2D and 3D Measurements

©1999Bill Davis, Horacio Porta and Jerry Uhl
Produced by Bruce Carpenter Published by Math Everywhere, Inc.
www.matheverywhere.com

VC.02 Perpendicularity
Basics

B.1) The cross produciX xY of two 3D vectors is

perpendicular to both X and Y

Take two vectors X and Y from the same dimension.

Testing for perpendicularity by checking whether
X.Y=0

is quick and easy.

In three dimensions another product comes to the front. This product

is also related to perpendicularity.
To calculate the cross product

XxY forX=1{1,2,3and Y={-2,0, 7,
you make a matrix with

{i, J, k)

in the top (horizontal) row, with X in the middle (horizontal) row, and

with Y in the bottom row:
X={1,2,3 }

Y={-2,0,7 };

Clear [i,j, k 1

MatrixForm [{{i,j, k }, X, Y }]
i jok
1 23
-2 07

Next, take the determinant of this matrix:
] Det[{{ijk 1} XY}l
14i - 13 +4k

To arrive at the cross producixX, you replace
iby{1,0,Q,
replace
iby{0,1,0
and replace
k by{0, 0, 1:
XcrossY =
Det[{{i,j, k XY ¥ /. (i -{1,0,0),j -{0,1,0),k -»{0,0,1 }}
(14, -13,4
The dot product is @ number. The cross product is a vector.
Mathematica also knows how to calculate the cross produ¥t X
] XcrossY = Cross [X, Y]
{14, -13,4}
Here are two new vectors X and Y in 3D:
X=1{1,1,0 };
Y={1,20 };
threedims = Axes3D [1, 0.2 1;
XandY =

Show[threedims, Arrow [X, Tail - {0,0,0 }1, Arrow [Y, Tall - {0,0,0 }],

Graphics3D [Text [X ;]],Graphics3D [Text [Y ;]]

BoxRatios - Automatic, ViewPoint - CMView, PlotRange - All];

Now throw in the cross productxX:
Clear [i,j, k 1
XcrossY = Cross [X, Y1;
Show[XandY, Arrow [XcrossY, Tail - {0, 0, 0 }, VectorColor - Red],
ViewPoint - CMView, BoxRatios - Automatic, PlotRange - Al 1;

VC.02.B1

Golly, XxY appears to be perpendicular to X and to Y.

Try it again with new vectors and a new place to hang the tails:

X={1, -2,1};
Y=¢1,3 -1};
newtail = {1, -1,2};

XandY = Show[threedims, Arrow [X, Tail - newtail 1],

X
Arrow [Y, Tail - newtail], Graphics3D [Text [X newtail + E]]

Y
Graphics3D [Text ["Y", newtail + ?]], ViewPoint -+ CMView,

PlotRange - All, BoxRatios

5

Now throw in the cross productxX/:

Clear [i,j,k 1

XcrossY = Cross [X, Y]1;

Show[XandY, Arrow [XcrossY, Tail - newtail, VectorColor - Red],
ViewPoint - CMView, BoxRatios - Automatic, PlotRange - Al 1;

- Automatic] ;

Again, the cross productXY appears to be perpendicular to both X

and Y.
Rerun this with new vectors X and Y and new tails.

OB.1.a.i)

For the record, explain why it is that when you take any two

three-dimensional vectors X and Y, then their cross product
XxY

is perpendicular to both X and Y.

OAnswer:

Clear the vectors and test with the dot product:

Clear [X, X, Y,Vy, i j k 1
X={x[1],x [2],x [3]1};
Y={y[ll.y [2],y [3]};
XcrossY = Cross [X, Y];
Expand [X. XcrossY]

0

Ah-ha!

No matter whaX is, the vectoX xY is perpendicular tiX.

] Expand [Y.XcrossY]
0

No matter whay is, XxY is perpendicular tY.
That's all there is to it.
Ah, the joy of automated algebra!

29

VC.02.B2

B.2) Planesin 3D 5

Just as a line is determined by a point and one direction vector, a plar
in three dimensions is determined by a point and TWO direction

vectors. _5| ‘o
Here's how you plot part of the plane determined by the following B
point and two direction vectors:
point ={1,0,1 }; DB.Z.&)
vectorl ={-1,1,0 }; o .
vector2 = {0.3,1, -1}; Plot an elliptical piece of the plane plotted above.
Clear [planeplotter, u, v] OAnswer:
F{"jg‘jvp"l"ﬁzh }[‘j—v{ ']2=} point+uvectorl +vvector; That's not too hard; you just modify the plotting function as follows:
{vlow: vhigh } = {—3: 3) point = {0, -1,0 };
vectorl ={0,0,1 };
plane = ParametricPlot3D [Evaluate [planeplotter [uvil, vector2 ={1,0,1 };
{u, ulow, uhigh '}, {v, vlow, vhigh }, DisplayFunction - Identity 1; Clear [planeplotter, r, t 1
threedims = Axes3D [6, 0.2 1; planeplotter [r,t_]=point +4rCos [t]vectorl +6rSin [t] vector2;
{rlow, rhigh }={0,11%;
planeplot = Show[threedims, plane, Axes - Automatic, {tlow, thigh }={0,2 n};
PlotRange - All, ViewPoint - CMView, BoxRatios - Automatic, plane = ParametricPlot3D [
DisplayFunction - $DisplayFunction 1; Evaluate [planeplotter [r,t 11, {r, rlow, rhigh }, {t, tlow, thigh },
0-2 PlotPoints - {2, Automatic }, DisplayFunction - Identity 1;
6 scalefactor = 3;
6 threedims = Axes3D [5, 0.2 1;
4 elliptical = Show[plane, threedims, Arrow [vectorl, Tail - point,
2 VectorColor - Blue, ScaleFactor - scalefactor 1, Arrow [vector2,
Tail - point, VectorColor - Blue, ScaleFactor - scalefactor 1,
0 Graphics3D [{PointSize [0.04], Point [point]}], Axes - Automatic,
-2 PlotRange - All, ViewPoint - CMView, Boxed - False,
) 0 BoxRatios - Automatic, DisplayFunction - $DisplayFunction 1,
2.
5
Look at the plane together with the point and the two vectors that
determine this particular plane: °
scalefactor =2; 0
Show[planeplot, Arrow [vectorl, Tail - point, VectorColor - Blue,
ScaleFactor - scalefactor 1, Arrow [scalefactor vector2, 5 ‘5
Tail - point, VectorColor - Blue, ScaleFactor - scalefactor 1,
Graphics3D [{PointSize [0.04], Point [point 1}], BoxRatios - Automatic]; 0
No sweat.
0-2
6 OB.2.b) Normal vector to a plane
6
4 A normal vector for a given plane is a vector perpendicular to that
2 plane.
0 How do you come up with a normal (perpendicular) vector for a plane
-2

determined by a point and two direction vectors?

=25 5 oAnswer:
There you aré. To get a normal vector for a plane, just take the cross product of two
The plane is what you get by sticking the tails of vectorl and vector2 direction (non-parallel) vectors.

at the point and nailing a flat piece of plywood onto the braces made

from those vectors. The function Try it you'lllike it

planeplottdu, v] = point+ uvectorl+ vvector2 Poor 2
plots the plane by moving to the given point and then adding on vector2 = {-2. -1, -2};
multiples of the two determining vectors. Clear [ij, k 1]
Try it for a different point and a different pair of vectors: formal = Cross [vectorl, vectorz - I;
ear [X, Y,z t 1
point = {0, -1,0}; Clear [planeplotter, r, t 1
vectorl ={0,0,1 }; planeplotter [r_,t_]=point +3rCos [t]vectorl +5rSin [t] vector2;
vector2 ={1,0,1 }; {rlow, rhigh }={0,11%;
{tlow, thigh } = {0,2 m};
Clear [planeplotter, u, v 1 plane = ParametricPlot3D [
planeplotter [u_, v_] =point +uvectorl +vvector2; Evaluate [planeplotter [r,t 11, {r, rlow, rhigh }, {t, tlow, thigh 1,
{ulow, uhigh } = {-3,3 }; PlotPoints - {2, Automatic }, DisplayFunction - Identity 1;
{vlow, vhigh } = {-3,3 }; scalefactor =3
threedims = Axes3D [14, 0.8];
plane =
ParametricPlot3D [Evaluate [planeplotter [u,v 11, {u, ulow, uhigh 1}, Show[

{v, vlow, vhigh 1}, PlotPoints - {2, 2 }, DisplayFunction - Identity 1, plane, threedims, Arrow [vectorl, Tail - point, VectorColor - Blue,
threedims = Axes3D [2, 0.2]; ScaleFactor - scalefactor], Arrow [vector2, Tail - point,
scalefactor =2 VectorColor - Blue, ScaleFactor - scalefactor 1, Arrow [normal,
Show [plane, threedims, Arrow [vectorl, Tail - point, Tail - point, VectorColor - Red, ScaleFactor - scalefactor],

VectorColor - Blue, ScaleFactor - scalefactor 1, Arrow [vector2, Graphics3D [{PointSize [0.04], Point [point 1},

Tail - point, VectorColor - Blue, ScaleFactor - scalefactor 1, Axes - Automatic, PlotRange - All, ViewPoint - CMView,

Graphics3D [{PointSize [0.04], Point [point]}1, Boxed - False, BoxRatios - Automatic, AxesLabel S Xy, 3,
Axes - Automatic, PlotRange - All, ViewPoint - CMView, Boxed - False, DisplayFunction - $DisplayFunction 1;
BoxRatios - Automatic, DisplayFunction - $DisplayFunction 1;

30

Lookin' fairly good.
If you want the normal to point the other way, just multiply the normal
calculated above t-1:

Show([plane, threedims,

Arrow [vectorl, Tail - point, VectorColor - Blue,
ScaleFactor - scalefactor 1, Arrow [vector2, Tail - point,
VectorColor - Blue, ScaleFactor - scalefactor 1, Arrow [(-normal),
Tail - point, VectorColor - Red, ScaleFactor - scalefactor 1.

Graphics3D [{PointSize [0.04], Point [point 1}1,

Axes - Automatic, PlotRange - All, ViewPoint - CMView,

Boxed - False, BoxRatios - Automatic, AxesLabel - XY, },

DisplayFunction - $DisplayFunction 1;

Lookin' great.

0OB.2.c)xyz-equation of a plane

How do you get the xyz-equation for a plane specified by a given
point and two direction vectors?

OAnswer:

You get it from the given point and the normal vector.
To see what's involved, go with the plane determined by the following

point and direction vectors:

Clear [X,y,Z]

point ={1,2,3 },;

vectorl = {2,4, -121},

vector2 ={-1,15,0 1},

Clear [i,j,k]

normal = Cross [vectorl, vector2 1
(18,1.2,7.

Saying thalx, y, z} is on this plane is the same as saying that when

you stick the tail of the normal at the given pd1, 2, 3, then the

normal is perpendicular to the vector with tai{1, 2, 3 and tip at

{x,v, z.

So saying tha{x, y, z} is on this plane is the same as saying that
({X, y, Z} — point). normal= 0:

| xyzegqn = ({X,y,z }-point).normal ==0
18 (-1+x)+12 (-2+y)+7. (-3+2) ==

Notice how the given poir{1, 2, 3 and the normal vect{1.8, 1.2, 7
are conveniently displayed in the plane equation.
You can solve this equation far

| zsolved = Solve [xyzeqn,z 1]
{{z - -0.142857 (-21. +18 (-1. +x) +1.2 (-2. +y))}}

And you can use this to plot the part of the plane over any rectangle i

thexy-plane you like.

Clear [f]
fIx_y_1=2/. zsolved [1]
10.142857 (-21. +18 (-1 +x)+12 (-2. +y))

VC.02.B2

Here comes the plot of the part of this plane over the rectangle
-4<x<4and0<y=<6

in thexy-plane:

plane =Plot3D [f [x,y 1, {X, -4, 4},
{y, 0, 6 1}, PlotPoints - {2, 2 }, DisplayFunction

Show[plane, Arrow [vectorl, Tail - point, VectorColor

Arrow [vector2, Tail - point, VectorColor - Blue],

Arrow [normal, Tail - point, VectorColor - Red],

Graphics3D [{PointSize [0.04 1, Point [point 1}1,

Axes - Automatic, PlotRange - All, AxesLabel - "X,y }
- Automatic,

- Identity 1;
- Blue],

ViewPoint - CMView, Boxed - False, BoxRatios
DisplayFunction

- $DisplayFunction 1;

Bingo.
0B.2.d)

A normal vector and a point also determine a plane.
To see what the plane is, put the tail of the normal vector at the point.
The plane is what you get by putting a flat plywood sheet at the tail of
the normal vector and aligning the plywood sheet to be perpendicular
to the normal vector.
In fact, if the normal vector and the point are related to the
Xyz-equation for the plane by:

Clear [R,S,T,a,b,c x Y,z 1

normal = {R, S, T };

point ={a, b,c };

xyzequation = ({X,Y¥,z }-{a b,c }).normal ==0

R(-a+X)+S(-b+y)+T (-c+2z) ==

Explain where this comes from, and use it to plot the plane passing
through the point4, 2, 3} with normal vectof2, -1, 1.5.

OAnswer:

Take another look:

normal = {R,S, T };

point ={a, b, c };

xyzequation = ({X,y,z } -point).normal ==0
R(-a+X) +S(-b+y)+T (-c+2z) ==0

This comes from the fact that saying that

- {X, y, Z} is on the plane passing through the given g{a, b, ¢ with
normal vectofR, S, T}

is the same as saying that

— the vector running from the given pofa, b, ¢ to{x, y, Z} is
perpendicular to the normal vec{R, S, T}.

This is the same as saying:

| xyzequation = ({X,y,z }-point).normal ==0
R(-a+X) +S(-b+y)+T (-Cc+2z) ==
To plot the plane passing through the p{4, 2, 3 with normal vector
{2,-0.8, 1.5, go with:
normal = {2, -0.8,15 };
point ={4,2,1 };
xyzequation = ({X,y,z }-point).normal ==0
2 (-4+x)-08 (-2+y)+15 (-1+2z) ==

Here comes the plot:

| zsolved = Solve [xyzequation,z]

{{z > -0.666667 (-1.5 +2. (-4. +X) -0.8 (-2. +y))}}
Clear [f]
fix_,y_1=2z/. zsolved [1]

~0.666667 (-1.5 +2. (-4. +X) -0.8 (-2. +Yy))

plane =
Plot3D [f [x,y], {x, -1,7 }, {y, -4, 6 }, DisplayFunction - Identity 1;
scalefactor =4;

Show[plane, Arrow [normal,
Tail - point, VectorColor - Red, ScaleFactor
Graphics3D [{PointSize [0.04], Point [point 1}1,

- scalefactor 1,

31

Axes - Automatic, AxesLabel - "X,y }, PlotRange - All,

- Automatic,

ViewPoint - CMView, Boxed - False, BoxRatios
DisplayFunction

- $DisplayFunction 1;

The flat plywood sheet is perpendicular to the normal vector at the
point:

] point
{4,2,1 }

And that's all there is to it.

B.3) Normal vectors for curved surfaces in 3D
Here is a curved surface in three dimensions given in parametric forn

Clear [X, Y,z u,Vv 1

X[u_, V. u v,
[u,v_1= +§‘,
[u,v_1=vVv 4
y _ 1= 7
1
zZ[u,v_ 1= 3 (10 - u? - v?);
{ulow, uhigh } = {-2,2 };
{vlow, vhigh } = {-2,2};

surf = ParametricPlot3D [Evaluate [{x[u,Vv 1,y [U, Vv 1,Z [uV]},
{u, ulow, uhigh '}, {v, viow, vhigh }, DisplayFunction - |dentity];

surface = Insert [surf, EdgeForm [1, {1,1 }];

surfaceplot
PlotRange - All, ViewPoint
AxesLabel - {"x","y", "z"

= Show([surface, Axes - Automatic,
- CMView, BoxRatios - Automatic,
}, DisplayFunction - $DisplayFunction 1;

y 2
If you wonder where the usual little bricks went, study the code.

0B.3.a)

Take a point on the surface and say how to build a vector that is
perpendicular to the surface at that point.
Show off your work with a sample plot.

OAnswer:
Any point on the surface can be described by
{X[u, v1, ylu, V1, Z[u, v}
for specific choices cu andv.
Here's the point you get by settiu= 0.2 andv = 1.3:

uset =0.2;
vset =1.3;
Clear [surfacepoint 1
surfacepoint [u,v_1={x[uVvlyl[uvl zI[uvVv]l)}
surfacepoint [uset, vset]
{0.633333, 1.25, 2.75667 }

To build the perpendicular vector at this point on the surface, look at
the point and two curves in the surface that meet at this point:

VC.02.B2-B3

Clear [ucurve, vcurve]
ucurve [u_] = surfacepoint
veurve [v_] = surfacepoint

[u, vset 1;
[uset, v 1;

ucurveplot = ParametricPlot3D [
ucurve [u], {u, ulow, uhigh 1}, DisplayFunction - Identity 1;
veurveplot = ParametricPlot3D [
veurve [v], {v, vlow, vhigh }, DisplayFunction - |dentity 1;
pointplot =
Graphics3D [{PointSize [0.04], Point [surfacepoint [uset, vset 11}1;
firstlook = Show [surfaceplot, ucurveplot, vcurveplot, pointplot,

- $DisplayFunction 1;

DisplayFunction

Now throw in the tangent vectors to each curve at the point in question

utanvector = ucurve ‘[uset];

vtanvector = vecurve ‘[vset];

tangents = {Arrow [utanvector, Tail - surfacepoint [uset, vset 11,
Arrow [vtanvector, Tail - surfacepoint [uset, vset 11};

secondlook = Showf[firstlook, tangents 1;

To build a vector perpendicular to the surface at the point in question,
all you gotta do is take the cross product of the two tangent vectors:

Clear [i,j,k 1
normal = Cross [utanvector, vtanvector 1;
proudlook = Show[secondlook,
Arrow [normal, Tail - surfacepoint
BoxRatios - Automatic 1;

[uset, vset], VectorColor - Red],

There it is!
Proud and perpendicular.
Most folks don't bother to show the curves and the tangents:

= Show surfaceplot,

cleanplot
Arrow [normal, Tail - surfacepoint [uset, vset], VectorColor - Red]];

Math folks like to call this the normal vector at the point at the tail of
the vector.
Play with this by rerunning with your own choices of set points
{u, v} = {uset, vset
oB.3.b)
What can you use this normal vector for?

OAnswer:

32

You can use it to see what happens when you bounce light off a
surface. You'll have a chance to give this a try later.

OB.3.c.i)

Say, all that talk about what you do to get the normal vector was
pretty windy.

Can you give some concise code that efficiently produces the normal
vector at a desired point without all the wind?

OAnswer:
Be happy to.
To get the concise code that will work on any surface given in
parametric form, just review what went on in part a) and try it out on a
plot of the surface
z="f[x, y] = —-xy:

Clear [f, X, Y,z u,Vv 1
fIx,y_ 1=-xy
X[u_,v_1=uCos[Vv];
y[u_,v_1=uSin [V];
zuv_ 1=f[x[uv],y[uvil
{ulow, uhigh } = {0, 1.5 };
{vlow, vhigh } = {0, 2 =};
surface = ParametricPlot3D
{u, ulow, uhigh }. {v, vlow, vhigh
threedims = Axes3D [2, 0.2 1;
surfaceplot =
Show[threedims, surface, Axes

[Evaluate [{x[u,Vv 1,y [u,Vv],z [uV]}],
}, DisplayFunction - Identity 1;

- Automatic, PlotRange - All,
- $DisplayFunction 1;

Here's a fairly quick way of throwing in the normal vector at the

following point:

uset, vset ={0.5 7y
tusel,vset) = {05, ==k

Clear [surfacepoint 1
surfacepoint [u,v_1={x[uVvlyl[uvi zI[uvVv]l}
N[surfacepoint [uset, vset 1]

{-0.490393, 0.0975452, 0.0478354 }

Here comes the normal:

Clear [ucurve, vcurve]

ucurve [u_] = surfacepoint [u, vset 1;
veurve [v_] = surfacepoint [uset, v 1;
utanvector = ucurve ’[uset 1;

vtanvector vcurve ‘[vset 1;

Clear [i,j,k 1
normal = Cross [utanvector, vtanvector 1;
scalefactor =3;
onenormal =
Show surfaceplot, Arrow
VectorColor

[normal, Tail - surfacepoint
- Red, ScaleFactor - scalefactor 1,

[uset, vset 1,

Just fine, thank you.

VC.02.B3-T2

VC.02 Perpendicularity
Tutorials

T.1) True scale plots via the optionNSspectratio -Automatic - and

BoxRatios -Automatic

OT.l.a)

Look at this:
X={1,21};
Y={-84}
X.Y
0
This tells you that the two vectors are perpendicular.
Now look at this:

Show[Arrow [X], Arrow [Y], Axes - True, AxesLabel - LYY
AspectRatio - 17;

X

-8 -6 -4 -2
Although you knew in advance that these vectors are perpendicular,
they didn't plot out perpendicularly.
What gives?

OAnswer:
The two vectors weren't plotted in true scale. To guarantee a true scale
plot in 2D graphics, use the plotting optiAspectRatio» Automatic.
This way you get the same scale on both axes.
Try it out:

Show[Arrow [X], Arrow [Y], Axes - True, AxesLabel - {"x","y" 1},
AspectRatio - Automatic 1;

) N3 -4 -2

Much better.

In 2D plots, if you don't usAspectRatio» Automatic, then actual
perpendicularity can be obscured.

In 3D plots, if you don't usBoxRatios— Automatic, then actual
perpendicularity can be obscured.

Moral:

When you are studying anything related to perpendicularity, you need
to plot in true scale. You are tempting fate if you don't use the options
AspectRatio» Automatic orBoxRatios— Automatic as the situation
demands.

T.2) Flatness and plotting

OT.2.a)
Here are three ways of plotting the same piece of the plane
x _ Y -1
- 5+z=L
Clear [Xx,Vy]
defaultplot = ParametricPlot3D [{x y,1 - % + %} {x, -3,31%,

{y, -2, 2}, ViewPoint
PlotLabel - "Mathematica Default", AxesLabel

- CMView, PlotRange - All, Boxed - False,
> {"X"v uyu’ nzu }]’

33

Mathgmatjica Defaul t

T
y 2
That took a while, and the plot is covered with little bricks.
Try this one:
. X oy
betterplot = ParametricPlot3D [{x,y, 1 - 3 ?},
{x, -3,31}, {y, -2,2}, PlotPoints - {5, 5}, ViewPoint - CMView,
PlotRange - All, Boxed - False, PlotLabel - "Better plot",
AxesLabel - {"x","y", "z" s
Retter plot

T

y 2

That ran a lot faster than the default plot.

The reason: Fewer bricks. The reason: PlotPein{S, 5.
Now try:

X
bestplot = ParametricPlot3D [{x y,1 - 3 + %} {X, -3,3}, {y, -2,21,

PlotPoints - {2, 2 }, ViewPoint - CMView, PlotRange - All,
Boxed - False, PlotLabel - "Best plot", AxesLabel - {"x", "y, " }]'

xBest, pl ot

That ran lightning fast. And it looks really fine.
The reason: NO BRICKS. The reason: PlotPoin{2, 2.
Explain what's going on.
OAnswer:
The default plot is a good plot to try when the surfaces bend.
But when the surfaces are flat, you can help Mathematica by telling it
to evaluate the functions only at the corners, and letting it string up or
clean, flat surface.
Here is a situation in which the default plot is very good:
Clear [X,y]

. X
defaultplot = ParametricPlot3D [{x y,2 - (—)

. 2+(l)2}, x -3,3},

2

{y, -2, 2}, ViewPoint - CMView, PlotRange - All, Boxed - False,
PlotLabel - "Mathematica Default", AxesLabel
Mag(hematica Def aul t

S Oxy]

If you tinker with this, the way you tweaked the plot of the plane, then

disaster strikes:

Clear [Xx,y]

) X\ 2 y,\2
tweakedplot = ParametricPlot3D [{xy.2 - (3) + (E) b
{X, -3,31}, {y, -2,2}, PlotPoints - {2, 2}, ViewPoint - CMView,
PlotRange - All, Boxed - False, PlotLabel - "tweaked plot",

AxesLabel - {"x","y", "z")];

VC.02.T2

tyweaked pl ot

This plot is not even close to reality.

Show [defaultplot, tweakedplot, ViewPoint - CMView, PlotRange - All,
PlotLabel - None, Boxed - False, AxesLabel - X,y 1

This tweaked plot is on the money only at the corners.
The reason: The actual surface you are plotting is not flat.

aT.2.b)

What other situations benefit from this type of tweaking?

OAnswer:

Anytime flatness is around.

Look at this:

vectorl ={1,2,3 };
vector2 = {-1, -2,5};

Clear [r,t]

defaultplot = ParametricPlot3D [rCos [t] vectorl +rSin [t] vector2,
{r,0,1 3}, {t, 0, =}, ViewPoint - CMView, AxesLabel - {"x" "y", "z" },
PlotLabel - "Mathematica Default" 1;

themat.. Def au

There is flatness around in tngariable. Try this and look at the
PlotPoints setting:

tweakedplot = ParametricPlot3D [rCos [t] vectorl +rSin [t] vector2,
{r,0,1 1}, {t, 0, =}, PlotPoints - {2, Automatic }, ViewPoint - CMView,
AxesLabel - {"x","y", "z" }, PlotLabel - "Tweaked Plot" 1;

Tueaked/ Pl o
6

4

Nice.
But tinkering witht does not pay off:

ParametricPlot3D [rCos [t] vectorl +rSin [t] vector2,
{r,0,1 }, {t, 0, =}, PlotPoints - {2, 3 }, ViewPoint - CMView,
AxesLabel - {"x","y", "z" }, PlotLabel - "Bogus" 1;

- gogésl 2

34

The reason:
With respect tr, the plot is flat. But the plot is not flat with respect.to
oT.2.c)

Plot, in true scale, the cone whose base sits on the ellipse
(57 4 (52 =1
in the xy-plane and whose top is{af -2, 7}.

OAnswer:
top = {1, -2,10};
Clear [baseplotter, coneplotter, s, t 1

baseplotter [t.1=4{120 }+{3Cos[t],5Sin [t],0};
coneplotter [s_, t_ 1 = baseplotter [t] +s (top - baseplotter t1y;

ParametricPlot3D [coneplotter [s,t 1, {s,0,1 },
{t, 0,2 =}, PlotPoints - {2, Automatic }, ViewPoint - CMView,
BoxRatios - Automatic, AxesLabel - X"y, 1

X
202

T.3) Unit vectors and perpendicularity:
Plotting curves on planes and a new, easy way of calculating
the cross product.

A unit vector is just a vector whose length is 1. Any vector X can be
converted to a unit vector unless all its slots are zero.
To wit:

X={-4,21%;
) X
unitX =
VX. X
{,_2‘ _1‘}
V5 W5
Check:
] unitX. unitX
1
and
X={-4,2,8 };
. X
unitX =
VX. X
(-2 L 4,
V21 ' 21t W21
Check:
I unitx. unitX
1

Unit vectors are the handiest thing since zip-lock bags. Why?
Wait and see.

oT.3.a)

Here is a true scale plot ofySin[x] on the xy-plane:

Clear [x]
ParametricPlot [{X, Sin [x]}, {x, - 3 =}, AspectRatio - Automatic,
AxesLabel - {"x","y" }1;

y

0.5\
N8 2 NCEE
Plot a duplicate copy of this curve in true scale on the plane through
{1, 1,-2} determined by the direction vectd¢fs3, -1, —0.2} and
{0, 0.4,-1}.
OAnswer:
point ={1,1,2 };
vectorl = {0.3,1, -0.21};
vector2 = {0, 0.4, -1};
Clear [i,j,k 1
normal = Cross [vectorl, vector2 1
(-0.92,03,012 }

When you think about it for a minute, you see that the same plane is
also determined by the given point and the vectors

VC.02.T2-T3

unitvectorl anwnitnewvector2
calculated as follows:

) vectorl
unitvectorl e ———
+/vectorl . vectorl
{0.282216, 0.940721, -0.188144 }

Clear [i,j,k 1
newvector2 = Cross [vectorl, normal 1;

: newvector2
unitnewvector2 =

+/newvector2 . newvector2
{0.173656, 0.142783, 0.974401 3

The great thing abownitvectorl anwnitnewvector2 is that they are
unit vectors and they are perpendicular:

| Chop [unitvectorl . unitnewvector2 1
0

As perpendicular unit vectors, they define axes for plotting on the

plane:

Clear [X,V,2zs,t 1

{x[s_,t 1.y [st l.z[s,t 1}=
point + s unitvectorl + t unitnewvector2;
{slow, shigh '} = {-x, 3 x};

{tlow, thigh }=({-3,31};

plane = ParametricPlot3D [
Evaluate [{x[s,t 1,y [s,t 1,z [s,t 1}], {s, slow, shigh 1},
{t, tlow, thigh }, PlotPoints - {2, 2 }, DisplayFunction - Identity 1;

planeplot = Show[plane, Arrow [2 unitvectorl, Tail
Arrow [2 unitnewvector2, Tail
PlotRange - All, ViewPoint
DisplayFunction

- point],
- point], Axes - Automatic,

- CMView, BoxRatios - Automatic,

- $DisplayFunction 1;

5

1
Here is a true scale duplicate copy of the curve

y =Sin[x] for—-n<x<3n
plotted right on this plane.

sineplot =
ParametricPlot3D [point + s unitvectorl +Sin [s] unitnewvector2,
{s, -m, 3 x}, DisplayFunction - ldentity 1;
Show[planeplot, sineplot, DisplayFunction - $DisplayFunction 1;
43220

Keen.

OT.3.b) A new way of calculating the cross product.

Here is a true scale plot of the circle# y? = 4 on the xy-plane:

| Clear [t]

ParametricPlot [2 {Cos[t],Sin [t]}, {t,0,2 =}, AxesLabel - {"X","y" }1;

35

Plot a duplicate copy of this circle on the plane throigt2, — 1}
determined by the direction vectots, 0, 2 and{-2, 1, Q.
Center the circle dtL, 2,-1}.

OAnswer:

point = {1,2, -1};

vectorl ={1,0,2 };

vector2 ={-2,1,0 };
normal = Cross [vectorl, vector2 1

(-2, -4,1}

Notice the shorthand command for calculating the cross product.

Feel free use it from now on.

When you think about it for a minute, you see that the same plane is

also determined by the given point and the vectors
unitvectorl anwnitnewvector2
calculated as follows:

vectorl

unitvectorl B —
+/ vectorl . vectorl
1 2
—,0, —
(g0 &)
newvector2 = Cross [vectorl, normal 1:

) newvector2
unitnewvector2 =

/newvector2 . newvector2

(s Vo)
V105 21" /105

The great thing abowunitvectorl anwnitnewvector? is that they are

unit vectors and they are perpendicular:

] unitvectorl . unitnewvector2

0

As perpendicular unit vectors, they define axes for plotting on the

plane, and allow you to plot the circle where you want it.

Clear [circleplotter, t 1;
circleplotter [t 1=

point + 2 Cos [t] unitvectorl +2Sin [t] unitnewvector2;
{tlow, thigh }={0,2 n};

circle = ParametricPlot3D [Evaluate [circleplotter [tii1,
{t, tlow, thigh }, DisplayFunction - Identity 1;
Clear [planeplotter, 1, s 1;
planeplotter [r_,s_ 1 =point +runitvectorl + S unitnewvector2;
{rlow, rhigh } ={-3,3 };
{slow, shigh }={-3,3};
plane =
ParametricPlot3D [Evaluate [planeplotter [r,s 11, {r, rlow, rhigh },
{s, slow, shigh }, PlotPoints - {2, 2 }, DisplayFunction - Identity 1;
Show [
plane, circle, Arrow [unitvectorl, Tail - point, VectorColor - Red],
Arrow [unitnewvector2, Tail - point, VectorColor - Red],
Axes - Automatic, PlotRange - All, ViewPoint - CMView,
BoxRatios - Automatic, DisplayFunction - $DisplayFunction 1;
2
0
-2
Z2
-4
1 3

You can make the vectors touch the circle:

Show([plane, circle, Arrow [unitvectorl, Tail - point, VectorColor
ScaleFactor - 2], Arrow [unitnewvector2, Tail - point,
VectorColor - Red, ScaleFactor - 2], Axes - Automatic,

PlotRange - All, ViewPoint - CMView, BoxRatios - Automatic,
DisplayFunction - $DisplayFunction 1;

- Red,

VC.02.T3-T4

nN

=)

IS

Tyl

The reason this worked:
The vectors
unitvectorl anwnitnewvector2
are perpendicular unit vectors.
If you had used the original vectors
vectorl ancvector2,
you would not have gotten a circle.

T.4) Unit vectors and perpendicularity:
Main unit normals, binormals, tubes, horns, and
corrugations

Unit vectors are just vectors whose lengths are 1.
Unit vectors are useful because they convey the idea of direction only.
You can take any vector and make it into a unit vector by dividing it
by its length:

X={2,1}

unitX =

VXX
{ 2 L }
NGRS

| Show[Arrow [X], Arrow [unitX, VectorColor - Red], Axes - Automatic];

0.5 1 1.5 2
The unit vector points in the same direction as X, but its length is 1:

I A unitX . unitX
1

OT.4.a.i)

Here is a curve in three dimensions with some of its unit tangents
plotted in true scale:

Clear [P, X, Y, 2zt 1

X[t_1=3Cos[t];

y[t_ 1=3Sin [t];

z[t_1=4Cos[t];

PIt]={x[t].y [t].z [t]}

curve = ParametricPlot3D [Evaluate [P[t]1],
{t, 0, 2 7}, PlotPoints - 30, DisplayFunction - |dentity 1;

Clear [unittan]
D[P[t], t]

unittan [t_ 1] = ;
VDIP[t], t 1.D[P[t], t]

unittanvectors = Table |

Arrow [unittan [t], Tail - P[t], VectorColor - Blue], {t, 0,2 %}]

curveandtans = Show[curve, unittanvectors,
ViewPoint - CMView, PlotRange - All, BoxRatios - Automatic,
AxesLabel - {"x","y", "z" }, DisplayFunction - $DisplayFunction 1;

36

VC.02.T4

Works like a charm in two dimensions.

y -2 2 4
Add to the plot the vectors[Dnittarit], t] with tails at the same places
as the tails of the unit tangents.

Describe what you see. When you're hot, you're hot.
OAnswer: OT.4.b) The binormal for making tubes and horns
needor 101~ Druntan 11, t 1 Given a curve R] = {x{t], ylt], ZIt]):
newvectors = Table [- The unit tangent
Arrow [newvector [t], Tail - P[t], VectorColor - Red], {t,0,2 ;}] unittar[lt] = %
Show[curveandtans, newvectors 1 is tangent to the curve aftP

- The main normal
mainnorrft] = D[unittar{t], t]
is perpendicular to the curve dtP
— The main unit normal
mainunitnorrjt] = ——pluntad__
is also perpendicular to the curve #tP
You can construct another normal vector by putting
binormdt] = unittar{t] x mainunitnornft].
This second normal vector always turns out to be a unit vector, for

They look perpendicular to the curve!

Check this out: reasons you will learn when you give it a try.
) x Take a look:
I Table [Chop[N[unittan [t].newvector [t1]1, {t0,2 = =}]
4 The N[]'s are included in the specifications for the main unit normal
{0,0,0,0,0,0,0,0,0 } and the binormal to make the plotting instructions below run as fast as
i possible.
They are perpendlcular to the curve. Clear [P, X, Y, z, t, unittan, mainunitnormal, binormal 1
. . X[t] =t%
OT.4.a.ii) The main normal for a 3D curve yit]=1-2¢
. . . . Z[t] =t
Is this outcome peculiar to this curve or does it happen for all other PIL] = (X[t1,y [t1,2 [t1}:

curves too? curve = ParametricPlot3D [
Evaluate [P[t]], {t, 0,2 3}, DisplayFunction - Identity];

DAnswer: wnitan [t] = —— L
i i i i . VP [t].P/[t]
Tl'y itfor a general (Cleared) curve in three dimensions: unittanvectors = Table [Arrow [unittan [t], Tail -»P[t]], {t, 0,2, 05 11
Clear [X,Y, z, t, P, unittan, newvector 1 L unittan " [t]
PIL T e (XIt].y t],2 [t1}: mainunitnormal [t_] =N[’\/E - - - -
. DIP[t], t]) xpand [umvttanv [t] .unittan [ti
unittan [t_] = N mainnormalvectors = Table [Arrow [mainunitnormal [ti1,
VDIP[t], t 1.D[P[t], t] Tail - P[t], VectorColor - Red], {, 0,2 05 }];
newvector [t_] =D[unittan [t], t]; binormal [t_] = N[Cross [unittan [t], mainunitnormal ti111;
Simplify [unittan [t].newvector [t]] binormalvectors = Table [
0 Arrow [binormal [t], Tail - P[t], VectorColor - Red], {t,0,2,05 1
No matter what curve you have, the veD[unittar(t], t] is everything =
. Show[curve, unittanvectors, mainnormalvectors, binormalvectors,
perpendicular to the curve P[t] ViewPoint - CMView, PlotRange - All, BoxRatios - Automatic,

N . . . A Label X,y ozt , DisplayF i $DisplayF il H
Most folks make this into a unit vector and call the result the main unit xestabel =~ {5, yh7zn), DisplayFunction -~ SbisplayFunction 1
normal vector for the curve.

OT.4.a.iii) The main normal for a 2D curve
Does this work in two dimensions as well?

OAnswer:

Try it and see:

Clear [P, t] Some folks call these moving frames.
b L ous 3 .30) Neato.

(L1={5-4sin (11,3 +3Cost1}; What's this stuff good for?
curve = ParametricPlot [Evaluate [P[t]1], {t, 0,10 1}, OAnswer:

PlotStyle - Thickness [0.01], DisplayFunction - Identity 1;

Clear [unittan] You can put in a couple of circles that

. P It]
unten b = e - are centered on the curve, and
unittanvectors = Table [Arrow [unittan [t], Tall -P[t]], {t 1,9 }I; S liein planes that cut the curve perpendicularly:
Clear [mainnormal]
mainnormal [t_] = Simplify [D[unittan [t], t]1; radius = 1;
mainnormalvectors = Table [circlel = ParametricPlot3D [N[P[1.0] +
Arrow [mainnormal [t], Tail - P[t], VectorColor - Red], {t, 1,9 }]; radius Cos [s] mainunitnormal ~ [1.0] +radius Sin [s] binormal [1.0 1],
Show[curve, unittanvectors, mainnormalvectors, {s, 0,2 =}, DisplayFunction - Identity 1,
AspectRatio - Automatic, DisplayFunction - $DisplayFunction 1; circle2 = ParametricPlot3D [N[P[15] +

radius Cos [s] mainunitnormal [1.5] +radius Sin [s] binormal [1.5 11,
{s, 0, 2 s}, DisplayFunction - Identity 1;
Show everything, circlel, circle2 1;

37

But why settle for just a couple of circles when you can go for the

whole tube composed of all such circles?

This might take a while.
ParametricPlot3D [Evaluate [
P[t] +radius Cos [s] mainunitnormal [t] +radius Sin [s] binormal [t]1],
{t,0,2 3}, {s,0,2 =}, ViewPoint - CMView, BoxRatios - Automatic,
AxesLabel - {"x","y", "z" I3

17 oo
17 2
LI ';’2":"
2
Yol

17
Y00s,

Or a horn:

Clear [radius]
t,2
radius [t_1] = (?) +0.1;
ParametricPlot3D [Evaluate [P[t] +
radius [t] Cos[s] mainunitnormal [t] +radius [t] Sin [s] binormal [t]1,
{t,0,2 1}, {s,0,2 =}, ViewPoint - CMView, BoxRatios - Automatic,
AxesLabel - {"x", "y", "z" 11

Or a corrugation:

ParametricPlot3D [
P[t] + s mainunitnormal [t] +Cos[3s] binormal [t], {t 0,2 1},
{s, -m, n}, PlotPoints - {Automatic, 25 }, ViewPoint - CMView,
BoxRatios - Automatic, AxesLabel - Xy, 1

ATl
ety

COTT 7y

Every slice of this surface cut by any plane perpendicular to the
original curve is the same Cosine wave.

VC.02 Perpendicularity
Give It a Try!

Experience with the starred problems will be useful for understanding
developments later in the course.

G.1) Plane fundamentals*
0G.1.a)

Here are a point and a vector with the tail of the vector stuck at the

given point:

VC.02.T4-G1

point = {0, -2,11};

vector ={2,3,4 };

threedims = Axes3D [2,0.2 1;
pointandvector =

Show[Arrow [vector, Tail - point, VectorColor - Red], threedims,
Graphics3D [{PointSize [0.04], Point [point]1}], ViewPoint - CMView,
Axes - Automatic, AxesLabel - "X,y }, PlotRange - All 1;

Throw a plot of a plane perpendicular to the given vector and passing
through the given point into the plot above. Write down the
Xyz-equations for this plane.

0G.1.b.i)

Here are three points:

pointl ={-2,1,4 };

point2 ={3,1,8 };

point3 = {-9, -5,01};

threedims = Axes3D [3, 0.2];

pointandvector =

Show[Graphics3D [{Red, PointSize [0.04], Point [pointl 1}1,
Graphics3D [{Red, PointSize [0.04], Point [point2 1}],
Graphics3D [{Red, PointSize [0.04], Point [point3]}], threedims,
Axes - Automatic, PlotRange - All, ViewPoint - CMView,
AxesLabel - {"x","y", "z" }1;

Pick one of the points and add the two vectors running from this point
to each of the other two points.

Use what you see to plot the plane on which all three points reside.
Confirm your work by showing the three points on the plane plot.

aTip:

You can use the three points to write down two direction vectors.
Once you do this, your thinking is done.

0G.1.b.ii)

Here are two lines in 3D:

Clear [linel, line2, s, t 1
linel [t_]1={1,2,1 }+t {-1, -1,11};
line2 [s_1={-1,0,1 }+s{1,1,0 };
linelplot = ParametricPlot3D [linel [t1],
{t, -3, 3}, PlotPoints - 2, DisplayFunction - |dentity 1;
line2plot = ParametricPlot3D [line2 [s],
{s, -4,5 }, PlotPoints - 2, DisplayFunction - Identity 1;

Show[linelplot, line2plot, AxesLabel ER O S A }
ViewPoint - CMView, Axes - Automatic, PlotRange - All,
DisplayFunction - $DisplayFunction 1;

X

y 4
At what point do these lines intersect?
Plot the plane on which both of these lines reside.

Confirm your work by showing the lines and the plane in the same
plot.

38

0G.1.c.i)
What do you get when you intersect the planes with xyz-equations
X+y—-z=1
and

-X+ 2y+ 3z=67
Give a parametric formula that describes the points on this
intersection and confirm your work with a plot.
aTip:

If you add the two equations
X+y-z=1,and

-X+ 2y+ 3z=6
and get
3y+2z=17,

you aren't done, becaudy + 2z = 7 is thexyz-equation of a plane
passing throug{1, O, %} with normal vecto{0, 3, 2.

0G.1.c.ii)
How can you tell without plotting that the planes
X+y-z=1
and
X+ 4y+ 5z=6

cut each other at right angles?
aTip:

Are their normal vectors perpendicular?

0G.1.d)

When you take the aggregate (collection, set) of all lines through the
point

{37 _4| 7}
that are also perpendicular to a given vector

{a, b, g,
what do you get?
Give an equation that describes the pofrtsy, z} on this aggregate of
lines.

G.2) Plotting on planes*

0G.2.a)
Look at:
Clear [a, b, t, radius, vectorl, vector2, curve, vectors, point 1
{ab}={13}
Y
t = —;
3
radius = 2;

vectorl = {Cos[t], Sin [t]};
vector2 = {Cos[t + %] Sin [t + %]}

Clear [s]
curve = ParametricPlot [
{a, b } +radius (Cos[s] vectorl +Sin [s] vector2), {s,0,2 =},
PlotStyle - {{Blue, Thickness [0.01]}}, DisplayFunction - |dentity 1;
vectors = {Arrow [vectorl, Tail - {a b},
VectorColor - Red, ScaleFactor - radius], Arrow [vector2,
Tail - {a, b }, VectorColor - Red, ScaleFactor - radius 1};
point = Graphics [{PointSize [0.04], Point [{a, b }]}1;
Show[curve, vectors, point, AspectRatio - Automatic,
DisplayFunction - $DisplayFunction 1;

VC.02.G1:G2

1

3

-1 2
Looks like a circle.
How does the following information tell you for sure that this is a
circle and not just some other ellipse?

] {vectorl.vectorl
{True, True }

What do you get when you change t?

0G.2.b)

Look at:

{a,b,c }=1{2, -2,3};
Clear [s,t 1;
vectorl =2 {1, -1,2};

vector2 =2 {-2, %(-2+2‘/E), %(4+1/g)};

curve = ParametricPlot3D [{a,b,c } +Cos[s] vectorl +Sin [S] vector2,
{s, 0, 2 s}, DisplayFunction - Identity 1;
vectors = {Arrow [vectorl, Tail - {a, b, c }, VectorColor - Red],
Arrow [vector2, Tail - {a, b, c }, VectorColor - Red]};
point = Graphics3D [{Red, PointSize [0.03], Point [{a, b,c }1}1;
Show [point, vectors, curve, ViewPoint - CMView,
Axes - True, AxesLabel - X",y }, PlotRange - All,
BoxRatios - Automatic, DisplayFunction - $DisplayFunction 1,

== vector2 . vector2, vectorl . vector2 ==0}

Looks like a circle.
How does the following information tell you for sure that this is a
circle and not just some other ellipse?

] Simplify [{vectorl.vectorl
{True, True }

Come up with an xyz-equation of the plane in which this circle
resides.

0G.2.c.i)

Even though a plane starts out with two direction vectors, any given
plane has infinitely many direction vectors.
Here is a true scale piece of the plane determined by the following
point and two direction vectors:
point = {05,0,1 };
vectorl ={-2,1,0 };
vector2 = {-0.2,1, -1};
Clear [planeplotter, u, v 1
planeplotter [u_, v_] =point +uvectorl +Vvector2;
{ulow, uhigh '} ={-2,2};
{vlow, vhigh '} ={-3,3};
plane =
ParametricPlot3D [Evaluate [planeplotter
{v, vlow, vhigh }, PlotPoints
threedims = Axes3D [3.5, 0.4];
planeplot = Show[threedims, plane, PlotRange - All, Axes - Automatic,
AxesLabel - {"x","y", "z" }, PlotRange - All, ViewPoint - CMView,
BoxRatios - Automatic, DisplayFunction - $DisplayFunction 1,

== vector2 . vector2, vectorl . vector2 == 0}]

[u,v 11, {u, ulow, uhigh 1},
- {2, 2}, DisplayFunction > Identity 1;

You get the same plane by using new direction vectors
newvectork 0.4vectorl+ 0.7vector2

and
newvectorz 2vectorl- 1.5vector2:

39

newvectorl = 0.4 vectorl + 0.7 vector2;

newvector2 = 2vectorl - 1.5vector2;

Clear [newplaneplotter, u, v 1

newplaneplotter [u_, v_] =point +unewvectorl +Vvnewvector2;
{ulow, uhigh }

{vlow, vhigh }

newplane =
ParametricPlot3D

{v, vlow, vhigh
newplaneplot

={-55}
={-1,11}
[Evaluate [newplaneplotter [u,v 11, {u, ulow, uhigh 1},
}, PlotPoints - {2, 2 }, DisplayFunction - Identity 1;
= Show[threedims, newplane, Axes - Automatic,

- CMView, BoxRatios - Automatic,
- $DisplayFunction 1;

PlotRange - All, ViewPoint
DisplayFunction

5
But when you plot the plane using the new direction vectors, as above
you plot a different piece of the plane than you plotted with the
original direction vectors:

| Show [planeplot, newplaneplot 1;
X .5
0
5
5
2.5
z
0
-2.5
0
y 5

| Show[planeplot, newplaneplot, ViewPoint - vectorl];

y
Go with the plane whose xyz-equation is
2x+)+ 3y-D+ (z- 1) =0,
and come up with a point on this plane, and two perpendicular unit
vectors that serve as direction vectors for this plane.
aTip:

The point of the lead-in to this question is to stress that there is no
single correct answer to this problem. In fact, there are infinitely man
correct answers to this problem.

0G.2.c.ii)

Plot the circle of radius 3 centered at the po#tt, 1, 1} in the plane
whose xyz-equation is

2x+)+ 3y-D+ (z-1)=0.
Include in your plot a big enough piece of the plane to accommodate
the circle.

0G.2.c.iii)

Here's a plot of a spiral in the xy-plane:
Clear [spiral, t]
spiral [t] ={tCos [2t],tSin [2t]};
ParametricPlot [spiral [t], {t 0,3 =}, AxesLabel - {"X","y" }1I;

VC.02.G2G3

Use your answer to part i) above to help plot a true scale duplicate
copy of this spiral on the plane with xyz-equation

2x+ 1)+ 3(y-D+ (z-1=0.
Center your spiral gt-1, 1, 3} and include in your plot a big enough
hunk of the plane to accomodate the spiral.

G.3) Serious 3D plots: Tubes and ribbons*

0G.3.a)

Here's a 3D curve:
Clear [P,t]

PIL] = {-tt, %t ‘-t };

arch = ParametricPlot3D [P[t], {t,0,8 1}, Axes - Automatic,
AxesLabel - {"x", "y", "z" }, PlotRange - All, Boxed - False,
ViewPoint - CMView, BoxRatios - Automatic 1;

,x' 8

y 6 8
You are asked to plot the tube whose skin consists of all circles of
radius 0.5 that
— are centered on this curve, and
- lie in planes that cut this curve perpendicularly.

0G.3.b)
Here's the same 3D curve:
Clear [P, t]
PILT={-tt, %t @®-t)};

arch = ParametricPlot3D [P[t], {t 0,8 1}, Axes - Automatic,
AxesLabel - {"x","y", "z" }, PlotRange - All, Boxed - False,
ViewPoint - CMView, BoxRatios - Automatic 1;

,x' 8

y 8
You are asked to plot a ribbon two units wide whose center curve
coincides with the curve plotted above. Corrugate the ribbon if you
like.

oTip:
As you may have noted, there are many such ribbons; you are asked t
plot just one.
You'll probably want to usbinorma(t].

0G.3.c)
Here's a different 3D curve:
Clear [curveplotter, t 1

curveplotter [t_1={-tt Sin [ti1y;

snake = ParametricPlot3D [curveplotter [t], {t, 0,8 1}, Axes - Automatic,
AxesLabel - {"x","y", "z" }, PlotRange - All, Boxed - False,
ViewPoint - CMView, BoxRatios - Automatic 1;

40

y 8

This time you're asked to add to this plot four additional curves with

the property that if you slice the original curve by any plane

perpendicular to the original curve, then:

- The four additional curves will show up on this plane as dots at the

corners of a square one unit on a side, and

- the original curve will show up as a dot in the center of the square.
aTip:

As you may have noted, there are many such sets of four curves; you

are asked to plot just one set.

You'll probably want to usmainunitnormdt] andbinorma[t]. Your

plot may reveal an unexpected phenom. If so, then try to explain why

it happened.

0G.3.d)

Now it's time to take the shackles off. Turn yourself loose and do
something artistic and creative with a curve of your choice.
Show off.

G.4) Experiments with linearizations*

Linearization is a technique much favored by advanced scientists. Yo
will run across linearizations throughout most of the lessons to follow,
so you might as well get your feet wet here.

0G.4.a) Linearizations off[x]
Here is a simple curve in two dimensions:

Clear [f, x]

fIx_1=E%

fplot = Plot [f [x], {X, -2, 2}, AxesLabel - {"x","y" 1},
PlotStyle - {{Blue, Thickness [0.01 1}}1;

L0
NH OO
<

2 T i 2 X

Here's what a lot of folks call the linearization pf]fat x= a:

Clear [linearf, a 1
linearf [x_,a]=f[a]+f’[a] (x-a)

E® _2aE? (—a+x)
And a plot in the case=a0.5:

Clear [a, linplot, pointplot 1
linplot [a_]:=Plot [linearf [x,a], {x,a -05,a +051},
PlotStyle - {{Red, Thickness [0.01]1}}, PlotRange - {0, 1.2 },
Ticks - {Automatic, None }, DisplayFunction - Identity 1;
pointplot [a_] : = Graphics [{PointSize [0.03 1, Point [{a,f [a]}]}]1;
Show linplot [0.5], fplot, pointplot [051,
DisplayFunction - $DisplayFunction 1;

)

-2 -1 1 2
A little movie:
Table [Show(linplot [a], fplot,
pointplot [a], DisplayFunction - $DisplayFunction 1,

fa 11 2

\
/

\
/

VC.02.G3-G4

N}
-
-
N

N
[
[
N

-2 -1 1 2
Animate these if you like and run at a slow speed.

That's right; linealffix, a] is nothing but the tangential approximation
line at x= a.

As you can see, it's a pretty darn good approximatiofxpfdr x's
neara. This is why the folks like linearizations—they approximate well
and they are line functions so they are easy to work with.

Play, as above, with linearizations for functiofrg {of one variable)

of your own choice at points of your own choice. You may want to
change the value of the PlotRange specification.

0G.4.b.J)

With somewhat more work than needed for functions of one variable,
you can linearize a functioiiX, y] of two variables.

Here's the idea:

According to the work in B.3), you can calculate a normal to the
surface z= f[x, y] at a poin{a, b, fla, b]} as follows:

Clear [x, VY, f, a, b, surfacepoint 1
surfacepoint X, y_1={y.f [xy1l}h
Clear [xcurve, ycurve]

xcurve [x_] = surfacepoint [x, b 1;

ycurve [y_] = surfacepoint [a,y 1;
xtanvector = D[xcurve [X], X] /.X -a;
ytanvector = D[ycurve [y], y] /.y -b;
normal = Cross [xtanvector, ytanvector 1

(-t X0 a, b, fO) a b, 1)

Notice the shortened command for
calculating the cross product.

This tells you that the xyz-equation for a plane touching the surface
z =f[x, y] at{a, b, fla, bj} and sharing the same normal vector comes
from:
| normal. {x-ay -b,z -f[ab]}==
z-flab]-(-b+y)fO) ab]-(-a+x)f*®) [ab]==0
This gives you
fla, ofa,
z=fla, b+ ZEE (x— @) + 2524 (y - b).
The pros call this the linearization,
linearfx, yl,
of f[x, y] at{a, b.
Here's a plot of
z=1[X, y] = X2 + y?
and its linearization at
{a,3={0.5,0.8:
Clear [f, linearf, x, y 1
fIxLy_ 1=x2+y%
{a,b}={0508 };
A=D[f[x,y 1, X1/ {x>ay -b};
B=D[f[X,y], ¥Y1/. {x>ay »b};
linearf [x,y_1=flabl+A(x-a)+B(y-b);
surface =Plot3D [f [x,y 1, {x, -1.5,15 1}, {y, -15,15 1},
PlotRange - {0, 2 }, ClipFill - None, DisplayFunction - Identity 1;

linearized = Plot3D [linearf [x,y 1, {x,a -03,a +03},
{y,b -03,b +0.3}, PlotPoints - {2, 2 }, DisplayFunction - Identity 1;
pointoflinearization =
Graphics3D [{PointSize [0.02], Point [{a,b,f [a b 1}1}];
Show[surface, linearized, pointoflinearization,
AxesLabel - {"x","y", "z" }, BoxRatios - Automatic, Boxed - False,

ViewPoint - CMView, DisplayFunction

W

- $DisplayFunction 1;

N

/]

7

\

41

Here's what you get when you linearize the same function at
{a, b ={0, O:
{a,b}={00}
Clear [linearf 1]
A=D[f [X,y 1, X1 /. {x=>ay =b};
B=D[f[X,y 1, y1/. {x=>ay -»b};
linearf [x_,y_1=f[ab]l+A(x-a)+B(y-b);
linearized = Plot3D [linearf [x,y], {x,a -03,a +031},
{y,b -0.3,b +0.3}, PlotPoints - {2, 2 }, DisplayFunction - ldentity 1;
pointoflinearization =
Graphics3D [{PointSize [0.02], Point [{a, b, f [a b 1}1}1;
Show[surface, linearized, pointoflinearization,
AxesLabel - {"x", "y", "z" }, BoxRatios - Automatic, Boxed - False,
ViewPoint - CMView, DisplayFunction - $DisplayFunction 1;

y 1
Plot the same function and its linearization at

{a, b =11, 0.
Then plot the same function and its linearization at
{a, B ={0.1,0.5.

Describe what you see and then say what relation the linearized
surface has to the actual surface at the point of linearization.

How well do the linearized versions approximate the actual function

at the points of linearization?
0G.4.b.ii)

Stay with the same function as above and look at the surface and its

linearization at
{a, b =1{0.7, 0.4:
{a,b}={07,04 1},
Clear [linearf]
A=D[f[x,y 1, x]1/. {x>ay -»b};
B=D[f[X,y 1, y1/. {x=>ay -b};

linearf [x_,y_1=f[ab]l+A(x-a)+B(y-b);
linearized = Plot3D [linearf [x,y], {x,a -03,a +031},
{y,b -03,b +0.3}, PlotPoints - {2, 2 }, DisplayFunction - Identity 1;
pointoflinearization =
Graphics3D [{PointSize [0.02], Point [{a,b,f [a b 1}1}];
Show[surface, linearized, pointoflinearization,
AxesLabel - {"x", "y", "z" }, BoxRatios - Automatic, Boxed - False,
ViewPoint - CMView, DisplayFunction - $DisplayFunction 1,

1

y
What you see are plots of the function and its linearized version at the

point of linearization af0.7, 0.4.
Put

{X[t], y[t]} = {0.7— 4 Sin[t], 0.4¢€"}
and note that this curve passes through the point of linearization,
{0.7, 0.4, when t= 0:

Clear [x,y,t 1

{X[t_1,y [t_1}={07 +4Sin [t], 0.4E '};

{x[t],y[t]}/.t -0

{0.7,04

Now look at plots of the curves

fix(t], y[t]] and linearfx[t], y[t]]

for
-0.1=<t=<0.1:
h=0.1;
Plot [{f [x[t],y [t]], linearf [X[t],y [t11}, {0 -h, O +h},
PlotStyle - Thickness [0.01], AspectRatio - 1, AxesLabel - {"t",™ 1,

Epilog - {Red, PointSize [0.04], Point [{O0,f [x[0],y [0]1}1}1;

VC.02.G4-G5

-0.1T-0.05 0.05 0.1

This time put

{x[t], y[t]} = {0.7Coq3t]], 0.4-t}
and note that this curve also passes through the point of linearization
at{0.7, 0.4 when t= 0:

Clear [x,y,t 1]
{x[t_1,y [t 1}={07Cos [3t],04 -t};
{x[tl,y [t]1}/.t -0

(07,04 3
Now look at plots of the curve$At], y[t]], and linearfx[t], y[t]] for
-0.1=<t=<0.1:
h =0.1;
Plot [{f [x[t],y [t]], linearf [x[t],y [t11}, {0 -h,0 +h},
PlotStyle - Thickness [0.01], AspectRatio - 1, AxesLabel - {"t",™ 3},

Epilog - {Red, PointSize [0.04], Point [{O,f [x[0],y [011}1}1;

Describe what you see in the two plots above and try to account for
why you see it.
Explain why you will see the same phenomenon no matter what
{xItl, y[t}
you go with provided
{X[t], y[t]} = {0.7, 0.4 when t= 0.

G.5) Badger borings

Calculus&Mathematica thanks Professor Rod Smart of the University of
Wisconsin for suggesting this problem. Professor Smart mentions
that a company in Madison, Wisconsin actually called him to ask
how to solve problems of this type.

O0G.5.a.i)

You are the chief engineer at the Badger Steel Plate Company in
Madison, Wisonsin. In comes an order for 750 square steel plates,
each measuring 12 inches wide and 12 inches long.

Go to the drawing board:

plate = Graphics [{SteelBlue, Thickness [0.01 1,
Line [{{-6, -6}, {-6,61}, {6,6}, {6 -6}, {-6, -6}}1}1;

plateplot = Show [plate, Axes - True, AxesOrigin - {0,01},
AspectRatio - Automatic, AxesLabel - YL

y

4

2

6 -4 -2 24 x

-2
-4

But here's the kicker:

The plates are to have everything inside the ellipse
G+ $F=1

cut out.

Take a look:

Clear [x,y,t]
x[t_]1=4Cos[t];
y[t_1=2Sin [t];
hole = ParametricPlot [{x[t],y [t1}, {t 0,2 =}, PlotStyle -
{ {SteelBlue, Thickness [0.01 1}}, DisplayFunction - Identity 1;
Show[plateplot, hole, DisplayFunction - $DisplayFunction 1;

42

VC.02.G5-G7

y

0G.6.a.iv)

Explain why the following true scale plot came out the way it did and
discuss the information the plot exhibits.

4
3 QD X Clear [P, t, velocity, accel, speed, unittan, tanaccel 1
4

P[t_]={8Cos[0.8t],5Sin [0.8t 1};
path = ParametricPlot [P[t], {t, 0,2 =},

PlotStyle - {{Blue, Thickness [0.01]}}, DisplayFunction - Identity 1;
velocity [t_]=D[P[t], t];

You have a new robotic router that takes instructions from accel [t_] =Dlvelocity [t], t I;
Mathematica and whose cutting center can be programmed to follow unittan [t_ 1 = velocity [t] :
any curve you tell it to follow. Vvelocity [t].velocity [t]

If you are going to use a bit 1 inch in diameter, then what curve speed [t_] = Vvelocity [t].velocity [t];
should you program in as the path of the center of the router to cut ou tanaccel [t_1] = D[speed [t], t] unittan [t];

the eIIipse? vectors = Table [(Arrow [accel [t], Tail -P[t]],

Arrow [tanaccel [t1], Tail - P[t], VectorColor - Red],

After you have found the correct curve, add its plot to the plot above. Arrow [accel [t] -tanaccel [t],Tall - P[t], VectorColor - Red]},
OBig Tip: t, 1, 2, z)
_ _ {t 727 71
If your curve is an ellipse, then you screwed up. Show([path, vectors, AspectRatio - Automatic,

. DisplayFunction - $DisplayFunction 1;
The normal vectaD[unittar{t], t] could be very useful.

0G.5.a.ii)

Actually, the bit size of 1 inch in diameter used above was arbitrarily
chosen by reaching into the drawer and pulling out a bit. You could
always get by with a smaller bit. Why?

But you cannot use bits that are too large. Why?

Try to estimate the diameter of the largest bit that you could use to do
the job.

G.7) Using the normal vector to bounce light beams off
surfaces

0G.7.a)

Here's a piece of the surface
z=4- (3% + (%

Clear [f, x, Y, z, r, t, surfaceplotter 1
. . 2 2

G.6) Using the product rule to break acceleration vectors fIxLy_ 1=4- (%) . (%) :
[i x[r_,t_ 1=rCos [t];
into normal and tangential components YT 1ersin [t].

. zr_t 1=f[x[nt 1,y Int I1;

DG-G-a-l) surfaceplotter [r,t_ 1={x[r,t 1,y[rt 1,z[rt 1}
Attime t,an ObjeCt is given to be ata pOint surface = ParametricPlot3D [surfaceplotter [r,t 1, {rn0,2 1},
F[t] = {X[t], y[t]} {t, 0,2 s}, ViewPoint - CMView, PlotRange - All, Boxed - False,

Its velocity at time t is just Axeslabel - {"X',"y", "z }1;

velocityft] = D[P[t], t].
The unit tangent vector aftPis
unittar[lt] — velocity{t]

Explain why
velocityt] = speedit] unittart]
where -
speefl] = v velocity(t] . velocity[t] . y 3
" A light beam emanates frofr 1, 1, § and strikes the surface at:
DG'G'a'”)] hit = surfaceplotter 1,12 1
The acceleration vector aftPis given by {0.362358, 0.932039, 4.18435 }
accdt] = D[velocity(t], t]. Here's a look:
Use the fact that lightsource = {-1,1,6 };
velocityt] = speedit] unittart], Show[surface, ,)
and use the product rule for taking derivatives to say why PloRargs o pree: Tall = lantsource, VectorColor ~ Redl,
accdt] = D[speedt], t] unittar{t] + speedt] mainnormalit]. ’
0G.6.a.iii)

When you write

accdl] = D[speedt], t] unittar{t] + speedt] mainnormdlt],
then why is it fairly transparent that

Dispeedt], t] unittart] :
is the tangential component of the acceleration and y 2

speefd] mainnormat] Your job is to plot the vector on which the reflected light moves.
is the normal component of the acceleration?

43

G.8) Kissing circles and curvature

A curve in two dimensions is plotted by specifying two functiofts x
and yt] and plotting

Rt] = {x[t], y[t}}
for t running through a desired interval.
A curve in three dimensions is plotted by specifying three functions
X[t], y[t], and £t] and plotting

At] = {x[t], yIt], z[t]}
for t running through a desired interval.
In both situations, you get the unit tangent vector{@ttRrough the
formula:

i — DIPIt].t]
unittat] = VDIPIt],U.DIPH

In both situations, the main normal dt]Rs given by
mainnormat] = D[unittar{t], t].
The vector mainnormHl is a measurement of how fast the unit
tangent is turning as t progresses.
You can get an even better measurement of how the curve turns by
calculating the instantaneous rate of change of the unit tangent as a
function of arc length s measured on the curve from a specified
reference point usually at one end of the curve.
This measurement is intrinsic to the shape of the curve, and does not
depend on the specific parameterization of the curve you are using.
The chain rule tells you that aitP this measurement is given by
turrjt] = D[unittar{t], s]
= D[unittar{t], t] D[t, S|
D[unittar{t],t]
V/DIPIt,1.DIPIt
because
Ot, sl = _

X[+ y[t1?
1

"~ VDIPIt].t.DIPIt] 4]
For an elucidation on this formula fD[t, S|, double click the box.

Two dimensions:

Arc length s is the integral of x/[t]? + y’[t]? .

So

Os, f = v X[t + y[t]?
= vV D[P(t], t]. D[Pt], t]
because [P[t], t] = (X'[t], Y'[t]}.
Accordingly,
t,)= —2—
oIt o 1\/X'm2+yf[t]2
VDIP[t].D[P[t],T]
Three dimensions:
Arc length s is the integral a]/x’[t]2 + Y2+ z[t2.
So

s, § =y X1t + y'[tF + 2t
= v DIPLt], t]. DIPLIt],],
because [P[t], t] = {X'[t], Y'[t], Z[t]}.
Accordingly
t, 9 = I S
DIt o 1\/x'|t1?+y/|t|z+z/n|2
= Voruomg
Make note of the fact that
- turn[t] is a vector that points in the same direction as mainnftimal
Why?
Because it's a positive multiple of
Dunittarit], t] = mainnormdit].
This tells you that tuit] is perpendicular to the curve dtP
The length of turft] measures the roundness of the curvett P

0G.8.a.i)

Here, in true scale, is the curve
At] = {5Codt], 3Sin[t]} forO<t < x:

VC.02.G8

Clear [P, t]
P[t_]={3Cos[t],2Sin [t]1};
curve = ParametricPlot [P[t1, {t, 0, o=},
PlotStyle - {{Blue, Thickness [0.01]}}, AspectRatio - Automatic 1;

1.

e

0.

-3 -2 -1 1 2 3
Here's the same curve together with a selection of vectois] twith
tails at Rt]:
Clear [unittan, turn 1

unittan [t_] = D[P[t], t]

VDIPT, T 1.DIPIT, € T
Dlunittan [t], t]

turn [t] = ;
VDIP[t], t 1.D[P[t], t]
scalefactor =3;
turnvectors = Table [Arrow [tumn [t], Tail -P[t],

7n x
VectorColor - Red, ScaleFactor - scalefactor 1, {t, T T E}]
Show [curve, turnvectors, AspectRatio - Automatic];
1.5
1
0.5
3 BN 1% 3

The turn vectors are shown 3times longer than their actual lengths.
Describe, in words, how the lengths of the turn vectors are related to
flatness or roundness of the curve.
Then plot the length

[[turn[t]]| = V' turn[t] . turnt] forO<t < x.
Discuss the relations between the two plots.
How doed|turn[t]|| plot out over intervals where the curve is fairly
flat?
On what side of the curve does tiifnwith its tail at Bt], point?

0G.8.a.ii)

Here is the same curve shown in true scale with the circle of radius
1 _ 1
liturni@lll — y/turnft].turn(t]
centered at

turnfa]

Ral + turnfa).turna

_ .
fora= %:
Clear [a, center, radius, circle, point 1

turn [a]
turn [a].turn [a]

1

Vturn [a].tun [a] Y
circle [a_] = Graphics [{Red, Circle [center [a], radius [a]]}];
point [a_] = Graphics [{Red, PointSize [0.04], Point [P[a]l]l}];
azZ

4
Show[
curve, circle [a], point [a], PlotRange - All, AspectRatio

1 2 3

center [a_] =P[a] +

radius [a_] =

- Automatic 1;

Here's what happens when you go with éei:

5
a=—;
6
Show[
curve, circle

[a], point [a], PlotRange - All, AspectRatio - Automatic 1;

44

Experiment with what happens when you go with other choices of
awith O<as<n,

paying special attention to what you get when you go with
a=0, 7, andr.

Make a movie if you like.

After you are done experimenting, say what you think is happening

and try to explain why it is happening.
0G.8.a.iii) Kissing, smooching, osculating, and curvature

Fancy folks call the circles you were studying in the last part by the
name "osculating circle" af&. You might prefer to call them
"kissing circles" or "smooching circles" afap
Most everyone calls

lIturnfall| = Vturn[t] . turn[t] = 23—
(where radius stands for the radius of the kissing circl¢ag) By the
name "curvature" at[g].
Explain what curvature tries to measure.
Does a high curvature number &Fmean that the curve is very flat
or very rounded at[@]?
What does a low curvature number mean?

0G.8.a.iv)
Here's a true scale parametric plot of part of the curvety:
Clear [P, t]
PIt_1 =t 11—2};

curve = ParametricPlot [P[t1, {t 1,10 1},

PlotStyle - {{Blue, Thickness [0.01]}}, AspectRatio - Automatic 1;

12

N D o ®

2 4 6 8 10
Estimate the point on this curve at which the curvature is biggest and
plot the kissing circle at that point. Then, on a separate plot, show the
curve, the kissing circle at the point of biggest curvature, and a few
other kissing circles.
A good eye-ball estimate is OK.

0G.8.b.i) 3D curves
Here's a 3D curve:
Clear [P, t]
. t
Prt_1={Cos[t],15Sin [t], ?};

curve = ParametricPlot3D [P[t1, {0,
ViewPoint - CMView];

7}, BoxRatios - Automatic,

1.5
Here's the same 3D curve together with a selection of vectors
unittaft] and turift] with tails at Pt]:

Clear [unittan, turn 1

unittan [t_] = DIP[t], t]

VBIPLt], T T.DPIET, T 1
D[unittan [t], t]
VBPLIT, T1.00PIT, €1

= Table [Arrow [unittan [t],

turn [t] =

unittanvectors

VC.02.G8

. r Tn x
Tail - P[t], VectorColor > Blue], {t, =, —, =}];
8 8 8
tumnvectors = Table [
) n ITn 7
Arrow [turn [t], Tail - P[t], VectorColor - Red], {t, T 5 E]]
Show[curve, unittanvectors, turnvectors, ViewPoint - CMView,

BoxRatios - Automatic 1];

1.
Describe how you believe the lengths and directions of the turn
vectors are related to the shape of the curve.

0G.8.b.ii) Kissing, smooching, and osculating in 3D

You can do kissing circles in three dimensions:
Given a curve R] and a value a, you center the circle at
turnfa]
center Plal + i
and put

e L — 1
radius= Tearnal turnfal.turna)

and now you gotta choose two perpendicular unit vectors to determine
the plane in which the circle resides. You want the circle to be tangent
to the plane, so one good unit vector to go with is

vector]a] = unittar{a).
The other vector you want is:

_ turnjaj
veCtorm] ~ VwrntLwmny

Try it out on the same curve as plotted above:
Clear [P, t]
P[t_1={Cos[t], 15Sin [t], %};

curve = ParametricPlot3D [P[t], {t 0O,
Clear [unittan, turn 1

7}, DisplayFunction - Identity 1;

D[P[t], t]

VDIP[t], t 1.D[P[t], t]
D[unittan [t], t]

unittan [t_ 1] =

tun [t] =

VDIP[t], t 1.D[P[t], t]
Clear [t, a, center, radius, point, vectorl, vector2, kisser 1
point [a_] = Graphics3D [{Red, PointSize [0.03], Point [P[a]]}];
turn [a]
center [a_] =P[a] + —m8M8M———;
turn [a] .turn [a]
1

Aturn [a] .tun [a] ’
vectorl [a_] =unittan [a];

turn [a]
vector2 [a_] = —————

Atun [a].turn [a]
kisser [a_] : = ParametricPlot3D [
center [a] +radius [a] (Cos[t] vectorl [a] +Sin [t] vector2 [a]),
{t, 0, 2 s}, DisplayFunction - Identity 1;

e
a=—;
4

radius [a_] =

Show[curve, point
BoxRatios - Automatic, DisplayFunction

[a], kisser [a], ViewPoint - CMView,
- $DisplayFunction 1;

Another:
2
3
Show([curve, point
BoxRatios - Automatic, DisplayFunction

[a], kisser [a], ViewPoint - CMView,
- $DisplayFunction 1;

45

1.
Estimate the point on this curve at which the curvature is biggest and

plot the kissing circle at that point.

G.9) Measurements with the cross product*

Given two vectors
X={x[1], x(2], x[3]}

and

Y ={yl[1], yI2], y[3]}:

Clear [X, X, Y,y,k 1]

X= {x[1],x [2], x [3]};

Y={y[ll,y [21,y [31};

To calculate the cross produckX you make a matrix with
{i, j, k}

in the top (horizontal) row, with X in the middle (horizontal) row, and

with Y in the bottom row:

Clear [i,j,k 1
MatrixForm [{{i,j, k }, X, Y }]

i j k
x[1] x[2] x[3]
yi1] y(2] y[3]]
Next, take the determinant of this matrix:

| Detr{ijk } XYM

—kx [2]y [1] +jx [3]y[1] +kx [1]y[2] -ix [8]y[2] -jx [1]y[3] +ix [2]y[3]
To arrive at the cross producixX, you replace

i by{1, 0, G,

replace
jby{0,1,0

and replace
k by{0, 0, 1:
I XcrossY =
Det [{{i,jjk 3} X Y3}/ (i »{1,0,0 },j »{0,1,0 },k »{0,0,1 }}
(-X[3]y[2] +x[2] y[3],x [3]y[1] -x[1] ¥[3], -X[2]y[1] +X[1]y[2]}
The dot product is a number. The cross product is a vector.
For example, if X and Y are:
I X={-12, -37,92 };
Y = {0, -68, 49 };
Then XxY is:
I XcrossY =
Det[{(i,j, k X, Y ¥/ {i »{1,0,0 },j -{0,1,0 },k - {0,0,1 }}
(4443, 588, 816}
A quick command for this is built into Mathematica:
] XcrossY == Cross [X, Y]
True
And the vector XY is autoamtically perpendicular to both X and Y:
] X.Xcrossy
0
] Y.Xcrossy
0

0G.9.a) The length oiX xY

The following calculations give clues to finding out what the length of
XxY measures:
Clear [X, X, Y,y 1;
X= {x[1],x [2], X [3]};
Y={y[ll.y [21,y [31}
XcrossY = Cross [X, Y1;
Expand [(X.Y)? + XcrossY . XcrossY]
X112y (112 +x[212y [1]2 +x[3]2y[1]% +x[1]%y [2)2 +x[2]2y [2]% +
x[312y[2)2 +x[112y (312 +x[2)2y [3]% +x[3]%y[3)?
] Expand [(X.X) (Y.Y)]
X112y (112 +x[212y [1]2 +x[3]2y[1]% +x[1]%y [2)2 +x[2]2 y [2]% +
x[31%2y[2)2 +x[112y[3]2 +x[2]2y[3]% +x[3]%y[3]?
Remembering that
(X.Y)? = |IX]I?IY|I> Cogangle betweeR,
explain how these calculations reveal that

VC.02.G8G9

X% Y12
=(XxY).(XxY)
= |IX|I? |IY]1? Sinfangle betweeR,
so that
IXx Y| = IXIIIY]l ISin[angle betweel

aTip:

Remember:

Clear [t]
TrigExpand [Sin [t]2 + Cos[t]?]
1

0G.9.b.i)

No matter what s you take, the following vectors are perpendicular:

Clear [X,Y,s I;
Cos[s] Cos[s]

X[s_] = s ,Sin [s1};

t V2 V2)
Yis_] = {- Sin (s , - Sin (s , Cos [s1};
V2 A

Expand [X[s].Y [s], Trig - True]

0
They are unit vectors, because the length of each of them is 1:
| TrigExpand [X[s].X [s]]
1
| TrigExpand [Y[s].Y [s]]
1
No matter what s you take, you find thgdsk Y[s] is a unit vector:
cross = Cross [X[s], Y [s]];
TrigExpand [cross.cross]
1
Explain why:
If you take any two perpendicular unit vectors X and Y, then
- XxY is perpendicular to both X and Y and
— XxY is also a unit vector.
If X and Y are unit vectors, but X is not perpendicular to Y, then can
XxY be a unit vector? Why not?

0G.9.b.ii)

Use this to explain why if you have a cunfg]fh three dimensions,
then

binormdt] = unittar{t] x mainunitnormdl]
is a unit vector perpendicular to the curve [at 8d perpendicular to
mainunitnormdl] at At].

aTip:
If you don't understand the terminology, see the Tutorial problem on
tubes and horns.

0G.9.b.iii) Using the cross product to measure area of
parallelograms

Here are two vectors in two dimensions:
X=1{2,11};
Y={1,31};
Show[Arrow [X, VectorColor
Axes - Automatic 1;

- Red], Arrow [Y, VectorColor - Red],

[IS N RN B

And here is the parallelogram they determine:

Show[Arrow [X, VectorColor - Red],
Arrow [Y, VectorColor - Red], Arrow [Y, Tail - X, VectorColor
Arrow [X, Tail =Y, VectorColor - Blue], Axes - Automatic 1;

- Blue],

46

T

Now look at:

X;

Y;

XthreeD = {X[11, X [21, O };
YthreeD = {Y[11, Y [21, O };

cross = Cross [XthreeD, YthreeD 1;

V Cross . cross

5
Use the fact that
[IXxY]|
= VXxY).(XxY)
= [IX|IIY]l ISin[angle betweek
to explain why the output from the last instruction above measures the
area of the parallelogram plotted above.

aTip:
Remember that the area of a parallelogram is given by
Bh
whereB is the length of the base ahds the height measured
perpendicularly from the base.

G.10) Thumbs up or thumbs down?

This is a chance for you to learn how the cross produdt ¥

oriented with respect to X and Y. By this point, you know thaiYX

is perpendicular to both X and Y. But you can say a little more after
you do some experimentation.

0G.10.a)

Here are several samples of plots of 3D vectors X, Y, and the cross
product XxY:

X={1,00 };
Y={0,10 }
XcrossY = Cross [X, Y1;

Show[Arrow [X], Graphics3D [Text [X §+ {0,0,0.1)]]

Y
Arrow [Y1, Graphics3D [Text ["Y", 7 {0,0,01 1]],
Arrow [XcrossY, VectorColor - Red],
XcrossY

2
ViewPoint - CMView, Axes - None, Boxed - False];

Graphics3D [Text ["XcrossY",]] BoxRatios - Automatic,

XcrgssY

If you grab onto the shaft of XY with your right hand so as to use
your fingers to push X onto Y through the smaller of the two possible
angles, does your thumb point with«X or against % Y?

X={1,04,0 };
Y={0 1,12 1};
XcrossY = Cross [X, Y1;

Show[Arrow [X, Tail - {0,0,0 }, VectorColor - Blue],
. X
Graphics3D [Text ["X", -+ {0,0,01 }]].
Arrow [Y, Tail - {0,0,0 }, VectorColor - Blue 1,

. Y
Graphics3D [Text ["Y", 7 {0,0,01 13]].

- {0, 0,0 }, VectorColor - Red],
XcrossY

Arrow [XcrossY, Tail
Graphics3D [Text ["XcrossY",]] PlotRange - All,

BoxRatios - Automatic, ViewPoint

- CMView, Axes - None, Boxed - False |;

VC.02.G%-»G10

If you grab onto the shaft of XY with your right hand so as to use
your fingers to push X onto Y through the smaller of the two possible
angles, does your thumb point withX or against % Y?

X=1{-1,1,1 };
Y=1{-1,013 };
XcrossY = XxY;

Show[Arrow [X], Graphics3D [Text ["X", ; +{0,0,01 1}]].

Y
Arrow [Y], Graphics3D [Text ["Y", 7* {0,0,01 1}]],
Arrow [XcrossY, VectorColor - Red],

XcrossY

Graphics3D [Text [”XcrossY",]] PlotRange - All,

BoxRatios - Automatic, ViewPoint - CMView, Axes - None, Boxed - False];

If you grab onto the shaft of XY with your right hand so as to use
your fingers to push X onto Y through the smaller of the two possible
angles, does your thumb point with«X or against X% Y?

X={1,1,0 };
Y={1, -05,03 };
XcrossY = XxY;

Show[Arrow [X], Graphics3D [Text ["X", ;]] Arrow [VY],

Y
Graphics3D [Text [Y ;]] Arrow [XcrossY, VectorColor - Red],

XcrossY

Graphics3D [Text [”XcrossY", 5

]] ViewPoint - CMView,

Axes - None, Boxed - False];

XcrgssY

If you grab onto the shaft of XY with your right hand so as to use
your fingers to push X onto Y through the smaller of the two possible
angles, does your thumb point withxX or against % Y?

Do more experiments like these and then describe hoW X

oriented with respectto X and Y.

If your response is correct, then you have written down what a lot of
folks call "the right hand rule for the cross product.”

0G.10.b)

Given two 3-dimensional vectors X and Y, then how do you express
Yx X in terms of X«<Y?

Try some examples before you jump to a conclusion.

Use your ideas from part a) to say why this is natural.

aTip:

Try some examples. Here's one:
X={4,0,0 };
Y=1{0,40 };
XcrossY =
Det [{{i,jjk } X, Y3}/ {i {1,001} j -»{0,10 }k >{0,0,1 }}
{0,0,16 }
YcrossX =
Det [{{i,j,k 3}, Y, X3}/ {i »{1,00 },j -{0,1,0 },k »{0,0,1 }}
{0,0, -16}

47

Another:

X = {47.86, 87.12, 19.55 };
Y = {27.18, 31.14, 57.00 };
XcrossY =
N[Det [{{i, j, k 1.XY ¥ /. {i»{1,0,0 },j »{0,1,0 },k »{0,0,1 3}
{4357.05, -2196.65, -877.561 }

YcrossX =
N[Det [{{i,j,k 3}, Y, X}/ {i »{1,00 },j »{0,1,0 }, k -{0,0,1 }}]
{-4357.05, 2196.65, 877.561 1

If you went to a high school that taught terminology instead of
calculation, then you'll see that the cross product defines a
multiplication that is not commutative.

If you went to a high school that emphasized calculation, then you ha
a good chance of knowing what properties of determinants force the
situation to be as it is.

VC.02.G10

48

