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VC.10 3D Surface Measurements
Basics

B.1) Sources, sinks, and Gauss's formula in 3D

OB.1.a)

Given a three-dimensional vector field
Fieldx, y, zl = {m[x, y, z], n[x, Y, 2], p(X, Y, 2]}

Clear [Field, m, n, p, X, y, z 1
Field [x_,y .,z 1={mXxy,z 1,n[xy,z 1,p[XxY,Zz 1}
mx,y,z 1,n[xyz J,p[xyz ]}

You calculate the divergence, divFipidy, z], of Fieldx, y, Z] via
the formula:
Clear [divField ]
divField [x_,y .,z 1=

DIMx, ¥,z 1,x1+DIN(x, ¥,z 1,y 1+DIpIxy.z2 1,21

p(O‘O,l VX, Y,z ]+ n(O,l,O ) XY,z ]+ m!l,O‘O ) X ¥,z ]

Not much of surprise.
What do you do with this formula?

OAnswer:

You use it the same way you use its 2D counterpart.

0OB.1.b.i) Gauss's 3D formula

Gauss's 3D formula says that if you go with a 3D vector field
Fieldx, y, z] = {m[x, y, 2], n[X, y, 2], p[X, ¥, 21},
and if R is a solid body in three dimensions with boundary surface
(skin) C, then
[ [ [ divFieldlx, yldxdy dz
= ffc Field . outerunitnormatl A
= flow of Field[x, y, z] across C.
Use Gauss's formula to measure the flow of the vector field
Fieldx, y, 7] = {y - 0.5, xy, Z}
across the surface of the box consisting of all pgintg, z} with
-1<x=<3,0sy=<2,and-2=<z<4.

OAnswer:
Clear [X,Y, z, m, n, p, Field 1
(MX_,y_,z_ 1,nIx,y.,z_ 1,pIX.y.z 1}={y-05xyz 2}
Field [x_,y_,z_ 1={mxy,z I,n[xy,z 1,pIxy.z ]}

(-05 +y,xy, z 2}
Gauss's formula tells you that the net flowField[x, y, z] across the
surface of the box with
-1=<x=<3,0=<y=<2and-2=<z<4

is
[* 22 divFieldix, y, 21 dzdy dx
—2Jo J-1 v
Here you go:
Clear [divF ]
divField [x_,y .,z 1=
DIM[x,y,z 1,x 1+ DIn[x,y.z 1,y 1+D[plxy.z 1,2 1];
2 ~3
rj j divField [x,y,z ]dzdydx
-2J0 J-1
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Very positive.
Strong flow from inside the box to outside the box.
There must be lots of spigots turned on inside this box.

OB.1.b.ii) Sources and sinks

In three dimensions, if

Fieldx, y, z1 = {m[x, y, Z, n[x, y, 2], p[x, y, zI},
then

divFieldx, y, z] =

DIm[x, y, Z], X] + DIn[x, y, 2], y1+ DIplx, y, 2], Z]

tells you about sources and sinks the same way that digEigidells
you about sources and sinks in two dimensions:
— The pointgx, y, z} with divFieldx, y, z] > 0 are sources of new
fluid.
- The pointgX, y, z} with divFieldx, y, z] < 0 are sinks for old fluid.
Use Gauss's formula to explain why this interpretation is legitimate.

OAnswer:
Here's how to see why:
Take a small spheiC centered &{xo, Yo, Zo}. Calculate the flow
acrossC which, according to Gauss's formula, is
[ [ [ divFieldx, yldxdy dz
whereR is the solid region consisting of the spFCrand everything
insideC.
Here's the kicker:
If you start out with
divField[xo, Yo, o] > O,
thendivField[x, y, z] is positive for ali{x, y, z}'s close t({Xxo, Yo, Zo},
so if C is small enough,
divField[xo, Yo, Zo] > 0

for all {x, y, z}'s insideC. This tells you that that for small spheCs
centered &{Xo, Yo, 20}

flow — across- C = fffR divField[x, y]dxdy dz > 0.
And this tells you that idivField[xq, Yo, Zo] > O, then the net flow of
Fieldx, y, z] across small spheres centere{xg, Yo, Zo} is from
inside to outside.
The upshot:
If divField[xo, Yo, Zo] > O, then the poii{Xo, Yo, Zo} is @ source of new
fluid.
Similarly, if divField[xo, Yo, 20] < 0, then the net flow cField[x, vy, z]
across small spheres centere{Xo, Yo, Zo} is from outside to inside.
Consequently, idivField[xg, Yo, Zo] < 0, then the poir{xg, Yo, Zo} is a
sink (or drain) for old fluid.

0B.1.b.iii)

Given
Fieldx, y, zZl = {y - 0.5, xy, 7},
say how to identify the pointx, y, z that are sources, and the points
{X, y, z} that are sinks.
OAnswer:
Clear [Xx,y, z, m, n,p, Field 1
(MO, y_,z_ 1,0 DX,y z_ 1,pIX,Y.Zz_ 1}={y-05xy.z %}
Field [x_,y_z_ 1={mxyz 1,nixy.z 1,pIxy.z 1}
{(-05 +y,xy, z 2}

Calculate the divergence:
Clear [divField ]
divField [x_,y .,z 1=
DIm[x,y,z 1,x1+DIn(x,y,z 1,y 1+Dlpixy, z 1,21
X+2z

Find out wheredivField[x, y, z] is O:
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] Solve [divField [x,y,z ]==0]
{{x->-22}}

This says that the poin{x, y, z} with x = -2z are neither sources nor
sinks.
Now look at:

Clear [a]
divField [x,y,z 1/.Xx »-2z+a
a

Food for thought.
Upon reflection, this tells you that if

x > -2z, thendivField[x, y, z] > 0.
and if

X < =22z, thendivField[x, y, z] < 0.
As a result, the poini{x, y, z} that are sources are the points with
x > -2z, and the point{x, y, z} that are sinks are the points with
X<-22.

OB.1.b.iv)

Given

Fieldx,y, zZl ={x— z,y— X, z— vy},
say how to identify the pointx, y, z} that are sources, and the points
{X, y, Z} that are sinks.
Use your answer to determine whether the net flow of this vector field
across the sphere of radius 2 centerdd,a, 1 is from inside to
outside or from outside to inside.

OAnswer:
Clear [m, n, p, Field, x, y, z 1
{mix_,y_.,z_ 1,n[x,y.,z 1,pI[X,Yy.,Z 1}={X-2y -X2Z -y}

Field [x_,y_.,z_ 1={mXxvy,z 1.n[xy,Z 1,pIxy.z 1}
{X-2, -X+Y, -y+2}

divField[x, y, Z] is given by:

Clear [divField ]
divField [x_,y_,z_
3

] =0xm[x,y,z ]+6yﬂ[X,y,Z 1+0zp[X,y,2 ]

No matter wha{x, y, z} happens to be,
divFieldx, y, z] = 3.
So:
All points {x, y, z} are sources.
And now without further calculation, you know that the net flow of this
vector field across sphere of rad2isentered &{4, 2, 1 is from inside
to outside.
Reason: There are no sinks inside the sphere to absorb excess
outside-to-inside flow.

oOB.1.c)
Explain the reasoning behind Gauss's formula

OAnswer:
A heavy, long-winded explanation is possible, but leave it at this:
Once you have a good feeling for the ideas in B.2), B.3), and B.4), yo
can build your own explanation of Gauss's formula by copying and
pasting the explanation of the two dimensional Gauss-Green formula
from an earlier lesson and making technical adjustments.

If you cannot find satisfaction without seeing some more details, see:

W. Kaplan, Advanced Calculus, 1972, Addison-Wesley,
Reading, Masschusetts, page 338.

B.2) Measuring area on surfaces

OB.2.a) Area of a parallelogram in three dimensions
Here's a parallelogram in 3 dimensions:

VC.10.B1-B2

basepoint = {1,2,0 };
X={-2,11 };
Y={1, -2,1};
parallelogram = Show[Graphics3D [
Polygon [ {basepoint, basepoint + X, basepoint
ViewPoint - CMView, Axes - True, AxesLabel

+ X+ Y, basepoint
- (%Y 13N

+Y}11,

y 3

Because of its unfortunate position, it might seem hard to measure the
area of this parallelogram, but the cross product can bail you out.
How?

OAnswer:

Throw in the vectors that define this parallelogram:

Show[parallelogram, Arrow [X, Tail - basepoint, VectorColor
Arrow [Y, Tail - basepoint, VectorColor - Blue ],
Graphics3D [{PointSize [0.03 ], Point [basepoint 1}1,

> Blue 1,

Graphics3D [Text ["X", basepoint + ; +{0,02,0 1}]], Graphics3D [

Y
Text [Y basepoint ot {0.2,0,0 }] ] ViewPoint - CMView,

PlotRange - All, Axes - True, AxesLabel - {"x", "y", "z" s

As you probably remember,
IXx Yl = [IX[[YI[ISinfangle betweel

This quantity is also equal to the area of this parallelogram; so the aree
in square units of this unfortunately positioned parallelogram is given
by:

XcrossY = XxY;

+/ XcrossY . XcrossY

33

Easy.
Rerun for other choices X' andY to get the hang of it.

0OB.2.b.i) Measuring area on planes

Here's a look at part of the plane

X+y+2z=2:

Clear [X,Y,2z,u,V 1

X[u_v_1=uy

ylu,v_1-=v;

zZ[u_,v_1=2-u-v;

surface = ParametricPlot3D
{u,0,1 3}, {v,0,1
AxesLabel - {"X",

[{x[u,v 1,y I[uv]izI[uVv]l}
PlotPoints - {2, 2}, Axes - Automatic,
z" }, ViewPoint - CMView];

Here is another way of getting a plot of the same surface:
This plot also includes the vectors that generate the parallelogram.
{a,b}={0,01};
h=1;
Show[Graphics3D [Polygon [
{{x[a,b1l,y[abl,z[ab]l} {x[a+h,bl,y[a+hb],z[a+h b]},
{x[a+h,b +h],y [a+h,b +h],z[a+h, b +h]},
{x[a,b +h],y [a,b +h],z [a,b +h]}}1], Arrow [
{x[a+h,b],y[a+h b],z[a+h b]}-{x[ab],y[ab] z[abl},
Tall - {x[a,b],y [a b1,z [a b ]}, VectorColor - Blue 1, Arrow [
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{x[a,b +h]l,y [a,b +h],z [a, b +h]}-{x[a,b]l,y[ab], z[ab]}
Tail - {x[a,b ],y [a b1,z [a b1}, VectorColor - Blue ],
PlotRange - All, Axes - Automatic, AxesLabel - 'y, }
ViewPoint - CMView];

For this choice of a, b, and h, the corresponding parallelogram has
area measurement:

X={x[a+h,b],y[a+hb],z[a+h b]}-{x[ab
Y={x[a, b +h]l,y [ab +h],z [a b +h]}-{x[a b
XcrossY = XxY;

+/XcrossY . XcrossY

NE

For unspecified choices of a, b, and h, the corresponding
parallelogram has area measured by:

Clear [a, b, h ]
X={x[a+h,b]l,y[a+h/b],z[a+h b]}-{x[a bl y[ab]l z[ab]}
Y={x[a,b +h],y [ab +h],z [a b +h]}-{x[ab] y[abl z[ab]}
XcrossY = XxY;

/XcrossY . XcrossY

V3 Vn*
What is the area conversion factor
SAy[u, V]

lL,ylabl,z[abl)
l.ylabl zlab]l}y

that you use to convert uv-paper area measurement into xyz-surface

area measured on the plane ¥ + z=27?
OAnswer:
Theuv-paper rectangle with corners at
{a, B, {a+ h, b}, {a+ h, b+ h}, and{a, b+ h}
hasuv-paper area given by:

Clear [h]
uvarea = h?
h2

This uv-paper rectangle plots outxyz-coordinates as the
parallelogram with corners at

{x[a, bl, y[a, b, z[a, bi},

{x[a+ h, b], y[a+ h, b], zZla+ h, b}]},

{x[a+ h, b+ h], y[a+ h, b+ h], zZ[a+ h, b+ h]},
and

{x[a, b+ h], y[a, b+ h], Z[a, b+ h]}.
The area of this parallelogram is given by:

Clear [a, b, h ]
X={x[a+h,bl,y[a+hb]l,z[a+h b]}-{x[a bl yl[abl z[abl}
Y={x[a,b +h],y [ab +h],z[a b +h]}-{x[a,b]l, y[abl z[abl};
XcrossY = XxY;

planararea = 4/ XcrossY . XcrossY
V3 Vh?
The area conversion factSAyy,[u, V] that you integrate to convert
uv-paper area intxyz-surface area measured on the plane
X+ y+z=2Iis:
Clear [SAxyz]
planararea
SAxyz [u_, V_ ] = PowerExpand [ ————
NES
Still pretty easy.

]

uvarea

VC.10.B2

0OB.2.b.ii)) Measuring planar area

Here is a plot of the uv-paper circle
F+vi=4

on the plane
X+ y+2=2

under the parameterization
xu, vl =u,
Mu, vl =v, and
iu,vl]=2-u-v

used above.

Clear [x,y,z,u,V,t 1
X[u_,v_1=uy
yluv_1=v,
zZ[u_,Vv_1=2-u-v
uft_]=2Cos[t];
VIt_]=2Sin [t];
curve = ParametricPlot3D [{x[u[t],v [t1],y [uftl,v [t1],Z [u[t]l,Vv [t1]},
{t, 0, 2 s}, DisplayFunction - ldentity  1;
{a, b}=1{-4 -4}
h =8§;
plane = Graphics3D [Polygon [
{{x[a,b]l,y[abl,z[ab]} {x[a+hb]l,y[a+hb]l,z[a+h b1},
{x[a+h,b +h],y [a+h, b +h],z[a+h,b +h]},
{x[a,b +h],y [a,b +h],z [a,b +h]}}]];

Show[curve, plane, Axes - Automatic, AxesLabel - X,y }.
ViewPoint - CMView, DisplayFunction - $DisplayFunction 1;

Come up with a measurement of area enclosed by this curve as
measured on the plane
X+ y+2z=2.

OAnswer:

Area on the plane SA,y,[u, v] timesuv-paper area as calculated
above in part i):

| sAxyz[u,v ]
V3

The circleu? + v2 = 4 is a circle of radiu2 onuv-paper. It encloses an
area 0122 © = 47 square units measured uv-paper.

Its plot on the planx + y + z =2 encloses a total of:
| SAxyz[u,v14n
4 @ b

in square units.

OB.2.c.i) Measuring area on curved surfaces

Here's a portion of the surface whose parametric equations are:
Clear [X, Y, 2z, u,V 1

X[u_,v_1=u
ylu_v_1=v;
Z[u_Vv_1l=uv;

{ulow, uhigh } = {0,1 };
{vlow, vhigh '} = {0, 2 };
surface = ParametricPlot3D [Evaluate [{x[u,Vv 1,y [u, Vv 1,2Z [u Vv ]}],
{u, ulow, uhigh '}, {v, vlow, vhigh }, ViewPoint - CMView,
BoxRatios - Automatic, Axes - Automatic, AxesLabel - X,y }1;

1

o
Measure the surface area of the plotted portion of this surface.

OAnswer:

Mathematica plots this surface by approximating the true surface with
a whole herd of little patches that resemble parallelograms.
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The message is clear. cross =legl [u,v,h ]xleg2 [u,v,h 1;
Clear [paraareafactor 1
You can use what you know about measuring the area of ~/cross . cross
paraareafactor [u,v_,h_ 1= —
parallelograms to help to measure the area of curved surfaces. T TR
Vh4 +h4uZ +hdv

See what some parallelograms will do: h2

Clear [h, basepoint, legl, leg2, parallelogram ] The area conversion factSAyy,[u, v] for the surface &u, v} is the

basepoint [u_,v_ 1={x[u V], yI[uvVv] zI[uVv]l} P .

legl [u_,v_,h_ 1={x[u+h,v],y[u+h Vv ],z [u+h v ]}-basepoint [u,Vv ]; I|m|t|ng case Of the above h— 0:

leg2 [u_,v_,h_ 1={x[u v +hl,y [u Vv +h],z [u Vv +h]} -basepoint [u,V 1; Clear [SAxyz]

parallelogram  [u_, v_, h_ 1= Graphics3D [ . | SAxyz [u_, v_ ] = Limit [paraareafactor [uv,h 1,h 0]

{Black, Polygon [{basepoint [u,Vv ], basepoint [u,v ]+legl [u,v,h 1, s
basepoint [u,v ] +legl [u,v,h ]+leg2 [u,v,h 1, Vieu? v

mp Dasepoint [,V 1 +leg2 [u. v, h 131 The total surface area (in square units) of the surface plotted above is

h=025 vhigh ruhigh i

parallelograms = Table [parallelogram [u,v,h 1, J\;low fulow SAXYZ[UI vidudyv:

{u, ulow, uhigh - jump, jump }, {v, viow, vhigh - jump, jump }1; | surfarea = Nintegrate [SAxyz [u, v 1, {u, ulow, uhigh }, {v, vlow, vhigh 31
3.18041
Show[surface, parallelograms, ViewPoint - CMView, Axes - Automatic, . .
AxesLabel - ("', "y", "Z"  }1; And once you've done one of these, you've done them all.
X
oB.2.c.ii)

Here is a direct formula for the area conversion factor

SAy.[u, V] that converts uv-paper area measurements into area
measurements on the surface whose parametric formulas are
{x[u, vl, y[u, vl, Z[u, v]}:

Clear [X,VY, z, u, Vv, cross, SAxyz 1
cross [u_,v_ ] =
Hug that surface, mama! DO{x[u,v ],y [uV] z[uV]1}ul=D{x[uvVv]y([uv] z[uVv]}Vv]

SAxyz [u_,v_ ] =+/cross [u,v ].cross [u,V ]
The smart money says: V@Y puy v 1 x A0 puy v ) - x @) pu v 1y @00y, v ])2 +

The smaller the parallelograms are, the closer they hug the surface. (-2 [y v x0) [uv ] x @) pu v 20 [y )2 .

Check it out: (2O [u, v ]y 10
Nasty looking, but useful.
Explain where this formula for Sé[u, v] comes from.

OAnswer:

uv]-y© v 1 z®30) v ])2)

fT%jo‘z; You can make a good run at the formula by clearing the parametric
paralielograms = Table [parallelogram  [u,v,h 1, ) functionsx([u, v, y[u, V], andz[u, v], and doing what was done in the
{u, ulow, uhigh - jump, jump }, {v, viow, vhigh - jump, jump }1;
S ) ) last part above:
Show[surface, parallelograms, ViewPoint - CMView, Axes - Automatic,
AxesLabel - {"x","y", "z" Y1 Clear [x,Y, z, u, v, h, basepoint, legl, leg2, parallelogram 1

« basepoint [u_,v_ ]={xX[u Vi1, y[uVv]l,zI[uvVvIl}
xfu,v 1],y [uv],z[uvl]}
| legl [u_,v_,h_ 1={x[u+hv],y[u+h, v,z [u+h, v ]}-basepoint [u, v ]

{-x[u,v]+xth+uv], -y[uv]+ylh+uv], -z[uVv]+z(h+uvVv]}
| leg2 [u_,v_,h_ 1={x[u,v +h]l,y [u Vv +h],z [u Vv +h]} -basepoint [u,Vv ]
{-x[u,v]+x[uh +v], -y[uv]+yluh +v], -z[uv]+z[uh +v]}

As h closes in 010, the area conversion factor for the parallelogram

determined by the vectors:

The smart money wins. [ legl [uv,h 1
These smaller parallelograms are really glued to the surface. Even (xtu v ) extheu v, -y v jrythsuv], -z{uv]+zh+uvi)
smaller parallelograms will share even more ink with the surface. and

, . . | leg2 [u,v,h ]
Here's how to get the area conversion faSAyy,[u, V] for going from XUV ] X[ h oV, -y [V ] sy [h sv], -Z[U v ]+2[Uh sv])
uv-paper area txyz-area on the surface auwpoint{u, v}: with tails at
Notice that for small positivh, the area conversion factors at a | basepoint [u, v ]

(xfuv ],y [uv] z[uvi}

uv-point{u, v} are nearly the same for area on the surface and for are: i )
closes in on the area conversion faSA,y,[u, v] for the surface at

on the parallelograms plotted above which are determined by the

{u, vi.
vectors: ) . L
Clear [h] The area conversion factor for this parallelogram is given by
legl [u,v,h ] llleg2{u,v,hixleg2u,v,h]||
leg2 [u,v,h 1 =
{h,0, -uv+ (h+u)v) As a result, the formula for the area conversion factor surfe{u, vitis
{0,h, —uv+u(h+v)} lim legtu.v.xleguv.mil
. . 2 .
For fixed{u, v} andh, the area conversion factor for converiuvgarea h-0 "

This is the same as

to xyz-area on the parallelogram determinedegifu, v, h] and
|Im ” leg1fu,v,h] « leg2u,v,h ”
h h :
h-0

leg2u, v, h| is given by:
This is the same as
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. leg1fu,v,h| . IegZ[u,v,h]
i, et (552
Look at:
I legl [u,v,h 1
h
-X[u,v ] +xh+u,v] -y[u, v ]+ylh+uv] -z[u,v]+zlh+uv]
{ h : P : }
I leg2 [u, v, h 1]
h
-x[u,v ] +x[u h +v] -y[u,v]+y[uh +v] -z[u,v]+zuh +v]
{ h : h : }
: leglfu,v,h] \ - : .
lim (=== is given by:
h~>0( h ) 9 Y

| fist = {D[x[u,v],ul,Dly[uvi,ul,Dfz[uVv],ul}

(x\’l,O)[uyv 1,y \1'0’[U,V 1,z (1‘0}[

lim (292Ul ) i given by:
h—»O( no)isg ¥

u, v}

] second = {D[x[u,v1,v] D[y[uvVv]Vv] D[z[uVv]V]}
(X(D,lw uvi,y 01)

The area conversion factSAyy,[u, V] for the surface is the length of

v,z 0wy

cross product:

Clear [cross, SAxyz ]
cross [u_,Vv_ ] =first xsecond;

SAxyz [u_,v_ ] =+fcross [u,v ].cross [u,V ]

VO fu v ) E0 fu v ] -x00) [u,v )y 0 v ) ®
(=2 @) [u, v ] x @0 [y v e x @) [y 20 [y v )P s

01) (10) [y, y ] -y @1

(z©@) fu, vyl u,v]z(““[u,v])z)

The final formula is a mess to remember, but you can get the same
formula quickly via:

Clear [cross, SAxyz ]

cross [u_,v_1] =

DI{x[u,v 1,y [uV] z[uVvI1}ul=«D{xX[uVv]ylluvlzIuv]i}vl
SAxyz [u_,v_ ] =+fcross [u,v ].cross [u,V ]

VO fu v T X 0 fu v - x @) fuy 1y @0 puy v )

\ 2
(-2 GO v ex O U v 320 U )T

01)

u, v ]x

(1,0

(2O [u, v 1y RO v ) oy ©) (u v 12300 [y v 1))

And this is the explanation.

oB.2.c.i)
Measure the surface area of the surface of a sphere of radius r.

OAnswer:

Go to spherical coordinates.
| Showt[all, DisplayFunction - $DisplayFunction 1;

The surface of the sphere of radrus described by

{x[s, 1, y[s, {l, Z[s, 1} =
{r Sin[s] Codt], r Sin[s] Sin[t], r Cogs]}
with s running fron0 tozr andt running from0 to2 x.
Clear [X,Y,2,71,5,t 1

{X[s_,t_ 1,yI[s_,t_ 1,z [s_t 1}=
{rSin [s] Cos[t],rSin [s]Sin [t],rCos [S]}

{rCos [t] Sin [s],rSin [s]Sin [t],rCos [s]}
To measure the area of surface of the sphere of radills/ou have to
do is calculate
T (2T i
I 5 " SAyzls, tldtds:

Clear [SAxyz, cross ]

cross [s_,t_ 1=

Di{x[s,t 1,y [s,t 1,z [s,t 1}, s 1xD[{x[s,t I,y [s;t 1,z [s,t ]}, t ]}
SAxyz [s_,t_ ] = VTrigExpand [cross [s,t ].cross [s,t 1]

LI 2,1 agins)2
\/7 2r Cos[s] +2r Sin [s]

7T 2T
| J j SAxyz [s,t ] dt ds
o Jo

VC.10.B2-B4
47r %
If your version of Mathematica gave yOuthen your version of
Mathematica screwed up. Here is another way of getting the correct
answer:

I r2r
| 2JZJ SAxyz [s,t ]dt ds
0 0

474
4712 is correct.

B.3) Surface integrals

Just as you can integrate functions on curves with respect to arc
length, you can integrate functions on surfaces with respect to surface
area.

And you don't have to go to a lot of trouble to do it.

OB.3.a)

Here is a parameterized surface C:

Clear [X,VY,z,u,V 1
X[u_,v_1=uCos[Vv];
y[u_,v_1=-uSin [v];
zZ[u_,v_1=vV;

. . 3
{{ulow, uhigh '}, {vilow, vhigh 1} = {{1,3}, {0, T}}

surface = ParametricPlot3D [{x[u,v]yIluv]zI[uVvl},
{u, ulow, uhigh }, {v, vlow, vhigh }, ViewPoint - CMView,
Boxed - False, AxesLabel - X"y 13N

Calculate
[ [ 6%+ yHdA
where the integral is taken with respect to surface area.

OAnswer:

[ [ 0E+ yHdA
is calculated via the formula
f"h'ghfumgh (X[u, VI + y[u, VI?) SAyy[u, VIdudv.

viow Julow
Calculating this is duck soup.

First you need the area conversion faSAyy,[u, V]:

Clear [SAxyz]

cross =

DO{x[u,v 1,y [uV]1z([uVvIi}ul=D{X[uvVv]ly vl zI[uVvIi}Vvl
SAXyz [u_,Vv_ 1= VTrigExpand [cross.cross ]

NeweTe
Now turn the integral
f\'h'ghfumgh (X[u, VI? + y[u, VI?) SAxy[u, Vidudv.

viow Julow
over to the machine:
integral = Nintegrate [ (x[u, v 12 +y[u, v 1%) SAxyz [u, V ],
{u, ulow, uhigh '}, {v, vlow, vhigh }1
103.125

Not exciting, but not hard.

B.4) Surface integrals for measuring flow across surfaces

OB.4.a)

Here's a surface:

Clear [X,Y,2z,u,V 1
X[u_, v_1
y[u_, v_

1
ZlUL V1= o (10 - u? -v?);

=u
=V,
{ulow, uhigh } ={-2,21};
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{vlow, vhigh '} ={-2,21};

surface = ParametricPlot3D
{u, ulow, uhigh '}, {v, vlow, vhigh
ViewPoint - CMView];

[Evaluate [{x[u,V 1,y [u, Vv 1,Z [u Vv ]},
}, AxesLabel - {"x", "y", "z" },

Take{a, b = {0.5, 1.9 and look at this display of the two curves
R[u] = {x[u, bl, ylu, bl, z[u, b]}

with ulow < u < uhigh

and
RIv]l = {x[a, v, yla, v, Z[a, v}

with vlow < v < vhigh

together with the surface plotted above:

{a,b}=1{05 10 1};

Clear [P1, P2]

Pllu_]={x[u bl y [ub] z[ub]l}
P2[v_1={x[av].y[aVv] z[aV]}

curvel = ParametricPlot3D [Evaluate [P1[ull,

{u, ulow, uhigh }, DisplayFunction - Identity  1;
curve2 = ParametricPlot3D [Evaluate [P2[v]],

{v, vlow, vhigh }, DisplayFunction - ldentity 1;
surface = Insert [surface, EdgeForm [1, {1,1 }1;

curves =
Show surface, curvel, curve2, Boxed
BoxRatios - Automatic, DisplayFunction

- False, ViewPoint - CMView,
- $DisplayFunction 1;

X
0
1

Two intersecting curves running on the surface.
Now calculate the area conversion factoggAl, v]

Clear [SAxyz, cross ]

cross [u_,v_ 1=

DI{x[u,v 1,y [uVv] z[uVv]}ulxD{X[uVv]y luvlz[uv]}vi;
SAxyz [u_,v_ ] =+fcross [u,v ].cross [u,V ]

f L 4uz | av?
9 9
Keeping the samf, b as above, add to the last plot the three vectors
Dix[u, v1, ylu, v1, Z[u, vi}, u] /- {u— a, v- b},
D{x[u, V1, y[u, V], Z[u, V]}, V]}]/. {fu - a, v— b},and
crosk, b,
all with their tails at the point of intersection:

tal = {x[a,bl,y[ab]l,z[ab]l};

vectorl =D[{x[u,V 1,y [u V], zZ[uVv]}hul/. {u-avVv -b};
vector2 =D[{x[u,V ],y [u V], z[uVv]},Vv]/ {u->avVv -»b};
vector3 =cross [a, b ];

Show [curves, Arrow  [vectorl, Tail - tail ], Arrow [vector2, Tail > tail ],
Arrow [vector3, Tail -tail 171;

Totally radical or what!
Explain why this happened and how it relates to the area conversion
factor SAy,[u, V.

OAnswer:
Both
D[{x[u, V], y[u, V], Z[u, v]}, u], and
DI{x[u, v1, y[u, V1, Z[u, v}, V]
are tangent to the surface{x[u, vl, y[u, V], Z[u, V]},

VC.10.B4

so their cross produccrossu, v, is automatically normal
(perpendicular) to the surface{x[u, V], y[u, V], Z[u, V]}.
The upshot:

The area conversion factor

SAy-[U, V] = v/ cros$u, v] . crossu, v]
is the same as the length of the normal vector
crossu, V.

OB.4.b)

Given a 3D vector field
Fieldx, y, z] = (m[x, y, 2], n[x, v, 2], p[X, Y, 2]},
and given a surface parameterized by
{X[u, v], y[u, V], Z[u, v]}
with ulow < u < uhigh and vlows v < vhigh,
you can measure the flow of Figkdy, z] across the surface by
calculating

fv‘l'g",shful::ﬁh Field[x[u, V], y[u, v]]. norma[u, V] dudv
where normdl, v] = crosgu, V] is given by:

Clear [x,Y, z, u, v, hormal 1
normal [u_,v_ ] =
DO{x[u,v 1,y [uVv]1z[uVv]1}ul=D{X[uvVv]lylMuvl zI[uVv]i}vV]
(2O fu vy v -y @ ey 1230 v g,
2OV v x®0) v ] ex @) U v 1230 [y v g,
y\’o‘l’[u,v ]Xfl‘D\[u'V ] 7x\'0‘1} [U,V ]y(l,O) [U,V ])
Don't try to memorize this formula.

Where does the flow-across formula
high ruhigh .
Lo [ Field[x[u, V], y[u, V]I . normalu, v] dudv
come from?

OAnswer:
PutnormcompFiel@x[u, v], y[u, V], Z[u, v]] equal to the component of
Field[x[u, V], y[u, V], Z[u, V]] in the direction perpendicular to the

surface a{x[u, vl], y[u, V], Z[u, V]}.
You measure the flow Fieldx, y, z] across the surface by calculating

flowacross= ffs normcompFielk[u, V], y[u, V], Z[u, v]] A

_(vhigh ruhigh
~ Jvlow fulow
Put this in your pocket for a minute.

Remember thenormalu, v] as calculated above is perpendicular to the

urface

normcompFielgk[u, v], y[u, V]] SAy,[u, vV]dudv.

surface at the poi{x[u, vl], y[u, V], Z[u, V]}. At this point, the
component oField[x[u, V], y[u, V], Z[u, V]] in the direction
perpendicular to the surface is

normcompFieléx[u, v], y[u, V], z[u, V]]

N = normalu,v]
= Field[x[u, vl, y[u, V], Z[u, V]]. T

BecauseSAyy,[u, v] = v/normalu, v]. normalu, V],

flowacross= ffsmacenormcompFiel(k[u, vl, ylu, V], Z[u, v]]dA

_ vhighfuhigh
~ Jvlow Julow

normcompFielgk[u, V], y[u, V]] SAy,[u, v|dudv

vhigh f”high Field[x[u, V1, y[u, V]| .("2malusl) SA [u, v] dudv

~ Mow Julow SAyy[uV]

__ vhigh
~ Jvlow

4" Fieldix[u, Vi, ylu, V1] (emels) gu gy

ulow SAxyz[u,V]

_vhigh ruhigh
~ Wvlow fulow
because thSA,y,[u, v] terms miraculously cancel out.

Fieldx[u, V], y[u, V]].normalu, v]dudVv.

Explanation finished.
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0OB.4.c)
Here's a new surface:

Clear [X,Y, 2z u,Vv 1

X[u_,v_1=v

ylu_,v_]1=2E"Sin [xu];

zZ[u_,v_1=u;

{ulow, uhigh } = {0, 2 };

{vlow, vhigh } = {0.5,35 1};

surface = ParametricPlot3D [Evaluate [{x[u,Vv 1,y [u, Vv 1,Z [u Vv ]},
{u, ulow, uhigh }, {v, vlow, vhigh }, ViewPoint - CMView,

AxesLabel - {"x", " y", "z" 11
X 1 0
2 ‘ ‘\-

o
NN
R
N
SOTSST

QR

y 1
Here is this surface together with some of the normal vectors whose
lengths measure the area conversion factor

) SAy.[u, V], )
which converts uv-paper area measurements into xyz-area
measurements on the surface:

Clear [normal ]

normal [u_,v_ 1=

DI{X[u,v ],y [uVv] zI[uVv]}ul«xDi{x(uvlyl[uvlz([uvi}vVvi
normals = Table [Arrow [normal [u,Vv ], Tall - {Xx[u,v ],y [uV],Z[uVI]}],
{u, 0.5, 1.5, 0.5 }, {v,15,25 }1;
surface = Insert [surface, EdgeForm [1, {1,1 }1;

Show[surface, normals, ViewPoint
AxesLabel - {"x", "y", "z" 11

- CMView, Boxed - False,

The normals are pointing out from the side of the surface you are
sitting on.
Determine whether the net flow of the vector field

Fieldx, y, zZ ={y z, xz, Xy}
across this surface is with the plotted normals or is against the plottec
normals.

OAnswer:

Enter the vector field:

Clear [X,Y, z, m, n, p, Field 1
M.y, z_ 1,nIx,y.z. 1,pIX,Yy_.Zz 1}={yzxzxy k
Field [x_,y ,z_ 1={mXxy z 1,n[xy,z 1,pIXVY.Z 1}
(y Z,XZ, Xy }
Reenter the parameterization of the surface, and calnormalu, v]:
Clear [u,V ]
X [u_, V_ ] =V,

ylu_,v_1=2E"Sin [xu];
zZ[u_,v_1=u

{ulow, uhigh } = {0, 2 };
{vlow, vhigh } = {0.5,35 };
Clear [normal ]

normal [u_,Vv_ ] =
DO{x[u,v 1,y [uV ] z[uVv]1}ul=«D{X[uVv]ylluvlzIuVv]i}vVv]
{2E7V Sin [nu],1, -2EYnCos[nu]}

Calculate

fv\ll:‘il\?hﬁ:\thield[x[u, v, y[u, v]].normalu, v] dudv:

Nintegrate  [Field [x[u,v 1,y [u, Vv ],Z [u Vv ]].normal [u,V ],
{u, ulow, uhigh '}, {v, vlow, vhigh }, AccuracyGoal - 2]
12.7343

VC.10.B4-B5

Positive.

This tells you that the net flow Field[x, y, z] across this surface is in
the direction of the plotted normals.

Take another look:

Show[surface, normals, ViewPoint
AxesLabel - {"x","y", "z" I3

- CMView, Boxed - False,

In short, the net flow of
Field[x, y, zZ ={y z, Xz, Xy}
across this surface is from behind the surface to the front of the surface

B.5) Flux of the electric field

Way, way back, at the end of the&entury, a fellow named

Coulomb played with electrostatic problems. He rubbed cats with
amber rods, and had an all-around good time with his science. More
than that, he managed to do some calculations of forces that
electrically charged objects exert on each other.

He found out that in free open space, the force that a particle located
at{x, y, z} with charge {, y, z] exerts on a particle located at
{xx, yy, zz} with charge €xx, yy, zZ] is given by:
Clear [K, q, X, Y, z, XX, Yy, 2z 1
R={x,y,z }-{xx W 2z }
Kaix.y,z 14d0xxyy,zz 1R
(R.R)372

Force =

[KOCX0axyz Japoy.zz | Ky aixy.z apxyy.zz ]
(=% 24 (y-yy) 2+ (z-22)2)°7 " ((x-x) 2+ (y-yy)2 + (z-22)2)°?
Kiz-zz)qxyz Jaoxy.zz |

(X=x0)24 (y-yy) 2+ (z-22)2)°7

Note that R runs parallel to the vector that points ftexyy, zz to
xy. 7.

Most folks call this formula Coulomb's law.
Look at the magnitude of this force:

I +/Together [Force.Force 1]

K2axy.z 12q0xxyy, zz_ ]2
(X2 -2XXX +XX2+y2 -2yyy +yy2+22 27727 +722)°

This is the same as:
Kaix,y,z 19Dy, 22 1]
Expand [R.R]

Karx, ¥,z 190xxyy, 2z ]
X2 - 2XXX +XX2 +y2 -2yyy +yy2 +22 27277 +722

This means that the force is directed on the line between the two

points, and its magnitude is
K alx,y.zl abxx.yy,z2
(distance between the twg poiyfts
because the denominator

R . R= (distance between the two poilfts
This is what a lot of folks call an "inverse square law."

That constant K involves several other physical quantities and
ultimately depends only on the system of units used in the calculation.
As usual in mathematics, you specify standard math course units of
measure by adjusting the units so that K, and then you leave it to
your physics friends to tell you about the K they actually use.
For visualizations of Coulomb's law, electrical folks like the idea of
the electric field. The three dimensional electric field of assumes a
charge

dx,y, zl=1lat{x,y, z,
and thus is the force per unit chargéxaty, z}:

Clear [ElectField 1
ElectField [x.,y .,z_ ]=Force /. {Ks1,qI[Xy z 1-1}
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{ (X = XX) QXX Yy, 22 ] (Y -yy) qixx,yy, zz ]
(-x)24 (y-yy) 2+ (z-22)2)° 2" ((x-x) 2+ (y -yy)2 + (2 -22)2)°?
(Z*ZZ) q[XX, Yy, 2z ]
3’2}

((x=xx)2+(y-yy)2+ (z-22)?)
Here is a plot of the 3D electric field forx, yy, zz = {0, 0, @ and
alxx, yy, zz] = 6:

{xx,yy,zz }={0,0,0 };

qIxx,yy,zz ] =6;

Show[Graphics3D [{Red, PointSize  [0.06 ], Point [{XxX, Yy, zz }]}1,

Table [Arrow [ElectField [X,y,z 1, Tall - {x,y,z }, VectorColor - Red],

{x, -3,3,2 }, {y, -3,3,2 3}, {z, -8,3,2 }11;

ey

The field vectors point in the direction of greatest voltage drop
because the electric field is the gradient of the negative voltage.

OB.5.a)

Measure the flux across the surface of the sphere
X2+y?+72=1

resulting from a single charge of strength 3 placg@,ad, G.

Then take any positive radius r and calculate the flux across the

surface of the sphere
X2 +y2+22=r2

of the electric field plotted above.

Discuss any noteworthy outcomes.

OAnswer:
The flux of the electric field across a surface is just another name for
the flow of the electric field across that surface.
Load in the electric field:

Clear [K,q,xy,z,a I;
R={xy,z }-{0,0,0 };
Karx,y,z 19[0,0,0 1R

Force =
(R.R)3/2
{KXQ[U,O,O 1a[%y.z ] Kyq[0,0,0 Jg[xy.z ]
(x2 +y2 4 72)3/2 ’ (X2 +y2 +22)%2 '
Kzq[0,0,0 Jqg[xV, 2z ]}
(X2 +y2 4 22)3/72
q[0,0,0 1=3;

Clear [ElectField 1

ElectField [X.,y_.,z_ 1=Force /. {(K>1,q[xYy,z ]1-1}
{ 3x 3y 3z

(X2 +y2422)32 7 (32 ,y2 . 22)327 (x2 ,y2 .72

- To measure the flux througx® +y? + 22 = 1:

)3,’2 }

Use spherical coordinates for the sphx? + y? + 22 = 1:
Clear [X, Y,z 1,s,t, normal 1
r=1;
{X[s_,t_ 1.y Is_t_ 1,z[s_t 1}=
{rSin [s] Cos[t],rSin [s]Sin [t],rCos [S]};
{{slow, shigh '}, {tlow, thigh }} = {{0, =}, {0,2 m}};
normal [s_, t_ 1 = TrigExpand [
DI{x[s,t I,y [s,t 1,z [s,t 1}, s 1«xDI{x[s,t 1,y [s,t ],z [s;t ]}, t 1]
{Cos[t] Sin [s]2, Sin [s]2Sin [t], Cos [s] Sin [s]}

You can see that these normals point out from the sphere because th
third slot is positive fo0 < s< % and the third slot is negative for
Z <s<m.

Confirm with a plot:

Show[Table [Arrow [normal [s,t 1, Tail - {x[s,t 1,y [s,t 1,z [st 1},
7rn

n 3mx n 7 b
VectorColor - Blue 1, {s, —, —, —1}, {t, —, —, —1].
{ 4’ 4 4 b A 4" 4 2 H
ViewPoint - CMView, Axes - True, AxesLabel - {"x","y", "2" M

VC.10.B5

Good.
The flux of an electric field across a surface is just the flow of the same
electric field across the surface.
See B.4) to learn why this is given by
I [ aceElECtField . unitnormal A

shigh rthigh .
= gov'f noﬁ ElectFieldx[s, 1], y[s, 1], Z[s, f]].normals, | dtds
wherenormals, f] is as calculated above.
You can't use Gauss's formula here because the electric field has a
singularity inside the sphere.

The flux is:

shigh thigh
| J j ElectField [x[s,t 1,y [s,t 1,z [s,t ]]1.normal [s,t ]dt ds
sl 1l

low low

12
The flux measurement 12 flowing across the sphere from inside to
outside.

- To measure the flux througe? +y? + 22 = r2:
Use spherical coordinates for the sptx? +y? + 22 = r2:

Clear [x,V, z,r, s, t, normal 1
{x[s_,t_ 1,y I[s_,t 1,z ([s_t 1}=
{rSin [s] Cos[t],rSin [s]Sin [t],rCos [S]};
{{slow, shigh }, {tlow, thigh }} = {{0, =}, {0,2 m}};
normal [s_,t ] =TrigExpand [
Di{x[s,t 1,y [s;t 1,z [s,t ]}, s 1xDl{x[s,t ],y [s,t 1,z [s,t ]}, t ]];

flux =
shigh thigh
ElectField [x[s,t 1,y [S,t 1,z [s,t 1]1.normal [s,t ]dt ds
slow tlow
12 7+/r2

r

This is the same ¢127 because thrterms cancel out.
This reveals that the flux across the sphere is
12n
no matter what the radius is.
Think of it this way:
The charge €0, 0, @ continually sends out barrages of "bullets" in all
directions. That the flux across any sphere
X2+y?+22=r?
is the same no mattter wtrais means that at all times the same
number of "bullets" passes through each of the spheres.

This also reflects the fact that this electric field has no sources or sinks
other than the source at the singularit{0, 0, Q.

All this is a direct consequence of the inverse square law.
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= rhighfsmghfmighdivFieId[x[r, s, 0, yIr, s, 4, 2Ir, s, 9] Vi1, s, I dta

VC.10 3D Surface Measurements " Jrow Jslow Jiow =
. Unleash Mathematica:
Tutorials
Clear [gradx, grady, gradz, Vxyz 1
gradx [r_,s_,t_ 1=
{D[x[r,s,t 1,r1,D[x[r,s,t 1,s]1,D[x[rst 1,t 1}
T.1) Measuring flow across surfaces: grady [r, st 1=
Oly[r.s;t 1,r 1,Dy[rnst 1,s1,Dly[rst 1.t 1k
Gauss's 3D formula versus calculation by surface integrals gradz [r, st 1= _
{D[z[r,s,t 1,r1,D[z[r,s, t 1,s]1,D[z[rs t 1,t1};
. . . . . Vxyz [r_,s_,t_ 1=
OT.1.a.i) The situation suggests a calculation by Gauss's 3D formula TrigExpand [Def [{gradx [r.s,t 1, grady [rst 1, gradz [r.st 1}1]
Here's a surface: 1.2r 2Sin [s] +0.r 2Cos[s]2Sin [s] +
Clear [xy, 215t ] 0.r 2Cos[t]2Sin [s] +0.r 2Cos[s]?Cos[t]?Sin [s] +
oI, S_VY t'_ ' ]y s, 1zi.s.t 1}= 0.r 2Sin [s]3+0.r 2Cos[t]2Sin [s]3+0.r 2Cos[s] Cos[t] Sin [t] +
{0.6rSin [s]Cos[t],rSin [s]Sin [t],2rCos [S]}; 0.r 2Cos[s]®Cos[t]Sin [t]+0.r 2Cos[s] Cos[t] Sin [s]2Sin [t] +
{{slow, shigh }, {tlow, thigh  }} = {{0, =}, {0, 2 =}}; 0.r 2Sin [s]Sin [t]2+0.r 2Cos[s]2Sin [s]Sin [t]2+0.r 2Sin [s]3Sin [t ]2
Clear [surfaceplotter 1; . .
surfaceplotter  [s,t 1=4{0,1,0 }+{x[(3 st I,y [3st 1.z [3st 1} Good, this never goes negative for rhs, anct used here.
surface = .
ParametricPlot3D [Evaluate [surfaceplotter [s,t 11, {s, slow, shigh }, Here comes the measurement of the net f|OFIE|d[X, Y, Z] acrossC
{t, tlow, thigh }, Boxed - False, BoxRatios - Automatic, . .
ViewPoint - CMView, AxesLabel - {"x","y", "z" 1 fffR dIVFleld[X' y’ Z] dXdde
__(rhigh pshigh cthigh .. .
= Jiow Jow Jiow GiIVFieldIX[r, s, 8, yir, s, §, 2Ir, s, §] Vyylr, s, § dta
rhigh shigh thigh
J divField [
rlow slow ‘tlow
x[r,s,t 1,yI[rst 1,z [r,s,t 11Vxyz[r,st 1dtds
dr
-271.434
The surface is the skin of a solid egg. Negative.
Mealszl_”ﬁlthe flow of Ax 2 2 Because Gauss's 3D formula says
ieldx, y, z] = {-4X, y-, 2z} _—
across this surface. J [ [ divFieldx, y, Zl dxdy dz
Determine whether the net flow is from inside to outside or from = ffR Field. outerunitnormal A
outside to inside. = netflow of Fieldx, y, z] across C,
oAnswer:
this negative result tells you that the net flow of this vector field is
against the outernormals.
This is a natural for Gauss's 3D formula because the surface is all of The bottom line:
the outside skin of a solid region. The net flow of this vector field across this surface is from outside to
Enter the vector field: inside. There must be lots of sinks inside the surface.
Clear [X,Y, z, m, n,p, Field 1 s |:|T.1.a.ii)
(Mx_y_z_ 1,nDCYyLzo 1LpIXLy.z. 1 ={-4xy? 2z} ’ ] ) o
Field [x,y.,z_ l={mxyz 1,n[xyz 1,pIxy.z 1} Go with the same surface as in part i) above, but this time measure the
(-4xy %22} flow of the 3D vector field
CalculatedivField[x, y, Z: Fieldx, y, z] = {x+ Sinlyl, y + 4€7, -2z + x%)
Clear [divField ] across this surface. . o
divField [x_y_z_ 1= Determine whether the net flow across the surface is from inside to
DIM(x, ¥,z 1,x1+DIn[x,y,z 1,y 1+DIpxy,z 1,21 outside or from outside to inside.
“2+2y oAnswer:

Call the surface you see abcCeand call the solid consisting of all Enter the vector field:

points inside and on the surfeRe Gauss's formula tells you that flow Clear [xy,z, m, n, p, Field 1
i i {mix_,y_,z_ 1.nIx,y_,z_ 1,pIX,y,z 1}=
of Field[x, y, z] acros<C is STy s AET, 222 4 xiy:
fffR divField[x, y, zZldxdy dz. Field [x_y_z 1={Mxy,z Lnixy.z 1,p[%y.z 1}

L o (x+Sin [y],4E Z+y,x3-2z)
To calculate this integral, take advantage of the parameterization of tt -
CalculatedivField[x, y, Z]:

surface. Checking the plotting instructions above you seRtisat Clear [divField ]

described by divField [x,y.z 1]-=
DIm[x,y,z 1,x]1+D[n[x,y,z 1,y 1+D[p[x,y,z 1,2]

Clear [X,Y,2,1,5,t 1 0
{X[r_,s_, t_ 1.y [r_, s_, t_ 1.z [r_,s_, t_ 1} =
{0.6rSin [s]Cos[t],rSin [s]Sin[t],2rCos [S]} No sources or sinks.
{0.6rCos [t]Sin [s],rSin [s]Sin[t],2rCos [s]}

With The net flow of this vector field across this surfacQ.idn fact the net
ith:
) ) ) flow of this vector field across any surface that is the whole skin of a
{{rlow, rhigh 3}, {slow, shigh }, {tlow, thigh }} =
({0,313, {0, 7}, {0,2 x}} solid region i<0. The outside-to-inside flow is exactly balanced by the

0,31}, {0, n}, {0,2 x . . .
(oS B ! . . inside-to-outside flow.
Yyou know that the net flow cField[x, y, z] acros<C is measured by

- You could've done this one by hand.
[ [ [y divFieldx, y, Zldxdy dz
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Clear [normal ]

normal [u_,v_ ] =

DI{x[u,v 1,y [uVv] z[uVv]}ulxD{xX[(uVv]yIluvlz[uv]i}v]
{6u+2v,9,6v }

oT.1.a.i)

Go with the same surface as in part i) above, but this time measure tr
flow of the 3D vector field

Fieldx, y, z = {x + Sinly], y + 4™, -5z + X%} Calculate
: high (vhigh _.
across this surface. _ o ' Lo [ Field[x[u, V1, ylu, Vi, z[u, vI].normalu, vl dv d u:
Determine whether the net flow is from inside to outside or from fowacross =
outside to inside. uhigh ~ ~vhigh
Field [x[u,Vv ], uvVvi], zI[uv .normal [u,v ] dvdu;
O Answer: o LOW XUV 1,y [uv] z[uvi] v
. ) N[flowacross ]
Enter the vector field: 19086.8
Clear [X,Y, z, m, n,p, Field 1 s
(MDY 7 1oy z 1P DLy.z 1}= Strongly positive.

{x+Sin [y],y +4E7Z, -5z +x%}; . . .
Field [X,y.z 1={my.z 1,0 %2 1.pIxy.z 1} To interpret this, look at:

(X +Sin [y],4E Z+y,x3-52} | {u, ulow, uhigh 1}

. {u,0,2 }
CalculatedivField[x, y, 2Z]: | v, viow, vhigh 3

Clear [divField ] {v,0,13 }
divField [x_,y_,z_ 1=

scalefactor =03;
DImix,y,z 1,x1+DIn[xy,z 1,y 1+D[plx,y,z 1,21] normals = Table [Arrow [normal [u,Vv ], Tail - {x[u,v 1,y [uV]1,Z[uV]},
-3 ScaleFactor - scalefactor 1, {u, 05,151 }, {v,0.2,1.0,0.8 1
NEgative; every pOint is a sink. Show[surface, normals, ViewPoint - CMView, Boxed - False,
The net flow of this vector field across this surface is from outside to PlotRange - All Axestabel - (""", "2"  3;

inside. In fact, the net flow of this vector field across any surface that
is the whole skin of a solid region is from outside to inside.
You could've done this one by hand.

OT.1.b) The situation dictates a direct calculation by a surface

integral
Here's a surface: The normals are pointing out from the side of the surface you are
Clear [X,y,z,u, Vv 1] Sitting on.
X[u_,v_1=3v; . . .
ylu,v_1=-2uy Because the flow measurement is hugely positive, this tells you that the

zZ[u_,v_1=3u-v;
{ulow, uhigh } = {0, 2 };
{vlow, vhigh } = {0, 1.3 };

surface = ParametricPlot3D [Evaluate [{x[u,Vv 1,y [u,Vv]1,Z [uV]}], H H i
(. uow, uhigh 3. (v, viow, vhigh 3, ViewPoint - CView, net flow ofgradfix, y, z] across this surface is strongly from the side

Axeslabel - (', " Y% 20 3D you can't see to the side you can see.

T.2) Using Gauss's formula to avoid a calculational
nightmare:

Calculating flow across an oddball surface by calculating
the flow across a substitute surface

Go with 5 C, is the top half of a sphere of radius 2 centered at the origin:
f[X, Y, Z] = ((x+ 4) (y * 3) 2%, i . . Clear [x1,y1,2z1,s,t 1
and measure the flow of the gradient field [of, fy, z] across this xL[s_,t_1=2Sin [s] Cos[t];
surface. yl[s_,t_ 1=2Sin [s]Sin [t];
z1[s_,t_ ] =2Cos[s];
OAnswer:

{{slow, shigh }, {tlow, thigh  }} = {{0, %} 0,2 1}

You can't use Gauss's formula because this surface is not the skin of Ciplot = ParametricPlo3D  [(xL[s.t 1.v1 5.t 1. 71 [s.t 1},

solid region, so you've got to go with a direct calculation via the {s, slow, shigh 3, {t, tlow, thigh 3, Boxed - False,
ViewPoint - CMView, AxesLabel - {"x","y", "z }, PlotRange - All 1;
surface integral. X o2
Enter the function and its gradient field:
RIT
Clear [f, X, y, z, gradf ] 1 "$==='—,"¢},
FIX Yo 2o 1= ((x+4) (y+3)2)% Zo -§E§%
gradf [x_y_ z_ 1={DIf[xy,z 1,x1,DIfIxy,z 1,y1,D[fIxy,z 1,21} FEE??”
(2 (4+x) (3+y)222,2 (4+x)2 (3+y) 22,2 (4+x)2 (3+y)%2} =5
. 0
Enter the vector field: y 1T
Clear [x, Y,z m,n,p, Field 1 C, is an oddball surface that fits under lalit agrees with Con their
(mix_,y_,z 1.nix.,y.z 1.plx.,y,z I}=gad [xyz ] common boundary curve.
Field [x,y ,z_ 1={mXxvVy,z 1,n[xy,z 1,pIXY.Z 1}

Clear [x2,y2,22,r1,t 1
X2[r_,t_ 1=rCos [t];
Reenter the parameterization of the surface and calnormalu, vi: Y2IL L 1=1Sh 0

t 2 5
Clear [X,y,z,u Vv ] z2[r_,t_ ]=0.2rSin [?] (Em - 1);
x[u_,v_1=3v
y[u_,v_1=-2uv,
z[u_v_1=3u-v;
{ulow, uhigh '} = {0, 2 };
{vlow, vhigh '} = {0, 1.3 };

(2 (4+x) (3+y)222,2 (4+x)2 (B3+y) 22,2 (4+x)2 (3+y)%2})

{{rlow, rhigh }, {tlow, thigh }} = {{0,2 1}, {0,2 n}};
C2plot = ParametricPlot3D [{x2[r,t 1,y2 [r,t 1,22 [r, t 1},
{r, rlow, rhigh }, {t, tlow, thigh }, Boxed - False,
ViewPoint - CMView, AxesLabel - {"x","y", "z" }, PlotRange - All 1;
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Take a look at the surfaces together from underneath:
] Show[C1plot, C2plot, ViewPoint - (1,1, -131;

Together @ and G make the skin of a solid region.

OT.2.a.0)

How do you know that when you go with a 3D vector field
Field[x, y, z] with divFieldXx, y, z] = 0 throughout the solid region
whose top skin is Cand whose bottom skin is;then

ffcl Field . topunitnormadl A

= ffcz Field . topunitnormall A,
so that the flow of Fielk, y, z] across both surfaces is the same?

oAnswer:
Remember theC, andC, share a common boundary curve.
Make a solid regioR whose top skin iC; and whose bottom skin is
C,. Agree thaC stands for the skin (R.
You are armed with the fact thdivField[x, y, z] = 0 throughouR.
Use this fact and Gauss's formula to see that

0=[[[,0dxdydz

= [ [ [, divField(x, y, Zldx dy dz

= [ [ Field. outerunitnormat A

= ffcl FieId.topunitnormaJﬂA—ffCZ Field . topunitnormad/ A,
because alonC,, the outer unit normal (C agrees with the top unit
normal ofCy, but aloncC, the outer unit normal (C agrees with the
negative of the top unit normal C,.
The upshot:

ffcl Field . topunitnormaffA = fsz Field . topunitnormadl A.
Accordingly,

flow of Field[x, y, z] across G

= ffcl Field . topunitnormadl A

= ffcz Field . topunitnormadl A

= flow of Field[x, y, Z] across G.

OT.2.a.ii)
What calculational nightmare does this help you to avoid?

OAnswer:
Because the parameterizatiorCinvolves screwy functions like
22[r, t] = 0.2r Sin[ 4] (V47 - 1),
calculating
ffcl Field . topunitnormadl A

will probably be a nightmare. Its normals make you want to vomit.

Take a look:
Clear [normal2 ]
normal2 [r_,t ] =D[{x2[r,t 1,y2 [r,t ],2z2 [r,t 1},r ]x
Di{x2[r,t 1,y2 [r,t 1,22 [r,t 1},t]

VC.10.T2

02E Y47 y3 Cos(t ] Sin [4)?

Va-rz

-0.2rCos [%] Sin [%] Sin [t] +

r

02E Y47 rcos [ 5] sin [4] Sin [t],02rCos [ 4] Cosit]sin [4] -
2
02E V#7 rcos [ ] Cosit] Sin [ -] +02rSin [4] sin (] -

X 0.2E Y477 13 sin (412 Sin [t ]

V4 -r2

0.2E V47" rsin [‘5]2 sin [t]
rCos [t]2+rSin [t]?}
These normals will make you choke and they will probably make
Mathematica choke too.
But you know that
flow of Field[x, y, z] across @
= fo Field . topunitnormat/ A
= ffcz Field . topunitnormad A
= flow of Field[x, y, 7] across G,
so instead of confronting the nightmarish calculation of
ffcz Field . topunitnormad/ A,
you can opt for the simpler calculation of
ffcl Field . topunitnormad/A.

oT.2.a.iii)
lllustrate this idea by calculating the flow of the 3D vector field
Fieldx,y, zZl ={x—y, -2y — X, z+ 3}
across G.

OAnswer:

Enter the vector field:

Clear [Xx, Yy, z, m, n,p, Field ]
{mx_, y_,z_ 1,nIx,y.,z 1,pIX,Y.Z 1}={x-y, -2y-X 2z +3};
Field [x_,y_,z_ 1={mxy,z 1,n[x,y,2 1,pIXYy z 1}

{X-y, -Xx-2y,3 +2}
CheckdivField[x, vy, Z]:

Clear [divField ]
divField [x_,y_,z_ 1=
DImx,y,z 1,x1+DIn[x,y,z 1,y 1+DIplx,y,z 1,2 ]
0

Good.

Now you know you can measure the flow of this vector field across the

squirrely surfacC, by measuring the flow of this vector field across
the clean surfacC;.
Here you go:

ffcl Field . topunitnormadl A

= [Z7 [¥Fieldx1[s, 1, y1[s, 1, z1[s, 1].normal{s, § dsdt
wherenormalls, { is:

Clear [normall ]
normall [s_,t ] =Trigexpand [D[{x1[s,t ],yl [s,t 1,2zl [s,t ]},S ]x
Di{xl[s,t 1,yl [s,t 1,21 [s,t 1}, t 1]

{4Cos[t]Sin [s]2,4Sin [s]2Sin [t],4Cos [s] Sin [s]}

You can see thinormalls, f is an top normal by looking at the third

slot, which is2 Sin[2s]. In the parameterization Cy, s runs from0 to

/g

% and2 Sin[2s] remains nonnegative f0 < s< 7

| Plot [2Sin [25], {s,0, —}, AspectRatio L
’ 1 ’ bl £ = — |,
2 P 2

GO

1.
0.

0.25 0.5 0.75 1 1.25 1.5
Now you're ready to calculate:

flow of Field[x, y, z] across G
= flow of Field[x, y, z] across @
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= [ /., Field. topunitnormad A

= [27 [*Fieldx1s, , y1[s, 1, z4[s, f].normalTs, § dsdt

27 ~L
| j J Field [x1[s,t ],yl [s,t 1,z1 [s,t ]].normall [s,t ]dsdt
o Jo
12
Strong flow from low to high acro:C, (as well asCy).

The direct calculation of the flow of this field acrCzsis not practical.

Gauss was a master at avoiding calculational nightmares.

For a story about Gauss as young kid, click the box.
Once when Gauss was in grade school, he misbehaved in class. As
punishment his teacher told him to add the consecutive numbers

1+ 2+ 3+ 4+ 5+ ... + 999+ 1000

Young Gauss immediately came back with the answer:

Clear [k]
1000
Dk
k=1
500500
The way he did it was to write:
sum= 14+ 2+ 3+ ... + 999+ 1000
sum= 1000+ 999+ 998+ ... + 2+ 1

He added vertically to get

2sum= 1001+ 1001+ 1001+ ...
=1000(100)

1000¢erms.

Consequently

sum= @90_(2@3. =500(1001) = 500500

+ 1001+ 1001

because there are

Gauss was a genius.

T.3) Using Gauss's formula to take advantage of

singularities: Calculating flow across the skin of a solid
region by calculating the flow across a substitute sphere

Here's an elliptical cylinder with top and bottom:

radiall = {1, -2, -1};

radial2 = {1,1, -1};

core = {05,2,2 1};

Clear [sideplotter, topplotter, bottomplottter, r, u, t 1
sideplotter [u_,t ]=Cos[t]radiall +Sin [t]radial2 +ucore;
{{ulow, uhigh '}, {tlow, thigh 3} ={{-1,21}, {0,2 m}};

{rlow, rhigh }=4{0,11};
sides = ParametricPlot3D [
Evaluate [sideplotter [u,t 11, {u, ulow, uhigh }, {t, tlow, thigh
PlotPoints - {2, Automatic  }, DisplayFunction - ldentity 1;
top = ParametricPlot3D [
Evaluate [topplotter [r,t 11, {r, rlow, rhigh }, {t, tlow, thigh
PlotPoints - {2, Automatic  }, DisplayFunction - Identity 1
bottom = ParametricPlot3D [
Evaluate [bottomplotter [r,t 11, {r, rlow, rhigh }, {t, tlow, thigh
PlotPoints - {2, Automatic  }, DisplayFunction - |dentity 1;

Show[sides, top, bottom, Boxed - False,

ViewPoint - CMView, AxesLabel - {"x","y", "z"
DisplayFunction - $DisplayFunction 1;

}, PlotRange - All,

-2.

02.
y

Go with the electric field
Fieldx, y, z] = {( 2

2y 2z }
X2 +y2 + 22) 02 +y2+22)% " (2 +y2+22)%?

resulting from a charge of strength 2 placed at the pojr@, G
which is inside this skin.

topplotter [r_,t_ 1=rCos [t]radiall +rSin [t]radial2 + uhigh core;
bottomplotter [r,t 1=rCos [t]radiall +rSin [t] radial2 + ulow core;

iz

VC.10.T2-T3

OT.3.a)
Try to use Gauss's 3D formula to calculate the flow of this vector field
across the skin of the surface plotted above.

OAnswer:

Enter the vector field:

Clear [X,y, z, m, n,p, Field ]
{mx_,y_.,z_ 1.,n[x.y.,z 1,pIx,y.,z_ 1}=

2x 2y 2z
372" 372"

(X2 +y2 +22) (X2 +y2 +22) (X2 +y2 +22)3%2 g

Field [x_,y_,z_ 1={mxy,z 1,n[xy.z 1,p XY,z 1}
{ 2X 2y 2z
(x2+y24+22)327 (x24y2 1 22)%2" (x2 ,1y2, 52

CalculatedivField[x, y, Z]:

Clear [divField ]
divField [x_,y_,z_ 1=
Together [D[m[x,y,z 1,x]1+D[n[x,y,z 1,y 1+D[p[x,y,z 1,2 1]]
0

Good; Gauss's 3D formula tells you if youRestand for the solid of
which the plotted surface above is the outside skin, then you are
guaranteed that the flow of this vector field across this surface is given
by

[ [ [, divFieldx, y, zldxdydz

= [[[;0dxdydz=0.
You happily report that the flow (Field[x, y, z] across the skin plotted
above i<0 and go on to the next problem.

OT.3.b)

Was the answer given in part a) correct?

OAnswer:

)3,’2 }

No way.

oT.3.c.i)
What went wrong?

OAnswer:

Look at:

] Field [0,0,0 ]
{Indeterminate, Indeterminate, Indeterminate }

Field[x, y, z] goes nuts &0, 0, Q.
In short,{0, 0, G is a singularity oFieldx, y, z], and the damage
comes from the fact th{0, 0, Q is inside the plotted surface above.
Anytime you have a singularity on or in a solid recRinGauss's
formula

fffR divField[x, y, zZldxdy dz

= flow of Field[x, y, z] across C
has the possibility of failing.
And it did fail in the "answer" given in part a).

In the absence of singularities of Field[x, Y, Z]
orof divField[X, Yy, z])inside

or on the surface of a solid region
Gauss's formula cannot fail.

OT.3.c.ii)
Are there other singularities?
OAnswer:
Look at:
| Field [x,y,z ]
2X 2y 2z
{ 3/2° 3/2 3/2 }

(X2 +y2 +22) (x2 +y2 +22) (X2 +y2 4 22)
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A short examination of this formula fField[x, y, z] shows that the
only point at which the denominators (or&s{0, 0, . There are no
other singularities.

oT.3.d)

One way to try to do the calculation of the flow of Fj&ldy, ]
across this surface is to let C stand for the whole surface and to try to
do a direct calculation of
ffc Field[x, y, z] . outerunitnormadl A
by breaking it up in the form:
ffcsmesFieId[x, y, Z] . outerunitnormadl A

+ffcmp Field[x, y, Z] . outerunitnormadl A

+ffcbmm Field[x, y, Z] . outerunitnormadl A.

This is a calculational nightmare because it involves setting up three
different normal vectors and then hoping that Mathematica can do the
resulting integrals.

Part of the art of mathematics is knowing how to avoid calculational
nightmares.

How can you avoid this nightmare?

OAnswer:

You center a little sphere callRjiye at the lone singularity:

singularity ={0,0,0 };
Clear [xlittle, ylittle, zlittle, s, t, littlesphereplotter 1
littleradius =0.1;

{xlittle [s_,t_ 1, vlitle [s_, t_ 1, zlittle [s.t 1}=

singularity + {littleradius Sin [s] Cos[t],
littleradius Sin [s] Sin [t ], littleradius Cos [s1};
littlesphereplot = ParametricPlot3D [
Evaluate [ {xlittle [s, t 1, ylittle [s, t 1, zlitlle [s,t 1}1, {s, 0, =},

{t, 0,2 =}, Boxed - False, ViewPoint - CMView, PlotRange - All ];

The singularity a{0, 0, @ is encapsulated inside the little sphere, and
the little sphere is inside the original surface.
Now you make a new hollow solid, taking everything inside the
original skinC, but rejecting everything inside the skCiie, of the
little sphere. LeRye stand for the new hollow solid and Cpey
stand for its skin. Note that there are no singularities irRney
because the lone singularity lies inside the hollow part. Apply Gauss's
formula to the new hollow soliRne to see that

ffcm Field[x, y, Z] . outerunitnormadl A

= fffRneN divFieldx, y, Zldxdy dz

=0
becausdivField[x, y, z] = 0 throughouRnew-
This tells you that

ffcnew Field[x, y, Z] . outerunitnormatl A = 0.
But if you letCyye Stand for the skin of the little sphere centered at the
singularity, and you take the outer unit normal from the little sphere,
then you get

0= ffcnew Field[x, y, z] . outerunitnormadl A

VC.10.T3-T4

= ffc Field[x, y, z] . outerunitnormat/ A
_ffcllttle Field[x, y, Z] . outerunitnormad A

because the outer unit normal on the new solid points inside the little
sphere.
This is big news because it tells you that

ffc Field[x, y, z] . outerunitnormad/ A

= ffchme Field[x, y, Z] . outerunitnormadl A
As a result, you can avoid the calculation of the gruesome integral

ffc Field[x, y, z] . outerunitnormad/ A
by calculating one single, easy integral:

ffcl _ Field(x, y, z]. outerunitnormadl A

= Iy FieldXite, Yitie, Ziel . normals, | dsdt
wherenormals, { is given by:

Clear [normal ]

normal [s_,t 1=

TrigExpand [D[ {xlittle [s, t 1, ylittle [s, t 1, zlittle [s,t 1},5]x
D[ {xlittle [s, t 1, ylittle [s, t ], zlittle [s,t 1}, t 11
{0.01 Cos [t ] Sin [s]%,0.01Sin [s]?Sin [t],0.01Cos [s]Sin [s] +
0.Cos [s] Cos[t]2Sin [s] +0.Cos [t] Sin [t] +0.Cos [s]2Cos[t] Sin [t] +
0.Cos [t ] Sin [s]?Sin [t] +0.Cos [s] Sin [s] Sin [t]%}
Make sure that these normals are outer normals:

scalefactor =5
Show(littlesphereplot, Table

Tail - {xlittle [s, t 1, ylittle
ScaleFactor - scalefactor 1,

[Arrow [normal [s,t 1,
[s, t 1, zlittle [s,t 1},

{s. % % %} {to.2 = %}],Boxed - False,

ViewPoint - CMView, PlotRange - All |;

They are outer normals.
Now you can correctly calculate the flowFieldx, y, z] across the
original cylindrical surface in one short, sweet calculation:

J:Jj ﬂFieId [xlittle [s,t 1, vylittle [s, t 1, zlitlle [s,t ]1]1.normal [s,t ]

dt ds
25.1327

And you're out of here.

T.4) Combined electric fields and multiple singularities

If you understand B.5) and T.3), then you understand why it is that
when you take a charge of strength g and place it at a{jpoint ¢

inside the whole skin of a solid region R, then the flow of the resulting
electric field across the whole skin is the same as its flow across any
small sphere centeredfat b, g.

This calculates out to:
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Clear [X,Y, z, a, b, c, Field 1

Field Dy.z - {g(x-a),q (y-b),q (z-c)s}z;
(x-a)2+ (y-0)2+ (z-0)2)"

Clear [X,Y,zT,s,t g, normal 1

center ={a,b,c };

{X[s_,t 1,yl[so,tt 1,z[s_,t 1}=

center + {rSin [s] Cos[t],rSin [s]Sin[t],rCos [S]};

{{slow, shigh 3}, {tlow, thigh }} = {{0, =}, {0, 2 m}};

normal [s_, t_ ] = TrigExpand [
Di{x[s,t 1,y [s,t 1,z [s,t 1}, s 1xDl{x[s,t 1,y [s;t 1,z [s, t ]}, t 1];
shigh thigh

Field [x[s,t 1,y [S,t 1,z [s,t ]].normal [s,t ]dt ds

slow tlow

4 7q \/r7

s
This is the same as.

The upshot:

If you place a charge of strength g inside the skin of a solid region,
then flow of the electric field across this skin is &

If g > 0, the flow is from inside to outside, and ikd), the flow is
from outside to inside.

0T.4.a)

Take any skin of any solid region you like.
Here is the electric field resulting from a charge of strengihlared
at a point{a, b, g inside this skin.
Clear [a, b, c, g1, X, Y, z, Fieldl 1
pointl ={a, b, c };
ql ({X,y,z } -pointl )

(x-a)2+ (y-b)2+ (z-¢))*?

Fieldl [x_.,y .,z_ 1=

{ ql (-a+Xx) ql (-b+y)
((ca+x)2+ (<b+y)2+ (<c+2)2)°?" ((ca+x)2+ (<b+y)2+ (-c +2)2)°"?
ql (-c +2)

((ca+x)2+ (-b+y)2+ (-c+2)2)° " J

Here is the electric field resulting from a charge of strengtblared
at a different pointaa, bb, ctinside the same skin.

Clear [aa, bb, cc, Field2 1

point2 = {aa, bb, cc };
g2 ({X,y,z }-point2 )

((x-aa)2+ (y-bb)?+ (z-cc)?)

Field2 [x_.,y .,z_ 1=

372

g2 (-aa +X)

((-aa +x)2+ (-bb+y)2+ (-cc +Z)2)3/2’
42 (-bb +y)

((-aa+x)2+ (<bb +y)2 + (-cc +2)2)°>/%"
g2 (-cc +2) }

((-aa+x)2+ (-bb +y)2 + (~cc +2)2)%?

Measure the flow of the combined electric field
FieldIx, y, z] + Field2Xx, y, z]
across this skin.

oAnswer:
Again you try to practice the art of mathematics in an effort to avoid a
calculational nightmare.
Check the divergence Field1[x, vy, z], Field2x, y, z], and
Field1x, y, z] + FieldZx,y, z|:

Clear [m1, n1, pl, divF1 ]

{mi[x_,y_,z_ 1,nl[x,y.,z_ 1,pl[x_,y_.,z_ ]}=Fieldl [x,y,z ];
divFieldl [x_,y_,z_ 1=

Together [D[mi[x,y,z 1,x1+D[nl[x,y,z ],y 1+D[plix,y,z 1,21]
0
Clear [m2, n2, p2, divField2 1

{m2[x_,y_,z_ 1,n2 [x,y_.z_ 1,p2[x_y_.,z_ ]}=Field2 [x,y,z ];
divField2 [x_,y_,z_ 1=

Together [D[mM2[X,y,z 1,x 1+D[n2[x,y,z 1,y 1+D[p2[x,y,z 1,2 1]
0
Clear [m, n, p, divField1plusField2 1

{mix_,y_,z_ I.nIX,y.,z 1.pPIX.y.,2Zz_ 1}=

Fieldl [x,y,z 1 +Field2 [x,y,z 1;
divField1plusField2 X,y .,z_ 1=

Together [D[m[x,y,z ],Xx]+D[n[x,y,z 1,y 1+D[p[x,y,z 1,21]1]

0
Good!
- divField1[x, y, z] = 0 at all points inside the skin except at its
singularity af{a, b, g;
- divFieldZx, y, z] = 0 at all points inside the skin except at its
singularity ai{aa, bb, c§
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— The divergence of the combined electric field
Field1x, y, z] + Field2x, vy, Z]
is 0 at all points inside the skin except at the two singularities at
{a, b, ¢ and{aa, bb, c&
Now on to the calculation:
Center a little spherC; at the singularity &a, b, ¢ and center another
little sphereC, at the singularity efaa, bb, cg If you understand
what happened in T.3), then you'll understand that the flow of
Field1x, y, z] + Field2x, y, 7]
across the skin is the same as the sum
ffcl (Field1+ Field2) . outerunitnormad/ A

+ffc2 (Field1+ Field2) . outerunitnormad A
= ffcl Fieldl . outerunitnormal A

+ffc1 Field2 . outerunitnormal A
+ffC2 Field1.outerunitnormal A

+ffC2 Field2 . outerunitnormal A

Now, becausdivField1x, y, z] = 0 insideC,, and because
Field1[x, y, z] has no singularity insicC,, you know that

fo Field1 . outerunitnormal A = 0.
Similarly,

ffcl Field2 . outerunitnormal A = 0.
So the flow of the combined electric field
Field1[x, y, z] + FieldZX, y, z] across the original skin reduces to

ffcl Field1 . outerunitnormal A

+ffC2 Field2 . outerunitnormal A
The calculation done at the very beginning tells you that this is just
Adoan+ A r=4n(ql+ 2.
By using your head instead of the machine, you side-stepped another
gruesome calculation.
By the way, electrical folks and physicists really get off on this stuff.
You should like it too because it is clean, useful mathematics.

T.5) Surface packaging: Parameterized, explicit and implicit

If you have a surface to work with, the best way it can come into your
hands is in parameterized form

{x[u, VI, ylu, VI, Zlu, vI}, _
where{u, v} varies in a region R. In this form:
— You can plot it with ParametricPlot3D.
— You can measure its surface area with the integral

ffR SAylu, Vidudv

UV

where SAy,[u, V] is given by:

Clear [X,VY, z, u, Vv, cross, SAxyz 1

cross [u_,Vv_ ] =

DI{X[U,V 1,y [uvVv]zI[uVvIi}hul«DI{X[uVvI]yl[uvlzuvIihLv]

SAxyz [u_,v_ ] = Afcross [u,v ].cross [u,V ]

VO U v 1 xB0 fu v - x @) fu v 1y @0 pu v )7y
(-2 @) fu, v ) x B0 U v ] e x @) [y 230 U v )2 s
O U, vy B0 U v g -y O
— You can integrate a functiof y, z] with respect to surface area
on this surface by means of the integral

I fostace %0 v, Z1AA
suface
= [ [ fIXTu, V1, yIu, V1, Z[u, VI] SAy,[u, VIdudv.
— You can measure the flow of a given vector field Hielg, z]

u v ]z v ])2)
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across the surface by means of the integral
I Field . unitnormat A
surface’
=ffR Field[x[u, V], y[u, V], Z[u, V]]. normaldudv.
uv:
where normdl, V] is given by:
Clear [normal ]
normal [u_,v_ ] =
DI{X[U,V 1,y [uVv1zI[uVvI}ul«DI{X[u Vvl y[uVvl z[uvi}v]
O fu, v ) -y O
Oy, v ) +x©OL)

uv 1z v,

2Oy, v ] x fu,v 1z v,

y O u v x0 uv - x @ v 1y M0 [y v 7y
If you have the surface already parameterized, you can go right to
work using these formulas to make measurements like a bandit.
But often, the surface is not given to you in parametric form. When
this happens, you can be in the lucky or the (often) unlucky case.

The rain, it rains on the just,
and the unjust fella,
but chiefly on the just,
because the unjust steals the just's umbrella.
-Author unknown

OT.5.a) The lucky case: An explicit formula

(2 uv iy

You are lucky if you get a surface in one of the forms
z=f[x, yl, y=dIX, ], or x= hly, 2.
The fancy folks call each of these an explicit formula of a surface.
Why are you lucky when you get an explicit equation for a surface?

OAnswer:

You are lucky because the explicit form carries with it a built-in
parameterization.
If the surface comes to you with the explicit formula
z=1[x,yl,
then you can parameterize it with the formulas
X[u, v] = u,
y[u, v] = v, and
z[u, v] = f[u, v].

If the surface comes to you with the explicit formula
y=49[x, Z],
then you can parameterize it with the formulas
X[u, v] = u,
y[u, v] = g[u, v], and
Z[u, v] = V.
If the surface comes to you with the explicit formula
x = hly, z],
then you can parameterize it with the formulas
X[u, v] = hlu, v],
y[u, vl = u, and
Z[u, v] = V.
OT.5.b) The (often) unlucky case: An implicit equation

You can be in deep doo-doo if you get a surface in the form
flx, y, z] = constant.
The fancy folks call this an implicit formula of a surface.
Why can you be unlucky when you get an implicit equation for a
surface?

What is the first thing you should try to do in order to try to work with

surface specified with an implicit equation?

OAnswer:

You can't do diddly-squat with an implicit equation until you come up

with a parameterization or an explicit equation.

So the first thing you should try to do is to try get a parameterization.

This is not always a pleasant task. Sometimes it's impossible.

VC.10.T5-G1

VC.10 3D Surface Measurements
Giveita Try!

-
Experience with the starred problems will be useful for understanding
developments later in the course.

G.1) How do you know?*

0G.1l.a)
Here's a 3D vector field:
Clear [X,y, z, m, n,p, Field ]

{mix_,y_,z_ 1,nx,y.,z 1,pIx,y.z 1}=
{-6x +3xCos [z],4y +5E02 *2) 57 _3Sin [z]};
Field [x_,y_,z_ 1={mXxy,z 1,n[xy,z 1,pIXYy. z 1}
{-6x +3xCos [z],5E %2 X*?) L4y 57 -3Sin [z]}
How do you know that the net flow of this vector field across any
surface that is the whole skin of a solid region is from inside to
outside?

O0G.1.b)
Here's another 3D vector field:
Clear [X, Y, z, m, n,p, Field ]
{mx_,y.,z_ 1.,n[x,y.,z 1,pIx,y.,z_ 1}=
{-6x +3xCos[z],2y + lsz ,z -38in [z1};

Field [x_,y_.,z_ 1={mxy,z 1,n[xYy,z 1,p[xYy.z 1}

{-6x +3xCos [z], 1+xx2 +2y,z -3Sin (2]}

How do you know that the net flow of this vector field across any
surface that is the whole skin of a solid region is from outside to
inside?

0G.1l.c)

Here's another 3D vector field involving a parameter b:
Clear [b, x,y, z, m, n, p, Field 1

{mix_,y_,z_ 1,n[x,y.,z 1,pIx,y.z 1}=
{-6x +3XxE*, by +127,8x +4z -3E*};

Field [x_,y_,z_ 1={mXxy,z 1,n[x,y,2 I,pIXYy z 1}

{(-6x+3E*x, by +12z, -3E*+8x+4z)

How do you know that if > 2, then the net flow of this vector field
across any surface that is the whole skin of a solid region is from
inside to outside?

How do you know that if k 2, then the net flow of this vector field
across any surface that is the whole skin of a solid region is from
outside to inside?

How do you know that if & 2, then the net flow of this vector field
across any surface that is the whole skin of a solid region is 0?

0G.1.d)

Here's another 3D vector field:

Clear [b, X, y, z, m, n, p, Field 1

mx,y_,z_ L.nix,y.,z 1LpIx.y.z 1}=

{6x?+3xE?, 9y +127,8x +3z-3FE’};

Field [x_,y_,z_ 1={mXxy,z 1,n[xy,z 1,pIXYy z 1}

(3E? x +6x2%,9y +12z, -3E? +8x +32}

How do you know that any point

{x,y, 2 with x> -1
is a source for this vector field?
How do you know that any point

{x,y, 2z withx< -1
is a sink for this vector field?
How do you know that the net flow of this vector field across the
sphere of radius 1 centered &tl, 0, G is from inside to outside, but
the net flow of this vector field across the sphere of radilis
centered at—3, 0, ¢ is from outside to inside?

0G.1l.e)

Here's another 3D vector field involving cleared functidrsy],
gly, zl, and Hx, z]:
Clear [f, g, h, X, y,2z m,n,p, Field 1
{mix,y_,z_ 1,nix,y.,z 1,pIXx,y.z_ 1}=
9.z 1L,hixz1,f xylh
Field [x_,y_,z_ 1={mXxy,z 1,n[xy,z 1,pIXYy. 2z 1}
{gly.z 1,hx.z 1,f [xy ]}
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This tells you that

- m[Xx, Y, z] = dly, z] does not change as x changes;

- n[x, y, 7] = h[x, z] does not change as y changes and

- plx, Y, z] = f[X, y] does not change as z changes.

Give a concrete example of this kind of vector field.

How do you know in advance that this kind of vector field has no
sources or sinks?

0G.1.f)
Look at this plot:

Clear [Xx,Y,2z,5,t ]
~ 5Sin [s] Cos[t]

X[s_, t 5
1+ (s-%)

y[s_,t_ 1= (4-Sin [t]) Sin [s]Sin [t];
z[s_,t_ ] =4Cos[s];

{ {slow, shigh }, {tlow, thigh 3} = {{O %} {0, 7(}};

surface = ParametricPlot3D [Evaluate [{x[s,t 1,y [S,t 1,z [S,t ]}1,
{s, slow, shigh }, {t tlow, thigh }, DisplayFunction - |dentity 1;
Clear [normal ]
normal [s_,t_ 1=
Di{x[s,t 1,y [s,t 1,z [s,t 1}, s 1xD[{x[s,t I,y [s;t 1,z [s,t ]}, t ];

]

jump =

o

scalefactor =02;

normals = Table [Arrow [normal [s,t ], Tall - {x[s,t ],y [s,t 1,z [st 1},
ScaleFactor - scalefactor 1, {s,slow +jump, shigh - jump, jump 1},
{t, tlow  +jump, thigh  -jump, jump }1;

Show[surface, normals, ViewPoint - CMView,
Boxed - False, AxesLabel - XY, }, BoxRatios - Automatic,
DisplayFunction - $DisplayFunction 1;

M -

This plot shows a surface together with some of the normal vectors
whose lengths measure the area conversion factor

SAys, 1,
which converts st-paper area measurements into xyz-area
measurements on the surface.
Notice this:
The longer normal vectors have their tails on the larger plates on the
Mathematica plot, and the shorter normal vectors have their tails on
the smaller plates on the Mathematica plot.
How do you know that this is likely to happen no matter what surface
you go with?

G.2) Meat-and-potatoes measurements*

0G.2.a.i)
Here's a vector field:
Clear [X,Y, z, m, n,p, Field 1
(MX_y_,z_ 1,nIX,y.z. 1,pIX,y_z_ 1}=1{y%z2 x2)
Field [x_,y .,z 1={mXxVy,z 1,n[XYy,z 1,p[X%VY,z 1}
(yZ’ z 2’ X 2}

Measure the net flow of this vector field across the surface of the thre
dimensional box
-1<x=<2,-3<y=<3,0=sz=<4.
Is the net flow of this vector field across this skin from inside to
outside, from outside to inside, or 0?
aTip:

If you are not using Gauss's 3D formula, then you are working too hat

0G.2.a.ii)
Here's a new vector field:
Clear [X,Y, z, m, n, p, Field 1
(mix_y_,z_ 1,nix,y_zo 1,pIx,y.z 131=03y?% 2%}
Field [x,y ,z_ 1={mXxvy,z 1,n[x Y,z 1,pIXYy.z 1}
x2,y?%z?%)
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Measure the net flow of this vector field across the surface of the three
dimensional box

-1<x=<2,-3=<y=<3,0=z=<4.
Is the net flow across this skin from inside to outside, from outside to
inside, or 0?

0G.2.b)

Measure the net flow of the vector field
Fieldx, y, Z] = {x?, y?, 7%}
across the surface of the sphere of radius 3 centefed®t2.
Is the net flow across this skin from inside to outside, from outside to
inside, or 0?

0G.2.c)

Here's a new vector field:
Clear [x,Y, z, m,n, p, Field 1
(MX_yoz_ 1,nIX,y.zo 1LpIx,yoz 1}={x%y3%z2)
Field [x_,y_,z_ 1={mXxy,z 1,n[xy,z 1,pIXYy z 1}
2Y y 3 2}
Use Gauss's formula to measure the net flow of this vector field
across the surface of the 3D solid region between the sphere of radius
1 centered &0, 0, @ and the sphere of radius 4 centerefDa0, 1.
oTip:

{x ,z

Measure the flow cField[x, y, z] across the sphere of radlis

centered g{0, 0, 3. Then measure the flow Fieldx, y, z] across the
sphere of radiu4 centered &0, 0, 1.

Put the two measurements together in the right way to get the answer
you are after.

0G.2.d.i)

Here's a magic carpet:

Clear [X,Y,2,s,t 1
{X[s_,t_ 1,y Is_,t 1,z[s,t 1}=(0,1 +015Cos [4t]1}+sS{0,1,0 };
{{slow, shigh }, {tlow, thigh ~ }} = {{0, 1.5 }, {0, 6 }};

carpet = ParametricPlot3D [Evaluate [{x[s,t 1,y [S,t 1,Z [S,t ]}1,
{s, slow, shigh }, {t, tlow, thigh }, PlotPoints - {2,30 },
ViewPoint - CMView, BoxRatios - Automatic, Boxed - False,
AxesLabel - {"x","y", "z" 11,

y
Look at the numbers displayed on the axes, and use them to say why i
is clear that the surface area measurement of this magic carpet is a bit
more than 9 square units.
Then move in with a surface integral to give a more accurate
measurement.
oTip:

Use Nintegrate to calculate the surface integral.

0G.2.d.ii)

While you're at it, take the same magic carpet as in part i) above and
measure the flow of the 3D vector field

Fieldx,y, zZl ={y — z, x+ z, x—-y}
across (through) this carpet. Determine whether the net flow of this
vector field across (through) this carpet is from under to over or from
over to under.

O0G.2.d.iii) Calculus Cal screws up

When that lab pest, Calculus Cal, looked over your shoulder and saw
your answer to part ii) above, he said: "Your answer is wrong, and I'll
tell you why. Look at the vector field and its divergence:"

Clear [X, Y, z, m, n,p, Field, divField 1

{mix_,y_,z_ 1.n[x,y.,z 1.p[X,y.,z_ 1}={y-zXx +z,Xx -y}
Field [x_,y_,z_ 1={mx,y,z 1,n[xy,z 1,p[X Y.z 1};
divField [x_y_,z_ 1=

DIm[x,y,z 1,x1+DIn[x,y,z 1,y 1+DIpIx,y,z 1,21
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0 {{s2low, s2high '}, {t2low, t2high }} ={{0,2}, {0,2 x}};
o : H - C2plot = ParametricPlot3D [
C.alculus Cal went on to say: "It says right in B.l) that any vector field Evaluate [{x2[S.t 1,y2 [S.t 1,22 [S.t 131, (5. s2low, s2high  }.
FIe|d[X, Y, Z] with dIVFIe|C{X, Y, z] = 0 for all pomts{x, Y, z} has no {t, t2low, t2high }, PlotPoints - {2, Automatic  }, Boxed - False,
sources or sinks. Therefore, its flow across any old surface is 0." ViewPoint > CMView, PlotRange - All, AxesLabel - {"x",'y","z"  }1;
Say why Calculus Cal is wrong and then tell Cal where to go.

0G.2.e)

Here's a plot of the uv-paper ellipse
(5P + (7P =1

on the plane
X+ 2y+ 4z=0 )
. . 3
unde);ljh\e;]p_alrjameterlzatlon C; and G share the same boundary curve, as you can see by studying
e the code or by looking from underneath:
Ju, vl =v, and 2
| Show[C1plot, C2plot, ViewPoint - {5,5 -5}1;

qu, vl = % (-u-2v).

Clear [X, Y,z u,V,t 1
X[u_,v_1=uy
y[u_, V_ 1=V

zZ[u_, Vv ]—l(u 2v);
v 1= ;

uft_]1=2Cos[t];

V[t_]1=4Sin [t];

curve = ParametricPlot3D [{X[u[t],v [t]],y [u[t],v [t]],zZ [u[t],v [t]]},
{t, 0, 2 =}, DisplayFunction - Identity 1;

{a,b}={-5 -5)% Here's a vector field:
h =10; ) Clear [x,Y, z, Field 1
plane = Graphics3D [Polygon [ Field [x,y.z 1={z-y,x +2,y -x}

{{x[a,bl,y[abl,z[ab]}, {x[a+h,b],y[a+h Db],z[a+h b1},

(x[a+h b +h],y [a+h b +h], z [a+h b +h]}, =y +z,x +2, -x+y]

{x[a,b +hl,y [a,b +h]l,z [a b +h]}}I]; And its divergence:
[T . . . Clear [m, n, p, divField 1
Show[curve, plane, AxesLabel - "X, "y, 'z }, ViewPoint - CMView, (ML Yz 1o Ko YoaZ 1P Xoyaz 1) =Feld xy.z I:

DisplayFunction - $DisplayFunction 1; divField  [x.y.,z 1=
DIM[x, ¥,z 1,x1+DIN[x Y,z 1,y 1+D[pxy,z 1,21
0
Calculate the net flow of this vector field across C
ffc Field . topunitnormad/ A,
1

by calculating the net flow of this vector field across C

ffcz Field . topunitnormad/ A,
and explain why this gives the correct answer.

O0G.3.b)

Here is a new surface called:C
Clear [x1,yl1,z1,r1,s 1
x1[r_,s_ 1=-3+2rCos [S];
i . yl[r_,s_]1=1+rSin [S];
Come up with a measurement of the area enclosed by this curve as Z[r,s_ 1=2+ESNI40L0S 1-D] (5 _yy;

measured on the p|0tted p|ane' {{rllow, rlhigh  }, {sllow, slhigh }} = {{0,2 3}, {0,2 n}};
Clplot = ParametricPlot3D [Evaluate [{x1[r,s ],yl [r,s 1,21 [r, s ]}1,

{r, rllow, rlhigh }, {s, sllow, slhigh }, Boxed - False,
ViewPoint - CMView, PlotRange - All, PlotPoints - {30, 30 },
AxesLabel - {"x","y", "z" 13N

G.3) Substitute surfaces for avoiding calculational
nightmares*

0G.3.a)

Here is a surface called,C
Clear [x1,y1,1z1,s,t 1
x1[s_,t_ ]1=2+28Sin [s] Cos[t];
yl[s_,t 1=1+2Sin [s]Sin [t];
z1[s_,t_ ] =1+ESn DAt I-1] Cossy;
((stlow, sthigh 3, {tllow, tthigh 313 = {{0, 2}, (0,2 m}; Here is a vector field:

2 Clear [x,Y, z, Field ]

Field [x_,y_,z_ 1={3z-y,3x +z,6y -x}

Clplot = ParametricPlot3D [Evaluate [{x1[s,t 1,yl [s,t 1,21 [s,t 1}1,
{s, sllow, slhigh }, {t, tllow, tlhigh }, Boxed - False,
ViewPoint - CMView, PlotRange - All, AxesLabel - {"x", "y", "z" }; {-y+32z,3x +z, -x+6y}
And its divergence:
Clear [m, n, p, divField ]
{mix_,y_.,z_ 1,n[x,y.z_ 1,p[x.,y_.,z_ 1}=Field [xy,z 1,
divField [x_y_,z_ 1=
DImx,y,z 1,x1+DIn[x,y,z 1,y 1+Dlplx,y,z 1,2 ]
0
Calculate the net flow of this vector field acrogs C
by calculating
J J, Field .topunitnormad A
2

C, is a circular disk in the plane=z1 centered at the poif2, 1, 1:

Clear [x2,y2,22,s,t ] where G is a substitute surface of your own choice.
x2[s_t_ ]1=2+sCos[t]; Explain why you believe in your answer.
y2[s_,t_ ]1=1+sSin [t];

z2[s_,t_ 1=1;
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G.4) Avoiding another calculational nightmare*

Here's a vector field:
Clear [Field, x, y, z, m, n, p, divFieldl 1

3 .Y, -{0,05,0
Field [x_,y_,z_ 1={z,4%X, -3y}+ (xyz 3y-d 1)

((X+0)2 4 (y-05)2+ (z+0)2)>?’

{mx_,y_.,z_ 1,n[x,y.,z_ 1.PpI[X.,Yy_.z_ 1}=Field [x,y,z ]
3x s AX ¢ 3 (-05 +vy)
(X2 + (-0.5 +y)?+22) (X2 + (-05 +y)2+22
3z
-3y + ;
X2+ (=05 +y)2+22)°" }
Note the big singularity 40, 0.5, Q.
Here is the divergence of Fi¢id y, z]:
divField [x_,y ,z_ 1=
Together [D[mM[X,y,z 1,x]+D[n[x,y,z 1,y 1+D[p[x,y,z 1,21]]
0.y
X2+ (-05 +y)2+22 (025 +x2 -1y +y2+22)?
Here comes a surface:
Clear [xskin, yskin, zskin, radius, s, t 1
radius [s_,t_ ] =5 (Cos[t]?+1) (1.5 -Sin [S]);
{xskin [s_,t_1,yskin [s_ t_ 1,zskin [s_t 1}=
radius [s,t 1 {Sin [s] Cos[t], Cos [s], Sin [s] Sin [t1};
{{slow, shigh 3}, {tlow, thigh }} = {{0, =}, {0,2 n}};
surfaceplot =
ParametricPlot3D [Evaluate [{xskin [s,t ],yskin [s,t ],zskin [s,t ]}1,
{s, slow, shigh }, {t, tlow, thigh }, Boxed - False,
ViewPoint - CMView, PlotRange - All, AxesLabel - X",y " 31

{z+

)3,’2 '

0G4.a.i)
Is the singularity of Fielgk, y, z] inside the surface plotted above?

0G.4.a.ii)

Why is it a bad idea to assume in advance that since divkigldz]
calculated out to 0, then the net flow of Flgldy, z] across the
surface plotted above is 0?

0G.4.a.iii)

Measure the flow of Fie[d, y, z] across this surface.
Is the flow from outside to inside or inside to outside?
OBig Tip:
Look at:
Clear [Field, x, vy, z 1

Field [x_,y_,z_ 1={z 4% -3y}+ Stxyz }-{0.050 )

((x+0)2+ (y -05)2+ (z+0)2)?

3x Ax s 3 (-05 +y)
(X2 + (<05 +y)2+22)2 (X2 + (-0.5 +y)? +22)
3z

(X2 + (=05 +y)? +22)
Notice thaiField[x, y, Z] is the sum of two vector fields
Field1x, y, z] andField2x, y, z] where

Clear [Fieldl, Field2 1
Fieldl [x_, y_,z_ 1={z4x, -3y}
{z,4x, -3y}

and

{z+

3/2

-3y +

3/2 }

3({X,y,z }-{0,050 1}

Field2 [x_,y ,z_ = 37
((x+0)2 4+ (y-05)2+(z+0)?)
3x 3 (-05 +y)
(X2 + (-05 +y>2+22)3'/2 (X2 + (-05 +y)2+22)
3z

(X2 + (-05 +y)2+22)
You might want to make the calculations Field1x, y, z] and
Field2x, y, z] separately, remembering tiField[x, y, z] is an electric
field and one of the tutorials told you all you need to know about

3/2

3/2 }
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electric fields.
If you are grinding a lot of Mathematica code on this, you are not

practicing the art of avoiding calculation; Gauss would not be proud of

you.
Go ahead and make Gauss proud of you.

0G.4.b.i)
Here is a new vector field and its divergence:
Clear [Field, x, y, z, m, n, p, divField 1

3({X,y,z }-{10,0,0 })

((x-10)2 + (y +0)2 + (2 +0)?)
{mx_,y_,z_ 1,n[Xx,y.,z_ 1,pIX,y_.,z_ 1}=Field [xy, 2z 1]

Field [x.,y_,z_ 1={z,4%, -3y}+

3/2"

3 (-10 +x) 3y
{z+ 3z A% ¢ 372
((-10 +x)2 +y2 +22) ((-10 +x)2 +y2 +22)
3z
-3y + 37}

((-10 +X)2 +y2 + 22)
divField [x_,y_,z_ 1=
Together [D[m[x,y,z ],x]1+D[n[x,y,z 1,y 1+Dlp[xy.z 1,2]]

0

Is the singularity of Fielgk, y, Z] inside the surface plotted above?
0G.4.b.ii)

Why is it a good idea to assume in advance that since dijigldz]
calculated out to 0, the net flow of Figldy, z] across the surface
plotted above is 0?

G.5) Flux of the electric field and Gauss's law

0G.5.a.i)
Before you start, excecute the cell below:
| Needs ["Graphics Polyhedra™" 1

Here is a surface that is the whole skin of a solid region:

surfaceplot =
Show[Polyhedron [Dodecahedron, {0, 0.5,1 },2 1], Axes - True,
Boxed - False, ViewPoint - CMView, AxesLabel - {"x","y", "z" 1

y 2
The point{1, 0, 1 is inside this skin as you can see by including a
vector whose tip is dtL, 0, 3} and whose tail is outside the skin:
point ={1,0,1 };
tail ={2,3,0 };
pointer = Arrow [point - tail, Tail - tail, VectorColor - Blue 1;
Show [surfaceplot, pointer, PlotRange - Al 1;

2z

y 3
An electrical charge of strength 3 is placefllat0, 1}, resulting in the
electric field
Fieldx, vy, 2]
_ 3(x—-1)
Tl x-12 4y 4 @-12T
3
(x-12+y2+2-19"""
3(z-1) }
(= D% +y2 +(2- D)
Measure the flux of this electric field across this skin.
oTip:
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The flux of this electric field across this surface is the same as the flo\

of this field across this surface.

If you are going to heavy calculation here, then you are doing too muc

work.

G.5.a.ii)

Continue to go with the same surface as in part i) above.

This time place an electrical charge of strength{®,80, 3 and
another electical charge of strengtf at{1, 0, G.

Measure the flux of the resulting combined electric field across this
skin.

G.5.a.iii)
Continue to go with the same surface as in part i) above.
This time place an electrical charge of strength{2,a8, 2 and
another electrical charge of strength at{5, 0, Q.
Measure the flux of the resulting combined electric field across this
skin.

aTip:

Check whether these points are inside the skin.

0G.5.b.i) Gauss's 3D law

Gauss's law in physics says that if you have a surface C that is the
boundary surface of a solid in three dimensions, and if you take n
different points

{a].! bl! C]_}, {32, b21 Cz}l ey {a‘lr bn: Cﬂ}
inside C, and you place electrical charges of strength

q at{a, by, c1},

¢ at{a, by, ¢},

G at{an, by, &},

then the flux (= flow) of the resulting electric field across C is simply
A7 Qi+ G+ Oz + ... + On)

Explain where Gauss's law comes from.

0G.5.b.ii) Gauss's law for dipoles

You put two electric charges of the same strength but opposite signs
two points that are very close to each other. The resulting electrical
field is called a dipole field.

Take a surface C that is the boundary surface of a solid in three
dimensions with both points inside C. What is the flux (= flow) of the
resulting dipole field across C?

G.6) Sources and sinks in the 3D gradient field, the

Laplacian
9 [xy.2 9% [xy.72 9fIx.y. 2
ax2 + ay? + 02

and steady state heat*

One way to come up with a 3D vector field is to take a function
f[x, y, Z] and put
Fieldx, y, z] = gradfix, vy, Z].
Try it out:
Clear [f, gradf, Field, x, y 1
fIx,y,z 1=1- % (x2 +y? +22);

VC.10.G5-G6

gradf [x_,y ,z_ 1=
{Orfix,y,z 1,x1,Df[xy.z 1,y 1,DIf[Xx,y,2 1,21}
Field [x_,y_,z_ 1=gradf [x,y,Z2 ]

{-% -y, -z}
This is the gradient field of
fix,y,zZ1=1- 3 (®+ y?+ 22

Note that{x, y, z} = {0, 0, @ maximizes [x, vy, z].
Here's a plot of the scaled gradient field [of fy, z] shown with the
maximizer af0, 0, §:
maximizerplot = Graphics3D [ {Red, PointSize  [0.06 ], Point [{0,0,0 }1}1;
scalefactor = 0.4;
gradfieldplot = Table [Arrow [gradf [Xx,y,z ],
Tail - {x,y,z }, VectorColor - Blue, ScaleFactor
{x, -1,1,2 }, {y, -1, 1,1 3}, {z, -1,1,1 }1;

- scalefactor 1,

Show[maximizerplot, gradfieldplot, ViewPoint
Axes - Automatic, AxesLabel

- CMView,
o X,y SE

0G.6.a.i)

Why did this happen?

Where are the trajectories in this gradient field headed?
What do you try to learn about a functidm,fy, z] by looking at a
plot of its gradient field?

0G.6.a.ii)

You are given a certain functiofx{ y, z], and the information that
fla, b, d > f[x,y, Z

for all {x, y, z} close to but not equal fa, b, g.

You center a small sphere @m b, ¢ and plot the gradient field of

f[X, ¥, Z] on this sphere.

Is the net flow of the gradient field ofd, y, z] across this sphere from

inside to outside or from outside to inside?

0G.6.b.i) Minimizers

This time go with
f[X, y] — e(x2+y2+ 22)/16'
Clear [f, gradf, Field, x, vy, z 1
fIx_,y_,z ]=E™ (i),
gradf [x_,y .,z 1=
{OIfix,y,z 1,x1,DIf[xy.z 1,y 1,DIf[x,y,2 1,21}
Field [x_,y_,z_ 1=gradf [x,y,Zz ]

1 1 x2ayrez?) 1 i x2y?iz?) 1 _1 i)
{§EW y X, ng Y Y, ng y Z}

Note that{x, y, z} = {0, 0, @ minimizes fx, y, Z].
Here's a plot of the scaled gradient field [of, fy, z] shown with the
minimizer at{0, 0, §:
minimizerplot = Graphics3D [ {Red, PointSize  [0.06 ], Point [{0,0,0 }1}1;
scalefactor = 2.5;
gradfieldplot = Table [Arrow [gradf [Xx,y,z 1,
Tail - {X,y,z 1}, VectorColor - Blue, ScaleFactor
{x, -1,1,2 3}, {y, -1,1,1 1}, {z, -1,1,1 }1;

- scalefactor 1,

Show[minimizerplot, gradfieldplot, Axes
AxesLabel - {"x","y", "z" 1

- Automatic,
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Why did this happen?
What are the trajectories in this gradient field trying to get away from?

0G.6.b.ii)

You are given a certain functiofxf y, z], and the information that
fla, b, d <f[x,y, 7
for all {x, y, z} close to but not equal fa, b, g.
You center a small sphere{at b, ¢ and plot the gradient field of
f[X, y, Z] on this sphere.
Is the net flow of the gradient field o, y, z] across this sphere from
inside to outside or from outside to inside?
0G.6.c.i) The Laplacian Z124 4 Bzf;;’zy'z] + Ll
Here is a cleared function and its gradient field:
Clear [X,Y, z, f, gradf, m, n, p, Field, divField 1
gradf [x_,y ,z_ 1=

O [xy.z 1.x1,DIfxy.z 1,ylLDIfxy.z 1.1}
{mx_,y.,z_ 1,n[x,y.z_ 1.pI[x.,y_,z_ 1}=gradf [x,y,z 1;
Field [x_,y ,z_ 1={mxvy,z 1,n[xy,zZ 1,p[xy.z 1}

(00 iy z 1F Oy oz ) f O ik y 2 )
Here is the divergence of this gradient field:
I divField [x_,y_,z_ 1=
DIM(x,y,z 1,x1+DIn[x v,z 1,y 1+DIpIx Y,z 1,2 ]
FO02 0 )y, z 14+f020 ) x y z 1+f@00 ) xy 7z

The Laplacian of[k, y, z] is given by

PHx.y.2l + PPHxy.2] + 9[xy.2 .

X2 y? 022

Clear [Laplacianf ]

Laplacianf  [x_,y_,z_ 1=

DIf [y, z 1, {2 }1+DIf[x v,z 1, {¥,2 }1+DIf[x,y.z 1, {22 }]

f (0,02 ) X v,z | L f (0,20 ) X ¥,z ] of (20,0 ) X v,z |
How does the divergence of the gradient field compare with the
Laplacian?

0G.6.c.ii)

How do you check the Laplacian
02f[x,y.2] " 2f[xy.2] + 2%y, 2
o I3 oz . ) . .
to look for sources and sinks in the gradient field of a given function
flx,y, 2?
How do you check the Laplacian
Pfxy.2l + Pfxy,2 + 9*fxy.2
ox2 ay? 972

to check whether the gradient field of a given functiony, z] is free
of sources or sinks at points other than singularities?

0G.6.c.iii)

Explain this:

If f[X, y, Z] is a function with no singularities, and with
9%[x,y,2) + 8%[x,y,2] + 82f[x,y, 2] =0

ox2 ay? 972

for all points{x, y, z, then there can be no polat, b, ¢ with
fla, b, d > f[x, y, 7

for all {x, y, z} close to but not equal ta, b, g.

And explain this:

If f[X, y, Z] is a function with no singularities, and with

Pilxy.2] Pf[x.y.2] Prixy.2 _
ox? + e T 072 =0

for all points{x, y, z}, then there can be no polat b, ¢ with
fla, b, d <f[x, Y, Z]
for all {x, y, Z} close to but not equal fa, b, g.
aTip:

Review what you said in parts a) and b) above.

VC.10.G6-G7

0G.6.d.i)

A large solid region in three dimensions represents a big rock. Part of
the surface of the rock is kept at a prescribed temperature - maybe
hotter at one point than at another. The remainder of the surface is
perfectly insulated.
You wait until the temperature inside the rock settles into its steady
state condition.
Say tempx, y, z] represents the steady state temperature at a position
{X, y, z} inside the rock.
In the steady state, no point inside the rock and not on the surface can
be a source of new heat flow or a sink for old heat.
Why does this tell you that if

Fieldx, y, z] = gradtempx, v, Z],
then

divFieldx, vy, 2]

_ d*temix,y.Z) dPtempx,y,z) Ptempx,y,z)
- 0x2 + ay? + 072
=0
at each pointx, y, z} inside but not on the surface of the rock?

0G.6.d.ii)

Explain why your answer to part i), immediately above, tells you that
the hottest and the coldest locations of the rock must be on the outside
skin of the rock and not inside the rock.

G.7) Morphing and Moebius strips

Here's a flat ribbon:
Clear [s, t, flatribbon 1
flatribbon [s_.t_ 1=¢(-2ts }
flatribbonplot = ParametricPlot3D [flatribbon [s,t 1, {t, -2mxm 2 =},
{s, -0.5,0.5 1}, PlotPoints - {2, 2 }, DisplayFunction - Identity 1;
threedims = Axes3D [1. ];

Show [ flatribbonplot, threedims, ViewPoint - CMView,
PlotRange - {{-25,25 }, {-2x 2 xn}, {-15,15 1}}, Boxed - False,
DisplayFunction - $DisplayFunction 1;

You can pull the two ends around the z-axis, and join them together to
make a nice cylindrical ribbon:
| Clear [P, X, y, z, t, unittan, mainunitnormal, binormal, roundribbon 1
P[t_]=2{-Cos[t],Sin [t]1,0}
{-2Cos[t],2Sin [t],0}
PIt]

VP [t]1.P [t] ]

| unittan  [t_ ] = TrigExpand [

{Sin [t],Cos [t],0}

N unittan " [t]
mainunitnormal [t1=

+/TrigExpand [unittan ‘[t ].unittan ' [t]]
{Cos[t], -Sin [t],0}
| binormal [t_ ] = TrigExpand [unittan [t ] x mainunitnormal [t11
(0,0, -1}
roundribbon [s_,t_ ] =P[t] -sbinormal [t];
roundribbonplot [roundribbon [s,t 1, {s, -0.5,05 1},

= ParametricPlot3D
{t, -m, =}, PlotPoints - {2, Automatic }, DisplayFunction - Identity  1;

Show[roundribbonplot, threedims, ViewPoint - CMView,
PlotRange - {{-25,25 }, {-2x 2 xn}, {-15,15 }}, Boxed - False,
DisplayFunction - $DisplayFunction 1;

2
1O
2

T -1
0
5

Here's an animation about how you go from the flat ribbon to the
round ribbon:

Clear [morph, h ]

morph [h_] : = ParametricPlot3D [
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(1 - h) flatribbon [s,2t 1 +hroundribbon [s,t 1, {s, -05,05 1},

{t, -x, =}, PlotPoints - {2, Automatic  }, DisplayFunction - ldentity
Table [Show[morph [h1, threedims, ViewPoint - CMView,

PlotRange - {{-2.5,25 }, {-2m 2 n}, {-15,15 }},

Boxed - False, DisplayFunction - $DisplayFunction 1,

1
{ho 1, g}]:

[SI=

[SI=

[SE=

5
Animate these.

0G.7.a)

You can start with the same flat ribbon:

Show [ flatribbonplot, threedims, ViewPoint - CMView,
PlotRange - {{-25,25 }, {-2m 2 n}, {-15,15 }}, Boxed - False,
DisplayFunction - $DisplayFunction 1;

-2
10
2

5
You can join the ends giving it a twist along the way:
Clear [twistedribbon 1
twistedribbon [s,t 1=
P[t]+s (Sin [%] mainunitnormal [t ] —Cos[%] binormal [t ]);

twistedribbonplot =
ParametricPlot3D [twistedribbon [s,t 1, {s, -05,05 }, {t -m =},
PlotPoints - {2, Automatic }, DisplayFunction - Identity  1;

VC.10.G7

Show [ twistedribbonplot, threedims, ViewPoint - CMView,
PlotRange - {{-25,25 }, {-2mx 2 n}, {-15,15 }}, Boxed - False,
DisplayFunction - $DisplayFunction 1;
-2
-1

0
21

5
The fancy folks like to call this a "Moebius strip."
Here's an animation about how you go from the flat ribbon to the
Moebius strip:

Clear [morph, h ]
morph [h_] : = ParametricPlot3D [

(1 - h) flatribbon [s, 2t ] + htwistedribbon [s,t 1, {s, -0.5,05 1},

{t, -m, =}, PlotPoints - {2, Automatic  }, DisplayFunction - Identity 1;
Table [Show[morph [h1, threedims, ViewPoint - CMView,

PlotRange - {{-25,25 }, {-2x, 2 x}, {-15,15 }},

Boxed - False, DisplayFunction - $DisplayFunction 1,

{h. 0,1, %}];

ST

ST

ST

° Animate these
Rip a strip of paper out of an old traditional calculus book and try it
for yourself.
The round ribbon has two definite sides - the inside and the outside. |If
you stick your finger on the inside of the round ribbon and move your
finger around without lifting it, then your finger never leaves the
inside.
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If you stick your finger on the outside of the round ribbon and move
your finger around without lifting it, then your finger never leaves the
outside.

Can you say anything like this for the Moebius strip?

How many sides does the Moebius strip have?

Does it make any sense to talk about the flow of a vector field across
Moebius strip?

0G.7.b)
What happens when you twist the ribbon twice?

G.8) Bidding on rocket parts

You are an engineer working for the United Engineering Company,
makers of specialty metal products for the industrial market. A call
for bids comes in for some front sections of a rocket upon which
ceramic nose cones will be mounted.

The specifications say that the front section is to be made as follows:
You start with the inner parabolic surface with all measurements in
meters:

Clear [innerx, innery, innerz, r, s 1
innerx [r_,s_ ]=rcCos [S];

innery [r_,s_ 1=rSin [s];

innerz [r_,s_1=9-r?;

{innerrlow, innerrhigh }={2,3};
{innerslow, innershigh } ={0,2 n};
innersurface =
ParametricPlot3D [{innerx [r,s 1,innery [r,s ],innerz [r,s 1},

{r, innerrlow, innerrhigh }, {s, innerslow, innershigh },
ViewPoint - CMView, PlotRange - All, AxesLabel - Yy }1;

Wi

W

Y
\g%

AARRNRRANE l

Then you have the outer parabolic surface with all measurements in
meters:

Clear [outerx, outery, outerz, r, s 1
outerx [r_,s_ ]=2rCos [S];
outery [r_,s_ ]1=2rSin [s];
outerz [r_,s_ ]=36-(2r)?;
{outerrlow, outerrhigh
{outerslow, outershigh
outersurface =
ParametricPlot3D [{outerx [r,s ],outery [r,s ],outerz [r,s 1},
{r, outerrlow, outerrhigh }, {s, outerslow, outershigh }
ViewPoint - CMView, PlotRange - All, AxesLabel - XYY,

The specifications say that you get the top of the front section by
running a straight line from each point on the top of the inner surface
{innery2, g, inneny2, g, inner42, g}
to the corresponding point
{outerq2, 9, outeny2, g, outer42, s|}
on the top of the outer surface.

You get the base, on which the section rests, by running a straight lin«

from each point on the bottom of the inner surface
{innery3, g, innery3, g, inner43, g}

to the corresponding point
{outery3, g, outery3, g, outer3, g}

on the bottom of the outer surface.

VC.10.G-G9

0G.8.a)

Measure:
1) The surface area of the inner skin.
2) The surface area of the outer skin.
3) The surface area of the flat ring at the bottom.
4) The surface area of the conical ring at the top.
5) The volume enclosed by the outer skins composed of the outer
shell, the flat ring at the bottom, the conical ring at the top and the
inner shell.
Report these measurements, and throw in a plot of the finished
product including the flat ring at the bottom and the conical ring at the
top.
Show it from several advantageous viewpoints.

oTip:

This function might be of use:

Clear [section,r,s,t 1

section [r_,s_,t ] = {innerx [r,s 1,innery [r,s ],innerz [r,s ]} +
t ({outerx [r,s ],outery [r,s ],outerz [r, S 1}-
{innerx [r,s 1,innery [r,s ],innerz [r,s 1})

{rCos [s] +rtCos [s],rSin [s]+rtSin [s],9 -r2+ (27-3r?)t}

G.9) Volumes, flow and bouyancy

0G.9.a)

Use Gauss's formula to explain why the flow measurement of the
vector field

Fieldx,y, 2 = (%, %, %}
across the surface of a solid region is the volume of the solid region.
How is the measurement of the flow of

Fieldx, y, z] = {x, 0, O
across the surface of a solid region related to the volume of the solid
region?

0G.9.b)

One day a long, long time ago, Archimedes jumped out of his bathtub
and ran around the streets of Syracuse yelling "Eureka!" Why? It's a
pretty safe bet that he wasn't looking for a vacuum cleaner.

The plain fact is that he had just discovered the idea behind Ivory
soap, and it was floating in his bathwater. More than that, he had
figured out the reason it floated.

The bar of soap was able to displace only an amount of water of
weight equal to that of the bar of soap.

0G.9.b.i) Rub-a-dub-dub

Three dirty old men in a tub set out floating around a rather large
swimming pool in a definitely large wash tub. In the tub with them
were three large pieces of lead, a case of something to drink and some
fishing tackle. Archimedes's law says that as they launched their craft,
water in an amount with mass equal to the total mass of tub, men,
lead, beverage, and tackle was displaced. The only place for the wate
to go was up, so the level of the water in the pool raised a bit. As the
day wore on, the lead weights began to get into their way, so they
threw them out of the tub.

Use Archimedes's law to explain what happened to the level of the
water in the pool when they got the lead out.

0G.9.b.ii)

Look at:

water =Plot [0.1Sin [10t]+2, {t -3,3 }, AspectRatio - Automatic,

PlotStyle - {{Thickness [0.01 ], Blue }}, DisplayFunction - Identity 1;
2k 2k
arrows = Table [Arrow [0.4 {Cos[ 10" ] Sin [ 10" ]}

Zlkon ] Sin [21k_07r] } VectorColor > Red], {k, 0, 10 }];

labels = Graphics [{Text ["Ball", {0,0 31,
Text ["Waves", {15, 1.8 1}], Text ["Force vectors",

Tail - {Cos|[

0,15 1115

Show[ {Graphics [{Thickness [0.01 ], Circle [{0,0},11}],
water, arrows, labels }, Axes - None, PlotRange - All,
DisplayFunction - $DisplayFunction 1;
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Force vectors

What you have here is a ball submerged in water. At each point (little
patch) of the surface of the ball, a force is acting according to the rule
Ax, y, z] = PressureDensity
= FluidDensity g—2)
where z is depth measured starting from@ at the surface of the
pool. The direction of the pressure is inward in the direction of the
normal to the surface of the ball at each point. The total (buoyancy)
force on the surface, C, of the ball is nothing more than
Force= [ [ P.ndA.
Your job is to explain Archimedes's law, nhamely,
Force= W {0, O, 1,
where W is the weight of the water displaced.

G.10) Rotating and measuring

0G.10.a)

Here is part of the curve=z Sin[2 x] plotted in the xz-plane:

Clear [f,x,y,2 ]
xlow =0.5;
xhigh =3.1;
f[x_1=Sin[2x];
xzplane = Graphics3D [
Polygon [{{0,0, -151}, {0,0,15 }, {4,0,15 }, {40, -1513}11;
threedims = Axes3D [2, 0.2 ];
curve = ParametricPlot3D [
{x,0,f [x1}, {x, xlow, xhigh }, DisplayFunction - Identity 1;

Show[xzplane, curve, threedims, ViewPoint - CMView, PlotRange - All,
DisplayFunction - $DisplayFunction 1;

VC.10.G%-G10

oTip:

Do what you did above but run with:

Clear [x,y,2zfr,t ]
X[r,t_ 1=rCos[t];
yIr_,t_ 1=rSin [t];
zr t_ 1=f[r];

0G.10.c)

Here is part of the parametric curve

Rs] = {0, 3s(3- 9), 2+ s} as it sits in the yz-plane:
Clear [Xx,y,2,58 ]
X[s_] =0;
y[s_1=8-3s (3-5s);
Z[s_1=2+s;
slow =0;
shigh =2;
yzplane =

Graphics3D [Polygon [{{0,0,0 }, {0,0,5 }, {0,8,5 }, {0,8,0 }}11;
threedims = Axes3D [2,0.2 1;
curve = ParametricPlot3D [{X[s],y [s],Z [S]},

{s, slow, shigh }, DisplayFunction - Identity  1;

Show[curve, yzplane, curve, threedims,
Axes - Automatic, ViewPoint - CMView, PlotRange - All,
DisplayFunction - $DisplayFunction 1;

8
Rotate this curve about the y-axis and plot what you get.
Then measure the area of the surface you get.

0G.10.d)

Calculus Cal, that calculus lab pest who hangs out in the calculus lab
acting as if he knows everything, but in fact knows very little, taps
you on the shoulder and tells you that a certain old-fashioned printed
calculus text says:

If you want to measure the surface area of the surface explicitly given

Here's a plot of the surface you get when you rotate this curve arounc
the z-axis:

Clear [r,t ]
rotated = ParametricPlot3D [{rCos [t],rSin [t],f [r]},
{r, xlow, xhigh }, {t, 0,2 s}, DisplayFunction - |dentity 1;

Show[rotated, threedims, Axes - Automatic, ViewPoint - CMView,
PlotRange - All, DisplayFunction - $DisplayFunction 1,
-2

2
Measure the area of this surface.

0G.10.b)

Take a function z f[x]. If you plot it in the xz-plane as above for
a=<x < b with 0< a< b, then say how you can arrive at the formula

f 2ax 1+ F[x]? dx

to measure the area of the surface you get by rotating this curve abot
the z-axis.

Use this formula to confirm your answer above in part i).

Students in old-fashioned calculus courses spend a lot of time
plugging and chugging with this formula.

by
z=1[x, y]
over the rectangle ax <band csy <d, then you calculate

ff\/1+(6f[xy) +(ﬁfxyj) d/Xdy

:f f \/1+(6f[“) + (29)? guqy,

c
But Cal can't seem to figure out where the formula comes from and
the calculus book really doesn't say where it comes from.
Tell Cal where the formula comes from and then tell Cal where to go.
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