       X= 8x@1D, x@2D, x@3D< and Y= 8y@1D, y@2D, y@3D<
 in three dimensions: 

Clear @X, Y, x, y D
X = 8x@1D, x @2D, x @3D<

8x@1D, x @2D, x @3D<
Y = 8y@1D, y @2D, y @3D<

8y@1D, y @2D, y @3D<
Here is the dot product, X . Y, of the three-dimensional vectors X and 
Y:   

X . Y

x@1D y@1D + x@2D y@2D + x@3D y@3D
Describe how dot products are calculated.

áAnswer:

In two or three dimensions, the dot product X . Y just multiplies each 

slot in X by the corresponding slot in Y, and then adds them up.

Check it out:
81, 2 < . 80, 1 <
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2

81, 2 < . 80, 1 < == 1 0 + 2 1

True

8-1, 1 < . 88, 2 <
-6

8-1, 1 < . 88, 2 < == -8 + 2

True

81, 0, 1 < . 81, 2, 3 <
4

81, 0, 1 < . 81, 2, 3 < == 1 + 0 + 3

True

You cannot take the dot product of vectors from different dimensions:
X = 81, 0 <;
Y = 82, 1, 4 <;
X . Y

Dot::dotsh  :  Tensors 81, 0 < and 82, 1, 4 < have incompatible shapes.

81, 0 < . 82, 1, 4 <

That hacked off Mathematica.

áB.3.b)  Dot product and length

Given a two-dimensional vector, 
       X= 8x@1D, x@2D<, 
the length of X is measured by

       °X´ = "#########################x@1D 2 + x@2D 2 .

Given a three-dimensional vector,
       X= 8x@1D, x@2D, x@3D<, 
the length of X is measured by

       °X´ = "########################################x@1D 2 + x@2D 2 + x@3D 2 .
Explain why the formula
       °X´ =

�!!!!!!!!!!
X . X

works in either dimension.
áAnswer:

Try it out in two dimensions:
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Clear @xD
X = 8x@1D, x @2D<;

length =
"############################

x@1D2 + x@2D2

"############################
x@1D2 + x@2D2

�!!!!!!!!!!
X . X  is given by:

�!!!!!!!!!
X . X

"############################
x@1D2 + x@2D2

This tells you that the formula  

       °X´ =
�!!!!!!!!!!

X . X works in two dimensions.

Try it out in three dimensions:
Clear @xD
X = 8x@1D, x @2D, x @3D<;

length =
"###########################################

x@1D2 + x@2D2 + x@3D2

"############################################
x@1D2 + x@2D2 + x@3D2

�!!!!!!!!!!
X . X  is given by:

�!!!!!!!!!
X . X

"############################################
x@1D2 + x@2D2 + x@3D2

This tells you that the formula  

       °X´ =
�!!!!!!!!!!

X . X works in three dimensions too.

Handy little formula

And it's nothing more or less than your old friend, the Pythagorean 

theorem, in action.

áB.3.c.i) Dot products and distance between points

Why does 
       °X - Y´ =

�!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!HX - YL . HX - YL
calculate the distance between the tip of X and the tip of Y when X 
and Y are positioned so that their tails are at the origin?

áAnswer:

 

Look at a picture:
X = 87, 3 <;
Y = 8-4, 7 <;

ShowAArrow @X, Tail ® 80, 0 <, VectorColor ® Blue D,

Graphics AText A"X",
X
�����
2
EE,

Arrow @Y, Tail ® 80, 0 <, VectorColor ® Blue D,

Graphics AText A"Y",
Y
�����
2
EE,

Arrow @X - Y, Tail ® Y, VectorColor ® RedD,

Graphics AText A"X - Y", Y +
X - Y
�������������

2
EE, Axes ® True E;
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1
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X

Y

X - Y

Rerun for different vectors X and Y, and you will see that the distance 

between the tip of X and the tip of Y is the same as the length of X - Y.

The length of X - Y is 

       
�!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!HX - YL . HX - YL ,

so the distance between the tip of X and the tip of Y is given by

       °X - Y´ =
�!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!HX - YL . HX - YL  .

That's all there is to it.

áB.1.c.ii)

Measure the distance between 82, 7< and 83, -5< in two dimensions.
Measure the distance between 82, 7, -6< and 83, -5, 6< in three 
dimensions.

áAnswer:

 

You measure thedistance between the points 82, 7< and 83, -5< in two 

dimensions by running:
X = 82, 7 <;
Y = 83, -5<;

NA�!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!HX - YL . HX - YLE
12.0416

You measure distance between the points 82, 7, -6< and 83, -5, 6< in 

three dimensions by running:
X = 82, 7, -6<;
Y = 83, -5, 4 <;

NA�!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!HX - YL . HX - YLE
15.6525

B.4)  The push of one vector in the direction of another, and 

the formula 

       X . Y = °X´ °Y´Cos@bD, 
where b is the angle between X and Y
Here are two vectors in two dimensions shown with their tails at 80, 0< 
in true scale:

X = 81.3, 1.7 <;
Y = 81, 0.5 <;

ShowAArrow @X, Tail ® 80, 0 <D,

Graphics AText A"X",
X
�����
2
EE, Arrow @Y, Tail ® 80, 0 <, VectorColor ® RedD,

Graphics AText A"Y",
Y
�����
2
EE, PlotRange ® 880, 2 <, 80, 2 <<,

AspectRatio ® Automatic, Axes ® True, AxesLabel ® 8"x", "y" <E;
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The question addressed here is how to measure the push of X in the 
direction of Y. 
The answer is that the push of X in the direction of Y is calculated by 
the clean formula:
       XpushalongY= X×Y�����������Y×Y  Y.
Take a look:

XpushalongY =
X . Y
�������������
Y . Y

 Y;

ShowAArrow @X, Tail ® 80, 0 <D,

Graphics AText A"X",
X
�����
2
EE,

Arrow @XpushalongY, Tail ® 80, 0 <, VectorColor ® RedD,

Graphics A

Text A"X push along Y",
XpushalongY
�����������������������������������

2
EE, PlotRange ® 880, 2 <, 80, 2 <<,

AspectRatio ® Automatic, Axes ® True, AxesLabel ® 8"x", "y" <E;
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y
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X push along Y

Grab the last two plots, align them and then animate running a slow 
speed.

You can find the align and animate commands in the Cell menu

Here are two new vectors X and Y: 
X = 8-8, 6 <;
Y = 8-4, 0.6 <;
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ShowAArrow @X, Tail ® 80, 0 <D,

Graphics AText A"X",
X
�����
2
EE,

Arrow @Y, Tail ® 80, 0 <, VectorColor ® RedD,

Graphics AText A"Y",
Y
�����
2
EE, AspectRatio ® Automatic, Axes ® True,

AxesLabel ® 8"x", "y" <E;
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Here are X and XpushalongY= X.Y�����������Y.Y  Y:

XpushalongY =
X . Y
�������������
Y . Y

 Y;

ShowAArrow @X, Tail ® 80, 0 <D,

Graphics AText A"X",
X
�����
2
EE,

Arrow @XpushalongY, Tail ® 80, 0 <, VectorColor ® RedD,

Graphics AText A"X push along Y",
XpushalongY
�����������������������������������

2
EE,

AspectRatio ® Automatic, Axes ® True, AxesLabel ® 8"x", "y" <E;
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Try it for other X's and Y's until the plots make sense to you.

 

áB.4.a)

According to what was done above, you calculate the push of a vector 
X in the direction of another vector Y by calculating
       XpushalongY= X.Y�����������Y.Y  Y.
Explain where this formula comes from, and explain what the push of 
X in the direction of Y means. 

áAnswer:

Go with cleared vectors X and Y.

Put

       f @tD = °X - t Y´ =
�!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!HX - t YL . HX - t YL .

The function f @tD measures the distance between the tip of X and the tip 

of the vector t Y when both vectors have their tails at 80, 0<.
Clear @f, t, x, y, X, Y D
X = 8x@1D, x @2D<;
Y = 8y@1D, y @2D<;

f @t_ D =
�!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!HX - t Y L . HX - t Y L

"########################################################################Hx@1D - t y @1DL2 + Hx@2D - t y @2DL2

f @tD is as small as it can be when f ¢@tD = 0:
Solve @f ¢@t D == 0, t D

99t ® -
-x@1D y@1D - x@2D y@2D
��������������������������������������������������������������

y@1D2 + y@2D2
==

This is the same as bestt= X.Y�����������Y.Y :

bestt =
X . Y
�������������
Y . Y

x@1D y@1D + x@2D y@2D
����������������������������������������������������������

y@1D2 + y@2D2

This is the t that makes

       f @tD = °X - t Y´ 
as small as it can be.

But you already know that

 

       XpushalongY= X.Y�����������Y.Y  Y.

The upshot:

The push of X in the direction of Y is that multiple of Y whose tip is 

closest to the tip of X when you put the tails of both vectors at 80, 0<.
This works in three dimensions as well.

áB.4.b)

Take a look at 
®  X and XpushalongY with their tails at 80, 0<, and  
®  HX - XpushalongYL with its tail at the tip of XpushalongY for two 
sample vectors X and Y in true scale:

X = 81, 2 <;
Y = 84, 1 <;

XpushalongY =
X . Y Y
�����������������

Y . Y
;

ShowAArrow @X, Tail ® 80, 0 <D,

Graphics AText A"X",
X
�����
2
EE,

Arrow @XpushalongY, Tail ® 80, 0 <, VectorColor ® RedD,

Graphics AText A"X push along Y",
XpushalongY
�����������������������������������

2
EE,

Arrow @X - XpushalongY, Tail ® XpushalongY, VectorColor ® RedD,
Graphics @Line @8-0.2 Y, 0.8 Y <DD, AspectRatio ® Automatic,

Axes ® True, AxesLabel ® 8"x", "y" <E;

0.5 1 1.5 2 x

0.5

1

1.5

2
y

X

X push along Y

The line is the plot of the tips of relevant multiples t Y of Y.
Describe what you see and explain why you see it.
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áAnswer:

You see a right triangle. 

And this is what you'll see for any two vectors X and Y unless X and Y 

are parallel.

Reason:

®  The push of X in the direction of Y is the multiple of Y whose tip is 

closest to the tip of X when you put the tails of both vectors at 80, 0<. 
The upshot:

The tip of XpushalongY is the closest point on the line to the tip of X.  

And the shortest distance between the line and the tip of X is the 

perpendicular distance.

áB.4.c)  The formula HX . YL = °X´ °Y´ Cos@bD where b is the angle 

between X and Y

Take another look at 
®  X and XpushalongY with their tails at 80, 0<  and  
®  HX - XpushalongYL with its tail at the tip of XpushalongY for two 
sample vectors X and Y in true scale:

X = 82.8, 1.9 <;
Y = 81.2, 0.2 <;

XpushalongY =
X . Y
�������������
Y . Y

 Y;

plot = ShowAArrow @X, Tail ® 80, 0 <D,

Graphics AText A"X",
X
�����
2
EE,

Arrow @XpushalongY, Tail ® 80, 0 <, VectorColor ® RedD,

Graphics AText A"X push along Y",
XpushalongY
�����������������������������������

2
EE,

Arrow @X - XpushalongY, Tail ® XpushalongY, VectorColor ® RedD,

Axes ® True, AxesLabel ® 8"x", "y" <E;
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Use the plot to help explain the formula
       HX . YL = °X´ °Y´ Cos@bD 
where 
       b is the angle between X and Y,
       °X´ =

�!!!!!!!!!!
X . X, and

       °Y´ =
�!!!!!!!!!!

Y . Y.
áAnswer:

The goal is to explain the formula

       X . Y = °X´ °Y´ Cos@bD, 
where b is the angle between X and Y when their tails are at the origin.  

Take another look:
Show@plot D;
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ush along Y

Remembering that 

       Cos@bD = adjacent��������������������������hypotenuse,

read off 

       Cos@bD = t °Y´����������°X´

 

where 

       t = X .Y������������Y.Y

because 

       XpushalongY= X .Y������������Y.Y  Y.

Now you know why

       °X´Cos@bD = t °Y´.
Next, multiply both sides by °Y´ to get

       °X´ °Y´ Cos@bD = t °Y´2.

 This tells you that to explain why

       X . Y = °X´ °Y´ Cos@bD, 
you gotta explain why

       t °Y´2 = X . Y.

This is easy because 

       t = X .Y������������Y.Y ; 

so

       t °Y´2 = t Y . Y 

       = X .Y������������Y.Y  HY . YL = X . Y.

That's it.

This formula also works in three dimensions.

B.5) X . Y = 0 means X is perpendicular to Y

áB.5.a.i)

Look at 
       X= 81, 4�����3 , 7�����2 < and Y= 8- 1�����3 , -5, 2<
with their tails at 80, 0, 0<:

 

X = 91,
4
�����
3

,
7
�����
2
=;

Y = 9-
1
�����
3

, -5, 2 =;

threedims = Axes3D@1.5, 0.2 D;

Show@Arrow @X, VectorColor ® RedD,
Arrow @Y, VectorColor ® RedD,
threedims, PlotRange ® All, ViewPoint ® CMView, Boxed ® False D;

x
y

z

These vectors look like they might be perpendicular.
How can you tell for sure?

áAnswer:

Just look at X . Y:
X . Y

0

Now you know that X . Y = 0; so you know for sure that X is indeed 

perpendicular to Y. 

áB.5.a.ii) The perpendicularity test

Explain the statement: 
If X . Y = 0, then X is perpendicular to Y.

áAnswer:

Well, if X . Y = 0, then because

       HX . YL = °X´ °Y´ HCos@bDL, 
you know that

VC.01.B4®T1  

       Cos@bD = 0 = Cos@ p�����2 D = Cos@- p�����2 D.
This tells you that the angle between X and Y is a right angle. 

áB.5.b)

How do you know that 
       X= 86, 2< 
is perpendicular to 
       Y= 83, -9<? 

áAnswer:

Check to see that X . Y = 0:
X = 86, 2 <;
Y = 83, -9<;
X . Y

0

Yep; X = 86, 2< is perpendicular to Y = 83, -9<. 

VC.01 Vectors Point the Way
Tutorials

T.1)  Velocity and acceleration
At time t, an object is at the location 
       P@tD = 8x@tD, y@tD<.

Clear @t, x, y, P D
P@t_ D = 8x@t D, y @t D<

8x@t D, y @t D<
The velocity of the object at time t is given by:

Clear @vel D
vel @t_ D = D@P@t D, t D

8x ¢@t D, y ¢@t D<
The velocity is a vector quantity.  When you put its tail at 8x@tD, y@tD<, 
the velocity vector 
       8x¢@tD, y¢@tD< = P¢@tD = D@P@tD, tD 
is tangent to the curve traced out by the motion of P@tD. This velocity 
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vector points in the instantaneous direction that the object is going. 
The speed of the object is the length of the velocity vector:

Clear @speed D
speed @t_ D =

�!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
vel @t D . vel @t D

"###############################
x ¢@t D2 + y ¢@t D2

The acceleration of the object is given by:
Clear @accel D
accel @t_ D = D@vel @t D, t D

8x²@t D, y ²@t D<

áT.1.a)

What does the acceleration vector measure?

áAnswer:

Because the velocity vector is the derivative of the position vector, the 

velocity vector measures the rate of change of the position.

Because the acceleration vector is the derivative of the velocity vector, 

the acceleration vector measures the rate of change of the velocity.

áT.1.b)

At time t, an object is at the point 
       P@tD = 83 Cos@tD, 3 Sin@tD<. 
Plot the motion of the object in true scale for 0£ t £ 2 p, and include 
several velocity and acceleration vectors.
Discuss what the plot reveals.

áAnswer:
Clear @t, P D;
P@t_ D = 83 Cos@t D, 3 Sin @t D<;

curveplot =
ParametricPlot @P@t D, 8t, 0, 2 p<, PlotStyle ® Thickness @0.01 D,

AspectRatio ® Automatic, AxesLabel ® 8"x", "y" <D;
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Circular motion - no big surprise.

Now set up the velocity and acceleration vectors:
Clear @vel, accel D;
vel @t_ D = D@P@t D, t D;

accel @t_ D = D@vel @t D, t D;

Clear @velvector D
velvector @t_ D : = Arrow @vel @t D, Tail ® P@t D, VectorColor ® Blue D;

Clear @accelvector D
accelvector @t_ D : = Arrow @accel @t D, Tail ® P@t D, VectorColor ® RedD;

ShowA

curveplot, velvector A p
�����
4
E, accelvector A p

�����
4
E, AspectRatio ® Automatic E;
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The velocity vector indicates the direction of the motion, and the 

acceleration vector indicates that the force on the object (force=mass 

times acceleration) is directed toward the origin, perpendicular to the 

 

velocity vector.

Check out some more velocity and acceleration vectors:
Show@curveplot, Table @velvector @t D, 8t, 1.2, 7.2, .5 <D,

Table @accelvector @t D, 8t, 1.2, 7.2, .5 <D, AspectRatio ® Automatic D;
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Neato.

In this set up, the acceleration vectors at P@tD are all perpendicular to 

the velocity vectors at P@tD. This means the force on the object neither 

speeds up nor slows down the object.  To confirm this, check out the 

speed:
Clear @speed D
speed @t_ D =

�!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
TrigExpand @vel @t D . vel @t DD

3

The object moves with a constant speed of 3 units of length per unit of 

time.  Another way to see this is to look at the plot and note that all the 

velocity vectors have the same length.

áT.1.c.i)

At time t, an object is at the point 
       P@tD = 87 Cos@tD, 4 Sin@tD<. 
Plot the motion of the object in true scale for 0£ t £ 2 p, and include 
several velocity and acceleration vectors.
Discuss what the plot reveals.

VC.01.T1  

áAnswer:
Clear @t, P D
P@t_ D = 87 Cos@t D, 4 Sin @t D<;

curveplot = ParametricPlot @P@t D, 8t, 0, 2 p<,
PlotStyle ® Thickness @0.01 D, AspectRatio ® Automatic D;
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The object is moving on an ellipse.

To see which way the object is moving, look at the velocity and 

acceleration vectors:
Clear @vel, accel D;
vel @t_ D = D@P@t D, t D;

accel @t_ D = D@vel @t D, t D;

Clear @velvector D
velvector @t_ D : = Arrow @vel @t D, Tail ® P@t D, VectorColor ® Blue D;

Clear @accelvector D
accelvector @t_ D : = Arrow @accel @t D, Tail ® P@t D, VectorColor ® RedD;

Show@curveplot, Table @velvector @t D, 8t, 1.2, 7.2, .5 <D,
Table @accelvector @t D, 8t, 1.2, 7.2, .5 <D, AspectRatio ® Automatic D;

-10 -5 5 10

-4

-2

2

4

10  



The velocity vectors have different lengths, and the acceleration 

vectors are not perpendicular to the velocity vectors.  This signals that 

the speed is not constant.  Looking again, you can see that the 

acceleration vectors are working to speed up the object in the first and 

third quadrants, and the acceleration vectors are slowing the object 

down in the second and fourth quadrants.

Confirm with a plot of the speed:

Plot A�!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
vel @t D . vel @t D , 8t, 0, 2 p<E;
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Going faster, then slower, then faster, and then slower.

áT.1.c.ii) The tangential component of the acceleration

Folks like to call the push of the acceleration vector in the direction of 
the velocity vector "the tangential component of the acceleration."
Go back to the plot in part i) above and show some velocity vectors 
and the tangential components of the acceleration vectors.
Discuss what your plot reveals.

áAnswer:

Remember that the push of a vector X in the direction of another vector 

Y is calculated by 

       X.Y�����������Y.Y  Y.

Here come the tangential components of the acceleration vectors 

plotted with the velocity vectors on the curve:

 

Clear @tancompaccel, tanaccelvector D

tancompaccel @t_ D =
accel @t D . vel @t D vel @t D
���������������������������������������������������������������������

vel @t D . vel @t D
;

tanaccelvector @t_ D : =
Arrow @tancompaccel @t D, Tail ® P@t D, VectorColor ® RedD;

Show@curveplot, Table @velvector @t D, 8t, 1.2, 7.2, .5 <D,
Table @tanaccelvector @t D, 8t, 1.2, 7.2, .5 <D,
AspectRatio ® Automatic D;
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When the tangential components of the acceleration vectors are 

pushing in the same direction as the velocity vectors, the object is 

gaining speed.

When the tangential components of the acceleration vectors are 

pushing in the direction opposite to the velocity vectors, the object is 

losing speed.

Look at the brakes go on as the object goes into the sharp turns, and 

look at how the object speeds up as it comes out of the turns.

áT.1.c.iii) The normal component of the acceleration

Folks like to call the push of the acceleration vector in the direction 
perpendicular to the velocity vector by the name "the normal 
component of the acceleration."
Go back to the plot in part i) above and show some acceleration 
vectors split into normal and tangential components. 
Discuss what your plot reveals.

 

áAnswer:

You already have the tangential components of the acceleration vectors 

live in part ii) above. The perpendicular component is just

     accel@tD - tancompaccel@tD:
Clear @perpcompaccel, perpaccelvector D
perpcompaccel @t_ D = accel @t D - tancompaccel @t D;

perpaccelvector @t_ D : =
Arrow @perpcompaccel @t D, Tail ® P@t D, VectorColor ® RedD;

Show@curveplot, Table @tanaccelvector @t D, 8t, 1.2, 7.2, 0.5 <D,
Table @perpaccelvector @t D, 8t, 1.2, 7.2, 0.5 <D,
AspectRatio ® Automatic D;
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The tangential components govern the speed of the object, and the 

perpendicular components measure the tug on the object as it goes on 

its elliptical path. Note that the tug is greater in the sharp turns than it is 

on the flatter parts of the curve. Just as you expect.
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T.2)  Using the normal vector to bounce light beams off 

two-dimensional curves
When you have a parametric formula P@tD = 8x@tD, y@tD< for a curve in 
two dimensions, then you can calculate a tangent vector
at P@tD by calculating 
       tan@tD = 8x¢@tD, y¢@tD<. 
You can also calculate a vector perpendicular to the curve at P@tD by 
calculating
       normal@tD = 8y'@tD, -x@tD<. 
Fancy folks like to call the perpendicular vector by the name "normal 
vector."
Here is a sample curve shown with a selection of tangents and 
normals:

Clear @t, x, y, P D
x@t_ D = t + Sin @2 t D;
y@t_ D = 3 Cos@t D;
P@t_ D = 8x@t D, y @t D<;

a = 0;
b = 5;
curveplot = ParametricPlot @P@t D, 8t, a, b <,

PlotStyle ® Thickness @0.01 D, DisplayFunction ® Identity D;

Clear @tan, normal D;
tan @t_ D = 8x ¢@t D, y ¢@t D<;
normal @t_ D = 8y ¢@t D, -x ¢@t D<;

Clear @tanvector D
tanvector @t_ D : = Arrow @tan @t D, Tail ® P@t D, VectorColor ® Blue D;

Clear @normalvector D
normalvector @t_ D : = Arrow @normal @t D, Tail ® P@t D, VectorColor ® RedD;

ShowA

curveplot, Table A8tanvector @t D, normalvector @t D<, 9t, a, b,
b - a
�������������

6
=E,

AspectRatio ® Automatic, AxesLabel ® 8"x", "y" <,

DisplayFunction ® $DisplayFunction E;
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The vectors overwhelm the plot. 
Tone them down by applying a scale factor to the tangent and normal 
vectors:

scalefactor = 0.6;

Clear @tanvector D
tanvector @t_ D : = Arrow @tan @t D,

Tail ® P@t D, VectorColor ® Blue, ScaleFactor ® scalefactor D;

Clear @normalvector D
normalvector @t_ D : = Arrow @normal @t D,

Tail ® P@t D, VectorColor ® Red, ScaleFactor ® scalefactor D;

ShowA

curveplot, Table A8tanvector @t D, normalvector @t D<, 9t, a, b,
b - a
�������������

6
=E,

AspectRatio ® Automatic, AxesLabel ® 8"x", "y" <,

DisplayFunction ® $DisplayFunction E;

1 2 3 4 5 6 x

-4

-2

2

y

That's a bit better.

 

áT.2.a)

How did you know in advance that the normal vectors
       8y¢@tD, -x¢@tD< 
are guaranteed to be perpendicular to the tangent vectors 
       8x¢@tD, y¢@tD<?

áAnswer:

The perpendicularity test says:

Two vectors X and Y are perpendicular if X . Y = 0.

Taking 

       X = 8x'@tD, y'@tD< and Y = 8y'@tD, -x'@tD<, 
you don't need Mathematica to see that

       X . Y = x'@tD y'@tD + y'@tD H-x'@tDL = 0. 

áT.2.b) How to handle curves specified in nonparametric form

Here is a curve plotted in nonparametric form:
Clear @f, x D
f @x_D = 2.5 E -Hx-3L2

;

a = 0;
b = 6;
curveplot = Plot @f @xD, 8x, a, b <, PlotStyle ® Thickness @0.01 D,

AxesLabel ® 8"x", "y" <D;
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How do you stick some tangent and normal vectors onto this curve?
áAnswer:

Every function specified as y = f @xD can be thought of as a shorthand 

version of the parametric version, P@xD = 8x, y< = 8x, f@xD<, or, after 

 

changing the independent variable, P@tD = 8t, f@tD<.  That makes this job 

easy:

Replot in parametric form, scale the tangent and normal vectors, and 

run:
Clear @t, x, y, P D
x@t_ D = t;
y@t_ D = f @t D;
P@t_ D = 8x@t D, y @t D<;

curveplot = ParametricPlot @P@t D, 8t, a, b <,
PlotStyle ® Thickness @0.01 D, DisplayFunction ® Identity D;

Clear @tan, normal D;
tan @t_ D = 8x ¢@t D, y ¢@t D<;

normal @t_ D = 8y ¢@t D, -x ¢@t D<;

scalefactor = 0.6;
Clear @tanvector D
tanvector @t_ D : = Arrow @scalefactor tan @t D,

Tail ® P@t D, VectorColor ® Blue, ScaleFactor ® scalefactor D;

Clear @normalvector D
normalvector @t_ D : = Arrow @scalefactor normal @t D,

Tail ® P@t D, VectorColor ® Red, ScaleFactor ® scalefactor D;

ShowA

curveplot, Table A8tanvector @t D, normalvector @t D<, 9t, a, b,
b - a
�������������

8
=E,

AspectRatio ® Automatic, AxesLabel ® 8"x", "y" <,

DisplayFunction ® $DisplayFunction E;
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There ya go.
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áT.2.c)

Here is the curve 
       f@xD = 1 - Cos@xD for - p�����2 £ x £ p�����2  
 shown with a light beam emanating from 82, 3< and hitting the curve 
at 
       80.5, f@0.5D<:

Clear @t, f, x, y, P D
f @x_D = 1 - Cos@xD;
x@t_ D = t;
y@t_ D = f @t D;
P@t_ D = 8x@t D, y @t D<;

a = -
p
�����
2

;

b =
p
�����
2

;

curveplot =
ParametricPlot @P@t D, 8t, a, b <, PlotStyle ® Thickness @0.01 D,

AxesLabel ® 8"x", "y" <, DisplayFunction ® Identity D;
source = 82, 3 <;
hit = 80.5, f @0.5 D<;
label = Graphics @Text @"source", source + 80, 0.2 <DD;
sourceplot = Graphics @8Red, PointSize @0.05 D, Point @source D<D;
incominglight = Arrow @hit - source, Tail ® source, VectorColor ® RedD;

Show@curveplot, incominglight, label, sourceplot, PlotRange ® All,
DisplayFunction ® $DisplayFunction D;

-1.5-1-0.5 0.5 1 1.5 2 x

0.5
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1.5

2

2.5

3

y
source

Plot where the light beam goes after it bounces off the curve.
áAnswer:

The physical principle behind bouncing light is that the angle of 

incidence is the same as the angle of reflection.  To get an idea of how 
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to make use of this physical principle, include the normal vector at the 

hit and run the vector from the hit to the source.
X = source - hit;

reverseincominglight = Arrow @X, Tail ® hit, VectorColor ® RedD;

extralabels = 9Graphics AText A"X", hit +
source - hit
�����������������������������������

2
EE,

Graphics AText A"normal @0.5 D", hit +
normal @0.5 D
�����������������������������������

2
EE=;

Clear @normal, normalvector, t D
normal @t_ D = 8y ¢@t D, -x ¢@t D<;

normalvector @t_ D : = Arrow @normal @t D, Tail ® hit, VectorColor ® Blue D;

Show@curveplot, reverseincominglight , normalvector @0.5 D,
extralabels, sourceplot, label, PlotRange ® All,
DisplayFunction ® $DisplayFunction D;

-1.5-1-0.5 0.5 1 1.5 2 x

1

2

3

y

X

normal@0.5D

source

Agree that R is a vector specifying the direction of the reflected light 

and note that the angle R makes with normal@0.5D is the same as the 

angle X makes with normal. So you want

       X . normal@0.5D = °X´ °normal@0.5D´ Cos@bD
       R . normal@0.5D = °R´ °normal@0.5D´ Cos@bD
where b is the angle between X and normal@0.5D.
When you make

 

       R . R= °R´2 = °X´2 = X . X, 

you get two equations to solve for the two slots of R: 
Clear @R, r1, r2 D
R = 8r1, r2 <;

equation1 = R . normal @0.5 D == X . normal @0.5 D;
equation2 = R . R == X . X;

solutions = Solve @8equation1, equation2 <D
88r1 ® -3.18283, r2 ® 0.632514 <, 8r1 ® 1.5, r2 ® 2.87758 <<

One solution for R is X itself: 
X

81.5, 2.87758 <

Discard it and go with: 
r1 = -3.18283;
r2 = 0.632514;
R = 8r1, r2 <

8-3.18283, 0.632514 <

Try it out:
outgoinglight = Arrow @R, Tail ® hit, VectorColor ® RedD;

Show@sourceplot, outgoinglight, curveplot, reverseincominglight ,
normalvector @0.5 D, extralabels, sourceplot, label, Axes ® True,
PlotRange ® All, DisplayFunction ® $DisplayFunction D;

-2 -1 1 2
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X

normal@0.5D

source

Beautiful.

Here's the path of the light:
Show@curveplot, incominglight, outgoinglight, label, sourceplot,

Axes ® True, PlotRange ® All, DisplayFunction ® $DisplayFunction D;
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source

Lookin' just fine, thank you.

T.3)  Lines
To specify a line, you need a point to run the line through and you 
need a vector to specify the direction of the line.

áT.3.a.i) 2D lines

Come up with a parametric formula for the line that runs through 
8-2, -1< and runs parallel to the vector 83, 1<.
Show the line, the vector, and the point in a single plot.
Give the equation of the line in the nonparametric form 
       y= f @xD.

áAnswer:

Here comes the parametric formula:
point = 8-2, -1<;
parallelvector = 83, 1 <;

Clear @line, t D
line @t_ D = point + t parallelvector

8-2 + 3 t, -1 + t <

A parametric formula for the line that runs through 8-2, -1< and runs 

parallel to the vector 83, 1< is 

       8x@tD, y@tD< = 8-2, -1< + t 83, 1<.
Note how the parametric formula displays the given point and the 
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parallel vector.

Here comes the plot:
directionvector =

Arrow @parallelvector, Tail ® point, VectorColor ® RedD;

pointplot = Graphics @8PointSize @0.04 D, Red, Point @point D<D;

lineplot =
ParametricPlot @line @t D, 8t, -2, 3 <, PlotStyle ® Thickness @0.01 D,

AxesLabel ® 8"x", "y" <, DisplayFunction ® Identity D;

Show@lineplot, pointplot, directionvector,
DisplayFunction ® $DisplayFunction D;
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Here's how the plot looks when you stick the tail of the parallel vector 

at 80, 1<:
directionvector =

Arrow @parallelvector, Tail ® 80, 1 <, VectorColor ® RedD;

Show@lineplot, directionvector, DisplayFunction ® $DisplayFunction D;

-8 -6 -4 -2 2 4 6
x
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y

Parallel.

To come up with the formula of the line in the nonparametric form 

y = f @xD, look at:
Clear @x, y D
equation = 8x, y < == line @t D

8x, y < == 8-2 + 3 t, -1 + t <
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Eliminate t by writing 

       t = x + 2�������������3  and t = y + 1 

and setting

       x + 2�������������3 == y + 1:
squasht = Eliminate @equation, t D

x == 1 + 3 y

Now solve for y:
Solve @squasht, y D

99y ®
1
�����
3

H-1 + xL==

The nonparametric formula of this line is 

       y = x - 1�������������3 . 

áT.3.a.ii) 3D lines

Come up with a parametric formula for the line that runs through 
82, -3, -5< and runs parallel to the vector 8-1.5, 2.5, 3.3<.
Show the line, the vector, and the point in a single plot.

áAnswer:

You do it the same way you handle the 2D case.

Here comes the parametric formula:
point = 82, -3, -5<;
parallelvector = 8-1.5, 2.5, 3.3 <;
Clear @line, t D
line @t_ D = point + t parallelvector

82 - 1.5 t, -3 + 2.5 t, -5 + 3.3 t <

A parametric formula for the line that runs through 

       82, -3, -5< 
and runs parallel to the vector 

       8-1.5, 2.5, 3.3< 
is

 

       H8x@tD, y@tD, z@tD< = 82, -3, -5< + t 8-1.5, 2.5, 3.3<L
Note how the parametric formula conveniently displays the given point 

and the parallel vector.

Here comes the plot:
directionvector =

Arrow @parallelvector, Tail ® point, VectorColor ® RedD;

pointplot = Graphics3D @8PointSize @0.04 D, Red, Point @point D<D;
lineplot =

ParametricPlot3D @line @t D, 8t, -2, 3 <, DisplayFunction ® Identity D;
threedims = Axes3D@3, .2 D;

Show@
threedims, lineplot, pointplot, directionvector, ViewPoint ® CMView,
Boxed ® False, DisplayFunction ® $DisplayFunction D;

x y

z

Here's how the plot looks when you stick the tail of the parallel vector 

at 80, 0, 0<:
directionvector =

Arrow @parallelvector, Tail ® 80, 0, 0 <, VectorColor ® RedD;

Show@threedims, lineplot, directionvector, ViewPoint ® CMView,
Boxed ® False, DisplayFunction ® $DisplayFunction D;

 

x y

z

áT.3.b.i) 2D lines

Here's a look at the two points 8-2, 3< and 83, 0< in two dimensions:
point1 = 8-2, 3 <;
point2 = 83, 0 <;
pointplot = Graphics @88PointSize @0.04 D, Red, Point @point1 D<,

8PointSize @0.04 D, Red, Point @point2 D<<D;

Show@pointplot, Axes ® True, AxesLabel ® 8"x", "y" <D;
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Come up with a parametric formula for the line that runs through 
these two points
Show the line and the two points in a single plot.

áAnswer:

This line is parallel to the vector that runs from 8-2, 3< to 83, 0<, which 

is given by 

       83, 0- 8-2, 3< = 85, -3<.
parallelvector = point2 - point1

85, -3<

Take a look:
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Show@pointplot,
Arrow @parallelvector, Tail ® point1, VectorColor ® RedD,
Axes ® True, AxesLabel ® 8"x", "y" <D;
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Here's a parametric formula:
Clear @line, t D
line @t_ D = point1 + t parallelvector

8-2 + 5 t, 3 - 3 t <

You can see one of the points – namely, 8-2, 3< – prominently 

displayed in this parametric formula. Here comes the plot:
lineplot =

ParametricPlot @line @t D, 8t, -1, 2 <, PlotStyle ® Thickness @0.01 D,
AxesLabel ® 8"x", "y" <, DisplayFunction ® Identity D;

Show@lineplot, pointplot, DisplayFunction ® $DisplayFunction D;
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There you go.

áT.3.b.ii) 3D lines

Here's a look at three points in three dimensions:
point1 = 8-1.51, 2.32, -1.81 <;
point2 = 82.69, -1.14, 4.43 <;
point3 = 80.59, 0.59, 1.31 <;
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pointplot = 8Graphics3D @8PointSize @0.04 D, Red, Point @point1 D<D,
Graphics3D @8PointSize @0.04 D, Red, Point @point2 D<D,
Graphics3D @8PointSize @0.04 D, Red, Point @point3 D<D<;

threedims = Axes3D@1, .3 D;

Show@threedims, pointplot, ViewPoint ® CMView, PlotRange ® All,
Boxed ® False D;

x y

z

These three points certainly look like they're lined up in a straight line. 
How can you tell for sure?

áAnswer:

Put a line between two of them and see whether the third point is on 

this line:
Clear @line, t D
line @t_ D = point1 + t Hpoint2 - point1 L;

distance @t_ D =
�!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hline @t D - point3 L . Hline @t D - point3 L ;

Solve @distance @t D == 0, t D
88t ® 0.5 <<

Compare:
point3

80.59, 0.59, 1.31 <
line @0.5 D

80.59, 0.59, 1.31 <

Yep, the line goes through all three points.

Another way of seeing this is to make a vector running from point1 to 

point2 and another vector running from point1 to point3:
vector12 = point2 - point1

84.2, -3.46, 6.24 <

 

vector13 = point3 - point1

82.1, -1.73, 3.12 <

vector12PushAlongvector13 =
vector12 . vector13
�������������������������������������������������������
vector13 . vector13

 vector13

84.2, -3.46, 6.24 <
vector12 == vector12PushAlongvector13

True

This tells you that the push of vector12 in the direction of vector13 is 

the same as vector12.

This is enough to confirm that the three points all reside on a single 

line.

áT.3.c)  Midpoints

Look at:
X = 82, 10 <;
Y = 811, 3 <;

setup = ShowAArrow @X, Tail ® 80, 0 <, VectorColor ® RedD,

Graphics AText A"X",
X
�����
2
EE, Arrow @Y, Tail ® 80, 0 <, VectorColor ® RedD,

Graphics AText A"Y",
Y
�����
2
EE, Axes ® True, AxesLabel ® 8"x", "y" <E;
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Use vectors to find the midpoint of the line segment that runs from the 
tip of X to the tip of Y.

 

áAnswer:

Remember that if you hook the tail of X - Y to the tip of Y, then 

X - Y runs from the tip of Y to the tip of X. Why?

Because

       X = Y + HX - YL.
ShowAsetup, Arrow @X - Y, Tail ® Y, VectorColor ® RedD,

Graphics AText A"X -Y", Y +
X - Y
�������������

2
EEE;

2 4 6 8 10 x

2

4

6

8

10
y

X

Y

X-Y

To get to the midpoint of the line segment connecting the tip of Y and 

the tip of X, you can travel on Y to the tip of Y, and then travel along 

X - Y, but you should only go halfway.  This means:

midpoint = Y +
X - Y
�������������

2

9 13
��������
2

,
13
��������
2

=

Check with a plot:
midpointplot = Graphics @8Blue, PointSize @0.04 D, Point @midpoint D<D;
lineplot = Graphics @Line @8X, Y <DD;

Show@setup, lineplot, midpointplot D;
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Copacetic.

T.4)  Pursuits

áT.4.a.i)

Bubba is really enjoying one of those big time keg parties out in the 
woods. Having learned to monitor his blood alcohol level in earlier 
Calculus&Mathematica lessons, Bubba took his bicycle to the party 
instead of driving his car.  At time t= 0, Bubba leaves the party and 
gets on his bicycle to ride home. 
At time t, after leaving the party, Bubba is at the point 
       82 t + 1�����2 Sin@4 tD, t + E-t Sin@3 tD<.  
Here is his route:

Clear @bubba, t D

bubba @t_ D = 92 t +
1
�����
2

Sin @4 t D, t + E-t Sin @3 t D=;

bubbaroute = ParametricPlot @
bubba @t D, 8t, 0, 5 <, PlotStyle ® 88Thickness @0.01 D, Red <<,
AxesLabel ® 8"x", "y" <, DisplayFunction ® Identity D;

pointplot = 8Graphics @8PointSize @0.06 D, Point @bubba @0DD<D,
Graphics @8PointSize @0.06 D, Point @bubba @5DD<D<;

labels = 8Graphics @Text @"Party", bubba @0D, 8-2, 0 <DD,
Graphics @Text @"Home", bubba @5D, 80, 5 <DD<;

Show@bubbaroute, pointplot, labels, AspectRatio ® Automatic,
PlotRange ® All, DisplayFunction ® $DisplayFunction D;
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Slightly unsteady is your friend Bubba.
While Bubba was at the party, his Blue Tick hound dog was sleeping 
at the point 80, 2<.  As Bubba left the party, the dog wakes up and 
chases Bubba. Here is the dog's scheme:
If the dog is at 
       8x@tD, y@tD< 
at time t, then he leaves 8x@tD, y@tD< with instantaneous velocity
       bubba@tD - 8x@tD, y@tD<. 
This means that at any time t, the dog is always running toward the 
point bubba@tD, Bubba's current position. 
Does the dog catch up with Bubba before Bubba gets home and locks 
the dog out?

áAnswer:

You guessed it.

This is a job for a system of differential equations.

Put:
Clear @dogvelocity, x, y, t D
dogvelocity @t_ D = bubba @t D - 8x@t D, y @t D<

92 t +
1
�����
2

Sin @4 t D - x@t D, t + E-t Sin @3 t D - y@t D=

The system of differential equations is:
Clear @Derivative D
equationx = x ¢@t D == dogvelocity @t DP1T

x ¢@t D == 2 t +
1
�����
2

Sin @4 t D - x@t D
equationy = y ¢@t D == dogvelocity @t DP2T

y ¢@t D == t + E-t Sin @3 t D - y@t D
starterx = x@0D == 0

 

x@0D == 0

startery = y@0D == 2

y@0D == 2

Here comes the approximate plot of the dog's route for 

       0 £ t £ 5:
endtime = 5;
Clear @x, y, t, Derivative D
approxsolutions = NDSolve @8equationx, equationy, starterx, startery <,

8x@t D, y @t D<, 8t, 0, endtime <D;

Clear @fakex, fakey D
fakex @t_ D = x@t D �. approxsolutions P1T;
fakey @t_ D = y@t D �. approxsolutions P1T;

dogplot = ParametricPlot @8fakex @t D, fakey @t D<, 8t, 0, endtime <,
PlotStyle ® 88Blue, Thickness @0.02 D<<, DisplayFunction ® Identity D;

outcome =
Show@dogplot, bubbaroute, pointplot, labels, AspectRatio ® Automatic,

PlotRange ® All, DisplayFunction ® $DisplayFunction D;

2 4 6 8 10

1

2

3

4

5

Party

Home

The dog didn't make it.

Hope it doesn't rain.

áT.4.a.ii)

Illustrate the dog's strategy by making a movie reviewing the chase.
áAnswer:

Set up the movie code and look at one frame:
Clear @bubbapoint, bubbavelocityvector,

dogpoint, dogvelocityvector, situation, t D
bubbapoint @t_ D : = Graphics @88Red, PointSize @0.04 D, Point @bubba @t DD<,

Text @"Bubba", bubba @t D + 80, 0.3 <D<D;

 

dogpoint @t_ D : =
Graphics @88Blue, PointSize @0.04 D, Point @8fakex @t D, fakey @t D<D<,

Text @"dog", 8fakex @t D, fakey @t D< - 80, 0.3 <D<D;

dogvelocityvector @t_ D : = Arrow @8fakex ¢@t D, fakey ¢@t D<,
Tail ® 8fakex @t D, fakey @t D<, VectorColor ® Blue D;

situation @t_ D : = Show@pointplot, labels, bubbapoint @t D,
dogpoint @t D, dogvelocityvector @t D, AspectRatio ® Automatic,
PlotRange ® All, DisplayFunction ® Identity D;

Show@situation @2D, DisplayFunction ® $DisplayFunction D;

Party

Home

Bubba

dog

See the chase:
Table AShow@situation @t D, DisplayFunction ® $DisplayFunction D;,

9t, 0.2, 4.8,
4.6
�����������

6
=E;

Party

Home

Bubba
dog

Party

Home

Bubba
dog
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Animate these by grabbing all the plots and selecting the animation 

instruction in the Cell menu.
After the animation begins, press 3.

The dog almost catches up with Bubba early in the chase.

Bubba is going so fast when he gets to his home that you've got to be 

nervous about whether or not he crashes right through the front door.

áT.4.a.iii)

What should the dog have done to catch Bubba?
áAnswer:

Common sense says that the dog should have run faster. 

Here's what could have happened if the dog had run five times faster 

than he did above: 
Clear @newdogvelocity, x, y, t D
newdogvelocity @t_ D = 5 dogvelocity @t D;
Clear @Derivative D
equationx = x ¢@t D == newdogvelocity @t DP1T;
equationy = y ¢@t D == newdogvelocity @t DP2T;
starterx = x@0D == 0;
startery = y@0D == 2;
endtime = 5;
Clear @x, y, t, Derivative D
approxsolutions = NDSolve @8equationx, equationy, starterx, startery <,

8x@t D, y @t D<, 8t, 0, endtime <D;
Clear @fakex, fakey D
fakex @t_ D = x@t D �. approxsolutions P1T;
fakey @t_ D = y@t D �. approxsolutions P1T;
dogplot = ParametricPlot @8fakex @t D, fakey @t D<, 8t, 0, endtime <,

PlotStyle ® 88Blue, Thickness @0.02 D<<, DisplayFunction ® Identity D;
outcome =

Show@bubbaroute, dogplot, pointplot, labels, AspectRatio ® Automatic,
PlotRange ® All, DisplayFunction ® $DisplayFunction D;
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Party

Home

The smart money bets that the dog trotted through the door only 

seconds after Bubba opened the door. In fact, the dog was running only 

slightly behind Bubba for most of the chase. 

Take a look:
Clear @dogpoint, dogvelocityvector, situation, t D
dogpoint @t_ D : =

Graphics @88Blue, PointSize @0.04 D, Point @8fakex @t D, fakey @t D<D<,
Text @"dog", 8fakex @t D, fakey @t D< - 80, 0.3 <D<D;

dogvelocityvector @t_ D : = Arrow @8fakex ¢@t D, fakey ¢@t D<,
Tail ® 8fakex @t D, fakey @t D<, VectorColor ® Blue D;

situation @t_ D : = Show@pointplot, labels, bubbapoint @t D,
dogpoint @t D, dogvelocityvector @t D, AspectRatio ® Automatic,
PlotRange ® All, DisplayFunction ® Identity D;

Table AShow@situation @t D, DisplayFunction ® $DisplayFunction D;,

9t, 0.2, 4.8,
4.6
�����������

6
=E;
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dog
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VC.01.T4®T5  

Party

Home

Bubba

dog

The dog is no fool; the dog knows that it's safer to run behind Bubba 

than to run in front of him.

T.5)  Spying along the tangent
At time t, you are at the point P@tD specified through the polar 
parameterization:

Clear @P, x, y, r, t D
r @t_ D = 3.12 - 0.65 Cos @t D + 0.32 Cos @2 t D -

0.83 Cos @3 t D + 1.92 Sin @t D - 2.68 Sin @2 t D + 1.79 Sin @3 t D;

P@t_ D = r @t D  8Cos@t D, Sin @t D<;

Take a look:
path = ParametricPlot @P@t D, 8t, 0, 2 p<,

PlotStyle ® 88Thickness @0.01 D, Blue <<, AxesLabel ® 8"x", "y" <D;
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Add your line of sight to the plot when you look forward in the 
instantaneous direction you are going when t= 0.8.
Then describe, in terms of a clean formula, all the points you can see 
at the instant t= 0.8.  

áAnswer:
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You are looking in the direction of the tangent vector P'@0.8D with its 

tail at P@0.8D:
point = Graphics @8Red, PointSize @0.03 D, Point @P@0.8 DD<D;
Show@path, point, Arrow @P¢@0.8 D, Tail ® P@0.8 D, VectorColor ® RedDD;
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The points you can see are descibed by the clean formula
Clear @lineofsight, s D
lineofsight @s_D = N@P@0.8 D + s P¢@0.8 DD

82.2137 - 2.94617 s, 2.27931 + 1.52708 s <

where you take s ³ 0 because you are looking forward along the 

tangent vector. Here's part of your line of sight:
sightplot = ParametricPlot @

lineofsight @sD, 8s, 0, 5 <, DisplayFunction ® Identity D;

Show@path, point, sightplot,
Arrow @P¢@0.8 D, Tail ® P@0.8 D, VectorColor ® RedD,
DisplayFunction ® $DisplayFunction D;
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Without the tangent vector:
Show@path, point, sightplot, DisplayFunction ® $DisplayFunction D;
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If you had eyes in the very back of your head, you would also be able 

to see points on this line:
bothways = ParametricPlot @

lineofsight @sD, 8s, -5, 5 <, DisplayFunction ® Identity D;

Show@path, point, bothways, DisplayFunction ® $DisplayFunction D;
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The line you see is what lots of the good old folks like to call a tangent 

line at P@0.8D.

VC.01 Vectors Point the Way 
Give it a try!

Experience with the starred problems will be especially 
beneficial for understanding later lessons

G.1)  Vector and line fundamentals*

áG.1.a.i)

Here is the vector X= 83, 1< shown with its tail at 80, 0<:

 

X = 83, 1 <;
Show@Arrow @X, Tail ® 80, 0 <, VectorColor ® RedD, Axes ® True D;

0.5 1 1.5 2 2.5 3
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0.6

0.8

1

If this command didn't execute satisfactorily,  
go back to the top of the lesson

and run the initialization cells there.

What point is the tip of X sitting on?

áG.1.a.ii)

When you move the vector X= 83, 1< so that its tail is at 82, 2<, where 
will you find its tip? 

áG.1.a.iii)

Here are the points 83, 2< and 8-1, 0<:
point1 = 83, 2 <;
point2 = 8-1, 0 <;

Show@Graphics @8Red, PointSize @0.02 D, Point @point1 D<D,
Graphics @8Red, PointSize @0.02 D, Point @point2 D<D, PlotRange ® All,
Axes ® True, AxesLabel ® 8"x", "y" <D;
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Add to the plot the vector whose tail is at 83, 2< and whose tip is at 
8-1, 0<. 
Come up with parametric equations for the line that goes through both 
of these points.

áG.1.b.i)

Here are vectors X and Y with their tails at 80, 0<:
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X = 84, 1 <;
Y = 8-6, 5 <;

labels = Graphics A99Text A"X",
X
�����
2
E=, 9Text A"Y",

Y
�����
2
E==E;

Show@Arrow @X, Tail ® 80, 0 <, VectorColor ® RedD,
Arrow @Y, Tail ® 80, 0 <, VectorColor ® RedD, labels, Axes ® True D;
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When you put the tail of X- Y on the tip of Y, where does the tip of 
X - Y turn out to be?

áG.1.b.ii)

Here are vectors X and Y with the tail of X at 80, 0< and the tail of Y 
at the tip of X:

X = 82, -1<;
Y = 88, 5 <;

labels = Graphics A99Text A"X",
X
�����
2
E=, 9Text A"Y", X +

Y
�����
2
E==E;

Show@Arrow @X, Tail ® 80, 0 <, VectorColor ® RedD,
Arrow @Y, Tail ® X, VectorColor ® RedD, labels, Axes ® True D;
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When you put the tail of X+ Y  at 80, 0<, where does the tip of X+ Y 
turn out to be?
In the plot above, why is it that the label Y, which is planted at the 
point given by X+ Y������2 , lands midway between the tail of Y and the tip 
of Y?

18  



áG.1.b.iii)

Here are vectors X and Y with the tail of X at 80, 0, 0< and the tail of 
Y at the tip of X:

X = 81, 4, -5<;
Y = 82, -6, 4 <;

labels = Graphics3D A99Text A"X",
X
�����
2
E=, 9Text A"Y", X +

Y
�����
2
E==E;

threedims = Axes3D@2, 0.2 D;
Show@Arrow @X, Tail ® 80, 0, 0 <, VectorColor ® RedD,

Arrow @Y, Tail ® X, VectorColor ® RedD, threedims, labels,
ViewPoint ® CMView, Boxed ® False D;

x y

z

X
Y

When you put the tail of X+ Y at 80, 0, 0<, where does the tip of 
X + Y turn out to be?
In the plot above, why is it that the label Y, which is planted at the 
point given by X+ Y������2 , lands midway between the tail of Y and the tip 
of Y?

áTip:

We have used the shorthand command for building the 3-dimensional 

axes:
? Axes3D

Axes3D@a, b D creates a Graphics3D object of
cartesian axes with x, y, and z running from -a�3
to a, and with axes labels b units beyond the
tips of the axes. Axes3D @aD is Axes3D @a, a �8D.

 

áG.1.b.iv)

Here are the same vectors as shown in the last part together with some 
points of the form
        8x, y< = X + t Y for various choices of t: 

X = 81, 4, -5<;
Y = 82, -6, 4 <;
Clear @t D
points =

Table AGraphics3D @8PointSize @0.02 D, Point @X + t Y D<D, 9t, -2, 3,
1
�����
2
=E;

Show@Arrow @X, Tail ® 80, 0, 0 <, VectorColor ® RedD,
Arrow @Y, Tail ® X, VectorColor ® RedD, points, threedims,
labels, ViewPoint ® CMView, Boxed ® False D;

x y
z

XY

More points:
morepoints =

Table AGraphics3D @8PointSize @0.02 D, Point @X + t Y D<D, 9t, -2, 3,
5

��������
15

=E;

Show@
Arrow @X, VectorColor ® RedD, Arrow @Y, Tail ® X, VectorColor ® RedD,
morepoints, threedims, labels, ViewPoint ® CMView, Boxed ® False D;

x y
z

XY

What kind of curve do these points come from? 
Give a parametric formula for this curve.

 

áG.1.c)

Here are two vectors in three dimensions:
X = 82, 1, 2 <;
Y = 81, -4, 1 <;
threedims = Axes3D@1.5, 0.2 D;

Show@Arrow @X, Tail ® 80, 0, 0 <, VectorColor ® RedD,
Arrow @Y, Tail ® 80, 0, 0 <, VectorColor ® RedD, threedims,
ViewPoint ® CMView, Boxed ® False D;

x
y

z

And here's a calculation of X . Y:
X . Y

0

What piece of definite information about the relationship between X 
and Y did you get from the calculation of X . Y?

áG.1.d.i)

Here are plots of two lines in three dimensions:
point1 = 81, 1, 1 <;
point2 = 82, 2, 1.5 <;
X1 = 82, 2, 1 <;
X2 = 80, -2, 4 <;

Clear @line1, line2, s, t D
line1 @t_ D = point1 + t X1;
line2 @s_D = point2 + s X2;

line1plot =
ParametricPlot3D @line1 @t D, 8t, -2, 2 <, DisplayFunction ® Identity D;

line2plot =
ParametricPlot3D @line2 @sD, 8s, -1, 1 <, DisplayFunction ® Identity D;

threedims = Axes3D@2, 0.2 D;
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setup = Show@line1plot, line2plot, threedims, ViewPoint ® CMView,
Boxed ® False, DisplayFunction ® $DisplayFunction D;
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The plot gives the strong hint that the lines hit each other.
Explain how the following calculation confirms that the lines do hit 
each other: 

Solve @Thread @line1 @t D == line2 @sDDP81, 2 <T, 8s, t <D
99s ® 0, t ®

1
�����
2

==

Use what you see to pin down the coordinates of the point at which 
the lines hit each other.

áG.1.d.ii)

Take another look at the lines in part i) above.
Show@setup D;
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The two lines also look like they cross each other at right angles 
(perpendicularly). Use the dot product of two well-chosen vectors to 
confirm or contradict this observation.

áG.1.d.iii)

Here are plots of two new lines in three dimensions:

19  



point1 = 81, 1, 1 <;
point2 = 82, 1.5, 1.5 <;
X1 = 82, 2, 1 <;
X2 = 80, -2, 4 <;

Clear @line1, lin2, s, t D
line1 @t_ D = point1 + t X1;
line2 @s_D = point2 + s X2;

line1plot =
ParametricPlot3D @line1 @t D, 8t, -2, 2 <, DisplayFunction ® Identity D;

line2plot =
ParametricPlot3D @line2 @sD, 8s, -1, 1 <, DisplayFunction ® Identity D;

threedims = Axes3D@3, 0.2 D;

setup = Show@line1plot, line2plot, threedims, ViewPoint ® CMView,
Boxed ® False, DisplayFunction ® $DisplayFunction D;
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The plot hints that these two lines hit each other.
Do they?

áG.1.e)

You can think of the CMView= 82.7, 1.6, 1.2< as a three-dimensional 
vector.
Here is this vector shown with ViewPoint® CMView:

CMView = 82.7, 1.6, 1.2 <;
X = CMView;
spacer = 0.2;
h = 1;
threedims = Axes3D@h, spacer D;

Show@Arrow @X, Tail ® 80, 0, 0 <, VectorColor ® RedD, threedims,
PlotRange ® All, ViewPoint ® CMView, Boxed ® False D;

 

x
y

z

Gotcha!
Here is X= CMView from some other viewpoints:

NewView = 810, 0, 0 <;
Show@Arrow @X, Tail ® 80, 0, 0 <, VectorColor ® RedD, threedims,

PlotRange ® All, ViewPoint ® NewView, Boxed ® False D;

x y

z

NewView = 82, -1, 1 <;
Show@Arrow @X, Tail ® 80, 0, 0 <, VectorColor ® RedD, threedims,

PlotRange ® All, ViewPoint ® NewView, Boxed ® False D;

x

y

z

Here is the vector X= CMView = 82.7, 1.6, 1.2<  shown with a 
squadron of its transplants with ViewPoint® CMView:

Clear @tail, k D;
tail @1D = 80, 0, 0 <;
tail @2D = 82, 0, 0 <;
tail @3D = 80, 2, 0 <;
tail @4D = 80, 0, 2 <;

 

tail @5D = 8-2, 0, 0 <;
tail @6D = 82, 2, 0 <;
squadron =

Table @Arrow @X, Tail ® tail @kD, VectorColor ® RedD, 8k, 1, 6 <D;
Show@squadron, threedims, PlotRange ® All, ViewPoint ® CMView,

Boxed ® False D;

x y

z

Duck before they pin you to your chair.
Play with the plots above until you get to the point at which you can 
explain what the viewpoint specification in a three-dimensional plot 
actually does. Then write up your own explanation of what you think 
the viewpoint specification in a three-dimensional plot actually does 
for you.

G.2)  Measurements*

áG.2.a)

Measure the distance between 82, 7< and 83, -5< in two dimensions.
Measure the distance between 82, 7, -8< and 83, -5, 9< in three 
dimensions.

áG.2.b.i)

Here is a triangle sitting happily in three dimensions:
point1 = 80, 2, -4<;

point2 = 9-
6
�����
5

,
41
��������
10

, -
5
�����
2
=;

point3 = 81, 0, 5 <;
triangle = Graphics3D @Polygon @8point1, point2, point3 <DD;
threedims = Axes3D@2, 0.2 D;

Show@threedims, triangle, ViewPoint ® CMView, PlotRange ® All,
Boxed ® False D;
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x y

z

That triangle sure looks like a right triangle.
Use a dot product to confirm or dispel this observation.

áG.2.b.ii)

Mrs. Stephens is one of those sly math teachers who uses 
Mathematica in her office but doesn't allow the students to use 
computers or calculators for class work. In fact, she doesn't even let 
her students know that she even has a computer. 
In preparation for yet another captivating lecture, she needs to 
generate a right triangle in three dimensions with one vertex at 
80, 0, 0<. 
She locks her office and gets out her computer and types: 

X = 81, 2, 3 <;
Y = 80, 1, 1 <;
point1 = 80, 0, 0 <;
point2 = X;

point3 =
X . Y
�������������
Y . Y

 Y;

triangle = Graphics3D @Polygon @8point1, point2, point3 <DD;
threedims = Axes3D@2, 0.2 D;

Show@threedims, triangle, ViewPoint ® CMView, PlotRange ® All,
Boxed ® False D;

x
y

z
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She knows in advance that, unless X and Y are parallel vectors, the 
triangle with vertices (corners) at 80, 0, 0<, the tip of 
       X.Y�����������Y.Y  Y  (with tail at 80, 0, 0<) 
and the tip of X (with tail at 80, 0, 0<) will always give her a right 
triangle.
Why does this always work? 

áG.2.c)

Here is a plot of a line and a point:
Clear @L, t D
L@t_ D = 8-1.3, 5.6, -1.8 < + t 81.2, 7.3, -3.6 <;
point = 82.4, 0.7, -0.2 <;
lineplot =

ParametricPlot3D AL@t D, 9t, -1,
1
�����
2
=, DisplayFunction ® Identity E;

threedims = Axes3D@2.5, 0.2 D;
Show@threedims, lineplot,

Graphics3D @8Red, PointSize @0.02 D, Point @point D<D, ViewPoint ® CMView,
PlotRange ® All, Boxed ® False, DisplayFunction ® $DisplayFunction D;

x y

z

Measure the shortest distance between the line and the point.
áTip:

The distance between L@tD and the point is measured by:

dist @t_ D =
�!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!HL@t D - point L . HL@t D - point L

"####################################################################################################H-1.6 - 3.6 t L2 + H-3.7 + 1.2 t L2 + H4.9 + 7.3 t L2

 

G.3)  With or against?*

áG.3.a.i)

Here are two vectors X and Y:
X = 8-0.5, 2 <;
Y = 8-2, 1 <;

ShowAArrow @X, Tail ® 80, 0 <, VectorColor ® RedD,

Arrow @Y, Tail ® 80, 0 <, VectorColor ® RedD,

Graphics A99Text A"X",
X
�����
2
E=, 9Text A"Y",

Y
�����
2
E==E, Axes ® Automatic,

AspectRatio ® Automatic E;
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How does the picture reveal with no calculation that X . Y> 0?
Confirm what you say by calculating X . Y.
Add to the plot the vector that measures the push of X in the direction 
of Y.
Would you say that the push of X in the direction of Y is with Y or 
against Y?

áG.3.a.ii)

Here are two new vectors X and Y:
X = 82, 2 <;
Y = 8-3, 1 <;

ShowAArrow @X, Tail ® 80, 0 <, VectorColor ® RedD,

Arrow @Y, Tail ® 80, 0 <, VectorColor ® RedD,

Graphics A99Text A"X",
X
�����
2
E=, 9Text A"Y",

Y
�����
2
E==E, Axes ® Automatic,

AspectRatio ® Automatic E;
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How does the picture reveal with no calculation that X . Y< 0?
Confirm what you say by calculating X . Y.
Add to the plot the vector that measures the push of X in the direction 
of Y.
Would you say that the push of X in the direction of Y is with Y or 
against Y?

áG.3.a.iii)

Given any two vectors X and Y, how does the sign of the dot product 
X . Y tell you whether the push of X in the direction of Y is with Y or 
against Y? 

áG.3.b)

At time t with 0£ t £ 2 p, Luke Skywalker is at the point 
       8x@tD, y@tD< = 8Cos@tD, 3 Sin@tD<.  
Darth Vader has activated a force field that puts a force (= push or 
pull) equal to 8x, -y< on any object at 8x, y<.
At time t:
® Is the force pushing with or against Skywalker's movement if
       8x@tD, -y@tD< . 8x¢@tD, y¢@tD< < 0?
® Is the force pushing with or against Skywalker's movement if
       8x@tD, -y@tD< . 8x¢@tD, y¢@tD< > 0?
For approximately which t's is Vader's force with young Skywalker?

áTip:

Plot 8x@tD, -y@tD< . 8x¢@tD, y¢@tD<.
áG.3.c)

Here is a pair of vectors.
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X = 3 9CosA p
�����
3
E, Sin A p

�����
3
E=;

Y = 9CosA p
�����
6
E, Sin A p

�����
6
E=;

ShowAArrow @X, Tail ® 80, 0 <, VectorColor ® RedD,

Arrow @Y, Tail ® 80, 0 <, VectorColor ® RedD,

Graphics A99Text A"X",
X
�����
2
E=, 9Text A"Y",

Y
�����
2
E==E, Axes ® Automatic,

AspectRatio ® Automatic E;
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Come up with vectors U and V with:
® U parallel to Y
® V perpendicular to Y
® X = U + V.
Once you have your vectors U and V, add them to the plot above by 
plotting U with its tail at 80, 0<, and V with its tail at the tip of U.
Describe what you see.

G.4)  Velocity and acceleration*

áG.4.a)

At time t with 0£ t £ 6, an object is at the position 
       P@tD = 8Cos@tD, Cos@2 tD Sin@tD<. 
Plot the curve and some of its velocity vectors and acceleration 
vectors at a selection of points.
Use your plot to analyze the direction and the speed of the object.
Then plot its speed as a function of t.
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áG.4.b)

Ballistic projectiles (like a cannonball from a cannon) fired from the 
origin with muzzle velocity v0

ft���������sec and angle b with the horizontal are 
at the position 
       P@tD = 8v0 Cos@bD t, v0 Sin@bD t - 16 t2<
t seconds after firing.
Take v0 = 180 ft���������sec and b= p�����3  and plot the trajectory, some of its 
velocity vectors, and some of its acceleration vectors at a selection of 
points.
Explain anything of interest you note.

áG.4.c)

For 
       P@tD = 92 Sin@tD, 6 Sin@ t�����2 D

2, 3 Cos@tD=,
plot in true scale the motion of the object for 1£ t £ 6, including 
several velocity vectors.
Then, on a separate plot, show the motion of the object for 1£ t £ 6, 
including several tangential components of acceleration.
On a third plot, show the motion of the object for 1£ t £ 6, including 
several tangential and normal components of acceleration.
Discuss what each plot reveals.

áG.4.d.i)

An object is at 
       P@tD = 89 Sin@tD, 3 Cos@tD< 
at time t.  
Plot in true scale the motion of the object for 0£ t £ 2 p��������3 including 
several velocity vectors.
Then, on a separate plot, show in true scale the motion of the object 
for 0 £ t £ 2 p��������3 including several tangential and normal components of 
acceleration.
Discuss what each plot reveals.
Finally, show the plots together and discuss relations between them.

 

áG.4.d.ii)

For 0£ t £ 2 p��������3 the object in part i) is constrained to move on an 
ellipse.  Suppose, at the instant t= 2 p��������3  the object is released from all 
constraints and allowed to move of its own free will independent of 
any accelerations due to forces. Plot the path the object takes. 

áTip:

Does it continue along on the ellipse or does it do something else?

áG.4.d.iii)

The speed of the object in part i) at time t is defined to be the length of 
the velocity vector at time t; in other words
       speed@tD =

�!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
velocity@tD . velocity@tD .

Put 
       unittan@tD = tan@tD��������������������������������!!!!!!!!!!!!!!!!!!!!!

tan@tD.tan@tD  

where 
       tan@tD = 8x¢@tD, y¢@tD<
Calculate D@speed@tD, tD and compare it with
       acceleration@tD . unittan@tD.
Try to explain why you think that the result is natural or weird.

áG.4.d.iv)

If you know speed@0D, then how do you give a formula for speed@tD in 
terms of acceleration@tD . unittan@tD?

áTip:

Two-four-six-eight,

What do you integrate?

áG.4.d.v)

Can you get any information about speed@tD if you know the tangential 
component of acceleration but lose all your information about the 
normal component of acceleration? 

 

G.5)  The coordinate axes and coordinate planes in three 

dimensions*
If you have been around Calculus&Mathematica  for a while, the beginning 

parts of this problem will be old hat to you. 

Here are the three coordinate axes in three dimesnsions:
threedims = Axes3D@1, 0.2 D;
Show@threedims, ViewPoint ® CMView, Boxed ® False D;

x
y

z

Here is the positive x-axis shooting out in the direction of the vector 
81, 0, 0<:

xaxis = Graphics3D @8Red, Line @880, 0, 0 <, 85, 0, 0 <<D<D;
Show@xaxis, threedims, ViewPoint ® CMView, Boxed ® False D;

x
y

z

Here is the positive y-axis shooting out in the direction of the  vector 
80, 1, 0<:

yaxis = Graphics3D @8Red, Line @880, 0, 0 <, 80, 5, 0 <<D<D;
Show@yaxis, threedims, ViewPoint ® CMView, Boxed ® False D;
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x
y

z

áG.5.a)

Give a plot of the positive z-axis shooting out in the direction of the 
vector 80, 0, 1<.
Then show all three axes in one plot.
Continue to use the option ViewPoint® CMView.

áG.5.b)

The xy-plane is the plane that you get by laying down a rigid flat sheet 
on the girders defined by the x-axis and the y-axis.
Here is a piece of it:

h = 2;
xyplane =

Graphics3D @Polygon @880, 0, 0 <, 8h, 0, 0 <, 8h, h, 0 <, 80, h, 0 <<DD;
Show@xyplane, threedims, ViewPoint ® CMView, Boxed ® False D;

x
y

z

The xz-plane is the plane that you get by nailing a rigid flat sheet on 
the girders defined by the x-axis and the z-axis.
Here is a piece of it:

h = 2;
xzplane =

Graphics3D @Polygon @880, 0, 0 <, 80, 0, h <, 8h, 0, h <, 8h, 0, 0 <<DD;
Show@xzplane, threedims, ViewPoint ® CMView, Boxed ® False D;
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y

z

Show a piece of the yz-plane together with the coordinate vectors.
Continue to use the option ViewPoint® CMView.

áG.5.c)

Here is a curve and its shadow in the xz-plane cast by light rays 
shining from top to bottom, all parallel to the z-axis.

Clear @t, x, y, z D
8x@t_ D, y @t_ D, z @t_ D< = 81 + Cos@2 t D, t, 2 + Sin @2 t D<;

curve = ParametricPlot3D @
8x@t D, y @t D, z @t D<, 8t, 0, 2 p<, DisplayFunction ® Identity D;

samplelightray = Arrow @80, 0, -1<, Tail ® 81, p, 4 <, VectorColor ® RedD;
h = 2;
xyplane =

Graphics3D @Polygon @880, 0, 0 <, 8h, 0, 0 <, 8h, p h, 0 <, 80, p h, 0 <<DD;
shadowonxy = ParametricPlot3D @

8x@t D, y @t D, 0 <, 8t, 0, 2 p<, DisplayFunction ® Identity D;

Show@curve, samplelightray, xyplane, shadowonxy,
threedims, ViewPoint ® CMView, Boxed ® False, Axes ® None,
DisplayFunction ® $DisplayFunction D;

x y

z

Plot the same curve and its shadow in the xz-plane cast by light rays 
shining from right to left, and all parallel to the y-axis.
Then plot the same curve and its shadow of the yz-plane cast by light 

 

rays shining from front to back, and all parallel to the x-axis.
Continue to use the option ViewPoint® CMView.

G.6)  Serious plotting: Parametric planets
This problem was adapted from an article by 

Professor Donald Saari of Northwestern University 
in the American Mathematical Monthly, February, 1990.

Many persons wonder why astronomers of antiquity had so much 
trouble predicting the paths of the planets.  The truth is that their view 
that the Earth was the center of the solar system made the job of 
charting the motion of the other planets very, very difficult. 
To see why, take a look at a simplified version of the Sun-Earth-Mars 
system.
Here are some simplified data:
® Both the Earth and Mars move on orbits that are nearly circular, 
and both orbits are in the same plane.
® One astronomical unit is the distance from the Earth to the Sun. 
® Mars is about 1.52 times as far from the Sun as is the Earth.  
® Mars takes about 2 (Earth) years to orbit the sun; the Earth takes 
one year.
Setting the Sun at the origin, measuring distance in astronomical units, 
and measuring time t in Earth years with the Earth and Mars in 
alignment on the x-axis when t= 0, you can give a pleasing plot of the 
motion during the first nine months of the first year.

Clear @earth, mars, t D
earth @t_ D = 8Cos@2 p t D, Sin @2 p t D<;

mars @t_ D = 1.52 9CosA2 p 
t
�����
2
E, Sin A2 p

t
�����
2
E=;

orbits = ParametricPlot A8earth @t D, mars @t D<, 9t, 0,
9

��������
12

=,

PlotStyle ® 88Thickness @0.01 D, Blue <, 8Thickness @0.01 D, Red <<,
AspectRatio ® Automatic, Epilog ® Text @"Earth -Mars -Sun", 80, 0.4 <D,

DisplayFunction ® Identity E;

sun = Graphics @8RGBColor @1, 0.5, 0 D, PointSize @0.06 D, Point @80, 0 <D<D;
ninemonths = Show@orbits, sun, DisplayFunction ® $DisplayFunction D;
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That's the sun in the center, Mars on the outside track, and Earth on 
the inside track.
Here's a little movie that illustrates the action:

Clear @pointers, t D
pointers @t_ D : = 8Arrow @earth @t D, Tail ® 80, 0 <, VectorColor ® Blue D,

Arrow @mars @t D, Tail ® 80, 0 <, VectorColor ® RedD<;

Table AShow@ninemonths, pointers @t DD, 9t, 0,
9

��������
12

,
9

������������
12 4

=E;
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Animate these by grabbing all the plots and selecting the animation 
instruction in the Cell menu.

After the animation begins, press 3.

Here's a little movie that shows the movement of Earth and Mars: 
Clear @earthplotter, marsplotter, t D
earthplotter @t_ D : =

Graphics @8Blue, PointSize @0.03 D, Point @earth @t DD<D;
marsplotter @t_ D : = Graphics @8Red, PointSize @0.03 D, Point @mars @t DD<D;

jump =
2
�����
9

;

Table @Show@sun, earthplotter @t D,
marsplotter @t D, PlotRange ® 88-2, 2 <, 8-2, 2 <<D,

8t, 0, 2 - jump, jump <D;
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Animate these by grabbing all the plots and selecting the animation 
instruction in the Cell menu.

After the anination begins, press 3.

To see why the oldtimers who insisted that the Earth is at the center of 
the solar system had some tough explaining to do, you look at a plot 
of the movement of Mars and the Sun with the Earth plotted at 80, 0<.
To see how to do this, look at:

Clear @t, earthtosun, earthtomars D
earthtosun @t_ D = 80, 0 < - earth @t D;
earthtomars @t_ D = mars @t D - earth @t D;
t = 0.3;
Show@ninemonths, marsplotter @t D, earthplotter @t D,

Arrow @earthtosun @t D, Tail ® earth @t D, VectorColor ® Blue D,
Arrow @earthtomars @t D, Tail ® earth @t D, VectorColor ® RedDD;
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Change t and rerun. 
To plot the motion of Mars and the Sun with the earth at 80, 0<, you 
just put the tails of the vectors earthtomars@tD and earthtosun@tD at 
80, 0< and plot the curves traced out by their tips as t advances from 0.  
Here's what you get for the first two years:

VC.01.G6  

Clear @t D
ParametricPlot @8earthtomars @t D, earthtosun @t D<, 8t, 0, 2 <, PlotStyle ®

88Thickness @0.01 D, Red <, 8Thickness @0.01 D, RGBColor @1, 0.5, 0 D<<,
AspectRatio ® Automatic,
Epilog ® 8Text @"Earth -Mars -Sun with Earth at center", 8-1, 0.4 <D,

8Blue, PointSize @0.04 D, Point @80, 0 <D<<D;
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The sun goes around the Earth in a nice circle, but look at the catchy 
dance Mars is doing.  No wonder the ancient astronomers had a lot of 
trouble predicting and explaining where Mars was going.

áG.6.a)

Explain the presence of the number 2 in the denominators inside the 
original parametric formula
       mars@tD = 1.52 8Cos@2 p t�����2 D, Sin@2 p t�����2 D<.

áG.6.b)

Set Mars at 80, 0< and plot the motion of Earth for the first two years.

áG.6.c)

® Jupiter sits 5.20 times as far from the Sun as does the Earth.  
® It also moves in a (nearly) circular orbit in the plane of the Earth's 
orbit.
® Jupiter takes about 12 Earth years to complete one trip around the 
Sun.
Setting the Earth at 80, 0<, measuring distance in astronomical units, 
and measuring time t in Earth years with the Earth and Jupiter in 
alignment on the x-axis when t= 0, give a plot of the motion of 
Jupiter during the first five Earth years.
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áG.6.d)

Comment on the following sentiment:
The old timers were not wrong in saying that the Sun goes around the 
Earth, but their insistence that this is the only way to look at the solar 
system was wrong and held back science for many years.

áHistorical marker:

The Polish astromoner, Nicolaus Copernicus (1473-1543), successfully 
advanced the theory that the solar system is greatly simplified if you 

put the Sun at the center. Coperinicus's idea so shook 
the thinking of its time that it even changed the language.
 Before Copernicus the word revolution meant going around. 

 After Copernicus, the word revolution also came to mean 
 a sudden, radical, or complete change.

C&M is all for revolutions - especially in the way mathematics is 
learned. 

áG.6.e) Orbiting around a moving object

Just to see whether you got the idea, look at the following plots of two 
objects. At time t, object1 is at the point 
       8Sin@tD H1 - Cos@tDL, Cos@tD Cos@4 tD< 
and object2 is at the point 
       8Sin@tD H1 - Cos@tDL, Cos@tD Cos@4 tD< + 0.5 8Cos@tD, Sin@tD<

Clear @object1, object2, t D
object1 @t_ D = 8Sin @t D H1 - Cos@t DL, Cos @t D Cos@4 t D<;
object2 @t_ D = object1 @t D + 0.5 8Cos@2 t D, Sin @2 t D<;

ParametricPlot @8object1 @t D, object2 @t D<, 8t, 0, 2 p<,
PlotStyle ® 88Thickness @0.02 D<, 8Red, Thickness @0.01 D<<,
AxesLabel ® 8"x", "y" <D;
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What a mess! 
Plot the motion of object2 when you place object1 at 80, 0< and use 
what you see to explain what's happening.

 

G.7)  Lines*

áG.7.a)

Here is the line segment running from 8-3, 2< to 83, -4<.
point1 = 8-3, 2 <;
point2 = 83, -4<;
segment = Show@

Graphics @8PointSize @0.02 D, Blue, Point @point1 D, Point @point2 D<D,
Graphics @Line @8point1, point2 <DD, Axes ® Automatic,
AxesOrigin ® 80, 0 <, AxesLabel ® 8"x", "y" <D;
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A parametric formula of the line through these two points is:
Clear @L, t D
L@t_ D = point1 + t Hpoint2 - point1 L

8-3 + 6 t, 2 - 6 t <
What value of t makes L@tD land on point1?
What value of t makes L@tD land on point2?
What value of t makes L@tD land on the point halfway between point1 
and point2 on the indicated segment? 
What values of t make L@tD land on the indicated segment?
Illustrate with plots similar to these:

Show@segment, Arrow @L@0.57 D, Tail ® 80, 0 <, VectorColor ® RedDD;
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Show@segment, Arrow @L@1.46 D, Tail ® 80, 0 <, VectorColor ® RedDD;
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áG.7.b.i)

Write down a parametric formula for the line that passes through the 
points 82, 0< and 83, 4<. 
Give a vector parallel to this line.
Give a vector perpendicular to this line.

áG.7.b.ii)

Write a parametric formula for the line that has xy-equation 
       Hy + 2L = 1.52 Hx - 1L.
Give a vector parallel to this line.
Give a vector perpendicular to this line.
Give a point on this line.
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áG.7.b.iii)

Are the lines with parametric formulas
       L1@tD = 82, 3< + t 8-3, 5<
and
       L2@tD = 82, 3< + t 86, -10<
the same line or different lines?
Are the lines with vector equations
       L1@tD = 82, 3< + t 8-3, 5<
and
       L2@tD = 8-4, 13< + t 8-3, 5<
the same line or different lines?

áG.7.c.i)

Give a parametric formula for the line passing through the point 
81, 4, 5< and moving away in the direction of the vector 82, 1, 1<. 

áG.7.c.ii)

Give a parametric formula for the line in three dimensions through the 
tips of the vectors X= 82, 6, 2< and Y= 84, 2, 1< when their tails are 
at the origin.

áG.7.d)

Parametric equations for the line through 81, 2, 3< parallel to the 
vector 85, 6, -4< are
       x= 1 + 5 t,
       y= 2 + 6 t, and
       z= 3 - 4 t.
A friend taking the old-fashioned course tells you that the 
xyz-equations for this line are
       x - 1�������������5 = y - 2�������������6 = z - 3������������-4 .
Your friend is right.
Why?

25  



G.8)  Lasers
Calculus&Mathematica  thanks Todd Will 

of Davidson College for suggesting this problem.

áG.8.a)

A Spartan missile and a Trojan missle are both flying at the same 
constant altitude.
At time t, the Spartan missile is at the point:

Clear @spartan, t D
spartan @t_ D = 816.1 - 7 t + t 2 , 13 t - 2 t 2<

816.1 - 7 t + t 2 , 13 t - 2 t 2<
At the same time t, the Trojan missile is at the point:

Clear @trojan D
trojan @t_ D = 826 - 13 t + 2 t 2 , 23 - 5 t + t 2<

826 - 13 t + 2 t 2 , 23 - 5 t + t 2 <
Here is a plot of the paths of the two missiles:

spartanpath = ParametricPlot @spartan @t D, 8t, 0, 6 <,
PlotStyle ® 88Blue, Thickness @0.01 D<<, DisplayFunction ® Identity D;

trojanpath = ParametricPlot @trojan @t D, 8t, 0, 6 <,
PlotStyle ® 88Red, Thickness @0.01 D<<, DisplayFunction ® Identity D;

Show@spartanpath, trojanpath, DisplayFunction ® $DisplayFunction D;
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Their paths cross, but do they crash?

 

áG.8.a.ii)

Continue with the set-up in part i) immediately above, but with 
additional information:
Each of the missiles has a laser in its nose that can shoot straight 
ahead and zap instantaneously.
Can either missile ever zap the other?
If so, who can zap whom and when? 

áTip:

Look at:
Clear @sD
Solve @trojan @t D + s D@trojan @t D, t D == spartan @t DD

88s ® -0.627094, t ® 4.46842 <, 8s ® 0.408828, t ® 1.76117 <,
8s ® 2.91827, t ® 3.17041 <<

If you use this, explain why it helps.

áG.8.b)

At time t ³ 0, your new Luke Skywalker laser rocket scooter is at the 
position:

Clear @P, t D
P@t_ D = 86 - t + Sin @t D, 10 - 2 t, 2 + 0.5 Sin @2 t D<

86 - t + Sin @t D, 10 - 2 t, 2 + 0.5 Sin @2 t D<
Here is its path for 0£ t £ 5:

path = ParametricPlot3D @
Evaluate @P@t DD, 8t, 0, 5 <, DisplayFunction ® Identity D;

h = 6;
xzplane =

Graphics3D @Polygon @88-h, 0, 0 <, 8-h, 0, h <, 8h, 0, h <, 8h, 0, 0 <<DD;
threedims = Axes3D@6, .4 D;
setup =

Show@threedims, path, xzplane, ViewPoint ® CMView, Boxed ® False,
Axes ® None, PlotRange ® All, DisplayFunction ® $DisplayFunction D;

 

x
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z

A laser beam emanates from the nose cone of your scooter and shoots 
out in in a straight line tangent to the path lkiie this:

time = 3.3;
samplebeam =

Arrow @ P¢@time D, Tail ® P@time D, VectorColor ® Red, ScaleFactor ® 4.5 D;
Show@setup, samplebeam D;

x
y

z

Note that the beam pierces the xz-plane.
Imagine that the xz-plane is made of cardboard, and plot the curve 
burned into the xz-plane by your scooter's laser during the time 
interval 0£ t £ 5.

áTip:

Look at:
P@t D + s P¢@t D

86 - t + s H-1 + Cos@t DL + Sin @t D, 10 - 2 s - 2 t, 2 + 1. s Cos @2 t D + 0.5 Sin @2 t D<
HP@t D + s P¢@t DLP2T

10 - 2 s - 2 t

Solve @HP@t D + s P¢@t DLP2T == 0, s D
88s ® 5 - t <<
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G.9)  Parabolic reflectors, spherical reflectors, and elliptical 

reflectors

áG.9.a.i) Parabolic reflectors

Here is part of the parabola 
       f@xD = x2

�������8 :
Clear @f, x D

f @x_D =
x2

��������
8

;

8x@t_ D, y @t_ D< = 8t, f @t D<;

parabola = ParametricPlot @8x@t D, y @t D<, 8t, -4, 4 <,
PlotStyle ® 88Blue, Thickness @0.01 D<<, AxesLabel ® 8"x", "y" <D;
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Three vertical light rays, emanating from 
       8x@1D, 6<, 8x@2D, 6<, and 8x@3D, 6<, 
hit the parabola at the points 
       8x@1D, y@1D<, 8x@2D, y@2D<, and 8x@3D, y@3D< 
respectively:

Clear @beamD
beam@t_ D : =

Arrow @8x@t D, y @t D< - 8x@t D, 6 <, Tail ® 8x@t D, 6 <, VectorColor ® RedD;
Show@parabola, beam @1D, beam @2D, beam @3D, PlotRange ® All D;
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On one plot, show the paths the three beams take after they have 
bounced off the parabola. Make sure you show enough of the reflected 
beams to see where each beam crosses the y-axis.
Describe what you see, and mention anything interesting.

áG.9.a.ii)

You are given a positive number p, but you are not told what the 
specific value of p is.
A vertical light beam comes from high above the plot of 
       f@xD = x2

��������4 p
and bounces off the curve at a given point point 8a, f@aD<. You are not 
told what the specific value of a is.
Calculate in terms of p the point at which the reflected beam crosses 
the y-axis.

áG.9.a.iii)

Most traditional reference books say that the focus of the parabola           
       f@xD = x2

��������4 p
is located at the point 80, p< on the vertical-axis.  Why do they say this?
Why do folks use parabolas to build television satellite dish antennas 
to sell to rednecks in the boonies who want to watch wrestling and 
roller derby?
The great Greek scientist, Archimedes (287-212 B.C.), was the first 
scientist to understand what parabolic mirrors can do.  In fact, 
Archimedes once used parabolic mirrors to concentrate sunlight on the 
sails of attacking Roman ships, thereby burning them up before they 
could attack. How do you think Archimedes went about this? 

áTip:

You'll have trouble with this if your answer to part ii) above isn't 

correct.

áG.9.b) Spherical reflectors

Here is part of the circle of radius 4 centered at 80, 4<:

 

Clear @x, y, t D
8x@t_ D, y @t_ D< = 80, 4 < + 4 8Cos@t D, Sin @t D<;

starter =
3 p
���������

2
-

p
�����
3

;

stopper =
3 p
���������

2
+

p
�����
3

;

circulardish = ParametricPlot @8x@t D, y @t D<, 8t, starter, stopper <,
PlotStyle ® 88Blue, Thickness @0.01 D<<, AspectRatio ® Automatic,
AxesLabel ® 8"x", "y" <D;

-3 -2 -1 1 2 3
x

0.5

1

1.5

2
y

Three vertical light rays, emanating from 
       8x@5D, 6<, 8x@5.3D, 6<, and 8x@5.6D, 6<, 
hit the circular dish at the points 
       8x@5D, y@5D<, 8x@5.3D, y@5.3D<, and 8x@5.6D, y@5.6D<,
respectively:

Clear @beamD
beam@t_ D : =

Arrow @8x@t D, y @t D< - 8x@t D, 6 <, Tail ® 8x@t D, 6 <, VectorColor ® RedD;

Show@circulardish, beam @5D, beam @5.3 D, beam @5.6 D,
AspectRatio ® Automatic, PlotRange ® All D;
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On one plot, show the path each of the three beams takes after it has 
bounced off the parabola.  Make sure you show enough of the 
reflected beams to see where each beam crosses the y-axis.
Why don't spherical dish antennas work very well?

 

áG.5.c.i) Elliptical reflectors

Here is the lower half of the ellipse
       H x�����3 L2 + H y�����2 L

2 = 1
shown with its two focuses at 
       9�!!!!!!!!!!!!!!32 - 22 , 0= and 9-�!!!!!!!!!!!!!!

32 - 22 , 0=:
Clear @x, y, t D
a = 3;
b = 2;
8x@t_ D, y @t_ D< = 8a Cos@t D, b Sin @t D<;
starter = p;
stopper = 2 p;

leftfocus = 9-
�!!!!!!!!!!!!!!

a2 - b2 , 0 =;

rightfocus = 9�!!!!!!!!!!!!!!
a2 - b2 , 0 =;

ellipticaldish = ParametricPlot @8x@t D, y @t D<,
8t, starter, stopper <, PlotStyle ® 88Blue, Thickness @0.01 D<<,
AspectRatio ® Automatic, AxesLabel ® 8"x", "y" <,
Epilog ® 88PointSize @0.04 D, Point @leftfocus D<,

8PointSize @0.04 D, Point @rightfocus D<<D;
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Three light rays emanating the left focus hit the elliptical dish at the 
points 
       8x@4D, y@4D<, 8x@5D, y@5D<, and 8x@6D, y@6D<:

Clear @beamD
beam@t_ D : =

Arrow @8x@t D, y @t D< - leftfocus, Tail ® leftfocus, VectorColor ® RedD;

Show@ellipticaldish, beam @4D, beam @5D, beam @6D, PlotRange ® All D;
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On one plot, show the path each of the three beams takes after it has 
bounced off the parabola.  Make sure you show enough of the 
reflected beams to see where each beam crosses the x-axis.
Describe what you see.

áG.9.c.ii)

The ceiling of the rotunda in the United States Capitol building in 
Washington D.C. is in the form of an elliptical dish.  Tourists are 
often surprised that they can sometimes hear very clearly what 
strangers well across the room are saying.
Use what you did above to explain this spooky phenom. 

áG.9.c.iii)

Lewis Carroll (actual name Charles Dodgson, 1832 - 1898) was one 
far-out fellow. In addition to writing the famous tale of "Alice in 
Wonderland," he was an accomplished mathematician and logician.  
As a prank, he invented an elliptical pool table with a mark at one 
focus and a hole at the other focus and challenged expert pool players 
to sink more balls in the holes than he.
What advantage did he have over those who didn't know about 
reflecting properties of ellipses?

áTrue Tale:

One of the authors of C&M once found an elliptical pool table in the 

back corner pool hall and challenged others to play. The games on the 

elliptical pool table were the only games he won that night.

G.10) Pursuits by a robotic cowhand
Calculus& Mathematica  thanks cattleman Thomas O. Smith 

of Homer, Illinois for some help with this problem.

The scene is the C&M Electronic Ranch, where all the cattle are prize 
winners and where electronic robots do all the work.  
One night, the prize bull breaks out of the pen, meanders around the 
ranch grounds, and then heads for the gate to the highway on the path 
plotted below:
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Clear @bull, t D
bull @t_ D = 4 81 + 0.1 t + Cos@0.3 t D, 6 - 0.05 t + Sin @0.4 t D<;

bullroute = ParametricPlot @bull @t D, 8t, 0, 60 <,
PlotStyle ® 88Thickness @0.01 D, Red <<, AxesLabel ® 8"x", "y" <,
DisplayFunction ® Identity, Epilog ® Text @"Bull route", 825, 30 <DD;

pointplot = 8Graphics @8PointSize @0.06 D, Point @bull @0DD<D,
Graphics @8PointSize @0.06 D, Point @bull @60DD<D,
Graphics @8PointSize @0.05 D, Point @82, 3 <D<D<;

labels = 8Graphics @Text @"Bull at t = 0", bull @0D, 80, -4<DD,
Graphics @Text @"Gate to highway", bull @60D, 80, 3 <DD,
Graphics @Text @"Robot at t = 0", 82, 3 <, 80, -2<DD<;

setup = Show@bullroute, pointplot, labels,
PlotRange ® All, AxesOrigin ® 80, 0 <, AspectRatio ® Automatic,
DisplayFunction ® $DisplayFunction D;
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Here x and y are measured in yards and t is measured in seconds

At time t = 0, the robot is at position 82, 3< on the plot above.
The robot is programmed to move so that if the robot's position at time 
t is 8x@tD, y@tD<, then the robot's velocity vector at that time is
       8x'@tD, y'@tD< = r Hbull@tD - 8x@tD, y@tD<L
where r is a positive number yet to be determined.
This is good because:
® The robot is always moving toward the bull. 
® The robot slows down when it gets near the bull so that the robot 
neither smashes into the bull nor stampedes the bull.

áG.10.a.i)

Given that the robot can lasso the bull anytime the robot gets within 
4.5 yards of the bull, your job is to come up with a specific positive 
number r, as small as practical, so that the robot will be successful 
lassoing the bull before the bull gets to the gate to the highway.

 

áTip:

One way to go about this problem is by trial and error with different 

r's.

The distance between the bull and the robot at time t is 

       dist@tD =
�!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hbull@tD - 8x@tD, y@tD<L . Hbull@tD - 8x@tD, y@tD<L .

To check out a guess for a good r, you might want to plot dist@tD.
áG.10.a.ii)

After you have settled on a good number r in part i), make a nice plot 
of the actual lassoing of the bull by the robot.

áTip:

You can use 

       lassorad= Graphics@Circle@8a, b<, 4.5DD 
to plot a circle of radius 4.5 centered on 8a, b<.

G.11)  Stealth technology

áG.11.a)

Here is the curve y= 1 - Cos@xD shown with several vertical light 
beams: 

Clear @f, x, t D
f @x_D = 1 - Cos@xD;
x@t_ D = t;
y@t_ D = f @t D;

curve = ParametricPlot @8x@t D, y @t D<,
8t, -1, 2 <, PlotStyle ® 88Thickness @0.01 D, Blue <<,
AxesLabel ® 8"x", "f @xD" <, DisplayFunction ® Identity D;

beams = Table AArrow @8x@t D, y @t D< - 8x@t D, 3 <,

Tail ® 8x@t D, 3 <, VectorColor ® RedD, 9t, -1, 2,
3
�����
8
=E;

setup = Show@curve, beams, DisplayFunction ® $DisplayFunction D;
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Throw the plots of the reflected light into the plot, and use your plot to 
study the question:
Which parts of the curve plotted above are good at concentrating the 
reflected light? Which parts are not so good? 

áG.11.b)

Stealth bombers and fighters were designed to try to resist detection 
by radar.  When they were first unveiled, lots of folks asked why the 
skin of the planes is made with flat panels and absolutely no curved 
indentations. Look at your answer to part a), turn on your brain, and 
speculate about why stealth bombers and fighters are designed this 
way.
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