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VC.01 Vectors Point the Way
Basics

B.1) Vectors:
How you move them, how you add them, how you subtract
them, and how you multiply them by numbers

A vector X in the plane is a stick with:

— one end (its tail) g0, 0} and

- the other end (its tip) at a specified locaffrfi], x[2]}.

Most folks like to draw a vector as an arrow with the arrowhead at its
tip.

Here's a look at the vector running fr¢@ 0} to {3, 4}:

X={3,41}
Show[Arrow [X, Tail - {0, 0 }, VectorColor - Blue ], Axes - True,
PlotRange - All, AxesOrigin - {0,01}1;

T0.511.52253

Most folks like to see the arrowhead at the tip so they can tell which
end of the stick is the tip. Here is the vector running from

{0, O} (tail) to{-5, 4} (tip):

X={-5141}
Show[Arrow [X, VectorColor - Red], Axes - True, PlotRange - All,
AxesLabel - {"x","y" '}, AxesOrigin - {0,01}1;

54 3 2 1
Here are some others:
X= {-2, -4};
Show[Arrow [X], Axes - True, PlotRange - All, AxesLabel - Y
AxesOrigin - - {0, 0 }1;

X={3, -1};
Show[Arrow [X], Axes - True, PlotRange - All, AxesLabel - Y
AxesOrigin - {0, 0 }1;

Play with these by rerunning with vectors of your own choice.
A vector
X={x[1], x[2]}
is written the same as the coordinates of its tip because everyone
knows its tail is at0, 0}.
You can also work with three-dimensional vectors by writing
X={x[1], X[2], X[3]}
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for the vector whose tail is &, 0, @ and whose tip is at
{x[1], x[2], x[3]}.

Here's the vectdrl.5, 5.3, 2.9 shown along with the

three-dimensional coordinate axes:

X={1553,20 };
spacer = 0.2;
h =1;

threedims = Axes3D [h, spacer 1];
Show[Arrow [X, VectorColor - Red], threedims, PlotRange - All,

ViewPoint - CMView, Boxed - False ];

z
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Here's another:

X={1, -3,11};
Show[Arrow [X, VectorColor - Red], threedims, PlotRange - All,
ViewPoint - CMView, Boxed - False ];

X

Here's a vector parallel to the yz-plane:

X=1{0,2,1 };
Show[Arrow [X, VectorColor - Red], threedims, PlotRange - All,
ViewPoint - CMView, Boxed - False ];

Play by rerunning with three-dimensional vectors of your own choice.

OB.1.a.i) Moving vectors
How do you move vectors to new positions?

OAnswer:
Very easily.

Here is a vector in two dimensions with its tai{0, 0}:

X={3,4}
Show[Arrow [X, Tail - {0, 0 }], AxesLabel - {"x","y" }, Axes - True,
AxesOrigin - {0, 0 }1;

Here's the same vectXrshown twice, once with its tail {0, 0} and

once with its tail a{2, 1}:

X={3,4}

Show[Arrow [X, Tail - {0, 0 }], Arrow [X, Tail - {2,11}],
Axes - True, AxesLabel - {"X","y" 1}, PlotRange - All,
AxesOrigin - - {0, 0 }1;
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y tail [2] ={1,0,0 };
5 tail [3] ={-1,0,0 };
4 tail [4]={0,1,0 };

tail [5] = {0, -1,0};
tail [6] ={0,0,1 };
tal [7]={1,0,1 };

w

N}

1 squadron =
Table [Arrow [X, Tail - tail [k], VectorColor - Red], {k,1,7 1}1;
i 2 3 4 5%

The two arrows have equal lengths and they both point in the same ngvxve[jqfag;g; t]h ;reemmS' PlotRenge = Al viewPomt = cilview.
direction.
They're parallel.
Try it again for a different vector and a different tail: ‘\
X={-1,41}; y

Show[Arrow [X, Tail - {0,0 }]1, Arrow [X, Tail - {-2,3 }],
Axes - True, AxesLabel - {"x","y" }, PlotRange - All,
AxesOrigin - {0, 0 }1;
Same length; same direction.
oB.1.a.ii)
Are there any rules about moving vectors to new positions?

OAnswer:

You can put the tail anywhere you like, but you must be careful not to

Same length; same direction. change the direction or the length of the vector.
Here's a vectcX shown with its tail a{0, 0}, and shown with a whole 0B.1.b) Adding vectors
squadron of its transplants: How do you add vectors?
X={2 31},
Clear [tail, k 1;
tail [1] = {0,0 };
tail  [2] = {6,4 };
tail [3] = {6,6 };
tail  [4] = {6, 8 };
tail [5] = {4, 8 };
tail [6] = {2, 8 };
squadron = .
Table [Arrow [X, Tail - tail [k], VectorColor - Red], {k, 1,6 }I; OAnswer:
Show[squadron, Axes - True, AxesLabel - {"x","y" }, PlotRange - All, Very easily.
AxesOrigin -~ - {0, 0 }1; . .
) For instance, iX = {3, 8 andY = {5, 4} are vectors, then you add
10 /// them to get
s / " X+Y =3, 8+(5 4= 12
6 /’ . ) .
. just by adding the corresponding components.
2 / Mathematica can do this too:
2 4 6 8% X=1{3,8}
. . Y={54}%;
Check it out for a differerX: X+ Y
X={-3, -2}; {8,12 }
Clear ftail, k  1; You can add three-dimensional vectors:
tail [1] = {0,0 };
tail [2] = {6,4 }; X={3, -5,21};
tail [3] = {6,6 }; Y=1(34, -7}
tail [4] = {6,8 }; X+Y
tail [5] = {4,8}; (6, -1, -5}
tail [6] = {2, 8 }; ) i i
You cannot add vectors from different dimensions:
squadron = X = (3, -5):
Table [Arrow [X, Tail - tail [k], VectorColor - Red], {k, 1,6 }1; V=34, -7}
Show[squadron, Axes - True, AxesLabel - {"X","y" 1}, PlotRange - All, X+ Y
AxesOrigin 5(0,0171; Thread::tdlen : Objects of unequal length in {3, -5} + (3,4, -7} cannot be combined.

(3, -5} + (3,4, -7}
Here is a way of seeing what's happening in two dimensions:
Look at a picture X = {3, 10 andY = {8, 2 andX + Y:

X={3,10 };
Y=1{8,2};
Show [
X
Arrow [X, Tail - {0, 0 }, VectorColor - Red], Graphics [Text ["X", 5]]
Check it out in three dimensions: Arrow [Y, Tail {0, 0 }, VectorColor - Red], Graphics [Text ["Y", ;]]
X=1302 } Arrow [X+Y, Tail - {0, 0 }, VectorColor - Red],
Clear [tail, k 1; X+Y
tail [1] = {0,0,0 }; Graphics [Text ["X+Y", T]] Axes - Automatic ];
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X + Y represents the combined puskXxandY.
See what happens when you miY&ithout changing its direction, so
that its tail is at the tip ¢X:

Show|
X
Arrow [X, Tail - {0, 0 }, VectorColor - Red], Graphics [Text ["X", ?]]
Y
Arrow [Y, Tail - X, VectorColor - Red], Graphics  [Text ["Y", X + ?] ],

Arrow [X+Y, Taill - {0, 0 }, VectorColor - Blue 1,
X+Y
2

Graphics [Text ["X+Y", ]],Axes - Automatic ];

A triangle!

This triangle shows that you have your choice of ways of getting from

{0, 0} to the tip ofX + Y.

- Route 1: You can walk directly on the vecX + Y from its tail to
its tip.

- Route 2: You can walk cX to the tip ofX, and then hook the tail

of Y on the tip olX, and finish the trip by walking alorY to its tip.
Lazy folks usually take Route 1.

Rerun this for two-dimensional vectors of your own choice.

Now check out what happens in three dimensions:
X={3, -4,7}

Y={1,273 }

Show[Arrow [X, Tail - {0,0,0 }, VectorColor - Red],

. X
Graphics3D  [Text ["X", ?]],Arrow [y,

Y
Tail - {0,0,0 }, VectorColor - Red], Graphics3D [Text ["Y", ?]]

Arrow [X+Y, Tail - {0,0,0 3}, VectorColor - Red],

. X+Y )
Graphics3D  [Text ["X+Y", T] ], threedims, PlotRange - All,

ViewPoint - CMView, Boxed - False ];

Again, in three dimensionX + Y represents the combined pushXf
andy.
See what happens when you miYithout changing its direction so
that its tail is at the tip ¢X:

Show[Arrow [X, Tail - {0,0,0 3}, VectorColor - Red],

Graphics3D [Text [X ;] ]

Y
Arrow [Y, Tail - X, VectorColor - Red], Graphics3D  [Text ["Y", X + ?]]

VC.01.B1
Arrow [X+Y, Tail - {0,0,0 }, VectorColor - Blue ],
X+Y
Graphics3D [Text ["X+Y", %] ], threedims, PlotRange - All,

ViewPoint - CMView, Boxed - False ];

Another triangle.

Just as in two dimensions, this triangle shows that you have your
choice of ways of getting froi{0, 0} to the tip olX + Y.

— Route 1: You can walk directly on the vecX + Y from its tail to
its tip.

— Route 2: You can walk cX to the tip ofX, and then hook the tail
of Y on the tip oiX, and finish the trip by walking alorY to its tip.
Rerun the pictures above for different veciXrandY until you get the
hang of vector addition.

OB.1.c)

How do you subtract vectors?

OAnswer:

With no trouble.
For instance, iX = {8, 2} andY = {3, 4} are vectors, then you subtract
Y from X to get
X-Y=1{8,2-(3,4=1{5-2}.
Mathematica can do this too:

Here is a way of seeing what's happening.
Look at a picture oX = {8, 2, Y = {3, 4}, andX — Y:

X=1821};
Y=1(341};

Show [
X
Arrow [X, Tail - {0, 0 }, VectorColor - Red], Graphics [Text ["X", ;]]

Arrow [Y, Tail - {0, 0 }, VectorColor - Red], Graphics [Text ["Y",

Arrow [X-Y, Tail - {0, 0 }, VectorColor - Red],
. X-Y .
Graphics [Text ["X -y, T] ] Axes - Automatic ];

2 4 6 8
-1
-2

This timeX is the combined push Y andX - Y.
See what happens when you mX — Y without changing its
direction so that its tail is at the tip Yf

Show[Arrow [X, Tail - {0, 0 }, VectorColor - Blue ],

X
Graphics [Text [X E]] Arrow [Y, Tail - {0, 0 }, VectorColor - Red],

Y
Graphics [Text [Y ?] ] Arrow [X-Y, Tail -, VectorColor - Red],
X-Y

Graphics [Text ["X Y'Y o+ 5

] ] Axes - Automatic ];



2 4 6 8
Another triangle.

You can get to the tip X by going directly alon¢X, or you can go
from the tail ofY to the tip ofY, and then ride 0X — Y to the tip ofX.
This is not a surprise becalX = (X - Y) + Y.

Rerun for some other vectors of your own choice.

Here it is in three dimensions:

X=1{4,2,8 };

Y={-2,6, -3};

spacer =0.2;

h=1;

threedims = Axes3D [h, spacer 1;
CMView = {2.7,1.6,1.2  };

Show[Arrow [X, Tail - {0,0,0 }, VectorColor - Blue ],
. X
Graphics3D [Text [X —2-] ]
Arrow [Y, Tail - {0,0,0 }, VectorColor - Red],
. Y
Graphics3D [Text [Y ?] ]
Arrow [X-Y, Tail -, VectorColor - Red],
X-Y ] ]
5 )

threedims, PlotRange - All, ViewPoint - CMView, Boxed - False ];

Graphics3D [Text ["X Y'Y o+

Here it is for two random vectors in three dimensions:
X =2 {Random[], Random [], Random []};
Y = 2 {Random[], Random [], Random []};

spacer =0.2;
h=1;
threedims = Axes3D [h, spacer 1;
CMView = {2.7,1.6,12 };
Show[Arrow [X, Tail - {0,0,0 }, VectorColor - Blue ],
. X
Graphics3D  [Text ["X", E] B
Arrow [Y, Tail - {0,0,0 }, VectorColor - Red],
Y
Graphics3D [Text [Y E] ]
Arrow [X-Y, Tail -, VectorColor - Red],

. X-Y
Graphics3D [Text ["X-Y”,Y + > ]]

threedims, PlotRange - All, ViewPoint - CMView, Boxed - False ];

z

Rerun for otheX andY of your own choice until you get the picture

down pat.
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OB.1.d)

How do you multiply vectors by numbers?

OAnswer:

You just do it.
For instance, iX = {3, 1} , then2X = {6, 2.
Mathematica can do this too:
X=1{311};
2X
(6,2}
Here areX and2 X both shown with their tails {0, 0}:
X={3,1};
Show[Arrow [2 X, Tail - {0, 0 }, VectorColor - Red],
. 3X
Graphics [Text ["2X", T]]
Arrow [X, Tail - {0, 0 }, VectorColor - Blue 1,

) X .
Graphics [Text ["X", ?]],Axes - Automatic ]

o P oa N

1 2 3 4 5 6
2 X points the same direction X3 but2 X is twice as long aX. That

makes some sense beca2 X:is the same thing eX + X.

Here areX and0.3X both shown with their tails {0, 0}:

Show[Arrow [0.3 X, Tail - {0, 0 }, VectorColor - Red],
0.3 X
)

Arrow [X, Tail - {0, 0 }, VectorColor - Blue ],

Graphics [Text ["0.3 X",

. X )
Graphics [Text ["X", E]],Axes - Automatic ]

0.8
0.6
0.4
0.2

0.5 1 1.5 2 2.5 3
0.3X points in the same direction X3oints.

The only difference is that the length0.3X is 0.3 times the length of
X.
The same idea carries over to three dimensions as well.

B.2) Tangent vectors, velocity vectors, and tangent lines

OB.2.a.i) Tangent and velocity vectors

Here's a curve in two dimensions:
Clear [x,y,t,P 1;
x[t_1=3Sin [t];
y[t_1=Cos[t];
PIt_1={x[t],y [t]}

curveplot = ParametricPlot [{P[t1}, {t, 0,5 1}, AspectRatio - Automatic,
PlotStyle - {{Thickness [0.01 1, Blue }}1;
1

)

Here's what you get when you add plots of the vectors
PIt] = {X'[t], y'[t]}
with their tails at Ft] for some choices of t:
hotplot = Show/[curveplot,
Table [Arrow [P [t], Tail - P[t], VectorColor - Red],

fos 23N



Hot plot.
Describe what you see in terms of tangent vectors and velocity vector

OAnswer:

The vectors you see are
Pt = X[t y'Ith

plotted with their tails at
P[t] = {x[t], y[t}

for selectedt's. The vectors are tangent to the curve.

If you imaginet to be time, and you agree that you are at
P[t] = {x[t], yit]}

at timet, then the vectcP [t] measures your velocity at tirhe

Take another look at the plot:
] Show(hotplot 1;

0.5

-
The direction oP’[t] measures the instantaneous direction you are

moving at timet.

The length oP’[t] measures your instantaneous speed atttinidie

plot above shows that you start at the top at t = 0, moving rather
quickly to the right. As you enter the turn on the right, you slow down

until the curve flattens out. Then you speed up, slowing down as you
go into the turn on the left.

OB.2.a.ii)
Does this good stuff work in three dimensions as well?

OAnswer:

Try it and see:

Clear [X,y,2zt P 1
X[t 1] =mCos[t];
yIt 1=+t +1Sin [t];

Z[t_ 1=t
PIt_]={x[t]l,y[t],z [t]};

curveplot =

ParametricPlot3D [P[t]1, {t 0, 10 }, DisplayFunction - Identity 1;
tangentvectors =

Table [Arrow [P’[t], Taill - P[t], VectorColor - Red], {t,0,10 1}1;
threedims = Axes3D [2, 0.2 ];

Show[threedims, curveplot, tangentvectors, ViewPoint
Boxed - False, DisplayFunction - $DisplayFunction 1;

- CMView,

Sure it does.

0OB.2.b.i) Tangent lines

Here's a curve shown with a certain point on the curve:
Clear [x,y,t,P 1;
X[t 1=t2;
y[t_1=t +Cos[3t];
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PIL1={x[t],y [t1}

curveplot = ParametricPlot [{P[t1}, (0,3 1},
PlotStyle - {{Thickness [0.01 ], Blue }}, AxesLabel - {"x","y" 1},
Epilog - {PointSize [0.05 ], Red, Point [P[1.9 ]1}1;
y
2.
1.

0.

R aNOw

2 4 6 8
The special point is:
] PI19]
{3.61, 2.73471
Plot the line tangent to this curve at this special point.

OAnswer:
As a first step, show the plot above along with the tangent vector at
P[1.9]:

] Show(curveplot, Arrow
y

[P'[1.9 ], Tail - P[1.9 ], VectorColor - Red]];

2 7 6 8 X
The line tangent to the curveP[1.9] runs right through the shaft of
the arrow. Here's how you can use the tangent vP’[1.9] to come

up with a plot of the tangent line.

Clear [tanline,s 1]
tanline [s_]=P[19]+sP'[19];

tanlineplot
PlotStyle

= ParametricPlot [tanline [s], {s,0,2 },
- Thickness [0.01 ], DisplayFunction - Identity 1;

Show[curveplot, Arrow
tanlineplot 1;

[P'[1.9 ], Tal - P[1.9 ], VectorColor - Red],

<

——% 4 6 8 10 *

That's only part of the tangent line; you got it by plotting
P[1.91+ sP[1.9
with s running from0 to 2. To get the stuff on the left, nathrough

some negative numbers as well as positive numbers:
Clear [tanline,s ]
tanline [s_]=P[19]1+sP'[19];

tanlineplot
PlotStyle

= ParametricPlot [tanline [s], {s, -2,2},
- Thickness [0.01 ], DisplayFunction - ldentity 1;

Show [ curveplot, Arrow
tanlineplot 1;

y
8

[P'[1.9 ], Tail - P[1.9 ], VectorColor - Red],




There's that tangent line in all its glory.

The upshot of all this is:

If you have a curve described by the ploP[t] fora<t < b and you

want to plot the tangent line through a pcP[c] on the curve, you plot
Plc] + sP]c]

and runs from negative to positive.

Here's how it goes for a different curve:

Clear [X,Y, s, t, tanline, P 1;
a=-4

b=3;

c =17

X[t_1=t +Sin [3t];
y[t_1=2Cos[t];
P[] ={x[t],y [t1};

tanline [s_] =P[c] +sP’[c];

curveplot = ParametricPlot [P[t], {ta b 1},
PlotStyle - {{Thickness [0.01 1, Blue }}, DisplayFunction - |dentity 1;

tanlineplot = ParametricPlot [tanline [s]1, {s, -2,2},
PlotStyle - {{Thickness [0.01 ], Red }}, DisplayFunction - Identity ];

pointplot = Graphics [{PointSize [0.05 ], Red, Point [P[c]1]}];
Show [ curveplot, tanlineplot, pointplot, AxesLabel - Y

DisplayFunction - $DisplayFunction 1;
y

XZAX
-2

-4

Play with this.

OB.2.h.ii)
Does this work in three dimensions too?

OAnswer:

Get a life!

Of course it works in three dimensions. Take a look:
Clear [X,Y, s, t, tanline, P 1;

a=0;

b =2;

c =0.5;

X[t_1=t +Sin [3t]+1;
y[t_1=2Cos[t];

z[t_ 1=t

PIt1={x[t],y [t], z[t]}
tanline [s_] =P[c] +sP’[c];

curveplot =
ParametricPlot3D [P[t]1, {t a b }, DisplayFunction - Identity ];

tanlineplot = ParametricPlot3D [
tanline [s], {s, -1.5,1.5 }, DisplayFunction - Identity 1;

pointplot = Graphics3D [{PointSize [0.03 ], Red, Point [P[c]]1}];
threedims = Axes3D[1.2,0.2 1];

Show[threedims, curveplot, tanlineplot, pointplot, ViewPoint - CMView,
Boxed - False, PlotRange - All, DisplayFunction - $DisplayFunction 1;

z

Hard to resist.
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B.3) Length of a vector, dot product, and distance between
two points

0OB.3.a) Dot products

Here are two cleared vectors
X={x[1], x[2]} and Y= {y[1], y[2]}
in two dimensions:
| Clear [X, Y, %,y 1
X= {x[1], x [21}
{x[1],x [2]}
| Y=tyii1y 21}
(i1, y (21}
Here is the dot product, X.Y, of these vectors:
| xX.v
X[1]y[1] +x[2]y[2]
Here are two vectors
X={x[1], x[2], x[3]} and Y= {y[1], y[2], y[3]}
in three dimensions:
Clear [X,Y, X,y 1
X= {x[11,x [2], X [3]}
{X[1],x [2],x [3]}
| Y=1{yill.y [21.y [31}
(yl1l,y [2],y [3]}
Here is the dot product, X.Y, of the three-dimensional vectors X and
Y:
| x.vy
X[1]y[L1]) +x[2] y[2] +X[3] y[3]
Describe how dot products are calculated.

OAnswer:
In two or three dimensions, the dot prodX.Y just multiplies each
slot in X by the corresponding slot Y, and then adds them up.

Check it out:
] (1,23. (0,1

2

] (1,23.{0,13==10+21
True

] (-1,131. 8,2}

-6

] (-1,13).(8,2)==-8+2
True

] (1,01 3.(1,23}

4

] (1,001 3.{1,2,3 }==1+0+3
True

You cannot take the dot product of vectors from different dimensions:

Dot::dotsh : Tensors (1,0} and {2,1,4 } have incompatible shapes.

{1,01}. {2,1,4
That hacked off Mathematica.

OB.3.b) Dot product and length
Given a two-dimensional vector,
X={x[1], x[2]},
the length of X is measured by

IXII = v x[1]% + x[2]%.

Given a three-dimensional vector,
X={x[1], x[2], x[3]},

the length of X is measured by
Xl = \/x[1]2 + x[2]2 + x[3]2.

Explain why the formula

IX|I = vX.X
works in either dimension.
OAnswer:

Try it out in two dimensions:



Clear [x]
X={x[1],x [2]};

length = /x[1]12 +x[2]?
X112 v x (212
VX.X is given by:

| vxx

This tells you that the formula
[IX]] = ¥V X.X works in two dimensions.
Try it out in three dimensions:

Clear [x]
X={x[11, x [2],x [3]1};

fength = X112 +x 1212 + x (317
VX.X is given by:
| vxx
This tells you that the formula
IIX]l = vV X.X works in three dimensions too.
Handy little formula
And it's nothing more or less than your old friend, the Pythagorean
theorem, in action.

0B.3.c.i) Dot products and distance between points
Why does

IX=Yll=VvX=Y).(X=-Y)
calculate the distance between the tip of X and the tip of Y when X
and Y are positioned so that their tails are at the origin?

OAnswer:

Look at a picture:
X={7,3};
Y={-4,71}
Show[Arrow [X, Tail - {0, 0 }, VectorColor - Blue ],
. X
Graphics [Text [X E]]

Arrow [Y, Tail - {0, 0 }, VectorColor - Blue ],
. Y
Graphics [Text ["Y", ?]]
Arrow [X-Y, Tail - Y, VectorColor - Red],
. X-Y
Graphics [Text ["X - Y, Y +
7
6

11, Axes - True ];

) -2 ' 2 4 6
Rerun for different vectorX andY, and you will see that the distance
between the tip <X and the tip oY is the same as the lengthX — Y.
The length oX — Y is
VX=Y).(X=Y),
so the distance between the tipX>&nd the tip oY is given by
IX =Yl = VX =Y).(X=Y) .

That's all there is to it.

OB.1.c.ii)

Measure the distance betwd@n 7} and{3, —5} in two dimensions.
Measure the distance betwg@n 7, -6} and{3, -5, 6} in three
dimensions.

OAnswer:

VC.01.B3-B4

You measure thedistance between the p{2, 7} and{3, -5} in two

dimensions by running:

X=1{2,71};
Y= {3, -5);

N[\/(X—Y). (X-Y) ]

12.0416
You measure distance between the pc{2, 7,-6} and{3, -5, 6} in

three dimensions by running:

X=1{2,7, -6};
Y={3, -514}
N[\/(X—Y). (X-Y) ]

15.6525

B.4) The push of one vector in the direction of another, and
the formula

XY =IXIHIY I Codb],
whereb is the angle betweeix andY

Here are two vectors in two dimensions shown with their ta{lg, &
in true scale:

X={13,17 };
Y=1{1,05 };

Show[Arrow [X, Tail - {0, 0 }1,

X
Graphics [Text ["X", ?]] Arrow [Y, Tail - {0, 0 }, VectorColor - Red],

Graphics [Text [Y ;]] PlotRange - {{0,2 }, (0,2 }},

AspectRatio - Automatic, Axes - True, AxesLabel - {"x","y" }];

1.75
1.25
0.75

0.25
0.76.6. 7511, 25.5. 752 %

The question addressed here is how to measure the push of X in the

direction of Y.

The answer is that the push of X in the direction of Y is calculated by

the clean formula:
Xpushalong¥= £3- V.
Take a look:

X.
XpushalongY = ——;
p g vy

Show[Arrow [X, Tail - {0, 0 }1,
X
Graphics [Text [X ?]]
Arrow [Xpushalongy, Tail - {0, 0 }, VectorColor - Red],
Graphics [
XpushalongY

2
AspectRatio - Automatic, Axes - True, AxesLabel - {"x", "y" }];

Text ["X push along Y", ]]. PlotRange - {{0,2}, {0,2}},

7511255 752 %

Grab the last two plots, align them and then animate running a slow
speed.
You can find the align and animate commands in the Cell menu

Here are two new vectors X and Y:

X={-861}
Y={-4,06 };



Show[Arrow [X, Tail - {0, 0 }],
X
Graphics [Text [X E]]
Arrow [Y, Tail - {0, 0 }, VectorColor - Red],

Y
Graphics [Text [Y ?] ] AspectRatio - Automatic, Axes - True,

AxesLabel - {"x","y" }];
y

6
5
4
3
2
1
8 -6 -7 -2 "X wy
Here are X and Xpushalong¥ <=7 Y:
XpushalongY = u Y;
Y.Y

Show[Arrow [X, Tail > {0,0 }],
X
Graphics [Text [X —2-]]
Arrow [XpushalongY, Tail - {0, 0 }, VectorColor - Red],
XpushalongY ]]

Graphics [Text ["X push along Y", >

y
6
5
4
3
2
1

X p Y
8 -6 4 -2

X

Try it for other X's and Y's until the plots make sense to you.

OB.4.a)

According to what was done above, you calculate the push of a vecto

X in the direction of another vector Y by calculating
Xpushalong¥= 3 Y.

Explain where this formula comes from, and explain what the push of

X in the direction of Y means.

oAnswer:
Go with cleared vectoiX andY.
Put
fltl =X - tY[l= V(X - tY).(X = tY).

The functionf[t] measures the distance between the tX ahd the tip

of the vectort Y when both vectors have their tails{0, 0}.
Clear [f t,x,y, X, Y 1
X={x[11, X [21};
Y={y[ll,y [21}
fr ] =V (X-tY). (X-tY)
VXL -ty (1% + (x[2] -ty [2])2
f[t] is as small as it can be whf’[t] = O:
] Solve [f'[t]==01]
([t - X[l)]/ [yl[]lz]WX[[zZ]]zy[ZJ 1
This is the same destt= 2¥:

X.Y
bestt = ——
Y.Y

X[1]y[1] +x[2]y[2]
Y112 +y[2)?

This is thet that makes
flt] = IX = tY]|
as small as it can be.
But you already know that

AspectRatio - Automatic, Axes - True, AxesLabel - {"X","y" }];

VC.01.B4

XpushalongY= XY Y.

Yy

The upshot:

The push oX in the direction oY is that multiple olY whose tip is
closest to the tip <X when you put the tails of both vectors{0, 0}.

This works in three dimensions as well.

OB.4.b)

Take a look at
— X and XpushalongY with their tails €0, 0}, and

— (X — Xpushalongy with its tail at the tip of XpushalongY for two

sample vectors X and Y in true scale:
X={1,21};
Y={411}

XYy
XpushalongY = v H

Show[Arrow [X, Tail - {0, 0 }1,
. X
Graphics [Text ["X", ?]]

Arrow [Xpushalongy, Tail - {0, 0 }, VectorColor - Red],
. XpushalongY
Graphics [Text ["X push along Y", ———2———] B
Arrow [X - Xpushalongy, Tail - XpushalongY, VectorColor - Red],
Graphics [Line [{-0.2Y,0.8Y }11, AspectRatio - Automatic,
Axes - True, AxesLabel - "X,y }];

The line is the plot of the tips of relevant multiples tY of Y.
Describe what you see and explain why you see it.

OAnswer:

You see a right triangle.

And this is what you'll see for any two vectX@ndY unlessX andY

are parallel.
Reason:

— The push oX in the direction oY is the multiple ofY whose tip is

closest to the tip <X when you put the tails of both vectors{0, 0}.
The upshot:

The tip ofXpushalongy is the closest point on the line to the tiX.of

And the shortest distance between the line and the Xiaofhe
perpendicular distance.

OB.4.c) The formula(X.Y) = |IX|||IY || Cogdb] whereb is the angle

betweenX and Y

Take another look at
— X and XpushalongY with their tails 3, 0} and

- (X — XpushalongV with its tail at the tip of XpushalongY for two

sample vectors X and Y in true scale:
X={28,19 };
Y=1{1202 };

XpushalongY XY Y
ushalon: =—;
P 9 Y.Y
plot = Show[Arrow [X, Tail - {0, 0 }1,
X
Graphics [Text ["X", ?]]
Arrow [XpushalongY, Tail - {0, 0 }, VectorColor - Red],
X XpushalongY
Graphics [Text ["X push along Y", f]]

Arrow [X - Xpushalongy, Tail - XpushalongY, VectorColor - Red],
Axes - True, AxesLabel - XY )];




17786751229, 8.753 *
Use the plot to help explain the formula
(X.Y) = [IX[IIY]I Cogb]

where
b is the angle between X and Y,
[IX]| = vX.X, and
IYll=vY.Y.
oAnswer:

The goal is to explain the formula
XY =[IX]IY]l Codb],

whereb is the angle betweexXiandY when their tails are at the origin.

Take another look:
] Show(plot 1;

128752 2e R 75 X
Remembering that
COS[b] - adjacent

hypotenuse’
read off
—t v
Cogdb] =t X
where
— X.Y
t= 3¢
because

XpushalongY= XL Y.

Now you know why
IXII Codb] = tIY]I.

Next, multiply both sides b||Y|| to get
IXIHIY]l Cogb] = t{[Y][%.

This tells you that to explain why
XY =[IX|HIY]l Codb],

you gotta explain why
tIY[? = X.Y.

This is easy because

— XY
t= A

so
tIYIE=tY.Y
= XL (Y.Y)=X.Y.

That's it.

This formula also works in three dimensions.

VC.01.B4-T1

x-{ 5 5h

1
Y={-—, -5,2 };
-3 -5.2)
threedims = Axes3D [1.5, 0.2 ];
Show[Arrow [X, VectorColor - Red],

Arrow [Y, VectorColor - Red],
threedims, PlotRange - All, ViewPoint - CMView, Boxed - False ;

X y

These vectors look like they might be perpendicular.
How can you tell for sure?

OAnswer:
Just look aX.Y:

| x.v
0

Now you know thaX.Y = 0; so you know for sure thX:is indeed
perpendicular teY.

OB.5.a.ii) The perpendicularity test

Explain the statement:
If X.Y =0, then X is perpendicularto Y.

OAnswer:
Well, if X.Y =0, then because
X.Y) = [IX[IIY]l (Codb)),
you know that

Cogb] =0=Cog%]=Cog-%].
This tells you that the angle betweXmandY is a right angle.

OB.5.b)

How do you know that
X=1{6, 2

is perpendicular to
Y={3,-9)?

OAnswer:

Check to see thiX.Y =0:

X=(621};
Y={3, -9};
X.Y

0

Yep; X = {6, 2} is perpendicular tY = {3, -9}.

VC.01 Vectors Point the Way
Tutorials

B.5) X.Y = 0 meansX is perpendicular toY

0OB.5.a.i)
Look at
4 7 1
X={1, T 7} and Y= {—5, -5, 2

with their tails a0, 0, Q:

T.1) Velocity and acceleration

At time t, an object is at the location
At = {x[t], y[t]}.
| Clear [t,x,y,P 1
PIt_]={x[t].y [t]}
{(X[t],y [t]}
The velocity of the object at time t is given by:

Clear [vel ]
vel [t_1=D[P[t], t ]

Xty [ty
The velocity is a vector quantity. When you put its taiikét], y[t]},
the velocity vector
{X'[t], y'[t]} = P'[t] = D[PIt], t]
is tangent to the curve traced out by the motion[tjf Phis velocity
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vector points in the instantaneous direction that the object is going.
The speed of the object is the length of the velocity vector:

Clear [speed ]
speed [t_ ] ="Vvel [t].vel [t]
X [t]% ey [t]?
The acceleration of the object is given by:

Clear [accel ]
accel [t_1=Dj[vel [t],t ]

Ity "Ity
oT.1.a)
What does the acceleration vector measure?
OAnswer:

Because the velocity vector is the derivative of the position vector, the
velocity vector measures the rate of change of the position.

Because the acceleration vector is the derivative of the velocity vectol
the acceleration vector measures the rate of change of the velocity.

OT.1.b)
At time t, an object is at the point
Rt] = {3Codt], 3Sint]}.
Plot the motion of the object in true scale fat 0< 27, and include
several velocity and acceleration vectors.
Discuss what the plot reveals.
OAnswer:
Clear [t,P 1;
P[t_]1={3Cos[t],3Sin [t]};

curveplot =
ParametricPlot [P[t], {t, 0,2 =}, PlotStyle - Thickness [0.01 ],
AspectRatio - Automatic, AxesLabel - YL

Circular motion - no big surprise.
Now set up the velocity and acceleration vectors:

Clear [vel, accel 1;
vel [t_]=D[P[t], t ];

accel [t ] =Dfvel [t], t 1;

Clear [velvector ]
velvector  [t_1:=Arrow [vel [t], Taill - P[t], VectorColor - Blue 1;

Clear [accelvector ]
accelvector  [t_ ] : = Arrow [accel [t], Tail - P[t], VectorColor - Red];

Show|

T e
curveplot, velvector [Z] accelvector [Z] AspectRatio - Automatic ];

The velocity vector indicates the direction of the motion, and the
acceleration vector indicates that the force on the object (force=mass
times acceleration) is directed toward the origin, perpendicular to the

VC.01.T1

velocity vector.

Check out some more velocity and acceleration vectors:

[velvector [t], {t 1.2,7.2,.5 1,
Table [accelvector [t1, {t 12,72, 5 }1. AspectRatio - Automatic ];

| Show[curveplot, Table

Neato.
In this set up, the acceleration vectorP[t]. are all perpendicular to
the velocity vectors ¢P[t]. This means the force on the object neither
speeds up nor slows down the object. To confirm this, check out the
speed:

Clear [speed ]

speed [t_ ] = \/TrigExpand [vel [t].vel [t]]
3

The object moves with a constant spee3 ahits of length per unit of
time. Another way to see this is to look at the plot and note that all the

velocity vectors have the same length.

aT.1.c.i)

At time t, an object is at the point
Rt] = {7 Codt], 4Sin(t]}.
Plot the motion of the object in true scale fot 0< 2, and include
several velocity and acceleration vectors.
Discuss what the plot reveals.

OAnswer:

Clear [t, P ]
P[t_]1={7Cos[t],4Sin [t1};

curveplot = ParametricPlot [P[t], {t,0,2 =},
PlotStyle - Thickness [0.01 ], AspectRatio - Automatic 1;

The object is moving on an ellipse.
To see which way the object is moving, look at the velocity and
acceleration vectors:

Clear [vel, accel 1;
vel [t ] =D[P[t], t 1;

accel [t ] =Dfvel [t], t ];

Clear [velvector ]
velvector [t_ ] :=Arrow [vel [t], Tail - P[t], VectorColor - Blue ];

Clear [accelvector ]
accelvector  [t_ ] :=Arrow [accel [t], Tail - P[t], VectorColor - Red];

[velvector [t1, {t 12,72, .5 1,
}1, AspectRatio - Automatic 1;

Show[curveplot, Table

Table [accelvector [t1, {t 12,72, .5
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The velocity vectors have different lengths, and the acceleration
vectors are not perpendicular to the velocity vectors. This signals tha
the speed is not constant. Looking again, you can see that the
acceleration vectors are working to speed up the object in the first ant
third quadrants, and the acceleration vectors are slowing the object
down in the second and fourth quadrants.
Confirm with a plot of the speed:

| Pot [VvelttTvel 1. 10,2 m];

6

o .
I - T

1 2 3 4 5 6

Going faster, then slower, then faster, and then slower.

OT.1.c.ii) The tangential component of the acceleration

Folks like to call the push of the acceleration vector in the direction of
the velocity vector "the tangential component of the acceleration."
Go back to the plot in part i) above and show some velocity vectors
and the tangential components of the acceleration vectors.
Discuss what your plot reveals.

OAnswer:

Remember that the push of a vecXan the direction of another vector
Y is calculated by

Here come the tangential components of the acceleration vectors
plotted with the velocity vectors on the curve:

Clear [tancompaccel, tanaccelvector 1
accel [t].vel [t]vel [t]

tancompaccel [t_] =
vel [t].vel [t]

tanaccelvector [t_]1:=
Arrow [tancompaccel [t ], Tail - P[t], VectorColor - Red];

Show [ curveplot, Table [velvector [t], {t 1.2,7.2,.5 31,
Table [tanaccelvector [t1, {t 12,72, 5 1,
AspectRatio - Automatic ;

When the tangential components of the acceleration vectors are
pushing in the same direction as the velocity vectors, the object is
gaining speed.

When the tangential components of the acceleration vectors are
pushing in the direction opposite to the velocity vectors, the object is
losing speed.

Look at the brakes go on as the object goes into the sharp turns, and
look at how the object speeds up as it comes out of the turns.

OT.1.c.iii) The normal component of the acceleration

Folks like to call the push of the acceleration vector in the direction
perpendicular to the velocity vector by the name "the normal
component of the acceleration."”

Go back to the plot in part i) above and show some acceleration
vectors split into normal and tangential components.

Discuss what your plot reveals.

VC.01.T1-T2
OAnswer:
You already have the tangential components of the acceleration vector
live in part ii) above. The perpendicular component is just
acce[t] — tancompaccél]:

Clear [perpcompaccel, perpaccelvector 1
perpcompaccel [t_ ] =accel [t] -tancompaccel [t];

perpaccelvector [t1:=
Arrow [perpcompaccel [t ], Tail - P[t], VectorColor - Red];

Show[curveplot, Table [tanaccelvector [t1, {t 12,7205 31,
Table [perpaccelvector [t1, {t 1.2,7.2,05 .
AspectRatio - Automatic 1;

The tangential components govern the speed of the object, and the
perpendicular components measure the tug on the object as it goes on
its elliptical path. Note that the tug is greater in the sharp turns than it i
on the flatter parts of the curve. Just as you expect.

T.2) Using the normal vector to bounce light beams off
two-dimensional curves

When you have a parametric formuld]R {x[t], y[t]} for a curve in
two dimensions, then you can calculate a tangent vector
at At] by calculating

tarft] = {x'[t], y'[t]}.
You can also calculate a vector perpendicular to the cunvg]dtyP
calculating

normdfit] = {y'[t], —x[t]}.
Fancy folks like to call the perpendicular vector by the name "normal
vector."
Here is a sample curve shown with a selection of tangents and
normals:

Clear [t, x,y,P ]
Xx[t_ 1=t +Sin [2t];
y[t_1=3Cos[t];
PIt_1={x[t],y [t]1};

a=0;
b =5;
curveplot = ParametricPlot [P[t1, {ta,b 1},
PlotStyle - Thickness [0.01 ], DisplayFunction - Identity 1;

Clear [tan, normal 1;
tan [t_]={x"[t],y [t1};
normal [t_]={y'[t], -X"[t]1};

Clear [tanvector ]
tanvector [t_ ] :=Arrow [tan [t ], Tail - P[t], VectorColor - Blue ];

Clear [normalvector ]
normalvector  [t_ ] :=Arrow [normal [t], Tail - P[t], VectorColor - Red];

Show [

b
curveplot, Table [{tanvector [t 1, normalvector [t1y, {t, a, b, 5 ]]

AspectRatio - Automatic, AxesLabel - Yy,
DisplayFunction - $DisplayFunction ] ;
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changing the independent variatP[t] = {t, f[t]}. That makes this job
easy:

Replot in parametric form, scale the tangent and normal vectors, and
run:

Clear [t,x,y,P ]
X[t ]=t
yI1=f[en;
PIt_1={x[t],y [t]}

-6
The vectors overwhelm the plot.

Tone them down by applying a scale factor to the tangent and normal
vectors: curveplot = ParametricPlot [P[t1, {ta b 1},

PlotStyle - Thickness [0.01 ], DisplayFunction - Identity 1;
scalefactor = 0.6;

Clear [tan, normal ];

Clear [tanvector ] tan [t ]={(x[t],y [t1};

tanvector [t_]:=Arrow [tan [t],
Tail - P[t], VectorColor - Blue, ScaleFactor - scalefactor 1; normal [t_ 1= {y’[t], -x"[t]1};

Clear [normalvector ]

scalefactor = 0.6;
normalvector  [t_ ] :=Arrow [normal [t], Clear [tanvector ]
Tail - P[t ], VectorColor - Red, ScaleFactor - scalefactor 1; tanvector [t ] : = Arrow [scalefactor tan [t

Tail - P[t], VectorColor - Blue, ScaleFactor - scalefactor 1;

Show |
-a Clear [normalvector ]
curveplot, Table [{tanvector [t 1, normalvector  [t1}, {t a, b, . normalvector  [t_ ] : = Arrow [scalefactor normal [t
AspectRatio - Automatic, AxesLabel S XYY, Tail - P[t 1], VectorColor - Red, ScaleFactor - scalefactor 1;
DisplayFunction - $DisplayFunction ] ;
Show|
curveplot, Table [{tanvector [t ], normalvector  [t1}, {t & b, e 1.
AspectRatio - Automatic, AxesLabel - XYY,
DisplayFunction - $DisplayFunction ] ;
y
2.5
2
1.5
That's a bit better. 1
0.5
I 1 2 3 7 51 ¢ °
There ya go.
OT.2.a) oT.2.c)
How did you know in advance that the normal vectors Here is the curve
{y’[t], —=X'[t]} fix]=1-Codx]for-Z <x< %
are guaranteed to be perpendicular to the tangent vectors shown with a light beam emanating fr¢& 3} and hitting the curve
{X'[t], y'[t]}? at
OAnswer: {0.5, fl0.5]}:
. . . Clear [t,f,x,y, P 1
The perpendicularity test says: FIx ] =1- Cos[x]:
Two vectorsX andY are perpendicular X.Y =0. ;E— } j}? o
Taking PIL 1= (XIt],y [t1};
X = {X[t], yItl} andY = {y'[t], —X'[t]}, a- %
you don't need Mathematica to see that be X
' i i 1 2 '
X.Y =x [t] y [t] +y [t] (=x [t]) =0. curveplot =
= i . ParametricPlot [P[t], {t, a b 1}, PlotStyle - Thickness [0.01 1],
OT.2.b) How to handle curves specified in nonparametric form AxesLabel - {"x","y" 1}, DisplayFunction - Identity 1;
. . . source = {2,31};
Here is a curve plotted in nonparametric form: hit = {05 f [051};
Clear [f, x 1] label = Graphics [Text [“"source", source +{0,02 311;
fIx_]=25E —(x-3)2. sourceplot = Graphics [{Red, PointSize  [0.05 ], Point [source ]}1;
- ’ incominglight = Arrow [hit - source, Tail - source, VectorColor - Red];
E : g Show curveplot, incominglight, label, sourceplot, PlotRange - All,
curveplot  =Plot [f[X], {X, a, b }, PlotStyle - Thickness [0.01 1, DisplayFunction ~ $DisplayFunction I
AxesLabel - {"x","y" }1; Y source
y
2.5
2
1.5
1
0.5
1 2 3 7 5 s * M
How do you stick some tangent and normal vectors onto this curve? e S 0P s 2 ;
f Plot where the light beam goes after it bounces off the curve.

OAnswer:
OAnswer:

Every function specified &y = f[x] can be thought of as a shorthand The physical principle behind bouncing light is that the angle of

version of the parametric versicP[x] = {x, y} = {x, f[x]}, or, after incidence is the same as the angle of reflection. To get an idea of how
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to make use of this physical principle, include the normal vector at the
hit and run the vector from the hit to the source.

X = source - hit;

reverseincominglight = Arrow [X, Tail - hit, VectorColor - Red];
X . source - hit
extralabels = {Graphlcs [Text [X hit  + T]]
normal [0.5
Graphics [Text ["normal [0.5 1", hit + %]]}
Clear [normal, normalvector, t 1

normal [t ] = {y’[t]. -x'[t]};

normalvector  [t_ ] :=Arrow [normal [t], Tail - hit, VectorColor - Blue ];
Show [ curveplot, reverseincominglight, normalvector [05 1,
extralabels, sourceplot, label, PlotRange - All,

DisplayFunction

- $DisplayFunction 1;

Agree thaR is a vector specifying the direction of the reflected light
and note that the ancR:makes wittnormal0.5] is the same as the
angleX makes with normal. So you want

X.normal0.5] = ||X]| |lnorma[0.5]|| Cogb]

R .normal0.5] = ||R|| |[norma[0.5]|| Cogb]
whereb is the angle betweexiandnormal0.5].
When you make

R.R=[RI” = [IX|I” = X.X,

you get two equations to solve for the two slotRof
Clear [R, 11,12 ]
R={r1,r2 };

equationl =R.normal [0.5 ] == X.normal [0.5 1;
equation2 =R.R == X.X;

solutions = Solve [{equationl, equation2 }1
{{rl - -3.18283,r2 -0.632514 }, {rl -»15,r2 - 287758 }}

One solution foR is X itself:
I x
{15, 2.87758 }

Discard it and go with:

rl = -3.18283;

r2 = 0.632514;

R={r1,r2 }
{-3.18283, 0.632514  }

Try it out:

outgoinglight = Arrow [R, Tail - hit, VectorColor - Red];
Show [ sourceplot, outgoinglight, curveplot, reverseincominglight,
normalvector  [0.5 ], extralabels, sourceplot, label, Axes - True,

PlotRange - All, DisplayFunction - $DisplayFunction 1;

soyrce
3

2

1

-2 -1
nor|

mal\&)j.SJ 2

Beautiful.
Here's the path of the light:

Show [ curveplot, incominglight, outgoinglight, label, sourceplot,
Axes - True, PlotRange - All, DisplayFunction - $DisplayFunction 1;

VC.01.T2-T3

soyrce

o kN O W

2 i T 2 X

Lookin' just fine, thank you.

T.3) Lines

To specify a line, you need a point to run the line through and you
need a vector to specify the direction of the line.

OT.3.a.i) 2D lines

Come up with a parametric formula for the line that runs through
{—2, -1} and runs parallel to the vect@®, 1}.
Show the line, the vector, and the point in a single plot.
Give the equation of the line in the nonparametric form
y=f[x].
OAnswer:
Here comes the parametric formula:
point = {-2, -1};

parallelvector ={3, 1}

Clear [line,t ]
line [t_1] =point +tparallelvector
(-2+3t, -1+t}

A parametric formula for the line that runs thro{—2, —1} and runs
parallel to the vectc{3, 1} is

{X[tl, y[th = {-2, -1} + t{3, 1.
Note how the parametric formula displays the given point and the

parallel vector.
Here comes the plot:

directionvector =

Arrow [parallelvector, Tail - point, VectorColor - Red];

pointplot = Graphics [{PointSize [0.04 ], Red, Point [point 1}];
lineplot =
ParametricPlot [line [t1, {t, -2, 3}, PlotStyle - Thickness [0.01 1,
AxesLabel - {"x","y" 1}, DisplayFunction - Identity 1;

Show[lineplot, pointplot, directionvector,
DisplayFunction - $DisplayFunction 1;

|
o
IN
N
N
IS
o

-3
Here's how the plot looks when you stick the tail of the parallel vector

at{o0, 1:

directionvector =

Arrow [parallelvector, Tail - {0, 1 }, VectorColor - Red];

Show[lineplot, directionvector, DisplayFunction - $DisplayFunction 1;

©
o
I
0
N
IS
o

Parallel.
To come up with the formula of the line in the nonparametric form
y = f[x], look at:

Clear [X,y ]

equation = {x,y } ==line [t]
X,y } == {-2+3t, -1+t}
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Eliminatet by writing
t=*2andt=y+ 1
and setting
22—y 1

] squasht = Eliminate
X ==1+3y

[equation, t ]

Now solve fory:
] Solve [squasht,y ]
{{y~ % (-1+x)}}
The nonparametric formula of this line is
y — x=1
.
OT.3.a.ii) 3D lines

Come up with a parametric formula for the line that runs through
{2, -3, -5} and runs parallel to the vecterl.5, 2.5, 3.3
Show the line, the vector, and the point in a single plot.

OAnswer:

You do it the same way you handle the 2D case.

Here comes the parametric formula:

point = {2, -3, -5};

parallelvector = {-15,25,33 };

Clear [line,t ]

line [t_] =point + tparallelvector
{2-15t, -3+25t -5+33t}

A parametric formula for the line that runs through
{2,-3,-5}

and runs parallel to the vector
{-1.5,25,3.3

(x[t], yltl, Z[t]} = {2, -3, -5} + t{-1.5, 2.5, 3.}
Note how the parametric formula conveniently displays the given poin
and the parallel vector.
Here comes the plot:

directionvector =

Arrow [parallelvector, Tail - point, VectorColor - Red];

pointplot = Graphics3D [{PointSize [0.04 ], Red, Point [point 1}];
lineplot =

ParametricPlot3D [line [t1, {t, -2, 3}, DisplayFunction - Identity 1;
threedims = Axes3D [3, .2 ];
Show [

threedims, lineplot, pointplot, directionvector, ViewPoint - CMView,

Boxed - False, DisplayFunction - $DisplayFunction 1;

Here's how the plot looks when you stick the tail of the parallel vector
at{0, 0, G:

directionvector =

Arrow [parallelvector, Tail - {0, 0,0 }, VectorColor - Red];
Show[threedims, lineplot, directionvector, ViewPoint

Boxed - False, DisplayFunction - $DisplayFunction 1,

- CMView,

VC.01.T3

OT.3.b.i) 2D lines

Here's a look at the two points2, 3} and{3, 0} in two dimensions:
pointl = {-2,31};
point2 = (3,0 };
pointplot = Graphics [{{PointSize [0.04 ], Red, Point [pointl 71},
{PointSize [0.04 ], Red, Point [point2 1}}1;

Show [ pointplot, Axes
y

- True, AxesLabel - {"x","y" }I;

[
g P N O W

0.

2 -1 ' 1 2 ? x
Come up with a parametric formula for the line that runs through
these two points
Show the line and the two points in a single plot.
OAnswer:
This line is parallel to the vector that runs fr{—2, 3} to {3, 0}, which
is given by
{3,0-1{-2, 3 =1{5,-3k
| parallelvector
{5, -3}

Take a look:

= point2 - pointl

Show [ pointplot,
Arrow [parallelvector, Tail - pointl, VectorColor
Axes - True, AxesLabel - {"x","y" }1;

- Red],

) o1 ' 1 2 2 x
Here's a parametric formula:

Clear [line,t ]
line [t_1 =pointl + tparallelvector
(-2+5t,3 -3t}

You can see one of the points — nam{-2, 3} — prominently
displayed in this parametric formula. Here comes the plot:

lineplot =
ParametricPlot [line [t1, {t, -1, 2}, PlotStyle - Thickness [0.01 1,
AxesLabel - {"x","y" 1}, DisplayFunction - Identity 1;

Show[lineplot, pointplot, DisplayFunction

y
6

- $DisplayFunction 1;

There you go.

OT.3.b.ii) 3D lines

Here's a look at three points in three dimensions:
pointl = {-1.51, 2.32, -1.81 };

point2 = {2.69, -1.14,4.43 };

point3 = {0.59, 0.59, 1.31 };
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[0.04 ], Red, Point [pointl 1}],
[point2 131,

[point3 1}1}

= {Graphics3D [{PointSize
Graphics3D [{PointSize [0.04 ], Red, Point
Graphics3D [{PointSize [0.04 ], Red, Point
threedims = Axes3D[1, .3 ];

pointplot

Show[threedims, pointplot, ViewPoint - CMView, PlotRange - All,

Boxed - False 1];

A

These three points certainly look like they're lined up in a straight line.
How can you tell for sure?
OAnswer:

Put a line between two of them and see whether the third point is on

this line:

Clear [line,t ]
line [t_] =pointl

[t1 = +/ (line

+t (point2 - pointl );

[t] - point3

distance ). (line [t]-point3 );

Solve [distance [t] ==0,t ]

{{t 05 }}

Compare:
] point3
{0.59, 0.59, 1.31 }
] line [05]
(059, 0.59, 1.31 )

Yep, the line goes through all three points.
Another way of seeing this is to make a vector running fpointl to

point2 and another vector running fr¢pointl topoint3:

| vectorl2 = point2 - pointl

(42, -3.46,6.24 )

] vectorl3 = point3 - pointl

(2.1, -173,312 }
vectorl2 . vectorl3
vectorl3

vectorl2PushAlongvectorl3 =
vectorl3. vectorl3

(4.2, -3.46,6.24
| vectorl2 == vectorl2PushAlongvectorl3
True

This tells you that the push vector12 in the direction vectorl3 is

the same avectorl2.
This is enough to confirm that the three points all reside on a single

line.

OT.3.c) Midpoints

Look at:
X={2,10 };
Y={11,3 };

setup = Show[Arrow [X, Tail - Red],

- {0, 0 }, VectorColor

X
Graphics [Text [X ;] ] Arrow [Y, Tail - {0, 0 }, VectorColor - Red],

Graphics [Text ["Y”, %]] Axes - True, AxesLabel - {"x","y" }];

7 4 6 8 10 *
Use vectors to find the midpoint of the line segment that runs from the

tip of X to the tip of Y.

VC.01.T3-T4

OAnswer:
Remember that if you hook the tail X — Y to the tip ofY, then
X =Y runs from the tip oY to the tip ofX. Why?

Because

X=Y+X-Y).

[X-Y, Tail
X

- Y, VectorColor - Red],

v
)

Show [setup, Arrow

Graphics [Text ["X Y'Y o+

7 4 6 8 10 *

To get to the midpoint of the line segment connecting the 1Y»arfd
the tip ofX, you can travel olY to the tip ofY, and then travel along
X =Y, but you should only go halfway. This means:

. . X-Y
midpoint =Y + 5
(18, 18,

2 2

Check with a plot:

= Graphics [ {Blue, PointSize
[Line [{X,Y}11;

[0.04 ], Point [midpoint 1}1;

midpointplot
lineplot = Graphics

Show[setup, lineplot, midpointplot 1;

74 6 8 10

Copacetic.

T.4) Pursuits

OT.4.a.i)
Bubba is really enjoying one of those big time keg parties out in the
woods. Having learned to monitor his blood alcohol level in earlier
Calculus&Mathematica lessons, Bubba took his bicycle to the party
instead of driving his car. At time=t0, Bubba leaves the party and
gets on his bicycle to ride home.
At time t, after leaving the party, Bubba is at the point

{2t+ L Sin[4t], t+ ESin[31]).

Here is his route:

Clear [bubba,t 1]

bubba [t_ ] = {2t +%Sin [4t1,t +E* Sin [3t1};

= ParametricPlot [

{t, 0,5 3}, PlotStyle
- {"X","y" 3}, DisplayFunction

bubbaroute
bubba [t ],
AxesLabel

- {{Thickness [0.01 ], Red }},

- Identity 1;

pointplot = {Graphics [{PointSize [0.06 ], Point [bubba [0]]}],
Graphics [ {PointSize [0.06 1, Point [bubba [51]}1};

labels = {Graphics [Text ["Party", bubba [01, {-2,0 311,
Graphics [Text ["Home", bubba [5], {0,5 }11};

Show[bubbaroute, pointplot, labels, AspectRatio - Automatic,
PlotRange - All, DisplayFunction - $DisplayFunction 1;
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dogpoint [t_]:=
Graphics [ {{Blue, PointSize [0.04 ], Point [{fakex [t], fakey [t1}1},
Text ["dog", {fakex [t1],fakey [t]1}-{0,0.3 }1}1;

dogvelocityvector [t_1:=Arrow [{fakex "[t], fakey "[t]},
Tail - {fakex [t 1], fakey [t ]}, VectorColor - Blue ];

situation [t_ 1 : = Show[pointplot, labels, bubbapoint [ti1,
Party 3 3 3 o % dogpoint [t ], dogvelocityvector [t ], AspectRatio - Automatic,
S|Ight|y unsteady is your friend Bubba. PlotRange - All, DisplayFunction - Identity  1;
While Bubba was at the party, his Blue Tick hound dog was sleeping Show([situation ~ [2], DisplayFunction  $DisplayFunction  1;
at the poin{0, 2}. As Bubba left the party, the dog wakes up and
chases Bubba. Here is the dog's scheme: e
If the dog is at
X[, yIth) n _ g
at timet, then he leavei(t], y[t]} with instantaneous velocity H
 bubbgt] — {X[t], y[t]}. _ _ °
This means that at any time t, the dog is always running toward the @ ~ty
point bubbét], Bubba's current position. See the chase:
Does the dog catch up with Bubba before Bubba gets home and lock o ! ) ) )
the dog out? Table [Show[sntuatlon [t 1, DisplayFunction - $DisplayFunction 15
! 4.6
OAnswer: {t02 48 T}]
You guessed it. ®
This is a job for a system of differential equations. Fome
Put:
Clear [dogvelocity, x, v, t 1
dogvelocity  [t_ ] =bubba [t] - {x[t],y [t]} B2
{2(+%Sin [4t]-x[t],t +E" Sin [3t]-yl[tl} . Party .
The system of differential equations is: "
me
Clear [Derivative ]
equationx = x’[t ] == dogvelocity [t1011
Xr[t]::21+%5in (4] -x[t] P
| equationy =y’[t] ==dogvelocity [t][2] E
Y t] ==t +E'Sin [3t] -y[t] @ ruty
| staterx  =x[0] ==
X[0] == 0 [ )
| statery =y[0]==2
y[0] -- Forre

Here comes the approximate plot of the dog's route for

O<t<b5: U%/B%ba

endtime =5;
Clear [X, Yy, t, Derivative 1 . Party .
approxsolutions = NDSolve [{equationx, equationy, starterx, startery }

{x[t1,y [t1}, {t 0, endtime }]; Home
Clear [fakex, fakey ] Bufba
fakex [t_ 1 =x[t] /. approxsolutions [11;
fakey [t_ 1 =y[t] /. approxsolutions Ii1; o
dogplot = ParametricPlot [{fakex [t],fakey [t]1}, {t O, endtime 3},

PlotStyle - {{Blue, Thickness  [0.02 ]}}, DisplayFunction - Identity  ]; . Party .
outcome =

Show[dogplot, bubbaroute, pointplot, labels, AspectRatio - Automatic, Bubba Home
PlotRange - All, DisplayFunction - $DisplayFunction 1. a/ﬁb
9
. Party

Bupba
Home
Par-t
2 4 6 8 10 ]

The dog didn't make it.
Hope it doesn't rain.

Party
oT.4.a.ii) * 40
lllustrate the dog's strategy by making a movie reviewing the chase. /Hm
9

OAnswer:

Set up the movie code and look at one frame:

Clear [bubbapoint, bubbavelocityvector,
dogpoint, dogvelocityvector, situation, t 1
bubbapoint [t_ ] : = Graphics [{{Red, PointSize [0.04 ], Point [bubba [t 1]}, .
Text ["Bubba", bubba [t] + {0, 0.3 }1}1;

Party

16



Animate these by grabbing all the plots and selecting the animation

instruction in the Cellmenu.
After the animation begins, press 3.

The dog almost catches up with Bubba early in the chase.
Bubba is going so fast when he gets to his home that you've got to be
nervous about whether or not he crashes right through the front door.

aT.4.a.iii)
What should the dog have done to catch Bubba?

oAnswer:
Common sense says that the dog should have run faster.
Here's what could have happened if the dog had run five times faster
than he did above:

Clear [newdogvelocity, X, y, t 1
newdogvelocity [t_ 1 = 5dogvelocity [ti1;
Clear [Derivative ]

equationx = x’[t] == newdogvelocity [t ][1];

equationy =y’ [t] == newdogvelocity [t1021;

starterx  =x[0] ==0;

startery =y[0] == 2,

endtime =5;

Clear [X,y, t, Derivative 1

approxsolutions = NDSolve [{equationx, equationy, starterx, startery },

{x[t]l,y [t1}, ({t O, endtime 1
Clear [fakex, fakey 1
fakex [t_ 1 =x[t] /. approxsolutions i1,
fakey [t_ 1 =y[t] /. approxsolutions I11;
dogplot = ParametricPlot [{fakex [t], fakey [t]}, {t, O, endtime }

PlotStyle - {{Blue, Thickness [0.02 ]}}, DisplayFunction - Identity  1;
outcome =
Show [bubbaroute, dogplot, pointplot, labels, AspectRatio - Automatic,

PlotRange - All, DisplayFunction

- $DisplayFunction 1;

Party 7 6 8 T
The smart money bets that the dog trotted through the door only

seconds after Bubba opened the door. In fact, the dog was running or
slightly behind Bubba for most of the chase.
Take a look:

Clear [dogpoint, dogvelocityvector, situation, t 1
dogpoint [t_1:=
Graphics [ {{Blue, PointSize [0.04 ], Point [{fakex [t], fakey [t1}]},
Text ["dog", {fakex [t],fakey [t1}-{0,0.3 }1}1];

dogvelocityvector [t_1:=Arrow [{fakex "[t], fakey "[t]},

Tail - {fakex [t], fakey [t ]}, VectorColor - Blue 1;

situation [t_ 1 : = Show[pointplot, labels, bubbapoint [t1,
dogpoint [t ], dogvelocityvector [t ], AspectRatio - Automatic,
PlotRange - All, DisplayFunction - |dentity ];

Table [Show(situation

46
-0

[t 1, DisplayFunction - $DisplayFunction 1

{t.02 48,
L

Hone

a
%\

VC.01.T4-T5

[
Home

Bﬂ)a

. Party
[
Hore

HQB’UM
]

. Party
[
Home

B#a
9

. Party
[
@M Home

9

. Party

[
Bupba

ué Home

. Party
QQB%/Y

9
Horre
‘ Party

The dog is no fool; the dog knows that it's safer to run behind Bubba
than to run in front of him.

T.5) Spying along the tangent

At time t, you are at the poin{tP specified through the polar
parameterization:

Clear [P, x,y, 1t
r[t_ ]1=312 -0.65Cos [t] +0.32Cos [2t] -
0.83Cos [3t]+1.92Sin [t]-2.68Sin [2t]+1.79Sin [3t];

P[t_]1=r[t] {Cos[t],Sin [t1};
Take a look:

path = ParametricPlot [P[t], {t 0,2 =},
PlotStyle

- {{Thickness [0.01 ], Blue }}, AxesLabel - {"x","y" }1;

-4
Add your line of sight to the plot when you look forward in the
instantaneous direction you are going whert8.
Then describe, in terms of a clean formula, all the points you can see
at the instant £ 0.8.

OAnswer:
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You are looking in the direction of the tangent veP10.8] with its
tail atP[0.8]:

point = Graphics [{Red, PointSize
Show[ path, point, Arrow

[0.03 1, Point [P[0.8 11}1;

[P'[0.8 ], Tail - P[0.8 ], VectorColor - Red]];

The points you can see are descibed by the clean formula

Clear [lineofsight, s 1
lineofsight [s_]1=N[P[0.8]+sP'[081]]
{2.2137 -2.94617 s, 2.27931 +1.52708s }

where you takis = 0 because you are looking forward along the
tangent vector. Here's part of your line of sight:

sightplot = ParametricPlot [
lineofsight [s]. {s, 0,5 }, DisplayFunction - Identity  1;
Show[path, point, sightplot,
Arrow [P’[0.8 ], Taill - P[0.8 ], VectorColor - Red],

DisplayFunction - $DisplayFunction 1;

y

-4
Without the tangent vector:

| Show [ path, point, sightplot, DisplayFunction - $DisplayFunction 1;

-4
If you had eyes in the very back of your head, you would also be able
to see points on this line:

bothways = ParametricPlot [
lineofsight [s], {s, -5, 5}, DisplayFunction - |dentity 1;

Show[path, point, bothways, DisplayFunction - $DisplayFunction 1;

-10 -5

The line you see is what lots of the good old folks like to call a tangen
line atP[0.8].

VC.01 Vectors Point the Way
Give it a try!

Experience with the starred problems will be especially
beneficial for understanding later lessons

G.1) Vector and line fundamentals*

0G.1.a.i)
Here is the vector % {3, 1} shown with its tail at0, 0}:

VC.01.T5-G1

X=1{3,11};

Show[Arrow [X, Tail - {0, 0 }, VectorColor - Red], Axes - True ];

© o o0
S

0.5 5 2 2.5 3

1 1.
If this command didn't execute satisfactorily,
go back to the top of the lesson
and run the initialization cells there.

What point is the tip of X sitting on?
0G.1.a.i)

When you move the vector X{3, 1} so that its tail is &2, 2}, where
will you find its tip?

OG.1.a.iii)
Here are the point8, 2} and{-1, 0}:

pointl = {3,2};
point2 = {-1,0};

Show[Graphics [ {Red, PointSize
Graphics [ {Red, PointSize
Axes - True, AxesLabel

y
2 .

[0.02 ], Point [pointl 71}],
[0.02 ], Point [point2 1}], PlotRange - All,
- XYL

1.5
1

0.5

X

-1 ' 1 2 3
Add to the plot the vector whose tail is{&f 2} and whose tip is at
{-1, 0.
Come up with parametric equations for the line that goes through both
of these points.
OG.1.b.i)

Here are vectors X and Y with their tails{@t 0}:

X=1{4,1};
Y={-65};

labels = Graphics [{{Text [X ;]] {Text [Y ;]}}]

Show[Arrow [X, Taill - {0, 0 }, VectorColor
Arrow [Y, Tail - {0, 0 }, VectorColor
5

- Red],

- Red], labels, Axes - True ];

-6 -4 -2 ' 2 4
hen you put the tail of X Y on the tip of Y, where does the tip of
X — Y turn out to be?

0G.1.b.ii)

Here are vectors X and Y with the tail of X{@t 0} and the tail of Y
at the tip of X:

X={2, -1};
Y=1{851};

labels = Graphics [{{Text [, 2]}, {Text [V, x + Z]}};

Show[Arrow [X, Tail - {0, 0 }, VectorColor
Arrow [Y, Tail - X, VectorColor

- Red],

- Red], labels, Axes - True ];

[\\2/4 6 8 10

-1
When you put the tail of X Y at{0, 0}, where does the tip of X Y
turn out to be?

In the plot above, why is it that the label Y, which is planted at the
point given by X+ % lands midway between the tail of Y and the tip
of Y?

18



0G.1.b.iii)

Here are vectors X and Y with the tail of X{&t 0, 3 and the tail of
Y at the tip of X:

X={1,4, -5};
Y=1{2 -6,4};

lavels = GraphicsaD [{{Text [, ]}, {Text [ X + Z]}}];

threedims = Axes3D [2, 0.2 ];

Show[Arrow [X, Tail - {0, 0,0 3}, VectorColor - Red],
Arrow [Y, Tail - X, VectorColor - Red], threedims, labels,
ViewPoint - CMView, Boxed - False 1];

When you put the tail of X Y at{0, 0, @, where does the tip of

X+ Y turn out to be?

In the plot above, why is it that the label Y, which is planted at the
point given by X+ % lands midway between the tail of Y and the tip
of Y?

aTip:
We have used the shorthand command for building the 3-dimensiona
axes:
] ?Axes3D
Axes3D [a, b ] creates a Graphics3D object of
cartesian axes with x, y, and z running from -a/3

to a, and with axes labels b units beyond the
tips of the axes. Axes3D [a] is Axes3D [a, a /8].

0G.1.b.iv)

Here are the same vectors as shown in the last part together with son
points of the form
{x, y} = X + tY for various choices of t:

X={1,4, -5};
Y={2, -6,41};
Clear [t]
points =

Table [Graphics3D [{PointSize [0.02 ], Point [X+tY]}], {t -2, 3, E}];

Show[Arrow [X, Tail - {0, 0,0 3}, VectorColor - Red],
Arrow [Y, Tail - X, VectorColor - Red], points, threedims,
labels, ViewPoint - CMView, Boxed - False 1;

More points:
morepoints =
5
Table [GraphicsBD [{PointSize [0.02 ], Point [X+tY 1}1, {t, -2, 3, E}]

Show [
Arrow [X, VectorColor - Red], Arrow [Y, Tail - X, VectorColor - Red],
morepoints, threedims, labels, ViewPoint - CMView, Boxed - False ];

What kind of curve do these points come from?
Give a parametric formula for this curve.

VC.01.G1

0G.1.c)

Here are two vectors in three dimensions:

X={2,1,2 }
Y={1, -4,1};
threedims = Axes3D [1.5, 0.2 ];

Show[Arrow [X, Tail - {0, 0,0 }, VectorColor - Red],
Arrow [Y, Tail - {0,0,0 3}, VectorColor - Red], threedims,
ViewPoint - CMView, Boxed - False ];

And here's a calculation of X.Y:

] x.v

0
What piece of definite information about the relationship between X
and Y did you get from the calculation of X.Y?

0G.1.d.0)

Here are plots of two lines in three dimensions:
pointl ={1,1,1 };

point2 ={2,2,15 1};

X1={221 };

X2=1{0, -2,4};

Clear [linel, line2, s, t 1
linel [t_] =pointl +tX1;
line2 [s_] = point2 +sX2;

linelplot =

ParametricPlot3D [linel [t]1, {t, -2, 2}, DisplayFunction - Identity 1;
line2plot =

ParametricPlot3D [line2 [s], {s, -1, 1 }, DisplayFunction - Identity 1;
threedims = Axes3D [2, 0.2 ];
setup = Show([linelplot, line2plot, threedims, ViewPoint - CMView,

Boxed - False, DisplayFunction
2 022

- $DisplayFunction 1;

The plot gives the strong hint that the lines hit each other.
Explain how the following calculation confirms that the lines do hit
each other:

| Solve [Thread [linel [t] ==line2 [s]1]1@{1, 2 }], {s,t }]

[{so0t 53]

Use what you see to pin down the coordinates of the point at which
the lines hit each other.

0G.1.d.ii)

Take another look at the lines in part i) above.
] Showsetup 1;
2 022

The two lines also look like they cross each other at right angles
(perpendicularly). Use the dot product of two well-chosen vectors to
confirm or contradict this observation.

O0G.1.d.iii)
Here are plots of two new lines in three dimensions:
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pointl =(1,1,1 };
point2 ={2,15,15 };
X1=1{2,21 };

X2=1{0, -2,41};

Clear [linel, lin2, s, t 1
linel [t ] =pointl +tX1;
line2 [s_] =point2 +sX2;
linelplot =

line2plot =

threedims = Axes3D [3, 0.2 ];

setup = Show[linelplot, line2plot, threedims, ViewPoint - CMView,
Boxed - False, DisplayFunction - $DisplayFunction 1,
0-2
42

The plot hints that these two lines hit each other.
Do they?

0G.l.e)

You can think of the CMView: {2.7, 1.6, 1.2 as a three-dimensional

vector.
Here is this vector shown with ViewPoirt CMView:
CMView = {2.7, 1.6, 1.2 1

X = CMView;
spacer =0.2;
h=1;

threedims = Axes3D [h, spacer 1;

Show[Arrow [X, Tail - {0, 0,0 1}, VectorColor - Red], threedims,
PlotRange - All, ViewPoint - CMView, Boxed - False ];

Gotcha!l
Here is X= CMView from some other viewpoints:

NewView = {10, 0,0 };
Show[Arrow [X, Tail - {0, 0,0 3}, VectorColor - Red], threedims,
PlotRange - All, ViewPoint - NewView, Boxed - False 1;

z

NewView = {2, -1,1};
Show[Arrow [X, Tail - {0, 0,0 }, VectorColor - Red], threedims,
PlotRange - All, ViewPoint - NewView, Boxed - False 1;

Here is the vector X CMView = {2.7, 1.6, 1.2 shown with a
squadron of its transplants with ViewPoitCMView:

Clear [tail, k 1;

tail [1] ={0,0,0 };
tail [2] ={2,0,0 };
tail [3] =1{0,2,0 };
tail [4] ={0,0,2 };

ParametricPlot3D [linel [t], {t, -2, 2}, DisplayFunction - Identity 1;

ParametricPlot3D [line2 [s], {s, -1, 1 }, DisplayFunction - |dentity 1;

VC.01.GE:G2

tail [5] = {-2,0,0 };

tail [6]=1{2,20 };

squadron =

Table [Arrow [X, Tail - tail [k], VectorColor - Red], {k, 1,6 1}1;
Show[squadron, threedims, PlotRange - All, ViewPoint - CMView,

Boxed - False ];

Duck before they pin you to your chair.

Play with the plots above until you get to the point at which you can
explain what the viewpoint specification in a three-dimensional plot

actually does. Then write up your own explanation of what you think
the viewpoint specification in a three-dimensional plot actually does

for you.

G.2) Measurements*

0G.2.a)

Measure the distance betwd@n 7} and{3, -5} in two dimensions.
Measure the distance betwg@n 7, -8} and{3, -5, 9} in three
dimensions.

0G.2.b.j)

Here is a triangle sitting happily in three dimensions:
pointl = {0, 2, -4};
oint2 = { f. 4 5 }:
P “Ysl w0 27
point3 ={1,0,5 };
triangle = Graphics3D [Polygon [{pointl, point2, point3 111
threedims = Axes3D [2, 0.2 ];

Show[threedims, triangle, ViewPoint
Boxed - False 1;

- CMView, PlotRange - All,

That triangle sure looks like a right triangle.
Use a dot product to confirm or dispel this observation.

0G.2.b.ii)

Mrs. Stephens is one of those sly math teachers who uses
Mathematica in her office but doesn't allow the students to use

computers or calculators for class work. In fact, she doesn't even let

her students know that she even has a computer.

In preparation for yet another captivating lecture, she needs to
generate a right triangle in three dimensions with one vertex at
{0,0, 0.

She locks her office and gets out her computer and types:
X=1{1,23 };

Y={011 }

pointl = {0,0,0 };

point2 = X;

point3 = ——;

triangle = GraphicsSD [Polygon [{pointl, point2, point3 1
threedims = Axes3D [2, 0.2 ];

Show[threedims, triangle, ViewPoint
Boxed - False 1;

- CMView, PlotRange - All,
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She knows in advance that, unless X and Y are parallel vectors, the
triangle with vertices (corners) g, 0, G, the tip of

%— Y (with tail at{0, 0, Q)
and the tip of X (with tail af0, 0, @) will always give her a right
triangle.
Why does this always work?

0G.2.c)

Here is a plot of a line and a point:

Clear [L,t ]

L[t ]={-13,56, -18}+t {1273, -361};
point = {2.4, 0.7, -0.2 };

lineplot =

1
ParametricPlot3D [L[t], {t, -1, 3},DisplayFuncti0n - Identity ];

threedims = Axes3D [2.5, 0.2 1;

Show[threedims, lineplot,
Graphics3D [{Red, PointSize  [0.02 ], Point [point ]}], ViewPoint - CMView,
PlotRange - All, Boxed - False, DisplayFunction - $DisplayFunction 1,

Measure the shortest distance between the line and the point.
aTip:

The distance betweel [t] and the point is measured by:

I dist [t_] =V(L[t]-point ). (L[t]-point )

\/(—1.6 36t )2+ (=37 +1.2t )2+ (49 +7.3t )2

G.3) With or against?*

0G.3.a.i)
Here are two vectors X and Y:
X={-052 };
Y={-21}
Show[Arrow [X, Tail - {0, 0 }, VectorColor - Red],
Arrow [Y, Tail - {0, 0 }, VectorColor - Red],

Graphics [ {{Text ["X", Z;-]} {Text ["Y", ;]}}],Axes - Automatic,

AspectRatio - Automatic ]

2

-2 -1.5 -1 -0.5
How does the picture reveal with no calculation that %. §?
Confirm what you say by calculating X.Y.
Add to the plot the vector that measures the push of X in the direction
of Y.
Would you say that the push of X in the direction of Y is with Y or
against Y?

O0G.3.a.i)
Here are two new vectors X and Y:
X=1{2,21};
Y=(-31};
Show[Arrow [X, Tail - {0, 0 }, VectorColor - Red],
Arrow [Y, Tail - {0, 0 }, VectorColor - Red],

Graphics [{{Text [X ;]} {Text [Y ;]]}],Axes - Automatic,

AspectRatio - Automatic ];
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) -2 -1 ' 1 2

How does the picture reveal with no calculation that %. 87

Confirm what you say by calculating X.Y.

Add to the plot the vector that measures the push of X in the direction
of Y.

Would you say that the push of X in the direction of Y is with Y or
against Y?

0G.3.a.iii)

Given any two vectors X and Y, how does the sign of the dot product
X.Y tell you whether the push of X in the direction of Y is with Y or
against Y?

0G.3.b)

At time t with O< t < 27, Luke Skywalker is at the point
{x[t], y[t]} = {Codt], 3Sin[t]}.

Darth Vader has activated a force field that puts a force (= push or

pull) equal to{x, —y} on any object &ix, y}.

At time t:

- Is the force pushing with or against Skywalker's movement if
{X[t], —y[tl} - {X[t], y'[t]} < 0

- |s the force pushing with or against Skywalker's movement if
{XIt], —y[tl} - AX[t], y'[t]} > 07

For approximately which t's is Vader's force with young Skywalker?

oTip:

Plot {x[t], —y[t]}. {x'[t], y'[t]}.
0G.3.c)
Here is a pair of vectors.

X=3 {cOs[g],sm [%]};
7T 7T
Y= {Cos[=],sin [=]};
{cos[ 2] sin [Z]}
Show[Arrow [X, Tail - {0, 0 }, VectorColor - Red],
Arrow [Y, Tail - {0, O }, VectorColor - Red],
Graphics [ {{Text ["X", ;]} {Text [y, ;]}]],Axes - Automatic,

AspectRatio - Automatic ];

Come up with vectors U and V with:

- U parallel to Y

- V perpendicular to Y

->X=U+ V.

Once you have your vectors U and V, add them to the plot above by
plotting U with its tail a0, O}, and V with its tail at the tip of U.
Describe what you see.

G.4) Velocity and acceleration*

0G.4.a)

At time t with O< t < 6, an object is at the position

At] = {Codt], Cog2t] Sin[t]}.
Plot the curve and some of its velocity vectors and acceleration
vectors at a selection of points.
Use your plot to analyze the direction and the speed of the object.
Then plot its speed as a function of t.
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0G.4.b)

Ballistic projectiles (like a cannonball from a cannon) fired from the
origin with muzzle velocity yslec and angle b with the horizontal are
at the position

At] = {vo Cogblt, vo Sin[b]t — 16t2}
t seconds after firing.
Take ¢ = 1805LEC and b= % and plot the trajectory, some of its
velocity vectors, and some of its acceleration vectors at a selection of
points.
Explain anything of interest you note.

0G.4.c)

For

Rt] = {2:Sin(t], 6Sin[£1%, 3Codt]),
plot in true scale the motion of the object fat 1 < 6, including
several velocity vectors.
Then, on a separate plot, show the motion of the object£ar<46,
including several tangential components of acceleration.
On a third plot, show the motion of the object fat fL.< 6, including
several tangential and normal components of acceleration.
Discuss what each plot reveals.

0G.4.d.i)

An object is at
Rt] = {9 Sin[t], 3Codt]}
at timet.
Plot in true scale the motion of the object fat 0< 2T’Tincluding
several velocity vectors.
Then, on a separate plot, show in true scale the motion of the object
forO<t< 2T’Tincluding several tangential and normal components of
acceleration.
Discuss what each plot reveals.
Finally, show the plots together and discuss relations between them.

0G.4.d.ii)
ForO<t< 2T’Tthe object in part i) is constrained to move on an
ellipse. Suppose, at the instast {%" the object is released from all
constraints and allowed to move of its own free will independent of
any accelerations due to forces. Plot the path the object takes.
aTip:

Does it continue along on the ellipse or does it do something else?

0G.4.d.iii)

The speed of the object in part i) at titrie defined to be the length of
the velocity vector at time t; in other words

speet] = v velocityt] . velocity(t].

Put
, S -
unittaift] = Vtant) tant]
where

tant] = {x'[t], y'[t]}
Calculate Dspeedt], t] and compare it with
acceleratid] . unittarit].
Try to explain why you think that the result is natural or weird.
0G.4.d.iv)

If you know speef0], then how do you give a formula for spgtééh
terms of acceleratidgti . unittarit]?
aTip:
Two-four-six-eight,
What do you integrate?

0G.4.d.v)

Can you get any information about spgei you know the tangential
component of acceleration but lose all your information about the
normal component of acceleration?

VC.01.G4-G5

G.5) The coordinate axes and coordinate planes in three
dimensions*

If you have been around Calculus&Mathematica for a while, the beginning

parts of this problem will be old hat to you.

Here are the three coordinate axes in three dimesnsions:
threedims = Axes3D [1, 0.2 ];
Show[threedims, ViewPoint

z

- CMView, Boxed - False 1;

Here is the positive x-axis shooting out in the direction of the vector
{1, 0, 0:

xaxis = Graphics3D [{Red, Line [{{0,0,0 }, {5,0,0 }}1}1;
Show[xaxis, threedims, ViewPoint - CMView, Boxed - False 1;
z

Here is the positive y-axis shooting out in the direction of the vector
{0,1, 0:

yaxis = Graphics3D [{Red, Line [{{0,0,0 }, {0,50 }}1}1;
Show[yaxis, threedims, ViewPoint - CMView, Boxed - False 1;

0G.5.a)

Give a plot of the positive z-axis shooting out in the direction of the
vector{0, 0, 1.

Then show all three axes in one plot.

Continue to use the option ViewPointCMView.

OG.5.b)

The xy-plane is the plane that you get by laying down a rigid flat sheet
on the girders defined by the x-axis and the y-axis.
Here is a piece of it:

h =2

xyplane =

Graphics3D [Polygon [{{0,0,0 }, {h,0,0 }, {h,h,0 }, {0,h, 0 }}11;
Show[xyplane, threedims, ViewPoint - CMView, Boxed - False ;
z

The xz-plane is the plane that you get by nailing a rigid flat sheet on
the girders defined by the x-axis and the z-axis.
Here is a piece of it:
h=2
xzplane =
Graphics3D [Polygon [{{0,0,0 }, {0,0,h 3}, {h,0,h 3}, {h, 0,0 }}11;
Show[xzplane, threedims, ViewPoint - CMView, Boxed - False ];
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Show a piece of the yz-plane together with the coordinate vectors.
Continue to use the option ViewPointCMView.

0G.5.c)

Here is a curve and its shadow in the xz-plane cast by light rays
shining from top to bottom, all parallel to the z-axis.

Clear [t, X, ¥,z ]
{X[t1,y[t_1,z[t_1y={1+Cos[2t],t,2 +Sin[2t]};

curve = ParametricPlot3D [

{X[t1,y [t],z [t]1}, {t 0,2 =}, DisplayFunction - Identity  1;
samplelightray = Arrow [{0,0, -1}, Tall - {1, =, 4}, VectorColor - Red];
h=2;
xyplane =

Graphics3D [Polygon [{{0,0,0 }, {h,0,0 }, {h, wh,0}, {0, #h, 01}}11;
shadowonxy = ParametricPlot3D [

{x[t1,y [t]1,0}, {t, 0,2 =}, DisplayFunction - Identity 1
Show[curve, samplelightray, xyplane, shadowonxy,

threedims, ViewPoint - CMView, Boxed - False, Axes - None,
DisplayFunction - $DisplayFunction 1;

|

Plot the same curve and its shadow in the xz-plane cast by light rays
shining from right to left, and all parallel to the y-axis.
Then plot the same curve and its shadow of the yz-plane cast by light

rays shining from front to back, and all parallel to the x-axis.
Continue to use the option ViewPoirtCMView.

G.6) Serious plotting: Parametric planets

This problem was adapted from an article by
Professor Donald Saari of Northwestern University
in the American Mathematical Monthly, February, 1990.

Many persons wonder why astronomers of antiquity had so much
trouble predicting the paths of the planets. The truth is that their view
that the Earth was the center of the solar system made the job of
charting the motion of the other planets very, very difficult.

To see why, take a look at a simplified version of the Sun-Earth-Mars
system.

Here are some simplified data:

- Both the Earth and Mars move on orbits that are nearly circular,
and both orbits are in the same plane.

- One astronomical unit is the distance from the Earth to the Sun.

— Mars is about 1.52 times as far from the Sun as is the Earth.

- Mars takes about 2 (Earth) years to orbit the sun; the Earth takes
one year.

Setting the Sun at the origin, measuring distance in astronomical unit:
and measuring time t in Earth years with the Earth and Mars in
alignment on the x-axis wher=t0, you can give a pleasing plot of the
motion during the first nine months of the first year.

Clear [earth, mars, t 1

earth [t_ ] ={Cos[2xt],Sin [2xt]};

mars [t_ ] = 1.52 {Cos[Zn%],Sin [27{%]};

9
orbits = ParametricPlot [{earth [t1, mars [t]1}, {t, 0, E}

PlotStyle - {{Thickness [0.01 ], Blue }, {Thickness [0.01 ], Red }},
AspectRatio - Automatic, Epilog - Text ["Earth -Mars-Sun", {0, 0.4 }1,
DisplayFunction - |dentity ];
sun = Graphics [{RGBColor [1, 0.5, 0 1], PointSize  [0.06 ], Point [{0, 0 }1}1;
ninemonths = Show[orbits, sun, DisplayFunction - $DisplayFunction 1;

VC.01.G5-G6

That's the sun in the center, Mars on the outside track, and Earth on
the inside track.
Here's a little movie that illustrates the action:

Clear [pointers, t 1
pointers  [t_1:= {Arrow [earth [t], Tall - {0, 0 }, VectorColor
Arrow [mars [t ], Taill - {0, 0 }, VectorColor - Red]};

9 9
t11, {t 0, —, —}];
e 12 124}]

- Blue 1,

Table [Show[ninemonths, pointers

Animate these by grabbing all the plots and selecting the animation
instruction in the Cell menu.
After the animation begins, press 3.

Here's a little movie that shows the movement of Earth and Mars:
Clear [earthplotter, marsplotter, t ]
earthplotter [t1:=
Graphics [ {Blue, PointSize [0.03 ], Point [earth [t]1]}1;
marsplotter  [t_ ] : = Graphics [{Red, PointSize  [0.03 ], Point [mars [t]]}];

um 2,
J P—gy

Table [Show[sun, earthplotter [ti,
marsplotter [t ], PlotRange - {{-2,2 }, {-2,2 }}],
{t.0,2 -jump, jump }];
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Animate these by grabbing all the plots and selecting the animation
instruction in the Cell menu.
After the anination begins, press 3.

To see why the oldtimers who insisted that the Earth is at the center of
the solar system had some tough explaining to do, you look at a plot
of the movement of Mars and the Sun with the Earth plottéal &;.
To see how to do this, look at:
Clear [t, earthtosun, earthtomars 1
earthtosun [t_] ={0,0 } -earth [t];
earthtomars [t_ ] = mars [t ] -earth [t];
t =0.3;
Show [ ninemonths, marsplotter [t 1, earthplotter [ti1,
Arrow [earthtosun [t ], Tail - earth [t], VectorColor - Blue ],
Arrow [earthtomars [t ], Tail - earth [t], VectorColor - Red]];

gar th\{jar s -sun

Changet and rerun.

To plot the motion of Mars and the Sun with the eartl®af}, you

just put the tails of the vectors earthtorfidand earthtosut] at

{0, 0} and plot the curves traced out by their tips as t advances from 0.
Here's what you get for the first two years:

Clear [t]
ParametricPlot [ {earthtomars [t ], earthtosun [t1}, {t, 0,2 3}, PlotStyle -
{{Thickness [0.01 ], Red }, {Thickness [0.01 ], RGBColor [1,0.5,0 1}},
AspectRatio - Automatic,
Epilog - {Text ["Earth -Mars-Sun with Earth at center", {-1,04 131,
{Blue, PointSize [0.04 1, Point [{0,0 }1}}1;

The sun goes around the Earth in a nice circle, but look at the catchy
dance Mars is doing. No wonder the ancient astronomers had a lot of
trouble predicting and explaining where Mars was going.

0G.6.a)

Explain the presence of the number 2 in the denominators inside the
original parametric formula
marft] = 1.52{Coq2r 5], Sin2x +1}.

0G.6.b)
Set Mars at0, 0} and plot the motion of Earth for the first two years.

0G.6.c)

— Jupiter sits 5.20 times as far from the Sun as does the Earth.

- It also moves in a (nearly) circular orbit in the plane of the Earth's
orbit.

- Jupiter takes about 12 Earth years to complete one trip around the
Sun.

Setting the Earth 40, 0}, measuring distance in astronomical units,
and measuring time t in Earth years with the Earth and Jupiter in
alignment on the x-axis wher=t0, give a plot of the motion of

Jupiter during the first five Earth years.
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0G.6.d)

Comment on the following sentiment:
The old timers were not wrong in saying that the Sun goes around the
Earth, but their insistence that this is the only way to look at the solar
system was wrong and held back science for many years.

OHistorical marker:

The Polish astromoner, Nicolaus Copernicus (1473-1543), successfully
advanced the theory that the solar system is greatly simplified if you
put the Sun at the center. Coperinicus's idea so shook
the thinking of its time that it even changed the language.
Before Copernicus the word revolution meant going around.
After Copernicus, the word revolution also came to mean
a sudden, radical, or complete change.
C&M is all for revolutions - especially in the way mathematics is
learned.

0G.6.e) Orbiting around a moving object

Just to see whether you got the idea, look at the following plots of twa
objects. At timd, objectl is at the point

{Sin[t] (1 - Codt]), Codt] Cod4t]}
and object2 is at the point

{Sin[t] (1 - Codt]), Codt] Cod4t]} + 0.5{Codt], Sint]}

Clear [objectl, object2, t 1

objectl [t ] ={Sin[t] (1-Cos[t]), Cos [t] Cos[4t]};
object2 [t ] =objectl [t]+05 {Cos[2t],Sin [2t]};

ParametricPlot [{objectl [t],object2 [t1}, {t, 0,2 =},
PlotStyle - {{Thickness [0.02 1}, {Red, Thickness [0.01 ]}},
AxesLabel - {"x","y" }1;

What a mess!
Plot the motion of object2 when you place objectfDat} and use
what you see to explain what's happening.

G.7) Lines*

0G.7.a)

Here is the line segment running fr¢r3, 2} to {3, —4}.
pointl = {-3,2};
point2 = {3, -4};
segment = Show[

Graphics [ {PointSize [0.02 ], Blue, Point [pointl 1, Point [point2 ]1}1,

}11, Axes - Automatic,

SOy

Graphics [Line [{pointl, point2
AxesOrigin

- {0, 0 }, AxesLabel

-4
A parametric formula of the line through these two points is:
Clear [L,t ]
L[t_] =pointl +t (point2 - pointl )
{(-3+6t,2 -6t}
What value of t makes[t] land on point1?
What value of t makes[t] land on point2?
What value of t makes[t] land on the point halfway between pointl
and point2 on the indicated segment?
What values of make Lt] land on the indicated segment?
lllustrate with plots similar to these:

| Show[segment, Arrow [L[0.57 ], Tail - {0, 0 }, VectorColor - Red]1;

VC.01.G6-G7

-4
| Show[segment, Arrow [L[1.46 ], Tail - {0, 0 }, VectorColor - Red]1;

0G.7.b.i)

Write down a parametric formula for the line that passes through the
points{2, 0} and{3, 4.

Give a vector parallel to this line.

Give a vector perpendicular to this line.

0G.7.b.ii)

Write a parametric formula for the line that has xy-equation
Y+ 2)=1.52(x - 1).

Give a vector parallel to this line.

Give a vector perpendicular to this line.

Give a point on this line.

0G.7.b.iii)

Are the lines with parametric formulas
Lt ={2, 3+ t{-3,5

and
L(t] ={2, 3} + t{6, —10}

the same line or different lines?

Are the lines with vector equations
Lt ={2, 3+ t{-3,5

and
L[t ={-4,13 + t{-3,5

the same line or different lines?

O0G.7.c.i)

Give a parametric formula for the line passing through the point
{1, 4, 3 and moving away in the direction of the ved@r1, 1.

0G.7.c.ii)

Give a parametric formula for the line in three dimensions through the
tips of the vectors X% {2, 6, 2 and Y= {4, 2, 1 when their tails are
at the origin.

0G.7.d)

Parametric equations for the line throydh2, 3 parallel to the
vector{5, 6,-4} are

x=1+ 5t,

y=2+ 6t, and

z=3- 4t.
A friend taking the old-fashioned course tells you that the

xyz-equations for this line are
x-1 _ y-2 _ z-3
Aem = It = B2

5 T 6 = -
Your friend is right.
Why?
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G.8) Lasers

Calculus&Mathematica thanks Todd Will
of Davidson College for suggesting this problem.

0G.8.a)

A Spartan missile and a Trojan missle are both flying at the same
constant altitude.
At time t, the Spartan missile is at the point:
| Clear [spartan,t ]
spartan [t ] ={16.1 -7t +t2, 13t -2t?}
(161 -7t +t2,13t -2t2y
At the same time t, the Trojan missile is at the point:
| Clear [trojan ]
trojan [t_] = {26 -13t +2t2,23 -5t +t?}
{26 -13t +2t2,23 -5t +t?}
Here is a plot of the paths of the two missiles:

spartanpath = ParametricPlot [spartan [t], {t, 0,6 1},
PlotStyle - {{Blue, Thickness [0.01 ]1}}, DisplayFunction - |dentity 1;
trojanpath = ParametricPlot [trojan [t], {t 0,6 1},

PlotStyle - {{Red, Thickness [0.01 ]}}, DisplayFunction - |dentity 1;

Show[spartanpath, trojanpath, DisplayFunction - $DisplayFunction 1;

Their paths cross, but do they crash?

0G.8.a.ii)

Continue with the set-up in part i) immediately above, but with
additional information:

Each of the missiles has a laser in its nose that can shoot straight
ahead and zap instantaneously.

Can either missile ever zap the other?

If so, who can zap whom and when?

OTip:

Look at:

Clear [s]

Solve [trojan [t] +sD[trojan [t], t ] ==spartan [t]]
{{s > -0.627094,t - 4.46842 }, {s »0.408828,t - 1.76117 },
(s 52091827, t 3.17041 }}

If you use this, explain why it helps.

0G.8.b)

At time t= 0, your new Luke Skywalker laser rocket scooter is at the
position:
I Clear [P, t ]
P[t_]={6-t+Sin[t],10 -2t 2 +0.5Sin [2t]}
{(6-t +Sin[t],10 -2t,2 +05Sin [2t]}

Here is its path for & t < 5:

path = ParametricPlot3D [
Evaluate [P[t]], {t, 0,5 }, DisplayFunction - Identity 1;
h = 6;
xzplane =
Graphics3D [Polygon [{{-h,0,0 }, {-h,0,h }, {h,0,h }, {h,0,0 }}11;
threedims = Axes3D [6, .4 1;
setup =
Show[threedims, path, xzplane, ViewPoint
Axes - None, PlotRange - All, DisplayFunction

- CMView, Boxed - False,
- $DisplayFunction 1;

VC.01.G8G9

<

A laser beam emanates from the nose cone of your scooter and shoots

out in in a straight line tangent to the path Ikiie this:

time =3.3;
samplebeam =

Arrow [ P’ [time ], Tail - P[time ], VectorColor - Red, ScaleFactor -4517;
Show[setup, samplebeam ];

Note that the beam pierces the xz-plane.
Imagine that the xz-plane is made of cardboard, and plot the curve
burned into the xz-plane by your scooter's laser during the time
interval O<t < 5.
oTip:
Look at:
| PIt1+sP[t]
{6-t+s (-1+Cos[t])+Sin[t],10 -2s-2t,2 +1.sCos [2t] +0.5Sin [2t]}
| (Pit1+sPt])21
10 -2s -2t
| Solve [(P[t]+sP'[t])[2] ==0,s ]
{{s>5-t}}

G.9) Parabolic reflectors, spherical reflectors, and elliptical
reflectors

0G.9.a.i) Parabolic reflectors
Here is part of the parabola

- X.
fix] = 5
Clear [f, x ]

x2
fIx_ 1=—;
[x_1 3

XMLy [1y=(tf [t}

parabola = ParametricPlot [{x[t1,y [t1}, {t -4,41},
PlotStyle - {{Blue, Thickness [0.01 ]1}}, AxesLabel - {"x","y" }1;

Three vertical light rays, emanating from
{x[1], 6}, {x[2], 6}, and{x[3], 6},
hit the parabola at the points
{x[1], yI11}, {x[2], y[2]}, and{x[3], y[3]}
respectively:
Clear [beam]
beam[t_1]: =
Arrow [{X[t],y [t]}-{x[t],6}, Tail - {x[t],6 }, VectorColor - Red];
Show[parabola, beam [1], beam [2], beam [3], PlotRange - All 1;
y

BN W s g o
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On one plot, show the paths the three beams take after they have
bounced off the parabola. Make sure you show enough of the reflecte
beams to see where each beam crosses the y-axis.

Describe what you see, and mention anything interesting.

0G.9.a.ii)

You are given a positive number p, but you are not told what the
specific value of p is.
A vertical light beam comes from high above the plot of
fix] = 35
and bounces off the curve at a given point p@nf[a]}. You are not
told what the specific value of a is.
Calculate in terms of p the point at which the reflected beam crosses
the y-axis.

0G.9.a.iii)
Most traditional reference books say that the focus of the parabola
fix] = 55

is located at the poiri@, p} on the vertical-axis. Why do they say this?
Why do folks use parabolas to build television satellite dish antennas
to sell to rednecks in the boonies who want to watch wrestling and
roller derby?
The great Greek scientist, Archimedes (287-212 B.C.), was the first
scientist to understand what parabolic mirrors can do. In fact,
Archimedes once used parabolic mirrors to concentrate sunlight on th
sails of attacking Roman ships, thereby burning them up before they
could attack. How do you think Archimedes went about this?

aTip:

You'll have trouble with this if your answer to part ii) above isn't
correct.

0G.9.b) Spherical reflectors
Here is part of the circle of radius 4 centerefDat}:

Clear [Xx,y,t 1]
X[ 1,y [t 1}=1{0,4}+4{Cos[t],Sin [t]};
3x
starter = — - —;
2 3
stopper S, x.
= + —
PP! 2 3
circulardish = ParametricPlot [{x[t1,y [t]1}, {t starter, stopper I8

PlotStyle - {{Blue, Thickness [0.01 ]}}, AspectRatio - Automatic,
AxesLabel - {"x","y" }1;

y
2
\5 /
1
0.5
-3 -2 -1 ) 1 2 3
Three vertical light rays, emanating from
{x[5], 6}, {x[5.3], 6}, and{x[5.6], 6},
hit the circular dish at the points
{X[5], yI51}, {x[5.3], y[5.3]}, and{x[5.6], y[5.61},
respectively:

Clear [beam]
beam[t_]: =
Arrow [{x[t],y [t]1}-{x[t],61}, Tall - {x[t],6 }, VectorColor - Red];

X

Show[circulardish, beam [5], beam [5.3 ], beam [5.6 ],
AspectRatio - Automatic, PlotRange - Al 1;
y

PN W Ao

32 -1 1 2 3 X

On one plot, show the path each of the three beams takes after it has
bounced off the parabola. Make sure you show enough of the
reflected beams to see where each beam crosses the y-axis.

Why don't spherical dish antennas work very well?

VC.01.G%-»G10

0G.5.c.i) Elliptical reflectors

Here is the lower half of the ellipse
(37 + (%=1
shown with its two focuses at

(V32-22, 0} and{-V3? - 22, O):

Clear [x,y,t ]

a=3;

b =2

{X[t_1,y [t_]1}={aCos[t],bSin [t]};
starter =

stopper =2

leffocus = {-Va?-b?2,0};
rightfocus ={Vaz-b2,0};

ellipticaldish = ParametricPlot
{t, starter, stopper }, PlotStyle - {{Blue, Thickness [0.01 1}},
AspectRatio - Automatic, AxesLabel - XYY,
Epilog - {{PointSize [0.04 ], Point [leftfocus 13},
{PointSize [0.04 ], Point [rightfocus  1}}1;

[{x[tl,y [t1},

X

Three light rays emanating the left focus hit the elliptical dish at the
points
{X[4], y[41}, {X[5], y[5]}, and{x[6], y[6]}:

Clear [beam]
beam[t_1]: =
Arrow [{x[t],y [t]} - leftfocus, Tail - leftfocus, VectorColor - Red];

Show[ellipticaldish, beam [4], beam [5], beam [6], PlotRange - All 1;

X

On one plot, show the path each of the three beams takes after it has
bounced off the parabola. Make sure you show enough of the
reflected beams to see where each beam crosses the x-axis.
Describe what you see.

0G.9.c.ii)

The ceiling of the rotunda in the United States Capitol building in
Washington D.C. is in the form of an elliptical dish. Tourists are
often surprised that they can sometimes hear very clearly what
strangers well across the room are saying.

Use what you did above to explain this spooky phenom.

0G.9.c.iii)

Lewis Carroll (actual name Charles Dodgson, 1832 - 1898) was one
far-out fellow. In addition to writing the famous tale of "Alice in
Wonderland," he was an accomplished mathematician and logician.
As a prank, he invented an elliptical pool table with a mark at one
focus and a hole at the other focus and challenged expert pool players
to sink more balls in the holes than he.

What advantage did he have over those who didn't know about
reflecting properties of ellipses?

OTrue Tale:

One of the authors of C&M once found an elliptical pool table in the
back corner pool hall and challenged others to play. The games on the
elliptical pool table were the only games he won that night.

G.10) Pursuits by a robotic cowhand

Calculus& Mathematica thanks cattleman Thomas O. Smith
of Homer, lllinois for some help with this problem.

The scene is the C&M Electronic Ranch, where all the cattle are prize
winners and where electronic robots do all the work.

One night, the prize bull breaks out of the pen, meanders around the
ranch grounds, and then heads for the gate to the highway on the path
plotted below:
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Clear [bull,t ]
bull [t ]=4{1+01t +Cos[0.3t ],6 -0.05t +Sin [0.4t ]};

bullroute = ParametricPlot [bull [t]1, {t, 0,60 1},
PlotStyle - {{Thickness [0.01 ], Red }}, AxesLabel - {"x","y" 3},
DisplayFunction - ldentity, Epilog - Text ["Bull route”, {25,30 }11;
pointplot = {Graphics [{PointSize [0.06 ], Point [bull [0]1]1}1,

Graphics [ {PointSize [0.06 ], Point [bull [60]]}1,
Graphics [ {PointSize [0.05 ], Point [{2, 3 }1}1};

labels = {Graphics [Text ["Bull at t = 0", bull  [0], {0, -4}11,
Graphics [Text ["Gate to highway", bull [601, {0, 3 }11,
Graphics [Text ["Robot at t = 0", {2,313}, {0, -2}11);

setup = Show([bullroute, pointplot, labels,
PlotRange - All, AxesOrigin - {0, 0 }, AspectRatio
DisplayFunction - $DisplayFunction 1;

- Automatic,

Bupl at t 5Py route

25
20
15
10
Robots tt =0
. Gate to hi ghway
1015 530%

Here Xand Y are measured in yards and tis measured in seconds
At time t= 0, the robot is at positiof2, 3} on the plot above.
The robot is programmed to move so that if the robot's position at time
tis {x[t], y[t]}, then the robot's velocity vector at that time is
{X[t], y'[tl} = r (bull[t] = {x[t], y[t]})
where r is a positive number yet to be determined.
This is good because:
- The robot is always moving toward the bull.
— The robot slows down when it gets near the bull so that the robot
neither smashes into the bull nor stampedes the bull.

0G.10.a.i)

Given that the robot can lasso the bull anytime the robot gets within
4.5 yards of the bull, your job is to come up with a specific positive
number r, as small as practical, so that the robot will be successful
lassoing the bull before the bull gets to the gate to the highway.

aTip:
One way to go about this problem is by trial and error with different
r's.
The distance between the bull and the robot at time
dist{t] = v/ (bull[t] - {[t], yIt]}) . (bull[t] — {X[t], YIt]}).
To check out a guess for a gcgou might want to plcdistt].
0G.10.a.ii)

After you have settled on a good number r in part i), make a nice plot
of the actual lassoing of the bull by the robot.

aTip:
You can use
lassorad= Graphic$Circle[{a, b}, 4.5]]
to plot a circle of radiu4.5 centered o{a, .

G.11) Stealth technology

0G.11.a)

Here is the curve ¥ 1 — Cogx] shown with several vertical light
beams:

Clear [f,x,t 1]

f[x_]=1-Cos[x];

X[t_]1=t

yIL1=f[t1;

curve = ParametricPlot
{t, -1, 2}, PlotStyle - {{Thickness [0.01 ], Blue }},
AxesLabel - {"x","f [x]1"}, DisplayFunction - Identity 1;
beams = Table [Arrow [{X[t],y [t1}-{x[t1,3},

[{x[t],y [t1},

3
Tail - {x[t], 3}, VectorColor - Red], {t, -1,2, g}]

setup = Show[curve, beams, DisplayFunction - $DisplayFunction 1;

VC.01.G16-G11

105 051 1.5 2 %
Throw the plots of the reflected light into the plot, and use your plot to
study the question:
Which parts of the curve plotted above are good at concentrating the
reflected light? Which parts are not so good?

0G.11.b)

Stealth bombers and fighters were designed to try to resist detection
by radar. When they were first unveiled, lots of folks asked why the
skin of the planes is made with flat panels and absolutely no curved
indentations. Look at your answer to part &), turn on your brain, and
speculate about why stealth bombers and fighters are designed this
way.

28



