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VC.03 The Gradient
Basics

B.1) The gradient

gradf[x, y] = {DIf[x, yI, x], DIf[x, y1, I}
and the chain rule

DIf[x[t], yItl], tl =
gradf[x[t], y[t]]. {x’[t], y'[t]}
Here is the chain rule for a function of one variable:
Clear [f, x,t 1]
DIf [x[t]], t ]
fOx(t]] X [t]
This tells you that
% = F/[x[t]] x’[t],
just as you have known for some time.
Here is the chain rule for a function of two variables:
Clear [f,x,t ]
DIf [x[t],y [t1], t ]
Yt E O g,y [ty ex (e A0 xqr),y [t])
The notation
f1.9[x, y] stands for [f[x, y], X]
and
f0.D[x, y] stands for f[x, V], yI.
Some folks like to use the notation
T = £19(x, y] = D[f[x, y], X]
alfs — §021x, y] = DIflx, Y],

ay

So this output gives you three ways of writing the same thing:
df{xtly(t]]

dt
= lgf[f[X[t], yitl, X]fX’ [t] + DIf[xIt], yItl], y1y'[t]
= AU yeft] 4 2 le(;i;yltJJ vt
= fEOxt], yit] x/[t] + fODxt], y[t]y'[t].
This is the chain rule for functions of two variables.
OB.1.a.i) The gradient
How do you calculate the gradient of a functifx #]?
OAnswer:
The gradient of[X, y] is a 2D vector given by:

Clear [f, gradf, x, y 1
gradf [x_,y_1={D[f[x,y 1, x1,DIf[xy1 yI}
(A0 xy 1, f @) xy 1}

In other words, the gradient of a functif(x, y] is given by
gradflx, y] = {DIf[x, y], x], DIf[x, y], Y]}

= { Axyl  afixyl }
ax ' ax

= {f1O[x, y], fOD[x, y]}.
The gradient is important enough to carry the whole course from this
point until its conclusion.

OB.1.a.ii)

How do you calculate the gradient of a functigx f, z]?
OAnswer:

The gradient of[X, y, z] is a 3D vector given by:

Clear [f, gradf, x, y, z ]
gradf [x_,y ,z_ 1=
orfx,y,z 1, x1,DIf[x,y,z 1, y1.DIf[x v,z 1, 21}
(F B00 ) iy z 1, f OL0 )y y z 7 f OO x y 7z 7}

In other words, the gradient of a functif[x, y, Z] is given by
gradflx, y, z] =

VC.03.B1
{DIf[x, Y, z], x], D[f[X, v, 2], y], DIf[x, y, 2], z|}

— {Hflx,yYZJ IfIx.y.2 0flx‘y,21}
- ax ' ay ! 0z

= {f109x, y, 21, {O1O[x, y, 2], fOO2[x, y, Z]}.
Lots of times you'll see the notation

V{[x, y] = gradfix, y], or
VI[X, y, z] = gradfx, vy, z]

OB.1.b)

Here is Mathematica's calculation of the derivative[xfitf, y[t]] with
respect to t:
| Clear [f, x,y,t ]
DIf [X[t],y [t]1], t ]

Yt E O e,y [ty ex (t]f M0 xqt),y [t]]
Most folks call this formula the "chain rule."
You can think of this as a dot product

gradfx(t], y[tll . {x[t], y'[t]}:

Clear [gradf ]

gradf [x_,y_ 1={DIf[xy 1, x1,DIf[xy 1 y1}
gradf [x[t],y [t1]. {xX'[t1,y [t]}

yOEE O Xty ()] ex (e f M0 x(t],y [t]]

Does the chain rule formula

DIf[x[t], y[t], z{t]], t]

= gradfix(t], y[t], Z[t]] . {x'[t], Y'[t], Z'[t]}
work for functions of three variables?

OAnswer:

Try it and see.
Here isgradfix, y, z|:

Clear [f, X, vy, 2zt 1

gradf [x_,y .,z 1=

{Oifix,y,z 1, x1,DIf[xy,z 1, y1,DIf[xy,z 1, 21}
(FE00 0y z ) f Oy z ) f 0 Tk y, 2 )

Here isD[f[x[t], y[t], Z[t]], t]:
| Drf (xrt1,y [t1,z [t11, t 1

] F OO Xty (t],z ()] ey ()OO0 ),y [tz ()]«
X[t E A0 Xty (t],z [t]]

Here isgradfx[t], y[t], z[t]]. {x'[t], y'[t], Z[t]}:
| gradf [x[t1,y [t],z [t1]. {X'[t],y [t],Z [t]}
Z ] F OO Xty (t],z ()] «y (t) O D xt),y [tz (t]]+
X[t E00 ) Xty (t],z [t]]

Check whether

DIF[x[t], y[t], Z[t]], t] = :
gradfix[t], ylt], Z[t]]. (x'[t], y'[t], Z'[t]}

Drf [x[t]1,y [t],z [t]1], t ==
gradf [x[t],y [t],z [t]1]. {X'[t],y [t],Zz"[t]}
True

You bet your sweet ear that the formula

DIf[x[t], yltl, z[t]], t] =
gradfx[t], yltl, z[t]] . {x'[t], y'[t], Z'[t]}
works for functions of three variables.

In fact, analogous versions of this formula work for functions of any
number of variables.

OB.1.c.i)
Here is Mathematica's calculation of

DIf[Sin(3t], &'], 1]
for a cleared function[X, yI:
Clear [f, x,y,t 1
X[t_1=Sin [3t];
yIL 1 =B
DIf [X[t],y [t1], t ]
2E2U £ (O1) [Sin (3t ],E?'] +3Cos[3t]f ™0)[Sin [3t], E?!)
Use the fact that
DIF[X[t], ylt]], t] = gradfx(t], y[t]]. {x'[t], y'[t]}
to explain the Mathematica output.
OAnswer:

Clear [gradf ]
gradf [x_,y_ 1={DIf[xy 1 x1,D[f[xy]1 yI}
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(A oy 1, F O xy ]y
Clear [tan ]

tan [t] =D[{x[t],y [t]1}, t]
(3Cos[3t],2E2t}

The chain rule says
DIf[x[t], y[t]], t] = gradfx[t], y[t]]. tant]:

| gradf [x[t],y [t]].tan [t]
2E2U £ (O1) [Sin (3t ],E?'] +3Cos[3t]f™0)[Sin [3t], E2)

Check:

| DIf Ixqt1,y [t11, t 1
2E2U £ (O1) (Sin [3t],E2'] +3Cos[3t]f 10) [Sin [3t], E2!]

Yes ma'am.

oB.1.c.ii)

Here is Mathematica's calculation of
DIf[x[t], yltll, t]
for f[x, y] = Sin[x? y3] and cleared functiongtt and yt]:
Clear [f x,y,t ]
fIx,y_ 1=sin x2y%];
DIf [X[t1,y [t1], t]
Cos[x[t)2y[t])3] (@x[t]y[t]®x [t]+3x[t]2y[t]2y"[t])
Use the fact that
DIf[x(t], yitl, t] = gradfix(t], y[t]]. {x"[t], y'[t]}
to explain the Mathematica output.
oAnswer:
Clear [gradf ]
| gradf [x_,y_ 1={DIf[xy 1, x1.DIf[xy 1 yI}
2xy3Cosx?y3],3x 2y2Cos[x?y37)
Clear [tan ]
I tan [t] =D[{x[t],y [t]} t]
Ity [t]}

The chain rule says
DIf[xIt], yitl], t] = gradfix[t], y[t]]. tanit]:

| gradf [x[t],y [t]].tan [t]

2Cos [x[t 12y [t 131 x[t]y[t]®x [t]+3Cos[x[t]2y[t]3)x[t]2y[t]2y"[t]
Check:

| Expand [D[f [x[t],y [t1], t 1]
2Cos (x[t]12y[t13) x[t]y[t]3x [t]+3Cos[x][t]

You can do these by hand with no sweat.

B.2) Level curves, level surfaces and the gradient as normal

vector

Anytime you are examining a function, you can learn a lot by plotting
some of its level curves.

| Clear [f,x,y 1

fIX,y_ 1=5-((x%+xy +y?)

5-x?-xy-y?
Here is a plot of some level curvds,fy] = c for various c's as
selected by Mathematica. You are looking down at the surface
z = f[x, y] from the positive z-direction.

a=-1;
b=1;
levelcurves = ContourPlot  [Evaluate [f[x,y 1], {x,a b }, {y,a, b },
ContourSmoothing - Automatic, AxesLabel -S> XY
The lighter shading indicates larger values of f[X, y]

Here is the 3D plot of the surface=#[x, y]:
I surfaceplot = ParametricPlot3D [{x.y.f [xyl1} {xab },

{y, a, b }, ViewPoint - CMView, AxesLabel - {"x","y", "f [xy 1"}1;

VC.03.B1-B2

The level curves are plots of the shapes of various trips on the surface

that keep the heighfX, y] constant for the whole trip.
Here is a plot of the shape of the trip that keeps

fix, y] = 4.5:

c =45;

Show[levelcurves, Contours - {c}, ContourShading - False 1;

1

Y5005 1

Here is the actual plot of the same trip which lies on the intersection
of the surface and the plane-24.5:
c =4.5;
plane = ParametricPlot3D
{y, a, b }, PlotPoints

[{xy.c } {xab }

- {2, 2 }, DisplayFunction - Identity 1;

Show[surfaceplot, plane, ViewPoint
DisplayFunction

- CMView,
- $DisplayFunction 1;

OB.2.a) The gradients are perpendicular to level curves

Here's a new function
fix, y| =2x2+ xy + y?
together with its gradient:
Clear [x, vy, f, gradf 1
fIX, Y. 1=2x24+xy +y?;
gradf [x_,y_ 1={DIf[xy 1, x1.D[f[xy]1 yI}
{dX +y, X +2y}
Here is a part of the level curve
fix, yl = f[1.5, 2
shown with gradfl.5, 2 plotted with its tail a{1.5, 2:

levelcurve =
ContourPlot  [f [x,y 1, {X,0,3 }, {y,1,4 }, Contours - {f[15,2 1},

ContourShading - False, DisplayFunction - Identity 1;
point = {15,2 };
gradient = Arrow [gradf [1.5,2 1], Tail - point, VectorColor - Red];

Show[levelcurve, gradient, PlotRange
AxesLabel - {"x","y" }, DisplayFunction

- All, AspectRatio - Automatic,
- $DisplayFunction 1;

N W A O o N

1

0 2 4 6 8
That gradient vector is perpendicular to the level curve.
Is this just an accident?

OAnswer:

This is no accident.

In Mathematics, there are no accidents.

Here's why:
If you parameterize the level curve
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fix,yl=c
with a parameterizatio{x[t], y[t]} and then you put
glt] = fx[t], yltll,
then you geg[t] = ¢ no matter whettis.
Consequently
gt]=0
no matter whatis. But the chain rule says
g'[t] = gradfx(t], y(tll. {(x'[t], Y'[t]}.
So
gradfix[t], y[tll. {x'[t], y'[t]} = 0
no matter whatis. This means that the gradient
gradfix[t], y[tl]
is perpendicular to the tangent vector
X[t y'Itl}
at{xt], y[tl}.
As a result, no matter wh{x, y} you go to on a level curve
fix,yl=c,
the gradiengradflx, y] is perpendicular to the level curve(x, y}.
Read that again!
Check it out again, going with
f[x, y] = x2 + 4y%
Here is a true-scale plot of the level curve
fix,yl=x?+ 4y> =36
and some of the gradiergradf{x, y] with tails at some poini{x, y} on
the level curve.

The level curve
fix,yl=x?+ 4y? =36
is the ellipse
2 Y\ _
(%) +(3) =1
Clear [X,y, f, gradf 1

fIx,y 1=x2+4y?
gradf [x_,y_1={(DIf[xy 1, x1,DIf[xy 1 yI}

Clear [t]
{X[t_ 1,y [t_1}={6Cos[t],3Sin [t]};
levelcurve = ParametricPlot [{x[t],y [t]}, {t 0,2 =},
PlotStyle - {{Blue, Thickness [0.01 ]}}, DisplayFunction - Identity 1;
scalefactor =0.4;

gradients = Table [Arrow [gradf [x[t],y [t]], Taill - {x[t],y [t1},
2
VectorColor - Red, ScaleFactor - scalefactor 1, {t, 0,2 1—;}]

Show[levelcurve, gradients,
AspectRatio - Automatic, AxesLabel - {"x","y" 1}, PlotRange - All,
DisplayFunction - $DisplayFunction 1;

Prependicular as all get-out.
It will work any time and place.

0B.2.b)
Does this work in three dimensions?

OAnswer:
Check it out.
Here is part of the level surface
flx,y,2l=z—- xy=1.

VC.03.B2-B3

Clear [f, gradf, x,y, z 1
fIx,y.z 1=z-xy,
gradf [x_,y_,z_ 1=
{Orfix,y,z 1, x1,DIfxy.z 1, y1.DIf[x,y,z 1, 21}
Solve [f[X,y,z ]1==1,2]
{{z->1+xy}}

levelsurface = ParametricPlot3D [{X,y,1 +xy}, {X, -1,11},
{y, -1,1}, ViewPoint - CMView, BoxRatios - Automatic,
AxesLabel - {"x", "y", "z" N

You can get one of the many curves on this surface by taking the
surface plotting functiofx, y, 1+ xy} and setting

x = < andy = Sin[t.
Here come a lot of gradients with tails on this curve:

Clear [X,y,2z,t 1]

XL LY L Z 1=y, 1 +xy}/ {x- .y »Sin[t1}

Cos[t]
2
gradients = Table [Arrow [gradf [x[t],y [t],z [t]1],
. 2r

Tail - {x[t1,y [t],z [t]}, VectorColor - Red], {t, 0,2 F}]

Show[levelsurface, gradients 1;

The gradients are all perpendicular to the surface—just as normal as

Beaver, Wally, June, and Ward.

B.3) The gradient points in the direction of greatest initial
increase

The negative gradient points in the direction of greatest
initial decrease

oB.3.a)

Here is a function and its gradient:
Clear [X,Yy, f, gradf 1

4
X
fIxLy 1=-5x2+2 Y L2y .10;

gradf [x_,y_ 1={D[f[xy 1 x1,DIf[xy 1 yI}
x4
{-10x +x3y, 2 +T}

You are sitting at:
] (ab}=¢1518 }

(15,18 3
At this point the function's value is:
| fee{a b}
4.62813
The instruction Apply[f, {a, U] accomplishes the same thing
as the instruction fla, b:
|l frabl
4.62813
Here is a plot of part of the level cunde fy] = f[a, bi:
levelcurve = ContourPlot  [f[Xx,y ], {x,a -2,a +2},
{y,b -2,b +2}, Contours - {f [a, b ]}, ContourShading - False,
ContourSmoothing - True, DisplayFunction - Identity  1;

labels = {Graphics [{PointSize [0.07 ], Point [{a, b }1}1,
Graphics [Text ["{ab }", {a, b}, {-150 }11};

Show[levelcurve, labels, AspectRatio - Automatic,
DisplayFunction - $DisplayFunction 1;
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1 1.5 2 25 3 3.

You can leave théa, b in the direction of any point on the circle of
radius 1 centered &, b.
circle = Graphics [{Red, Thickness [0.01 ], Circle
Show[levelcurve, labels, circle, AspectRatio
DisplayFunction - $DisplayFunction 1;

[{a,b}, 11},
- Automatic,

I
o g k. a N o«

0051152 25 3 3.5
Which direction should you go to get the greatest initial increase of
the function?

Which direction should you go to get the greatest initial decrease of
the function?

OAnswer:

Calculus&Mathematica thanks 1991 C&M student
Tony Pulokas of the University of lllinois for
suggesting this way of looking at the problem.

Two unit vectors come to mind. They are unit tangent and unit norma
vectors to the level curve {a, B. One unit normal is the unit vector in
the direction of the gradient.

gradf [a, b ]

gradf [a, b ].gradf
{-0.93911, 0.343617 }

unitgradnormal =

[a,b]

You can get a unit tangent vector by switching the components and

hitting one of them with a minus one.

| unittan = {unitgradnormal [21. -unitgradnormal [in}
{0.343617, 0.93911 }

setup = Show[levelcurve, labels, circle,
Arrow [unitgradnormal, Tail - {a, b }1, Arrow [unittan, Tail - {a, b}1,
AspectRatio - Automatic, DisplayFunction - $DisplayFunction 1;

NG

0051152 25 3 3.5

=
o ok o N o«

You can leave the point in the direction of any vector with te{a, b
and tip on the circle of radillscentered &{a, b.

Here are some possibilities:

Table [Show[setup,
Arrow [Cos [t ] unitgradnormal + Sin [t ] unittan, Tail

DisplayFunction - $DisplayFunction, AspectRatio
e

fro.z x- 2 2});

- {a b},
- Automatic 1,

&
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Animate these and run at a brisk speed.

In the movie, you saw the tips of the vectors

Coqdt] unitnormal+ Sin[t] unittan

with tails at{a, I sweep out the circle tsvent from 0 tc2x. The
question is how to sttso that the vector

Codt] unitnormal+ Sin[t] unittan

with tail at{a, b} points in the direction of greatest initial change of
f[x, y] as you leav{a, b.
Think for a second and you will probably agree that going in the
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direction ofunittan is a bad idea because it snuggles against the level
curve ancf[x, y] doesn't change at all on this level curve.
In fact any direction that has a nonzero tangential component is a poc
choice because the tangential component won't do much for changing
the function.
To get the greatest initial changef[x, y] you should leav{a, b} in
the direction of

Codt] unitnormal+ Sin[t] unittan
with t set so that thunittan term is zeroed out. This means you set
t = 0 orxr and this leaves you the choice of directions:

unitnormal
or in the direction of

—unitnormal.
Because the unitnormal points in the same direction as the gradient, t
get the greatest initial changef[x, y] you should leav{a, b in the
direction of either

gradfla, bl or-—gradfx, y].
Let's see which one:

Clear [s]
{fee({a, b} +sgradf [a,b]),
fee{a,b},f ee({a,b} +s (-gradf [a,b 1))} /.
s-»01
{12.4803, 4.62813, -3.60418 }
{fee ({a,b } +sgradf [a, b ]),
fee{a,b},f ee({a,b } +s (-gradf [a,b 1))} /.
s - 0.01
{5.529, 4.62813, 3.72469 }
{fee ({a, b} +sgradf [a,b]),
fee{a, b}, f ee({a, b} +s (-gradf [a, b ]))} /.
s - 0.001

{4.71843, 4.62813, 4.53779 }
{fee ({a,b } +sgradf [a,b]),
fee{a, b}, f @@ ({a, b} +s (-gradf [a, b))} /.
s -» 0.0001
{4.63716, 4.62813, 4.61909 }

The gradient points in the direction of greatest initial increase.

The negative gradient points in the direction of the greatest initial
decrease.

This will happen for any function at any point at which the gradient is
not{0, 0}.

B.4) Using linearizations to help to explain the chain rule

DIf[xIt], yItll, t] =
gradf[x[t], y[t]] . {x'[t], y'[t]}
Here is a simple curve in two dimensions:

Clear [f, x 1

f [x_] =Sin [X];

fplot = Plot [f [x], {X, -3, 3}, PlotStyle
AxesLabel - {"x","y" }1;

- {{Blue, Thickness [0.01 1}},

-1
Here's the linearization ofX] at{a, f[a]}:
Clear [linearf, a 1
linearf [x_,a_ 1=f[a]+f’[a] (x-a)
(-a+x) Cos[a] +Sin [a]

And a plot in the case-a0.5:

VC.03.B3-B4

Clear [a, linplot 1
linplot [a_]:=Plot [linearf [x,a ], {x,a -05,a +05},

PlotStyle - {{Red, Thickness [0.01 ]}}, DisplayFunction - Identity 1;
pointplot  [a_] = Graphics [{PointSize [0.03 ], Point [{a, f [a]}]1}];

Show[fplot, linplot
DisplayFunction

[0.5 1, pointplot [051],
- $DisplayFunction 1;

-1

Here's a little movie:

Table [Show([fplot, linplot [a],
pointplot [a], DisplayFunction
{a, -2525 }1;

- $DisplayFunction 1,
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-1
That's right; lineaffi, a is nothing but the tangent line atxa.
To linearize a function[k, y], you can use the gradient.
The gradient of a functioriX, y] is given by:
Clear [f, x,y, gradf 1
gradf [x_,y_ 1={DIf[xy ], xI,DIf[xy 1 yI}
(FE oy 1, f O Xy 1)
Just as the linearization of a functigi]fat a point x= a is given by
linearfx, al = f[a] + f’'[a] (x — &),
the linearization of a functioriX, y] at a 2D pointa, b} is given by
linearfx, y, {a, ] = f[a, b + gradfia, bj.{x - a, y— b}.

To help you stick your mental tongs into the idea behind using the

gradient for linearization, look at the following plot of a function
f[x, y] and a pointa, b:
Clear [f, x,y 1
fIx,y_1=3-x>-05y?;
actualsurfaceplot =
ParametricPlot3D [y, f Ixy1} {x -1,11%, {y, -1,11},
Axes - Automatic, AxesLabel - "y f [Xy 1"}, PlotRange - All,
ViewPoint - CMView, DisplayFunction - $DisplayFunction 1;
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Now throw in the plot of
linearfx, y, {a, ]

at the indicated poirig, b, fa, bj}:
Clear [a, b, gradf, linearf, point 1;
gradf [x_,y_ 1={(DIf[xy 1, x1,DIf[xy 1 yIk
linearf [x_,y_, {a.,b_}l:=fla,b]l+gradf [a,b]. {xX-a Yy -b};
linearizedplot [a_,b_1:=

ParametricPlot3D [{X, Y, linearf [x,y, {a,b}1}, {x,a -05,a +05},

{y,b -05,b +0.5 }, PlotPoints - {2, 2 }, DisplayFunction - ldentity

point [a_,b_1:=

Graphics3D [ {Red, PointSize  [0.02 ], Point [{a, b, f [a, b 1}]}1;

{a,b}=1{-0104 1};

Show [ actualsurfaceplot, linearizedplot [a, b ], point [a b1,
Axes - Automatic, AxesLabel - "X,y }, PlotRange - All,
ViewPoint - CMView, DisplayFunction - $DisplayFunction 1,

0.

y
The plot of linearfx, y, {a, B] is that little bit of plane tangent to the

surface at the plotted poitd, b, fa, b}.
See what happens for other some other points:
{a,b}={050 };
Show actualsurfaceplot, linearizedplot [a, b ], point [a b1,
Axes - Automatic, AxesLabel - Xy }, PlotRange - All,
ViewPoint - CMView, DisplayFunction - $DisplayFunction 1;

{a,b}={-02502 };

Show [ actualsurfaceplot, linearizedplot [a, b ], point [a b1,

Axes - Automatic, AxesLabel - {0yt [xy 1"}, PlotRange - All,
ViewPoint - CMView, DisplayFunction - $DisplayFunction 1;

{a,b}={05 -041;

Show [ actualsurfaceplot, linearizedplot [a, b ], point [a b1,
Axes - Automatic, AxesLabel - "X,y }, PlotRange - All,
ViewPoint - CMView, DisplayFunction - $DisplayFunction 1;

1

{a,b}={001}
Show [ actualsurfaceplot, linearizedplot [a, b ], point [a b1,
Axes - Automatic, AxesLabel - "X,y }, PlotRange - All,

ViewPoint - CMView, DisplayFunction - $DisplayFunction 1,

VC.03.B4

0OB.4.a) Why the linearized plot is tangent to the actual plot
In all the experiments, the plot of linep¢tfy, {a, B] is tangent to the
surface ata, b, fa, bj}.
Explain why this will always happen, no matter what function ¥]
and point{a, b, fla, b} you go with.
OAnswer:
One possible explanation is that at the p{a, b, fla, bj} the surface
z=f[x,y]
and the plane
z =linearf[x, y, {a, B] = f[a, bl + gradfia, b.{x—a, y—b}.
have have parallel normal vectors.
To investigate this, run with cleared functions to see what these norma

vectors are:

Clear [f, x, Y, a, b, gradf, linearf, point 1;
gradf [x_,y_ 1={DIf[xy 1 x1,DIf[xy 1 yIl}
linearf [x_,y_, {a_,b_3}l=f[ab]+gradf [a,b]. {x-a,y -b}

flabl+ (-b+y)f@ ) ab]+ (-arx)f®®)(ab)
An xyz-equation of the plot of
z = linearf[x, y, {a, B]

{197, b (x— @ + fOP[a, b (y— b) - (z- f[a, b) =0.
This is the equation of a plane with normal vector
{f%[a, b, fOP[a, b, -1}.
Now check out the normal to the actual surface at a {a, b, fla, b|}:

If this mystifies you, look at the Basics in the last lesson.

Clear [surfacepoint, xcurve, ycurve, normal 1
surfacepoint X,y 1={yf [XyIl}
xcurve [x_] = surfacepoint [x,b1;

ycurve [y_] = surfacepoint [a,y 1;

tanxcurve [x_] = D[xcurve [X], X 1;

tanycurve [x_] = D[ycurve [y], Yy 1;

normal = tanxcurve [a] xtanycurve [b]

(-f ) a, b, -FO a8y, 1)
This is just the negative of the normal vector
{f-%[a, b, f*[a, b, -1}
to the plot oflinearf{x, y, {a, b] found above.
The upshot:
The plot oflinearfx, y], {a, B] has no choice but to be tangent to the
surface at the poita, b, fla, bj}.

0B.4.b.j)

You are given a curvi(t], y[t]} in two dimensions and a function
f[x, y]. You can put
4t] = f[x[t], yltl]
You can also linearizelX, y] at a point
{X[to], Y[tol, f[X[to], Y[to]]}
and look at the new function
znewt] = linearfix[t], y[t], {X[to], y[to]}].
Here's what happens in the specific case with
f{x, y] = Sin[xy]
and
IXIt], yitl} = {t, t3}
for some sample selections gf.t
Clear [f, X, vy, 2zt 1
fIx,y_1=Sin[xyl;
XL Ly [ 1y =q(tt 2}
Z[ ] =f[X[t],y [t1];
actualcurve =Plot [z[t], {t, -05,15 1},
PlotStyle - {{Blue, Thickness [0.01 1}}, AxesLabel - {"t","z [t]1"}];
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Here's what happens when you take 0.5 and plot the new curve

znewit] = linearflx[t], y[t], {x[to], yltol}]
and show the two plots together:
Clear [a, b, gradf, linearf, point, znew 1;
gradf [x_,y_1={(DIf[x,y 1, x1,DIf[X,y 1, y1}
linearf [x_,y_, {a.,b_}l:=flab]l+gradf [a, b]. {XxX-a Yy -b};
znew [t_ ] =linearf [x[t],y [t], {a b }1;
point [t 1] =
{Graphics [Text ["{\ !\ (t\ _O\),z [\ !\ (8 _O\)1}", {t z [t1}, {O, -3}11,
Graphics [{Red, PointSize  [0.03 ], Point [{t, znew [t]}1}1};
to =0.5;
{ab}={x[tol,y [tol}
newcurve = Plot [znew[t], {t,t ¢-051t ¢+05},
PlotStyle - {{Red, Thickness [0.01 ]}}, DisplayFunction
Show [actualcurve, newcurve, point [to], PlotRange - All,
AxesLabel - {"t","™ 1}, DisplayFunction - $DisplayFunction 1,

- Identity 1;

Try it again for different selections of:t
to =0.2;
{a b} ={x[tol,y [tol};
newcurve = Plot [znew[t], {t,t ¢ -05t o+05},
PlotStyle - {{Red, Thickness [0.01 ]}}, DisplayFunction
Show [actualcurve, newcurve, point [to], PlotRange - All,
AxesLabel - {"t","™ 1}, DisplayFunction - $DisplayFunction 1;

- Identity  1;
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Another selection oft
to=13;
{a b} ={x[tol,y [tol};
newcurve =Plot [znew[t], {t,t ¢-051t ¢+05},
PlotStyle - {{Red, Thickness [0.01 ]}}, DisplayFunction
Show [ actualcurve, newcurve, point [to], PlotRange - All,
AxesLabel - {"t","™ 1}, DisplayFunction - $DisplayFunction 1;

- Identity 1

Another selection oft
to=-02;
{a,b}={x[tol.y [tol};
newcurve = Plot [znew[t], {t,t o-051t o+05},
PlotStyle - {{Red, Thickness [0.01 ]}}, DisplayFunction
Show [actualcurve, newcurve, point [to], PlotRange - All,
AxesLabel - {"t","™ 1}, DisplayFunction - $DisplayFunction 1,
1

- Identity  1;
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Play with some more selections gf t
Describe what you see and explain why you are seeing it.
OAnswer:

Do it again:

to=0.8;

{a,b}={x[tol.y [tol}

newcurve = Plot [znew[t], {t,t ¢ -05t ¢ +05},

PlotStyle - {{Red, Thickness [0.01 ]}}, DisplayFunction

Show[actualcurve, newcurve, point [to], PlotRange - All,
AxesLabel - {"t","™ }, DisplayFunction - $DisplayFunction 1;

- |dentity

1.5

The two curves are tangent to each other at their point of contact at
{to, Z[to]}. When you think about it, you'll have to agree this outcome

is, as Lewis Carroll put it, "large as life and twice as natural."
Reason:
One curve is
Z[t] = f[x[t], yItI;
the other is
znewt] = linearf[x[t], ylt], {x[tol, ylto]}].
They are tangent {to, Z[to]}, as above, because the plane
z = linearf(x, y, {X[to], yltol}]
is tangent to the surface
z=1f[x,yl
at the point

{X[tol, yltol, f[X[tol, Y[tol1} = {X[to], yltol, Z[to]}.
And that's all there is to it!
This will work for any choice of[x, y], X[t], andy[t] you want.

OB.4.b.i) Why the chain rule works

Given
4t] = f[x[t], yltll,
Mathematica calculates[#] as follows:

Clear [x, Y, 2zt f ]
z[t_ ] =f[x[t],y [t]];
D[z[t], t ] /.t >to

y'[to ] f @) x[to ],y [to]] +x [to]f ) [x[to],y [to]]
Most folks call this formula the "chain rule."
Explain where the chain rule comes from.

OAnswer:
As you saw above, the two curves

Z[t] = fx[t], y[t]]
and

znewt] = linearf(x[t], y[t], {X[to], yltol}]
are tangent &to, Z[to]}.
This tells you thaz'[tg] = znew[to].
Look atznewt] for cleared functionf[x, y], x[t], andy[t]:

Clear [a, b, x, Y, z, gradf, linearf, znew 1;

gradf [x_,y_ 1={DIf[xy 1. x1.DIf[xy ]l yIlh

linearff [x_,y_., {a,b_}l:=fla,b]+gradf [a,b]. {x-ay -b};
znew [t_ ] = linearf  [x[t],y [t], {& b}] /. {a»X[to], b >y[to]}

fx[to],y [to]]+(y[t]-yto])f @) (x[to],y [to]]+
(x[t]-x[to])f®)[x[to ],y [to]]
You don't need Mathematica to see iznew(t] is:
] Drznew(t], t ]
Yyt O x(to ],y (to )] +x [t]f 30 [x[to],y [to]]
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But
Z'[to] = znew([to];
s0Z'[to] is given by:
| Diznew[t], t ] /.t >to
y'rto ] f O [x[to ],y [to]] +x'[to ] f X0 [x[to ],y [to]]
This explains Mathematica's calculation:

z[t_1=f[x[t],y [t1];
D[z[t], t ]1/.t »to

y'[to ] f @) [x[to ],y [to]]+x [to]f ™) [x[to],y [to]]
| DIf[x[t1,y [t1], t 1/.t »to
y'[to ] f @) [x[to ],y [to]]+x [to]f ™) [x[to],y [to]]

This explains where the chain rule comes from.

0OB.4.b.ii) Why the chain rule works for functions of three variables

Given
wit] = f[x[t], ylt], z[t]],
Mathematica calculates’fty] as follows:
Clear [Xx,y, 2z, w,t f, to 1

wit_]=f[x[t],y [t],z [t]];
D[w[t], t ] /.t »to

z'1to ] f % ) x[to],y [to ],z [to]]+y [to]f @0 )ixito],y [to],z [to]]+
x'[to]f 300 ) x[to],y [to],z [to]]

This is the chain rule for functions of three variables.

Explain where it comes from.

oAnswer:
You just linearize
fix.y, 2
at a poinf{a, b, g with

linearf(x, y, z,{a, b, ¢] =
fla, b, d+ gradffa, b, d.{x- a,y— b, z— c}
and proceed as above.
This time you will not be able to do the plots, but the calculations will

hold up.

VC.03 The Gradient
Tutorials

T.1) The total differential
If you are given a functionX] of one variable, then you can write the
differential

df =f[x]dx.
This is really just a suggestive notation, and it is handy for hand
calculations:
- You divide both sides of

df =f[x]dx
by dt to get

4= fr[x] L.
Interpret this as

A = f[x[t]] 2 = f[X[t]] X'[t],

This is the chain ruIe for functions of one variable.

oT.l.a.)
How do you carry off this stunt for a functiofxf y]?

OAnswer:
Very easily.
Just write
df = D[f[x, y], X]dx + DIf[x, yI, yldy.
Divide both sides bdt to get
= DIf[x, yl, x] % + DIf[x, yl, y] %
ThIS glves you the chaln rule:

VC.03.B4-T1

Clear [f, x,vy,t 1
DIf [X[t],y [t1], t ]
Yt E O xt],y (t1] ex [t f A0 xt),y [t]]

Remember
DIf[x, yl, X] = f9[x, y]
and
DIf[x, yl, y1 = f@P[x, y].
It pays to notice once again that
4 = DI[f[x, yI, X] £ + D[f[x, y], y] &
is nothlng more than
gradfix, yI. {x'[t], y'[t]},
which is the chain rule.
aT.1.a.i)
Use the total differential
df = D[f[x, y], X]dx + DI[f[x, y], yldy
to help do a hand calculation of
DISinx[t1 yitl], .
oAnswer by hand calculation:
Takef[x, y] = Sin[x?y].
So
df = (Cogx?y] 2xy)dx + (Cogx?y]x?) dy.
Divide both sides bdt to get:
4 = (Cogx?y]2xy) & + (Cogx?y]x?) <.
Interpret the result as
AL = (Cod X[t yItl] 2X[t] y[t) 4L +
(Cogx[tIyIt] sz) ‘M‘
This is in agreement with:

Clear [x,y,t 1]
Expand [D[Sin [x[t1?y[t]1], t 1]
2Cos [X[t12y[t]]x[t]y[t] X [t]+Cos[x[t]2y[t]]x[t]?y’[t]

This is a nice hand technique that's especially handy when you are
working with a pencil on the back of an old envelope.

oT.1.b)

Use the total differential to give a hand derivation of the product rule
Ox[tTy[t z[t], t] = X[t y[t] z[t] + x[t]y’[t] z[t] +
X[yt Z'[t]
oAnswer by hand:
Put
flx,y,Zl =xyz.
This gives
df =yzdx+ xzdy+ xydz.
Divide both sides bdt to get
4M—yzd 4 xz Y
Interpret this as
CMUEDD
't

= y[t] Z[t] X'[t] + x[t] z[t] y'[t] + X[t] y[t] Z’[t]
= X[t y[t] z[t] + x[t]y'[t] z[t] + x[t] y[t] Z'[t].
Check:

Clear [X,y,2z,t 1]
DIx[t1y[t]z[t], t]
YT zZt]x [t]+x[t]z[t]y [t]+x[t]y[t]z[t]

Yep.

Y4+ xy4de,
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oT.1.c)

Use the total differential to help give a formula for the derivative with
respect to t of

&
dtl = foq NSl ds

where lis] is an unspecified function.

oAnswer:

Put
fx, y] = fyx h[slds.

The total differential is
df = D[f[x, y], X]dx + DIf[x, yI, yldy
= h[x]dx - hly]dy.

Divide through byd't to get
4~ h[x] 4 — hly] 2.

dat — dt

Now put
x = Sin[t] andy = Coqt]
to get
D[ Cscjg[tt]]h[s]ds, | = h[Sint]] Cogt] - h[Cogt]] (~Sin(t])

= h[Sin[t]] Codt] + h[Cogt]] Sin[t].
Would you have gotten it right without using the total differential?
Probably not.

T.2) What's the chain rule good for?

OT.2.a)

Is the chain rule formula for functions of more than one variable
useful for calculating derivatives of specific functions?

OAnswer:
Not really.
In specific situations, the chain rule for more than one variable is not
really needed because if you make the substitutions first and then
differentiate, then all you need is the chain rule for functions of one
variable.
Case in point:
If you want to differentiate
Cogx[t] y[t]*]
with respect td, you can use the chain rule for a function of one
variable and the product rule (from the early part of the course) to get
dCos{;I‘t]yItlS]
= - Sin[x[t] y[t]*] <G
= = Sin[x[t] y[tP] (<[] 3yt y'[t] + X[t y[t).
You could also use the two variable chain rule from this lesson. But
the point is that you don't really need the two variable chain rule to do
this problem.

OT.2.b)

If the chain rule formula for functions of more than one variable is not
particularly useful for calculating derivatives of specific functions,
then what the heck is it good for?

VC.03.T1->T3

OAnswer:

Instead of being a great calculational tool, the chain rule for functions
of more than one variable is a great theoretical tool.

Reason:

The chain rule for functions of more than one variable helps you
unlock the magic of the gradient. Cases in point:

— The chain rule gave you the basis for explaining why the gradient is
perpendicular to level curves and surfaces.

- Once you knew this, it was not a big jump to see why the gradient
points in the direction of greatest initial increase.

Should you forget about the chain rule?

Certainly not.

T.3) The gradient and maximization and minimization:
The Finaminimum  iNstruction

When you plot a surface, your eyes look for crest and dips. Tops of
crests are the tops of the hills. Bottoms of dips are the deepest points
in depressions that could collect rain water.

Fancy folks call the tops of crests by the name "local maxima." The
same folks call the bottoms of the dips by the name "local minima."
Most folks, fancy and down-to-earth, are interested in the maximum
which is located at the top of the very highest crest. The same folks
are also interested in the minimum which is located at the bottom of
the deepest dip.

OT.3.a.i) Tops of the crests

How do you know that ifxq, Yo, f[Xo, Yo} Sits at the top of a crest on
the surface = f[x, y], then
gradfxo, Yol = {0, 0}?

OAnswer:
If you are ai{Xgp, Yo} and you leav{xg, Yo} in the direction of
gradfixo, Yo 1, thenf[x, y] initially goes UP unless
gradflxo, Yol = {0, 0}.
The upshot:
If gradfixo, Yol is not{0, O}, then{xo, Yo, f[Xo, Yol} cannot sit at the top
of a crest on the surfaz = f[x, y]. In other words, if
{Xo, Yo, f[Xo, Yol} sits at the top of a crest on the surfz = f[x, y],
then
gradfiXo, Yol = {0, O}.
OT.3.a.ii) Bottoms of the dips

How do you know that ifxo, Yo, f[Xo, Yol} Sits at the bottom of a dip
on the surface z f[x, y], then
gradfxo, Yol = {0, 0}?

OAnswer:
If you are ai{Xg, Yo} and you leav{Xxg, Yo} in the direction
of—gradfxo, yol, thenf[x, y] initially goes DOWN unless
gradflxo, Yol = {0, O}.
The upshot:
If gradfixo, Yo] is not{0, 0}, then{xo, Yo, f[Xo, Yo]} cannot sit at the
bottom of a dip the surfaz = f[x, y]. In other words, if
{Xo, Yo, f[Xo, Yo} sits at the bottom of a dip on the surfz = f[x, v,
then
gradfixo, Yol = {0, O}.
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OT.3.b.i) Setting the gradient equal to 0

Find the maximizers and minimizers (if any) of
fix, y] =2.1x2+ 5.9y — 7.2x+ 3.3y + 8.7.

OAnswer:
Look at the formula
fx, y] =2.1x%> + 5.9y — 7.2x+ 3.3y + 8.7.
For largelx| andly|, the dominant terms
2.1x%+ 5.9y
makef[x, y] really huge. This meaif[x, y] has no maximum value.
It also means that there is no wayf[x, y] to ever get nee—c. So
f[x, y] has a minimum (at the bottom of the deepest dip) and the

minimizer must be a point at whigradfx, y] = 0:
Clear [x,y, f, gradf 1
fIx,y_ 1=21x24+59y2-72x +33y +87;
gradf [x_,y_ 1={DIfIxy 1, x1I,DIf[xy 1l yI1}h
Solve [gradf [x,y ]1=={0,01}, {X,y }]
{{x > 171429,y - -0.279661 }}

The minimizer is{1.71429,-0.279661 and the minimum value is

f[1.71429,~0.279661:

| fee(171429, -0.279661 }
2.06713

Take a look:

deepestdip = {1.71429, -0.279661, 2.06713 };
flagpole = Graphics3D [

{Red, Thickness [0.01 ], Line [{deepestdip, {1.7, -0.3,12 3}3}1}1;
surface = Plot3D [f [x,y 1, {x,1.7 -1,1.7 +1},

{y, -0.3 -1, -0.3 +1}, DisplayFunction - Identity 1;

Show[surface, flagpole, AxesLabel - Yy },
ViewPoint - CMView, DisplayFunction - $DisplayFunction 1;

0.

The flagpole is planted at the bottom of the deepest dip.

OT.3.b.ii) More than one candidate

Find the maximizers and minimizers (if any) of
fix, y] = 0.2x* + 0.1y* + 8.2xy — 18.4x

oAnswer:

Look at the formula

f[x, y] = 0.2x* + 0.1y* + 8.2xy — 18.4x
For large|x| andly|, the dominant term0.2x* + 0.1y* makef[x, y]
really huge. This mearf[x, y] has no maximum. It also means that
there is no way fof[X, y] to ever get neé—oo; sof[x, y] has a
minimum and the minimizer must be a point at which

gradfix, y] = 0:

Clear [x,y, f, gradf 1

fIx,y_ 1=02x%+01y*+82xy -184x;

gradf [x_,y_ 1={DIf[xy ], x,DIf[xy 1l y1}h
Solve [gradf [x,y ]1=={0,01}, {X,y }]

{{x—>-253906 -3.069931,y - -3.16285 +2.969881 },
{Xx >-253906 +3.069931,y - -3.16285 -2.969881 },
{X > -2.45864,y - 3.69388 }, {x - -0.653039 - 3.632281,

y - -0.250639 -4.221981 }, {x - -0.653039 + 3.632281,

y - -0.250639 +4.221981 }, {x -»-0.564143,y - 2.26142 },
{X > 266448 -1.688631,y - 262211 +3.039011 1},

(X >2.66448 +1.688631,y - 262211 -3.039011 },

(X >4.07802,y - -4.37255 }}

VC.03.T3

Tossing out the complex candidates gives three candidates for the

minimizer:
candidatel = {4.07802, -4.37255 };
candidate2 = {-0.564143, 2.26142 };
candidate3 = {-2.45864, 3.69388 };
Compare:
| {f eecandidatel, f eecandidate2, f  eecandidate3 }
{-129.385, 2.55454, -3.30667 }

It's no contest. The minimizer is:

| candidate1
(4.07802, -4.37255 }

The minimum value is:

| f eecandidatel
-129.385

Not much to it.

OT.3.c.i) Terrible gradients and the FindMinimum instruction

Find the maximizers and minimizers (if any) of
fix, y] = 1.2 + 2.9¢” — 8.2xy2.
Show off your results with a plot.

OAnswer:
Look at the formula
fIx, y] = 1.2e + 2.9¢” — 8.2xy2.
For largelx| andly|, the dominant terms
1.2¢¢ + 2.9¢"
makef[x, y] hugely positive. This meaif[x, y] has no maximum. It
also means that there is no wayf[x, y] to ever get neé—; so
f[x, y] has a minimum value and the minimizer must be a point at
which gradflx, y] = 0:

Clear [f, gradf, X, y 1
fIX,y_ 1=12EX +29EY -82xy %
gradf [x_,y_ 1={DIf[xy 1 x1,D[f[xy]1 yI}
{24E¥ x-82y 2, 58E ¥y -164xy }
| Solve [gradf [x,y ]1=={0,01} {X,y }]
Solve [{2.4Exz X -82y 2 58E ¥'y-164xy }==10,0}, (xy}]
Dung.
Mathematica had to bail out.
But this is no reason for you to give up. Take another look at the

formula:

I fixyl
12EX +29EY -82xy 2

For the smaller values |x| andly|, the terrr8.2x y? has a lot of
influence. Also, to drivd[x, y] down, you'll wanx > 0.
Look at plot of some level curvesf[x, y] for the smaller values (x|

and|y| with x > 0:

] ContourPlot [f[x,y 1, {x,0,2 }, {y, -2,2}];
2

1

0

-1

%505 1 Ls 2
The lighter the shading, the higher the function.

The minimizer(s) lurk inside dark zone. Look again:
] ContourPlot  [f[x,y 1, {x,0,15 }, {y, -1,1}1;
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This is evidence pointing to two minimizers. Look at the formula:

| fixyl
12EX +29EY -82xy 2

And look at:

I fix -yl
12EX +29EY -82xy 2

Ahal

fIx, yl =flx, -yl
This tells you that if you locate one minimizer{x*, y*},
then{x*, —y*} is also a minimizer.

Look high:
] ContourPlot [f[x,y ], {x,08,13 }, {y,07,12 }I;

1. 27

0.7
0.80.9 1T 1.I1.21.3

You've got one of the minimizers trapped!
It's somewhere in the dark zone n{1.05, 1.1. Now move in for the

kill with the Mathematica instructioFindMinimum starting with an
initial guess 0{1.05, 1.3:
| minimizer = FindMinimum [f [x,y 1, {x, 1.05 }, {y, 1.1 }]
{2.80399, {x 112131,y - 1.07421 }}
Mathematica is telling you that it has located a bottom of a dip at the
point
{1.12131, 1.07421, 2.80399

Test the gradient {1.12131, 1.07421

| oradf ee(1.12131, 107421 }
(-0.0000252787, 0.000119753  }

Great; it's darn close {0, 0}.
Now you can say with considerable authority that your estimate is tha
the minimizers are

{1.12131, 1.07421and {1.12131,-1.07423

and the minimum value ¢[x, y] is:

| fee(1.12131,1.07421 }
2.80399
| fee(1.12131, -1.07421 }
2.80399

Notice that this is the same as the first slot of the output of the
FindMinimuminstruction.

Take a look at the fruits of your labor:

h =0.3;
deepestdipl = {1.12131, 1.07421, 2.80399 };
deepestdip2 = {1.12131, -1.07421, 2.80399  };
flagpoles = {Graphics3D [{Red, Thickness [0.01 ],
Line [{deepestdip1, {1.1, 1.07, 10 }3}13}1, Graphics3D [
{Red, Thickness [0.01 ], Line [{deepestdip2, {1.1, -1.07,10 }}1}1};
surface =
Plot3D [f[X,y ], {x,1.1 -h,1.1 +08h }, {y, -1.07 -h,1.07 +h},
PlotPoints - {20, 15 }, DisplayFunction - Identity 1;

Show[surface, flagpoles, AxesLabel
ViewPoint - CMView, DisplayFunction

- %Y }
- $DisplayFunction 1;
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The two flagpoles are planted at the bottoms of the two dips which are
equally deep. Here's a look from a different viewpoint:

Show[surface, flagpoles, AxesLabel - {0y, },
ViewPoint - {10, 0, 1 }, DisplayFunction - $DisplayFunction 1;

0.8
>i1'021 | |

8
Z 6

4

-1 0 1
y

OT.3.c.ii) How FindMinimum works

Roughly speaking, how did the FindMinimum instruction find the
minimizer in part i)?

OAnswer:

Here're the function and its gradient.

Clear [f, gradf, x, y 1

fIx,y 1=12EX +29EY -82xy;

gradf [x_,y_ 1={DIf[xy 1 x1,DIf[xy 1 yI}
(24EX x-82y, -82x +58EYy]

Starting with an initial guess {1.05, 1.3, theFindMinimum

instruction found a minimizer at:

| minimizer = {1.12131, 1.07421 }
(112131, 1.07421 )

To get to this point, Mathematica tried to move fi{1.05, 1.3 on a

path whose tangent vectors always point with the negative gradient of
f[x, yl.

This is a good strategy because when you go in the direction of the
negative gradient, you drixf[x, y] down.

Fancy folks call this by the name "steepest descent.”

aT.3.c.iii)
Can you use FindMinimum to help to find maximizers?

OAnswer:
Sure.
The maximizers of [x, y] are the minimizers «—f[X, y].
You can usdindMinimum[—f[x, y], {X, &, {y, b}] to start your search
at{a, g for maximizers of[x, y]. This time Mathematica will try to
start alfa, b and go on a path whose tangent vectors always point with
the positive gradient [x, y].
OT.3.c.iv) Pretenders versus the real thing
Is there a trick to using FindMinimum?

OAnswer:
Sometimes usinFindMinimum is as tricky as one of our former
presidents who had the nickname "Tricky Dick."
To see what can happen, go with

f[x, y] = 4e 6+ 4 8 (-25"+2(-2")

This function is never negative or zero, bu|x@nd|y| get big,f[x, y]
gets really close t0. Consequentlf[x, y] has no minimium value but
has at least one maximizer. Look at a plot of some level curves:
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Clear [f, gradf, x, y 1
FIX,y_ ] =4E W) L gE-((x-25)%2(4-2)%),
ContourPlot  [f [x,y 1, {Xx, -3,3}, {y, -3,31}I;

T 0 1 2 3
The lighter the shading, the higher f[x,y] is.

Crests have been trapped n{0, 0} and{2, 2}.

Search for the maximizer at starting{2, 2}:
] FindMinimum [-f [x,y 1, {X, 2 }, {y,2 }]
{-8.00014, {x - 2.49996,y - 1.99998 }}
| candidatel = {2.49996, 1.99998 }
{2.49996, 1.99998  }

Test it:
Clear [gradf ]
gradf [x_,y_ 1={DIf[x,y 1. x.DIf[xy 1. ¥y1}
gradf eecandidatel

{-0.0000673367, 0.0000741272 }
Fairly good.

Search for the maximizer at startinc{0, 0}:

] FindMinimum [-f [x,y 1, {X, 0}, {y,0 }]
{-4.00001, {x -3.23816 x10° y 518105 x10 °}}
323856  5.18174 )

108 ' 108
{3.23856 x10°%,65.18174 x10°%)
Test it:

| gradi eecandidate2
(-3.21154 x10°°, -5.54416 x10°%}

candidate2 = {

Good.
Two maximizers?

Take a look at a plot:

surface = ParametricPlot3D [y, f Ixy1} (X -2,4}, {y, -24},
ViewPoint - CMView, PlotRange - All, AxesLabel - Xy 11

Take a look from a different viewpoint:

| Show[surface, ViewPoint - {8, -8,01}1;
e E——

M
112‘2‘}}\ \ //I' ’ ‘\\

G v//n,

There are two crests. One exhibits the true maximum value; the other
just a silly pretender sitting at the top of its own short crest. The true

maximizer sits on the top of the highest crest, master of all.

Fancy dudes call the pretender
a "relative maximizer" or a "local maximizer."
The same fancy dudes call the true maximizers or minimizers
"global maximizers" or "global minimizers."

Compare:

] {f eecandidatel, f
(8.00014, 4.00001 )

The maximizer is:

eecandidate2 }

VC.03.T3-T4

| candidate1
(2.49996, 1.99998  }

The maximum value i8.0014.
The trick to usindFrindMinimumig[x, yI, {x, &, {y,
starting poini{a, b close enough to the true minimizerg[x, y].

b}] is to pick a

Sometimes this isn't as easy you might wish.

oT.3.c.v)
Can you use FindMinimum for functions of more than two variables?

OAnswer:

Yep.

T.4) Eye-balling a function for max-min
OT.4.a)

Does
fix, yl = & - 3xy+ % - 8x+ 9y

have a maX|m|zer or a minimizer?

OAnswer:

Look at the formula
flx,yl=% - 3xy+ %—8x+ 9y.

When|x| and|y| are large then the dominant terms
x4y
10 7

makef[x, y] really huge, so the global scale plof[x, y] looks like a

cup. This meanf[x, y] has no tallest crest but does have a deepest dip.

As a resultf[x, y] has no maximum value but does have a minimum

value.

OT.4.b)

Does
fix, y] = XY (x6 + 7y2 + 4)
have a maximizer or a minimizer?

OAnswer:
Look at the formula
f[x, y] = €Y (X + 7y? + 4).
When|x| and|y| are large, thef[x, y] is incredibly close to 0.
Also f[x, y] > O for allx's andy's. As a result this the surface
z = f[x, y] has a biggest crest, but no dip bew
Consequentlf[x, y] has a maximizer but no minimizer.

OT.4.c)
Does
X3 +7y?
fx, Y1 = T5asye
have a maximizer or a minimizer?
OAnswer:

Look at the formula

f[x,yl = %
When|x| and|y| are large, then the dominant terms in the domoninator
makef[x, y] incredibly close t®.
Also f[x, 0] > 0 forx > 0 andf[x, 0] <0 forx < 0.
Now you know thaf[x, y] has positive and negative values f[x, y]
is arbitrarily close t© as|x| and|y| become large. Consequently the
surfacez = f[x, y] has a biggest crest and a deepest dip. This means
f[x, y] has both a maximizer and a minimizer.

60



T.5) Data fit

One of the central uses of minimization is to try to fit data by curves.
Usually this involves the idea of least squares, an idea you have seer
earlier in the course. In fact, a lot of this problem might be old hat to
some of you.

OT.5.a.0)

Given a list of data points
{{ae, bu}, {20, b2}, {@6, b3}, ..., {an, bn}},
you reach into your box of functions, pick a few, sgg,fg[x], and
h[x] and then you form the square error function
sqerrdrr, s, f = (rf[a] + sga] + th{a] - by)?
+(rfla] + sda] + thlag] - by)
+ (rflag] + sgas] + thlag] — bs)®
+ ..
+ (rf[a,] + sdan] + th{a,] - by).
Then you minimize sqgerrpr s, § and assess the resulting fit.
(As|r], Isl, and|t| get really large, sqgerrpr s, f also gets really large;
so you are guaranteed that sqdmnas, f has a minimizer.)
Here are some data to work with:

data = {{-3., -0.1119 }, {-25, -0.3986 }, {-2., -1.7359 },
(-15, -2.6926 }, {-1, -1.6163 }, {-0.5, -0.1308 }, {0. 0.0570 3},
{05,02171 3}, {1.,1.8582 }, {15, 26742 }, {2.,1.8313 },
{25,07550 3}, {3.0.2831 }}
{({-3, -0.1119 }, (-25, -0.3986 }, {-2., -1.7359 }, {-15, -2.6926 },
(-1, -1.6163 }, (-05, -0.1308 }, {0.,0.057 }, {05, 02171 },
(1.,1.8582 }, ({15, 26742 }, (2.,1.8313 }, {25, 0755 J, {3.,02831 }}

And a plot:

| dataplot = ListPlot [data, PlotStyle - {PointSize [0.02 ], Red }1;

VC.03.T5
{{r - 197845, s - 0.0475817,t - -0.663794 }}
Here is the best you can do with
Sin[x], Sin[2x], andSin[3x]:

Clear [bestfit ]
bestfit  [x_] =fitter [x] /. {r »1.97845,s - 0.0475817,t - -0.663794 }

1.97845 Sin  [x] +0.0475817 Sin  [2x] - 0.663794 Sin  [3x]

Assess with a plot:

fitplot = Plot [bestfit [x], {X, -3,3},
PlotStyle - {{Thickness [0.01 ], RGBColor [0,0,1 ]}},
DisplayFunction - Identity  1;

Show [dataplot, fitplot 1;

wfe

This is the best you can do with any function of the form:

| fiter  [x]
rSin [x] +sSin [2x] +tSin [3X]

And this is not bad!

Maybe you could have done better by choosing different functions in
place ofSin[x], Sin[2x], Sin[3x].

Maybe you could have done better by choosing more functions in
addition toSin[x], Sin[2x], Sin[3X].

Try it and see.

OT.5.a.ii) The Fit instruction
Do you have to endure the pain of all this typing every time you try to

fit data?
° OAnswer:
2 . o This is a continuation of the last part.
Please make sure that all instructions in the
1 . last part are alive on your machine.
8, -2 -1 ® . 1 2 3 No.

-1 TheFit instruction in Mathematica will do this for you.
-2 Here is what you did above done with Fitinstruction:

Try to find a function whose plot runs close to all these points. data ={{-3, -01119 }, {-25 -0.3986 },
(-2., -1.7359 }, {-15, -2.6926 }, {-1., -1.6163 },

OAnswer: {-0.5, -0.1308 }, {0.0.0570 }, {0.5,0.2171 }, {1., 1.8582 1},
. . . . 1.5, 2.6742 , {2.,1.8313 , {2.5, 0.7550 , {8.,0.2831 :
Looks like points picked off the plot of an odd function plotted from quif:kbesmt [X)_] ( Fit [data, ){an Ix]. Sin [z)x]fsm [3x]},}x}]
1.97845 Sin  [x] +0.0475817 Sin  [2x] - 0.663794 Sin  [3X]

Compare with what you got in the last part:

| bestiit [x]
1.97845 Sin  [x] +0.0475817 Sin  [2x] - 0.663794 Sin  [3x ]

Exactly the same!
Thank you Stephen Wolfram and Mathematica.

—-ntonm.
Fourier (1768-1830) revolutionized mathematics with the idea that all
odd functions plotted o[-, 7] are made up of combinations of
Sin[x], Sin[2x], Sin[3x],...
See whether Fourier was right.
Reach into the box of functions and pull out
Sin[x], Sin[2x], andSin[3x].
Try to fit these data with a function of the form
rSin[x] + s Sin2x] + tSin[3x],
wherer, s, anct are to selected to give the best possible fit.

Clear ([fitter, sgerror, gradsgerror, s, t, 1, X, k 1
fitter [X_1=rSin [Xx]+sSin [2x] +tSin [3X]
rSin [x] +sSin [2x] +tSin [3X]

Now define the square error function and minimize it be setting its
gradient equal t0.

Length [data ]
sgerror  [r_,s_,t_ 1= Z (fitter [data [k, 1 1] - data [k, 2 1)2;
k=1
gradsgerror  [r_,s_,t_ ] ={D[sqerror [r,s,t 1, r 1,
D[sqerror [r,s,t 1, s1,D[sqgerror [r,s,t 1,t1};
Solve [gradsgerror [r,s,t ]=={0,0,0 }]
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OT.5.b.i) C&M students work with engineeering students aT.5.b.ii)
The Calculus&Mathematica gang is doing a joint experiment with The engineers ask for a plot displaying your estimate of the
some engineers, not all of whom turn out to be the nerds you had temperature of the wire x units from the left at timeCQ.
expected. And they ask for a plot displaying your estimate of the temperature of
In this joint experiment, the group starts with a heated aviraits the wire x units from the left at time=t2.
long with the temperature allowed to vary from position to position on Give them the plots.
the wire. As math people, the C&M gang thinks of the wire as the oAnswer:
interval 0= x < 7. That's cake
At the start of the experiment, the engineers instantly cool the ends al '
x =0and x= 7 and maintain these ends at temperature 0. Here's the plot fot = O:
At the same time, the engineers take pains to guarantee that the rest Plot [fittemp [x, 01, {x, 0, =}, PlotStyle - {{Blue, Thickness  [0.01 ]}},
the wire is perfectly insulated. AxesLabel - {"X", "temp” }, PlotLabel "t = 0", PlotRange - {0, 13 },
The engineers check their handbook and tell you that they have AspeciRatio i];
adjusted the time unit so that you should be able to get a good fit of cem ‘27 .
the actual data by a function of the form " B
tempx, t] = & et Sinx] + a e *'SiN2x] + ag € ' SiN(3x] + ... o
where you can use as many terms as you need to get a good fit. 8
The engineers carefully make some measurements on the wire 6
reporting 4
{x, t, tempx, t]} 2
forx=1,1.5,2,25, 3and%1, 2, 3. 65 1 L85 2 25 3 X
Here they are: Whent = 0, the wire was hottest slightly to the right of center.

measurements = {{1., 0., 8.87 }, {1.,1., 354 } _ : .
(12,134}, (1.3.050 3. (1501143 7. {15 1,435 3, Here comes the plot fit = 2 with the same plot range as above:
{15,2,161 '}, {15,3,060 }, {2,0,1174 '}, {2,1,416 1}, Plot [fittemp [x,2 1, {x,0, =}, PlotStyle - {{Blue, Thickness  [0.007 1}},

{2,2,15 '}, {2,3,055 3}, {25,0,9.04 }. {25,1., 286 }. g " "  _ ou
(25.2. 1. 1. (25 3. 036 ) 3.0, 257 1 (3. 1,069 ) AxesLabel - {"x", "temp }, PlotLabel -»"t = 2", PlotRange - {0, 13 },

{3, 2,0.24 }, {3.,3.,0.09 I3 AspectRatio - %]
Your part of the experiment is to try to fit these measurements by a tenp L -2
function temppx, t] of the form given above. 12
Do it and assess the quality of the fit. 10
OAnswer: 8
6
4
2
—
0.5 1 1.5 2 2.5 3
Try Cooled off quite a bit.
temgx, t] = &, € ' Sin[x] + a €4 Sin[2x] + age 2t Sin[3x] + ... oT.5.b.jii)
with 6 terms: The engineers ask for a movie that shows how the wire cools as t
measurements = advances from 0.1 to 5.1.

{{1., 0., 887 }, {1.,1.,354 }, {1.,2,134 }, {1.,3., 050 },

(15,0, 1143 3}, {15, 1,435 3}, {15 2,161 }, {15 3,060 }, mAnswer:
(2.,0,11.74 3}, (2., 1,416 }, (2,2.15 }, {2.3,055 }, No problem-o:
(25,0.,904 3}, {251,286 ), (252.1 }, {253,036 },
{3.,0,257 '}, {3,1,069 }, {3,2,024 3}, {3,3,009 }}; Table [Plot [fitemp [x,t 1, {x 0, =},
Clear [fittemp ] PlotStyle - {{Blue, Thickness  [0.01 ]}}, AxesLabel - {"x", "temp" 1},

fitemp [x_, t_ ] =Fit [measurements, {E™ Sin [x], E ' Sin [2x],

. 1
E-9t sin [3x1, E-16¢ gjn 14x1, E -5t gjn [5x1, E -3t gjn 16x1}, PlotLabel -t" = t", PlotRange - {0, 13 }, AspectRatio - E]

{x,t }] {t 01,51 }];
12.0222 E ' Sin [x] - 1.46502 E *! Sin [2x] + 0.482672 E °' Sin [3x] - tenp 01-t
0.15374 E 16! Sin [4x] +0.138106 E 25! Sin [5x] - 0.126032 E ~3%! Sin [6x] 12
Check the fit: 10
8
Here are the entries in tl{x, t} slots of the table of measurements: 6
Table [{measurements [k, 1 J, measurements [k, 2 1}, 4
{k, 1, Length [measurements ]}] 2
{{1.,0. 3}, {1,1. 3}, {1,2. 3}, {1.,3. 3}, {15,0. }, {151 }, {152 1}, 05 i LE 3 35 3 X
(15,3 3}, {2,0. }, {2,1. 3}, {2,2. 3}, {2,3. }, {250. }, tenp 11-t
(25,1 }, {25,2. }, {25,3. }, {3,0. }, (3,1 }, {3,2 1}, (3,3 }} 1
The discrepancies are: 10
Table [fitemp ee 8
{measurements [k, 1 J, measurements [k, 2 ]} - measurements [k, 3 T, 6
{k, 1, Length [measurements ]}] 4
{0.00144327, 0.157201, 0.0286502, 0.00365447, 0.00407858, 0.0577974, 2
0.0128831, -0.00295041, 0.00601153, -0.11814, -0.0201755, T X
-0.005733, 0.00506373, -0.187338, -0.0257976, -0.00177573, temp 2 1ot ’
0.00179077, -0.0583435, -0.0102564, -0.00553007 } 1 '
Hot Dog! 10

The fit is good all the way!

N A O
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tenp 3.1=t
12
10
8
6
4
2
0.5 1 15 2 25 3 *
tenp 4.1=t
12
10
8
6
4
2

N B O ©

05 1 15 2 25 3 *

Animate these.

OT.5.b.iv)
One of the Calculus&Mathematica crew gets the idea to look at
Plot3D [fittemp [x,t 1, {X,0, =}, {t,0,5 1},
AxesLabel - {"x", "t", "temp" }, PlotRange - All, ViewPoint - CMView];

Interpret the plot.

OAnswer:
You can see the initial temperature plot at the face wt = 0:and you
can see that the entire wire is fairly cold by the ttrgets tc3.

T.6) Lagrange's method for constrained maximization and
minimization
Lagrange's method deals with maximizing or minimizing one function
while another function is held constant. Once you are armed with the
fact that the gradient gives you a normal vector, understanding it is
pretty easy.

oT.6.a.i)

If {Xo, Yo} is on the level curve[g, y] = ¢ and{Xo, Yo} maximizes or
minimizes {x, y] given gx, y] = ¢, then how do you know that the
level curve fX, y] = f[Xo, Yo] is tangent to the level curvégy] = ¢

at the pointxg, Yo}?

oAnswer:
SupposeXp, Yo} is a point on the level cung[x, y] = c and the level
curvef[x, y] = f[Xo, Yo] crosseqg[x, yl = ¢ without being tangent to
glx, yl = c. Like this:

Run the blank cell immediately below.

The first thing you can say is tHf[x, y] does not stay equal to
f[Xo, Yol on the level curvg[x, y] = c.

VC.03.T5-T6

This means that you can leg{Xo, Yo} on the level curvg[Xx, y] = ¢
and go in one direction to lower the valuef[Xx, y] and you can leave
{Xo0, Yo} on the level curvg[x, y] = ¢c and go in the other direction to
raise the value f[x, y].
Consequently:
If the level curvef[X, y] = f[Xo, Yo] crosseq(x, y] = ¢ without being
tangent tcg[x, y] = c, thenf[xo, Yo] is neither the maximum nor the
minimum value of[x, y] giveng[x, y] = C.
As a result, if{xq, Yo} maximizes or minimizef[x, y] given
alx, yl =c,
then level curve

f[x, yI = f[xo, Yol
is tangent to the level curve

glx, yl = c at the poin{xg, Yo}.

OT.6.a.ii)

If {Xo, Yo} maximizes or minimizegX, y] given dx, y] = c, you
know that the level curvex, y] = f[xq, Yol is tangent to the level
curve gx, y] = ¢ at the poinfxo, Yo}.

Why does this force

gradfxo, Yol = s gradgxo, Yol
for some number s, except in the case that ¢xgdge] = 0?

OAnswer:
- The tangent to the level curf[X, y] = f[Xo, Yo] must be parallel to
the tangent tg[x, y] = ¢ at{Xop, Yo}
So any normal vector to the level curve
f[x, yI = f[Xo, Yol at{Xo, Yo}
must be parallel to any normal vector of

glx, y] = c at{Xo, Yo}.
— A normal vector to the level curve

f[x, y] = f[xo, Yol at{xo, Yo} is gradfixo, Yol.
- A normal vector to the level curve

glx, Yl = ¢ at{Xo, Yo} is graddxo, Yol.
Consequenthgradfixg, Yol is parallel tcgraddxo, Yol.
A compact way of saying this is to say

gradfiXo, Yol = s gradgxo, Yol

for some numbes except in the cagraddxo, Yol = 0 in which case
all bets are off.

The numbers you get this way are called Lagrange multipliers by the

heavy rollers.

Lagrange was a great French mathematician and astronomer
who lived during the glory days 1736-1813.

OT.6.b.0)

What is Lagrange's method of maximizing or minimizifyg ¥] given
alx, y] =c?

OAnswer:
Lagrange's method of maximizing or minimizing
f[x, y] giveng[x, y] = c is to solve the system of equations
gradfix, y] = s gradgyx, y]
and
glx,yl=c
for {x, y}.
If you get all the{x, y}'s that solve this, then you are guaranteed that
the true maximizers and minimizers are in this list.
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oT.6.b.ii)

Look at the following movie:
The area of the bar graph on the right represérm the area of the l

inscribed rectangle.
circle = Graphics [{Red, Thickness [0.01 ], Circle [{0,0},11}1;
Clear [rectangle, t 1
rectangle [t_ ] = Graphics [
{Thickness [0.01 ], Blue, Line [{{Cos[t],Sin [t]1}, {-Cos[t],Sin [t]}, y
{-Cos[t], -Sin [t]1}, {Cos[t], -Sin [t]1}, {Cos[t],Sin [t]1}}1}];
Clear [point ]
point [t_ ] = Graphics [{PointSize [0.02 ], Point [{Cos[t], Sin [t]}]},
Text [{"x","y" }, {Cos[t]+.2,Sin [t]1}]];
Clear [areameter ] . X
areameter [t_ ] = Graphics [Polygon [{{1.5,0 },
{15,2Sin [t]Cos[t]}, {2,2Sin [t]Cos[t]}, {2,0}, {150 }}11;

Table [Show[circle, rectangle [t 1, point [t],
areameter [t ], AspectRatio - Automatic, Axes - True,
AxesOrigin - {0, 0 }, Ticks - None, AxesLabel - {"x","y" }1, y

fro. = =}

Animate these and run at a slow speed.
For a given prescribed radius r, use Lagrange's method to explain why
the rectangle inscribed in the circlé« y? = r? with corners ax, y},
{x, =y} {-=X, =y} and{-Xx, y} with the biggest possible area is a
square.

. OAnswer:
X

Saying thaix, y} is on the circle of radiurscentered &0, 0} is to say
that
glx, yl = X2+ y? =r2,
For a giver{x, y} on this circle, the area of the inscribed rectangle is
f[x, y] = 4xy.

dIhYERY

<

To find the largest such rectangle, you've got to maxiff[x, y] given

glx, yl =r2.
This is a snap for Lagrange's method:

Clear [f, gradf, g, gradg, X, y, s, r 1

fIx,y_ 1=4xy

gDy 1 =x24y%

gradf [x_,y_ 1={DIf[x,y 1, x1,DIf[xy 1 yI1}

gradg [x_,y_ 1={DIg[xy 1, x1,D[gIxy 1, ¥y 1}
lagrange = Solve [{gradf [x,y ] ==sgradg [X,y 1,0 [X, Yy ]

<

=12}, (X ys 3

{{Sﬁ*Z,X%friyﬁri Sﬁfz,Xﬁri,yﬁfr },

7 o Y

{SﬁZ,X *}fr—)/*} S -2, X ﬁ—r—

- | =1}
x vz T vz T
All four solutions for{x, y} give a square; so the square is the largest

inscribed rectangle.
This is not big news; you knew this all along.

I What might be good news is the method. It was quick and easy.
« oT.6.c.i)

Does Lagrange's method work finding the maximizer$>afyf, z|
given dx, y, 7] =c?
Explain.

OAnswer:

In theory, yes.

If {Xo, Yo, Zo} IS @ point on the level surfacéxgy, z] = ¢ and the level
N surface fx, y, z] = f[Xo, Yo, Zo] cuts gx, y, z] = ¢ at{Xo, Yo, Zo}

without being tangent to[g, y, z| = ¢, then you can leav&o, Yo, Zo}

on the level surface[y, y, z] = ¢ on one side of the level surface

fIx, Y, Z] = f[Xo, Yo, Z0] and raise[k, y, z].

And you can leav€xg, Yo, Zo} staying on the level surface

glx, ¥, Z] = c on the other side ofX, y, z] = f[xo, Yo, Z0] and lower

flx,y, Z].

As a result if{xg, Yo, Zo} maximizes or minimizegX, y, z] subject to

alx, Y, Z] = ¢, then the level surfaces
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fix, y, 2 = f[xo0, Yo, z0] and gx, y, ] = ¢
must be tangent &xo, Yo, Zo}.
So, as in the two variable case, their normals must be parallel at
{XO, yOy ZO}'
This means there is a number s such that
gradfXo, Yo, Zol = s gradgXo, Yo, ]
except in the case grddg, Yo, Z0] = 0, in which case all bets are off.

aT.6.c.ii)

Calculus& Mathematica thanks Dr. Kevin Ford of the
University of Illinois for helping out with this problem.

Use Lagrange's method to find the maximum and minimum values (if
any) of fix, y, z] = xyz given x+ y + z=6 with x>0, y>0, z> 0.

OAnswer:
The set up is to maximize and minimize
fIX,y,Z1 =xyz givenx+ y+ z=6 withx >0,y > 0 andz > 0.
You can puslif[x, y, Z] close to (but not equal tO)while holding
X+ Y+ z =6 by makingx andy small and positive and setting
Z=6-X-Y.
Forx andy small and positive, this makf[x, y, z] small and

maintains the constraix + y + z=6:

Clear [x,y,2f, g 1

fIx,y_.z_ 1=xygz

gIX_, Y. 2 1=X+y+2z

{fIx,y,6 -x-yl,01[%xYy,6 -x-yl}/. {x-001,y -001}
{0.000598, 6 }
] (fixy,6 -x-yl,g[XVy,6 -x-yl}/. {x->0.00001,y - 0.00002 }
{1.19999 x10°°, 6 }

Now you see that (X, y, z} is constrained by

glx,y, 2] =6
withx>0,y>0,z> 0,
thenf[x, y, z] has no minimum value.

But maximizers are another story because there is no way to drive

f[X, Y, z] to o while maintaining the constraint
alx,y,zZl=x+y+z=6

with x > 0,y > 0 andz > 0.

Here is how to use Lagrange's method to go after the maximizers of
f[x, Yy, z] subject to the constraig[x, Y, z] = 6 withx > 0,y > 0 and

z>0:

Clear [gradf, gradg, s 1

gradf [x_,y ,z_ 1=

Orfx,y,z 1, x1,DIf[xy,z 1, y1,DIfIxy,z2 1, 21}
gradg [x_,y .,z 1=

{Dlglx, v,z 1, x1,DI9Ixy,z 1, y1.DIgIxy.z 1. z1};
Solve [{gradf [x,y,z ]==sgradg [X,y,z 1,9 [X, ¥,Z ]==6}]
{{s->0,x -0,y -0,z -6}, {s-0,x -0,y -6,z -0},
{s>0,x -6,y -0,z -0}, {s=>4,x -2,y -2,z >2}}

The candidates are:

Clear [candidate
candidate [1]
candidate [2]
candidate [3]
candidate [4] =
{(2,2,2 %
{6,0,0 }
{0,6,0 }
{0,0,6 }

Compare:

Clear [k]
Table [{candidate [k], f eecandidate [k]}, {k, 1,4 }]

{{{2,2,2 },8}, {{6,0,0 },0}, {{0,6,0 },0}, {{0,0,6 },0}}
The maximizer of[x, y, z] subject to the constraig[X, Yy, z] =6 with

x>0,y>0andz>0is

VC.03.T6-G1

2,2, 2
and the constrained maximum valu@is

] fr222
8

That fellow Lagrange was no jerk. You should like him because his
work made it possible for you to take it easy.

oT.6.d)
Is there a catch?

OAnswer:
Yes.
If the Mathematicasolve command can't hack the algebra, then
Lagrange's method is up the creek without a paddle.

VC.03 The Gradient
Giveita Try!

-
Experience with the starred problems will be useful for understanding
developments later in the course.

G.1) The gradient points in the direction of greatest initial
increase*

0G.1.a)

Go with

fix, y, z21 = Log[3x% + y? + Z2].
In which direction should you leave the pojatl, —3.7, 4.3 to get
the greatest possible initial increase [of fy, z]?

0G.1.b.i)

Set

fix, yl = 2Sin[0.3xy]
and look at a plot of{k[t], y[t]] for

{x[t], y[t]} = {0.1, 2 + tgradf0.1, 2
and O<t<3:

Clear [f, gradf, x, vy, t 1

fIx.,y_ 1=2Sin [03xy ];

gradf [x_,y_1={DIf[xy ], x1,DIf[xy 1 yI1}
{X[t_1,y [t 1}={01,2 }+tgradf [0.1,2 ];

Plot [f [x[t],y [t]], {t 0,3 1},

PlotStyle - {{Blue, Thickness [0.02 1}}, PlotRange - All,
AxesLabel - {"t", "™ }1;
2
1.75
1.5
1.25

o R V- - M
0.75
0.5
0.25

The knowledge of what fact about gradients gives you the ability to
predict, before seeing the plot, that the curve must go up before it can
go down?
Experiment with other functiongX, y].
Explain why the plot will go up initially no matter what function
f[x, y] you go with as long as grd@f1, 2 is not{0, 0.
O0G.1.b.ii)
Set
fix, y, 21 = 0.6Cog1.8xy 7?]
and look at a plot of
fix(tl, yitl, z[tl]
for
{x[t], yIt], z[t]} = {0.3,-0.8, 1.3 — tgradf0.3,-0.8, 1.3
and O<t<1:
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Clear [f, gradf, x, vy, z, t 1
fIx,y,z_ 1=06Cos [18xyz ?];
gradf [x_,y ,z_ 1=

Orfix,y,z 1, x1,DIf[xy,z 1, y1.,DIf[xy,2 1, 21}
{X[t_],y[t1,z[t 1}y={03, -08,12 }-tgradf [0.3, -08,1.2 1;
Plot [f[x[t],y [t],Zz [t]], {t0,1 1},

PlotStyle - { {Blue, Thickness [0.02 1}}, AxesLabel - {"t",™ 11

The knowledge of what fact about gradients gives you the ability to
predict, before seeing the plot, that the curve must go DOWN before i
can go up?

Experiment with other function$X, y, z].

Explain why the plot will go down initially no matter what function

f[x, vy, z] you go with as long as grd@t3,-0.8, 1.7 is not{0, O, Q.

0G.1.c.i)

Here is the curve
{X[t], y[t]} = {Coqt] + 1, 251}

for 0 <t < 27, together with tangent vectors at the points
X[Z1, yIZ 1} and{x[3£], y[ 3£}

all in true-scale:

Clear [x,y,t 1

in
(X[ 1,y [t_1}={Cos[t] +1, 33 2[” }:
curveplot = ParametricPlot [{X[t],y [t]},
{t, 0,2 =}, PlotStyle - {{Blue, Thickness [0.01 1}},
AxesLabel - {"x","y" 1}, DisplayFunction - Ildentity  1;
Clear [tanvect ]
tanvect [t_]:=
Arrow [{x"[t],y "[t1}, Taill - {x[t],y [t]}, VectorColor - Red];
7 3rn
setup = Show[curveplot, tanvect [?] tanvect [T]
AspectRatio - Automatic, DisplayFunction - $DisplayFunction ] ;
y
1. 5]
1
0.5
X
-0. 5
1
-1.5)
Now go with

fix, yl =4 - (x+ 1)? - y?
and add to the plot the gradient vector
gradfx[ 21, y[£]]

with tail at
AR R
and

gradfx[ 321, y[3£1]

with tail at
X[EET v 320

Remembering that

DIF[XIt], yitdl, t] = gradfix(t], y[tl]l. {X"[t], y'[t]},
use the information displayed in your plot to explain how the plot tells
you that derivative

DIf[x[t], yIt]], t]
is positive at the higher point and negative at the lower point.

VC.03.G1:G2

0G.1.c.ii)

Now add to the plot above the tangent vector and gradient vector at
the point{x[r], y[x]}.
Again, remembering that
DIF[X[t], yItl], t] = gradfix[t], y[t]]. {x'[t], y'[t]},
use what you see to explain why the derivatiVEDt], y[t]], t] is
equal to 0 at £ 7.
Confirm what you say with a calculation of the derivative at that point.

0G.1.d.i)

You can describe any line through the péint1} by selecting a unit
vector{a, b and putting:
{x[t], yith = {1, 1 + t{a, b.
Go with
fix, yl =x2y
and say how you should seand b so that the derivative of
f[x[t], y[t]] with respect ta is as big as possible whegr 0.

0G.1.d.ii)

Here is a true scale plot of the level curve

Xy=1
together with a line througfi, 1}:

Clear [x,y,t 1
level = ContourPlot [>(2 y, {x,0,2 }, {y,0,2 3}, Contours - {1},
ContourShading - False, DisplayFunction - Identity  1;
line = ParametricPlot [{1,1}+t {a,b}, {0, 1 1},
PlotStyle - {{Red, Thickness [0.01 ]}}, DisplayFunction - Identity 1;
point = Graphics [ {Blue, PointSize [0.04 1, Point [{1,1 }]}1;

Show[level, line, point, AspectRatio - Automatic,
DisplayFunction - $DisplayFunction 1;

1

0.5

0

.811.2.2.6. 8

Copy, paste, and edit the code above so that it plots the line you found
in the last part.
Describe what you see and explain why you see it.

G.2) The gradient is perpendicular to the level curves and
surfaces*

0G.2.a)

Plot part of the level curve
fix,yl=y - Sinx] =0
and throw in a few normal vectors.

0G.2.b)

The sphere of radius 2 centerediat2, @ is the level surface of the
function
fix,y, 2= (x-1%+ (y- 2>+ 2= 4.

It's not easy to uséX, y, Z] to plot this sphere, but plotting it
parametrically is not bad if you use:
Clear [s, t, sphereplotter 1
sphereplotter [s.,t 1=

{1,2,0 } +2 {Sin [s] Cos[t], Sin [s] Sin [t], Cos [S]};

Check:

Clear [f,x,y,z ]
fIX,Y,Z 1= (x-1)24+(y-2)24+2%
Trigexpand [f @e@sphereplotter [s.t 11

4

Good.
Here comes the plot of the top cap of the sphere with a selection of
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gradient vectors
VI[X,y, z] = gradflx, y, z|
at some selected points on the cap:

Clear [gradf, gradvect 1
gradf [x_,y ,z_ 1=

Orfix,y,z 1, x1,DIf[xy,z 1, y1.,DIf[xy,2 1, 21}
topcap = ParametricPlot3D [Evaluate [sphereplotter [s,t 11,

{s.0 izr-} {t, 0, 2 x}, DisplayFunction > Identity  ];

gradvect [s_,t_  ]:=
Arrow [gradf eesphereplotter [s,t ], Tail - sphereplotter [s,t 11;

Show [ topcap,
Table [
T7n x noon . . .
gradvect [s,t 1, {t0, - Z], {s.0, > Z}], ViewPoint - CMView,
AxesLabel - {"x","y", "z" }, Boxed - False, BoxRatios - Automatic,
PlotRange - All, DisplayFunction - $DisplayFunction ] )
x -5

y
Describe the relationship between the gradient vectors and the surfac
and explain why you could have predicted the outcome in advance.

0G.2.c.i)

You are looking for the highest and lowest possible z coordinates of

points{x, y, z} on a the level surfacéx, y, z] = 1 for a function

fIx,y, 2.
Explain:

At {X1, Y1, 1} on the level surface with the highest z or the lowest z

coordinate, the first two slots of grg®{, y;, z;] must be 0.

0G.2.c.ii)

The points(x, y, z} on the sphere®¢ y? + z? = 1 with the highest
and lowest z coordinates dfk 0, 1} and{0, 0,—1}.

Here's how you use the information in part i) to make Mathematica

spit these points out:
Clear [f,X,y,2 ]
fIx,Ly.,z 1=x2+y2+22;
gradf [x_,y ,z_ 1=

O xy.z 1, x1,Difxy.z 1,y1.DIfxy.z 1, 21}
eqnl =f [x,y,z ]1==1,
eqn2 =DIf [x,y,Z2 1,

X ] 0;
eqn3 =D[f [x,y,Z2 1, ¥ ] 0
Solve [{eqgnl, eqn2, eqn3 }
{{z--1,x -0,y -0}, {z-1,x -0,y -0}}
The level curve
fix,y| =3x2 - xy+y?=1
is an ellipse in 2D:
Clear [f,x,y 1
fIx,y_ 1=3x2-xy+y%
level = ContourPlot [f[x,y 1, {x, -1,11}, {y, -13,13 1},
Contours - {1}, ContourSmoothing - True, ContourShading - False 1;

-1 -0.5 0 0.5 1

Adapt the idea immediately above to nail down the pdintg} on
this ellipse with the highest and lowest y coordinates.

G.3) The heat seeker*

0G.3.a.i)

When you go withfix, y] = 4— ((x— 3)2+ (y — 5)?), you can spot
the maximizer a3, 5.

VC.03.G2G3

Clear [f, gradf, X,y 1

fIX,y_ 1=4-((x-3)2+(y-5)?);

gradf [x_,y_ 1={D[f[xy 1 x1,D[f[xy1l yIl}

N[Solve [gradf [x,y ]1=={0,01}, {Xx Yy }1]
{{x->3,y -5 }}
Look at this plot of gradk, y] at various points on the circle of radius
1 centered at the maximizer{&t 5}:

maximizer = {3,5 };

maxpoint = {Graphics [{PointSize [0.05 ], Point [maximizer 1}],
Graphics [Text ["maximizer", maximizer, {0, -2}11};

radius =1;

Clear [x,y,t ]

{X[t_1,y [t 1} =maximizer +radius {Cos[t],Sin [t]};

scalefactor = 0.25;

gradients = Table [Arrow [gradf [x[t],y [t]], Taill - {x[t],y [t1},

VectorColor - Red, ScaleFactor - scalefactor 1, {t0,12,05 1

Show[maxpoint, gradients, Axes - True ];

%\\\/////

I maximzer  _—

2.5 3 3. 4
Why do you think that those scaled gradient vectors are pointing the
way they are?

0G.3.a.ii)

When you go withix, y] = (x — 1)? + (y — 2)?, you can spot the
minimizer at{1, 2.

Clear [f, gradf, x, y 1

LY. 1= (x-1)%+ (y-2)%

gradf [x_,y_ 1={DIf[xy 1, xL,DIfIxy 1 y1}k

N[Solve [gradf [Xx,y ]=={0,01}, {X, ¥y }]1

{{x-1,y -2 }}
Look at this plot of-gradflx, y] at various points on the circle of
radius 0.5 centered at the minimizgr, 2}:

minimizer = {1, 2 };

minpoint = {Graphics [{PointSize [0.04 ], Point [minimizer 1}],
Graphics [Text ["minimizer", minimizer, {0, -2}11};

radius = 0.5;

Clear [x,y,t ]
{X[t_1,y [t 1} = minimizer +radius {Cos[t], Sin [t]};
scalefactor =0.5;
negativegradients =
Table [Arrow [scalefactor (-gradf [x[t],y [t]1]), Taill - {x[t1,y [t1},
VectorColor - Red, ScaleFactor - scalefactor 1, {t0,12,05 1

Show[minpoint, negativegradients, Axes - True ];

N2

— _mnigizer —
1.2 1.4

—-0-670.8 ~ 14
/
7 IRANN
ZIAN
Why do you think that those scaled negative gradient vectors are
pointing the way they are?

O0G.3.b.i) The heat seeker
The Calculus&Mathematica Missile Company is working on some

primitive heat seeking devices and you are chief engineer of the TAD

(Target Acquistion Division). The current problem under study is to
program a device to go to the hottest point in a temperature
distribution.

For instance, if

- 10
tem|{)x, y] T 1+(x-25%+2(y-35?

measures the temperature at a ppiny}, then the hottest point is
{2.5, 3.5 because the denominator is smallest at this point.
You can use the gradient to try to make a heat seeking device that
starts at0, 0} and tries to seek out the hottest 205, 3.5.
Here's a look:

Clear [temp, gradtemp, X, y 1
100

1+(x-25)24+2 (y-35)2"

temp [Xx_,y_ 1=
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VC.03.G3
gradtemp [x_,y_ 1= {D[temp[X,y ], X 1,D[temp[x,y 1, ¥ 1} -
hottestpoint ={25,/35 }; DG.3.C.II)

start = {0, 0 }; i
hotpt = Graphics [{{PointSize [0.04 ], Red, Point [hottestpoint 1}, Now go from theory to practlce.

Text [“hottest", hottestpoint, 0,4 }1}1; Start at{0, 0} and program the heat seeker witimp= 0.1 and 20
startpt = Graphics [{{PointSize [0.04 ], Blue, Point [start 1}, updates:
Text ["start", start, {-15, -13}13}1;
stat = (0,0 };
setup = Show[hotpt, startpt, PlotRange S Al Axes - True, hotpt = Graphics [{{PointSize [0.04 ], Red, Point [hottestpoint 1}
AxesOrigin - {0, 0 }, AspectRatio - 17; Text ["hottest", hottestpoint, {0,41111;
T ’ startpt = Graphics [{{PointSize [0.04 ], Blue, Point  [start 1},
a5 . Text ["start", start, {-15, -13}1}1;
3 jump =0.1;
25 hot t est updates = 20;
2 Clear [next, point, k 1
15 next [{X_,y_ }]={Xy }+jumpgradtemp [X,y I;
1 point [0] = start;
0.5 point [k_]:=point [k] = N[next [point [k -1]1];
"7 start path =
05 1 1.5 2 2.5 Graphics [{Thickness [0.01 ], Line [Table [point [k], {k, O, updates }11}1;
The heat seeker can't tell the exact location of the hot spot, but it can Show[hotpt, startpt, path, Axes - Automatic, AxesLabel - {"X","y"  },
sense the gradient of the telmpy] merely by noting the hottest AspectRatio - Automatic 1;
direction at a poinx, y}. y
If the heat seeker is at a poirt y}, why should you program the heat §
seeker so that it leavés, y} in the direction of gradtenfyp, y]? 6
0G.3.b.ii) 4
Given: 2| /hot test
— The heat seeker can update its direction every instant. start

- The heat seeker is programmed so that it lepyeg in the

direction of gradtem[x, y].

Explain why the following plot displays a good approximation of the
heat seeker's actual path when the seeker st4@tsGht

Clear [Derivative, X, Yy, t 1

equationx = x’'[t] ==gradtemp [x[t],y [t]1]1[1];

equationy =y’[t] ==gradtemp [x[t],y [t]1]1[2];

starterx =x[0] == 0;

startery =y[0] ==0;

endtime = 10;

approxsolutions = NDSolve [{equationx, equationy, starterx, startery },
{X[t1,y [t1}, {t O, endtime }1;

Clear [seeker ]

seeker [t_] = {X[t] /.approxsolutions [11.y [t]1 /. approxsolutions [i1};

Good start, but the heat seeker lost its cool. It nearly ran right over the
hottest spot without even stopping to say hello.
Reprogram it with a smaller jump and more updates:

seekerplot = ParametricPlot [seeker [t], {t O, endtime 1}, jump = 0.04;
PlotStyle - {{Thickness [0.02 1}}, DisplayFunction - |dentity 1; updates = 40;
Clear [next, point, k 1
Show [ setup, seekerplot, PlotRange - All, next [{X_,Y_ }]={XYy }+jumpgradtemp [X,y ];
DisplayFunction - $DisplayFunction 1; point [0] = start;
point [k_]:=point [k] =N[next [point [k -1]1];
3.5 path =
22 hot t est Graphics [{Thickness [0.01 ], Line [Table [point [k], {k, O, updates }11}1;
2 Show hotpt, startpt, path, Axes - Automatic, AxesLabel - Yy,
1.5 AspectRatio - Automatic ];
1 y
.5
start 4
0.5 1 1.5 2 2.5
3
0G.3.b.iii) , !
Given: .
— The heat seeker can update its direction every instant. cart
- The heat seeker is programmed so that it lepyeg in the “6511577753575 X
direction of gradtem[x, y]. This time the heat seeker got close, but it blew its cool just as it was
Give a plot of the heat seeker's path when the seeker starts at about to accomplish its desires.
{0, 2. Use trial and error to program in a jump size and an update number

that send the heat seeker steadily to the hot spot so it can ignite its

0G.3.c.i) Bad news warhead and blow that hot spot to smithereens.

The people over at the assembly division tell you that the heat seeker

can't be built so as to update its direction at every instant. Instead, it 0G.3.c.iii)
will update its direction many times, but it will move on straight line One way to increase the efficiency of the heat seeker is to use one of
segements between direction updates. Your group at TAD reacts to the larger jump sizes at first and run it until it goes bats. Then use the
this information by programming the heat seeker as follows: last good point generated as a new starting point with a new, reduced
- If the heat seeker is étx_1, Yk-1}, then the heat seeker moves to a jump size and run again.
new point Try this out starting &0, 0} on the same function as above,

{Xk, Yk} = {Xk-1, Yk-1} + jump gradtempey_1, Yk-1] incorporating any additional ideas that come to you.
where the jump is positive number selected by trial and error. 0G.3.d)

For appropriately small jump numbers why is this a good update? ) ) )
Use jumps and updates, as above, to guide the heat seeker starting at

{0, O} to the hottest point for:

Clear [temp, gradtemp, X, y 1
100

temp [X_, y_ ] = e
1+ (2X-y)“+ (x-1)
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You can see that the hottest point is {1, 2}
because X = land y= 2

make the denominator of temgX, Y] as small as it can be.

G.4) Doing ‘em by hand*

Ability to do these problems is a good sign of gradient literacy. You
should be able to do them by hand over coffee with a pencil on a
napkin or the back of an envelope.

0G.4.a)

Lots of folks like to use the notations
Vilx, y] = gradfix, y]

and
Vilx,y, z] = gradfix, y, z].

Calculate the gradlemf[x, y] by hand for
flx, y] = e#x~-3Y

Calculate the gradiemf[x, y, z| by hand for
fix,y, zZ1 = Cog % ].

0G.4.b.i)

Lots of folks like to use the notations
f191x, y] = 254 = D[f[x, y], X]
and
fOP[x, y = 254 = Df[x, y], y]
Calculate
At =109, y]
by hand for
fix, yl =x% + y? + 1.

0G.4.b.ii)

Calculate

af[x,

~——Ly‘” =fOD[x, y]
by hand for

fix, y] = €4,

0G.4.b.jii)

Calculate
9f[x,y,Z]
= {00, y, 7]
by hand for
f[x, y, 2] = Sin(x? y® 24].

0G.4.c)

Here is
Al = L0y, y]
for
fix, y] = €5y =x:
Clear [f,x,y 1
f X,y 1= ESin [xy-x];
DIf %y 1, X 1
—ESINXXY] (1 _y) Cos[X -XY]
And here is
of[1.8,01 _ £(1,
HL8O7  f( 0)[_1.8, 0.7
for the same function:
] DIf(xy 1, x1/ {x-18y -07}
-0.153877
What does this calculation tell you about what happensyf
when you hold y at 0.7 but make x just a teensy-weensy bit bigger
than 1.8?

0G.4.d)
Use the total differential of
fix,y,zZl=xyz

to give a hand derivation of the formula
DIX[t] y[t] z[t], t] = X" [t y[t] Z[t] + X[t] y’[t] Z[t] + .
X[t ylt1 z'[t]

VC.03.G3-G5

0G.4.e)

Explain why the following notation gives you nothing more than the
total differential of f. Think about the relationship between the
gradient and the total differential.

VX, Y. {dx, dy) = (Z58, Aoy (ax, dy).

0G.4.f) Derivative analogies

Comment on the analogy among the chain rule formulas:
- D[f[X[t]], t] = f/[X[t]] X'[t].
- DIf[x[t], y[t]], t] = gradfx[t], y[tI].{x'[t], y"[t]}.
- DIf[x[t], yltl, z[t]], t] = .
gradfix[t], y[t], Z[t]]. {x[t], y'[t], Z'[t]}
0G.4.9)

The fundamental formula of calculus and the chain rule for functions
of one variable give you the clean formula

b
fa g'[X[t] x'[t] d't = g[x[b]] - g[x[al].
Use the fundamental formula of calculus and the chain rule for
functions of two variables to give a clean formula for

I gradfix(t], yitll. (X [t], y'[t]} dt.
OHeavy Tip:
How does
gradfx[t], y[tll. {x'[t], y'[t]}
relate to the derivative of
glt] = fIx[tl, y[tl?

G.5) The highest crests and the deepest dips

O0G.5.a)

Way back in 1958, a fellow named Beale came up with a function
whose plot looks like an Alpine valley. Here is a fairly careful
rendition of the plot of his function:
Clear [f, x,y 1
fIx,y 1=
(1500 -x (L-y2))2+ (2250 -x (1-y3))2+ (2.625 -x (1-y*)%
Plot3D [f [x,y 1, {X, -3,6 1}, {y, -2, 2}, PlotPoints - {20, 20 3},
PlotRange - {0, 20 }, ClipFill - None, ViewPoint - CMView,
AxesLabel - {"x","y", "z" 1

X

llllnnn,,\wll'
""]71///// 7N '
/

Look at:

Clear [gradf ]
gradf [x_,y_ 1={DIf[xy 1 x1,.D[f[xy 1l yIl}
candidates = Chop[NSolve [gradf [x,y ] =={0,0 }1]
{{x >0,y —-0.240932 +1.306841 },
{(x >0,y --0.240932 -1.306841 }, {x >0,y - -137528 },
(X >0,y 1.3}, {X-00962699 -0.02749211,y - -1.26456 -1.766951 },
{X - 0.0962699 +0.0274921 1,y - -1.26456 + 1.766951 1},
{x - 197765 -0.370121,y - -0.518203 -+ 0.8260851 1},
{x - 197765 +0.370121,y - -0.518203 -0.8260851 1}, {x —»2125,y -0},
{X >224351,y - -0.44166 }, {x -5.31639,y - 0.84052 }}

Use what you see above to locate the deepest point in this valley.
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0G.5.b) The banana function
Lots of folks like to call the function
fix, yl = 10(y — x2)° + (1 - x2)°
"Rosenbrock's banana", because its level curves look like bananas ar
because it was first studied by someone named Rosenbrock. Take a
look:
Clear [f, x,y, 1, t 1
fICy. 1220 (v-x2)2 s (1-x2)7%

chiquita =
ContourPlot  [f [x,y ], {X, -2,2 1}, {y, -4,6 }, PlotRange - {0,50 }];

-2 -1 0 1 2
Here's a 3D plot of the banana function:

Plot3D [f [,y 1, {X, -2,2}, {y, -4, 6}, ViewPoint - CMView,
AxesLabel - {"x","y", "z" s

y 6

Note the parabolic valley running through the surface. Use [gradf
to find the lowest points (= deepest dips) in this valley.

After you've got the locations, plant flagpoles at these locations so
everyone can see them.

0G.5.c)

The function studied in this problem was adapted from the book Process
Optimization with Applications in Metallurgy and Chemical Engineering by
W. H. Ray and J. Szekely, Wiley-Interscience, New York, 1973.

Engineers at the C&M Engineering and Foundry Company are
analyzing the profit per hour from a solid state reaction carried on at &
high temperature t. In their work, they come across a function like
this:

Clear [f, x,t ]

1
X, ]= oF (10 (1-0.7x ) xt 3 EPOIL _E002 _ 5y (1-x)-01t *4);
1

You are working in the math division of C&M and in comes some
e-mail from the engineers asking for the x and t that make this
function as large as possible. The engineers mention that x is a
variable the engineers call "void fraction" and t is temperature at
which the reaction is to run. This function takes you aback because
there is no hope in setting its gradient equal to 0 and then solving for
and t.
You call down to the engineers and ask what reasonable ranges on tt
temperature t and x are. They reply that the reaction can run at
temperatures between 22Qthd 2500 and x must be between 0.3 and
1.0. You thank them and then you immediately look at:

] ContourPlot  [f [x, t ], {x,0.3,1.0 }, {t 2200, 2500 1}1;
2500

2450
2400
2350

2300
2250

2208 o
.30.40.50.60.70.80.9 1

You take one look at this and say, "Yippee!" because now you know
how to use Mathematica to come up with the optimal xtand
Do it.

VC.03.G5-G6

0G.5.d.i)

Analyze the formula
fix, y] = Sp2desniy
and say how you know that the surface
z=1[x, y]
definitely has a deepest dip and a highest crest.

0G.5.d.ii)

Use contour plots, surface plots and the FindMinimum instruction to
help come up with your own best estimates of the exact locations of
the highest crest and the deepest dip on the surface you studied in par
i) immediately above.

Once you've located them, plot the surface with flagpoles planted at
the top of the highest crest and at the bottom of the deepest dip.

G.6) Closest points, gradients and Lagrange's method

O0G.6.a.i)

Here's the level curve
2 2
fix, yl=(3)"+y =1

shown with the poing2, 1.5:
{a,b}=1{2,15 };
Clear [f, x,y 1

X2 2.
Ty 1= (5) +v%
levelcurve = ContourPlot  [f [x,y ], {x,0,3 }, {y,0, 17 1}, Contours - {1},

ContourShading - False, DisplayFunction - Identity 1;

point = Graphics [{Red, PointSize [0.08 ], Point [{a, b }1}];

- Automatic, Axes - True,
- $DisplayFunction 1;

setup = Show([levelcurve, point, AspectRatio
AxesLabel - {"x","y" 1}, DisplayFunction

B

ON DO ®EL N

0
0
0.
0

X

0 0.5 1 1.5 2 2.5 3

The first goal is to determine the point on the level curve that is
closest to the given poifa, b = {2, 1.5.

The distance between the pofat b and a pointx, y} on the level
curve is

Vix-a,y-b}.(x-a,y- b}. _ _
The square of the distance between the geinty and a pointx, y}
on the level is:
Clear [distsquared ]
distsquared [x_,y_ 1={x-ay -b}. {x-a y -b}
(-2+x)2 4 (-15 +y)?
Lagrange's method is a natural to find the point on the level curve that
is closest tda, b:
Clear [gradf, graddistsquared 1
gradf [x_,y 1={DIf[xy 1 x1,DIfIxy 1l yI}
graddistsquared X, y_1=
{D[distsquared  [x,y 1, X ], D [distsquared [x,y ], Y 1};
Clear [s]
candidates =
N[Solve [{f [x,y ] ==1, gradf [X,y ] == s graddistsquared
{{s »-112712,x - 1.82053,y - 0.794821 },
{s - 0.0665134, x - -2.98282,y - -0.106879 }, {s - 0.284401 - 0.127684 I,
X - 2.83114 +0.6124011,y - -0.531471 +0.3624731 },
{s - 0.284401 +0.127684 1, x - 2.83114 - 0.6124011,
y > -0.531471 -0.3624731 }}

Test the viable candidates:

candidatel {1.82053, 0.794821 };
candidate2 {-2.98282, -0.106879 };
{distsquared  e@candidatel, distsquared

{0.529487, 27.4106  }
The closest point on the level cunjg,fy] = 1 to the given point
{a, b is candidatel.

[xy 1}11

eecandidate2 }
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Here is candidatel shown, in true scale, with the line that connects th
given point{a, I to the closest point on the level curve::

closest = candidatel;
closestpoint = Graphics [{Blue, PointSize [0.05 ], Point [closest ]1}1;
connector = Graphics [Line [{{a, b }, closest }]1;

outcome = Show[setup, closestpoint, connector 1;
y

[l

© o oo
ON B DR NS

0 0.5 1 1.5 2 2.5 3 X
The connecting line seems to be perpendicular to the level curve.
Is this an accident? Why or why not?

0G.6.a.ii)

Here is the plot immediately above shown with the gradienixof/
calculated at the closest point:

Show[outcome, Arrow [gradf eeclosest, Tail - closest 1,
PlotRange - All, AspectRatio - Automatic ];
y

0.5

00 0.5 1 1.5 2 25 3 X
Bingo.
Why did it have to happen this way?

0G.6.b.i)

Here's the level curve
fix, yl=($)?-y?=1
shown with the poing2, 1.5:

{a,b}=1{2,15 };
Clear [f,x,y 1]
X2 o,
foey 1= (5) -v%
levelcurve = ContourPlot  [f [x,y ], {X,3,5 }, {y, -15,15 1},
Contours - {1}, ContourShading - False, DisplayFunction - Identity 1;
point = Graphics [{Red, PointSize [0.08 1, Point [{a, b }1}1;

setup = Show[point, levelcurve, AspectRatio
AxesLabel - {"x","y" '}, DisplayFunction

- Automatic, Axes - True,
- $DisplayFunction 1;

2534354 455%

Use Lagrange's method to find the point on the level curve that is
closest to the given poifd, b = {2, 1.5 and plot, as above, the line
connecting the given point to the closest point, and plot the gradient o
f[x, y] calculated at the closest point with its tail at the closest point.
Say why you are not totally surprised by what the plot displays.

0G.6.b.ii)

One of the GiveltaTry problems in the previous lesson brought to light
the fact that if X and Y are 3D vectors, then
[IXxY| = [IX|[ Y]l |Sinfangle betweeh
Even if you didn't do that particular problem, it's a pretty good idea to
know about this because it tells you that saying that two 3D vectors X
and Y point in same or opposite directions is the same as saying that
XxY =1{0, 0, Q.
Now take the same function and the same gaint} as in part i)
above:
{a,b}=1{215 };
Clear [f,x,y 1

fIx_,y_ 1= (i)z—y2

VC.03.G6-G7

Put:
| threeDgradf [x_,y_ 1={DIf[xy 1 x1,D[f[xy ]l y1,0}

(5 avo)

And look at:

crossproduct = Cross [threeDgradf [x,y ], ({X,y,0 }-{a,b,0 })1I;

N[Solve [{f [X, y ] == 1, crossproduct =={0,0,0 }}1]

{{x > -3.0132,y - 0.0939042 },

{X - 1.71916 -0.304321,y - -0.070143 +0.828746 1 3},

{Xx - 1.71916 +0.304321,y - -0.070143 -0.8287461 3},

{x >3.17487,y - 0.346382 }}
Explain why this gives you the same candidates you got using
Lagrange's method in part i).

G.7) The Cobb-Douglas manufacturing model for
industrial engineering

Manufacturing costs are usually split into capital costs (CEO stock
options, golden parachutes, limos, private jets, other overhead,
equipment, etc.) and labor costs (salaries and sweat). Manufacturers
can manipulate these expenses in many ways. They can automate
heavily, or they can cut capital costs by increasing the labor force.
Economists Cobb and Douglas became famous because they noticed
that if a manufacturing process uses x units of capital and y units of
labor, then the output function of a manufacturing process is usually
approximated by
f[X, y] — Axk/m y(m—k)/m
for some fixed constants A, k, and m that depend on the goods being
manufactured.
Clear [f, x,y, A, k,m,t 1
fIx_ y_ 1= Axk/mys
Axk/my e
This makes some sense because if you look at:
| (frtxty 1.tf [xy 1}

(A tx )Mty ) Atx K/myRT )
Then a little mental algebra revolving around the fact that
t(/m t(m—k)/m — tk/m+(m—k)/m — tm/m =t
tells you that
fitx, ty] = tf[x, yl,
and this means that the output is directly proportional to the inputs of
capital and labor.
In this problem, you are a big shot in The C&M Manufacturing Co.,
and are preparing a production run of a certain product. The bean
counters over in the finance office say that for a production run,
capital costs will be $1295 for each unit x of capital and $33! for
each unit y of labor.
So the overall cost in dollars of a production run is
129.1% + 95.74y.
The company has budgeted exactly $50, 000 on this production run.
This gives you the budget line
129.15% + 95.74y = 50000.
The industrial engineers have figured out that that x units of labor and
y units of capital result in a production run of
fix, y] = 149.2x%4 y¥4 units.
Clear [f, gradf, x, vy, t 1
fIx_,y_ 1=1492x 3/4yl/4
149.2 x 3/4 yl/4
| gradf [x_y_ 1=(DIfIxy 1, x1,DIfIxy 1l yI1}
1119y /4 37.3x 34
{)(17/4' )/37/4}
Here is a plot of the budget line
129.1% + 95.74y = 50000.
To get a useful plot of the line, pick off the two extreme possibilities:
] nolabor = Solve [129.15x +95.74y ==50000 /.x - 0]
{{y »522.248 }}
| pointl = {0,522.25 }
{0, 522.25 }
| alllabor = Solve [129.15x +95.74y ==50000 /.y - 0]
{{x > 387.147 }}
| point2 = {387.15,0 }
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(387.15,0 }
] (X[ 1,y [t_1}=pointl +t (point2 - pointl )
{387.15t, 522.25 -522.25t }

As t runs from 0 to 1, the pointz[t], y[t]} sweep out the budget line
from one extreme to the other.

The extreme at the left uses only labor
and the extreme at the right uses only capital.
budgetline = ParametricPlot [{x[t],y [t1}, {t 0,1 13,
PlotStyle - {{Red, Thickness [0.02 ]}}, AspectRatio - Automatic,
AxesLabel - {capital, labor 11;

| abor
500
400
300
200
100
capi tal

The pointgx[t], y[t]} on this line represent all possible expenditures
{capital, labo} that conform to the budget of $50, 000.
Find the t between 0 and 1 such that production
fx[t], y[t]]
is maximized at £ t*, and report the optimal values
{x[t*], y[t*]} = {capital units, labor units
that give the most production for the given budget.

0G.7.a.i)

Here are some gradient vectors gfafti, y[t]] with their tails at
a choice of point§x[t], y[t]} on the line plotted above; the plot is in
true scale:

grads = Table [Arrow [gradf [x[t]1,y [t]],

) 0.85
Tail - {x[t1,y [t]1}], {t 0.1,0.95, T}];

Show[budgetline, grads, AspectRatio - Automatic, AxesLabel - None];

500
400
300
200

100

100 200 300 400

Take the maximizing‘tyou got in in the last part and add the plot of
2gradf{x[t*], y[t*]]
with tail at{x[t*], y[t*]} to the plot immediately above.

The scale factor 2is tacked on so that you can easily distinguish this

gradient vector from the others.

Describe what you see and then discuss the information conveyed by

the plots of the other gradient vectors above.
0G.7.a.ii)

Use the chain rule formula

DIf[X[t], yt]], t] = gradfix[t], y[t]]. {x'[t], y’[t]}
to explain why your plot of

gradfx[t*], y[t*]] with tail at{x[t*], y[t*]}
turned out the way it did.

VC.03.G~G8

G.8) Data Fit in two variables: Plucking a guitar string

The ends of a guitar string are anchored at Graonl the x-axis and
the string is pulled to an initial position and then allowed to vibrate on
its own.
Experience shows that for certain strings the function that measures
the height of the string above the point x on the x-axis atttafter
the pluck is well-approximated by a function of the form
dx, t] = & Sin[x] Codt] + & Sin[2x] Cod2t]
+ ag SiN[3x] Coq3t] + ...
where O< x < &, and t> 0 is time measured after the pluck.
You use as many terms as you need for good results.
Adjustment of units can make this work for any string.
When you go with
dx, t] = & Sin[x] Codt] + & Sin[2x] Cod2t]
+ & SiN[3x] Cog3t] + ...
then you get
dO, ] = & Sin[0] Codt] + & Sin[0] Coq21]
+ ag Sin[0] Coq3t] + ...
=0
because S{f] = 0, and you get
fr, t] = & Sin[x] Codt] + & Sin[27] Cod2t]
+ ag SiN[3x] Cogd3t] + ...
=0
because Sik 7] = 0 no matter what integer k you go with.
The physical interpretation of
HO, | =plr, 1] =0
is that the wire is anchored to the x-axis at the poiat®xand x= r.

O0G.8.a.i)

For gx, t] of the above form, what is the first time t after @ that the
string can be counted on to return to the shape it had @®t
oTip:

How long beforeCodt], Coq2t], Coq3t], Cod4t], ...
begin to repeat themselves?

0G.8.a.ii)

As above the string, anchored at 0 arsh the x-axis, was plucked at
t = 0 and the following datg, p[x, 0]} measuring the heighp 0]
of the string above position x on the x-axis at timeltwere
collected:
pluckdata = {{0.,0. }, {0.3,0.03 1}, {0.6,0.06 1}, {0.9, 0.09 3},
{12,012 3}, {15,015 1}, {18,012 }, {21,010 }, {24,007 1},
{2.7,0.04 '}, {3.,0.01 3}, {N[x],0. }};
Here is a plot(not in true scale).

pluckdataplot = ListPlot  [pluckdata,
PlotStyle - {PointSize [0.02 ], RGBColor [0,0,1 1}1];

0.14
0.12 . 0
0.1 .
0.08
0.06 .
0.04 .
0.02 ° .
0.5 1 1.5 2 2.5 3
Fit these data (for+ 0) as well as you can by a function
dx, t] = & Sin[x] Codt]
+ & Sin[2x] Coq2t]
+ ag Sin[3x] Coq3t].
Show your estimated shape of the string at time8,tZ, «, 37" and
2.
Plot your fjx, tj forO=sx <7mand O<t<2x.
What do the cross sections cut by planes perpendicular taiie
represent?

oTip:

Whent = 0, all the cosine factors are equaltso you want to fit the
data with
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& Sin[x] + a SiN[2X] + ag SiN[3x].
After you get your values (&, &, andag, then form your function
plx, t] = & Sin[x] Codt]
+ & Sin[2x] Coq2t]
+ ag Sin[3x] Coq3t].
0G.8.b)

The string in this part is not the same as the string in part a.ii)
immediately above.

Cameras are set to monitor what a vibrating string anchored at0 and
on the x-axis is doing at positions

x=1.5and x= 2.5.
The cameras record the string's position at 0, 1, 2, 3, 4, and 5 second
after it was plucked. Here is what the cameras found in the form
{x, t, p[x, tI} where x is position on the x-axis, t is time after the pluck
and px, t] is the height of the string above x at time t:

data = {{15,0,0.35 }, {250,015 3}, {151,014 3}, {251,013 },
(15,2, -010}, {252, -011}, {153, -034}, {253, -0.15},
(15,4, -017 }, {25,4, -015}, {155,007 1}, {255 007 }};

Get a good fit of these data by a function of the form
dx, t] = a; Sin[x] Codt]
+ @ Sin[2x] Coq2t]
+ ag Sin[3x] Coq3t] + ...
Then give a plot of [x, 0] to give your estimate of the shape of the
initial pluck.
Finally make a movie showing how the string vibrates.

G.9) Linearizations and total differentials*

For functions fx] of one variable, lots of folks like to look at the
linearization of fx] at point a:

linearfx, al = f’[a] (x — a) + f[a].
An example:

Clear [f, x, linf, a 1
1 1
fIx 1= 3 Sin [1.7x ] - ICOS[Z.lX 1;
linearf [x_,a_ 1=f"[a] (x-a) +f[a]
—% Cos[21la ] + %Sin [1.7a ] +
(-a+Xx) (0.566667 Cos [1.7a ] +0.525Sin [2.1a ])
Here are plots of{k] and linearfx, a for a couple of points a:

a=0.5;
linplotl = Plot [{f [x], linearf [x,a 1}, {x,a -05,a +051},
PlotStyle - {{Blue, Thickness [0.01 1}, {Red, Thickness [0.01 ]1}},
AxesOrigin - {a, f [a]}, AxesLabel - {"x",™ 1}, PlotLabel »a"= a"];
0.5=a
0.4
0.2
0.8 1%
a=15;
linplot2 = Plot [{f [x], linearf [x,al}, {x,a -05,a +051},
PlotStyle - {{Blue, Thickness [0.01 1}, {Red, Thickness [0.01 1}},
AxesOrigin - {a, f [a]}, AxesLabel - {"x",™ }, PlotLabel »a"=a"];
1.5= a
0.6

.5

1 1.2 1044 6 1.8 2
0.3
0.2
0.1

0
The linearized version ofX] at a point a is just the tangent line
through({a, f{a]}, but it has some strong virtues:
— As x varies, lineafk, a) is much easier to calculate thdr]f
- linearf[x, a approximates[k] very well for x's near a.
- linearf[x, a] goes up if fx] goes up as x advances through a.
- linearflx, a goes down if fix] goes down as x advances through a.
In short, if X is close to a, then lineptf a] mimics fix] very well.

VC.03.G8G9

Lots of other folks (especially older folks) prefer to look at the
differential of fx] at a point a:

df =f'[al dx
They treatdx as a number and sajaf+ dx] is well approximated by
fla] + df.
See what this means for the same function at the same points looked &
above.

Clear [df, dx ]

a=05;
df =f’[a] dx;
diffplotl =Plot [{f [a+dx],f [a] +df}, {dx, -0.5,05 1},
PlotStyle - {{Blue, Thickness [0.01 1}, {Red, Thickness [0.01 1}},
AxesOrigin - {0, f [a]}, AxesLabel - {"dx","™ 1}, PlotLabel »a"=a"];
0.5=a
0.4
0.2
02 0d - 9
Clear [df, dx ]
a=15;
df =f’[a] dx;
diffplot2 =Plot [{f [a+dx],f [a] +df}, {dx, -05,05 1},

PlotStyle - {{Blue, Thickness [0.01 1}, {Red, Thickness [0.01 1}},
AxesOrigin - {0, f [a]}, AxesLabel - {"dx","™ 1}, PlotLabel »a"=a"];
1.5=a

0.6
.5

dx

-0.4 -0.20.4 0.2 0.4
0.3
0.2
0.1
0

0G.9.a)
Here is linplotl compared to diffplotl:

| Show[GraphicsArray [ {linplot1, diffplotl 311
0.5-a 0.5-a
0.4 0.4
0.2 0.2
0020400608 1% 04027 0.204 ¥
0 [
-0.2 0.2
Here is linplot2 compared to diffplot2:
| Show[GraphicsArray [ {linplot2, diffplot2 1
1.5=a 1.5=a
0.6 0.6
T T 20 4RgI 8 2% <0401 204 9%
0.3 g 0.3 g
0.2 0.2
0.1 0.1
0 0

Rerun for other functions and other points to get enough experience to
answer the question: Is the first approach (linearizations) doing
different things from the second approach (differentials), or are the
two approaches doing the same thing but describing it differently?

0G.9.b.i)

For functions of two or more variables, the same two approaches often
persist.
For functions [x, y] of two variables, lots of folks like to look at the
linearization of fx, y] at point{a, b:
linearfx, y, a, i = gradfla, bl. {x — a, y— b} + f[a, b.
An example:
Clear [f, x, y, gradf, linearf, a, b 1
fIx,y_ 1=5- % (x2 +y?);
gradf [x_,y_ 1={DIf[xy 1 x1,D[f[xy 1 yI}
{-x -y}
| linearf [x_,y ,a,b_ ]=gradf [a,b]. {x-ay -b}+f[ab]
5+ % (-a?-b%) —a (-a+x) -b (-b+y)

Here is a plot showing botliX, y] and linearfx, y, a, i for

{a,B=1{-11.
{ab}={-11}
h =0.5;
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plot = ParametricPlot3D [{xy, f Ixy1},

{x,a -h,a +h}, {y,b -h, b +h}, DisplayFunction
fplot = Insert [plot, EdgeForm [], {1, 1 }];
linfplot =

ParametricPlot3D [{X, Y, linearf [x,y,a,b 1}, {x,a -h,a +h},

{y, b -h, b +h}, PlotPoints - {7, 7 }, DisplayFunction - ldentity 1;

linearfplot = linfplot /. Polygon - Line;

- Identity 1;

both = Show[fplot, linearfplot, ViewPoint
PlotRange - All, AxesLabel - X",y
DisplayFunction - $DisplayFunction 1;

- CMView,
}, Boxed - False,

See it from a different viewpoint:

newlook =
Show [both, ViewPoint > {-4,7,4 }, AxesLabel - {"x","y", "z" M;

The two plots touch dg, b:

I (fIxy 1, linearf [Xx,y,a,b 1}/. {x=ay -»b}

4.4
The curved surface i$X, y] and the plane plastered to it at the point
{a, b, fla, bl} is the plot of lineai, y, a, 1.
Assess the quality of the approximation pf, fy] by linearfx, y, a, i
as x and y vary in the vicinity ¢&, b = {-1, 1.

aTip:

The plot tells you a lot, but if you are happier with cold numbers, look
at values of[x, y] andlinearf{x, y] for some point{x, y} near the

point of linearization afa, b = {-1, 1}:

d =02

PaddedForm [

TableForm [Flatten [Prepend [Table [{x,y,f [x,y ], linearf [X,y,a, b 1},
{x,a -da +dd}, {y,b -d b +dd}],

{{" x, "y, " fvalue", " linear f value" 331,11,
TableAlignments - Center ],

{3,21}]

X y f value linear f value
-1.20 0.80 3.96 4.00
-1.20 1.00 3.78 3.80
-1.20 1.20 3.56 3.60
-1.00 0.80 4.18 4.20
-1.00 1.00 4.00 4.00
-1.00 1.20 3.78 3.80
-0.80 0.80 4.36 4.40
-0.80 1.00 4.18 4.20
-0.80 1.20 3.96 4.00

0G.9.b.ii)

The folks who prefer differentials get in on the same act. They take
the total differential of a functiorX, y] at a poin{a, b}

df =f19[a, b dx + fOV[a, b dy

= gradfla, bl .{dx, dy}

They treatdx anddy as numbers and say

fla+ dx, b+ dy]
is well approximated by

fla, b + df.
See what this means for the same functfany] at the same point
you looked at above:

Clear [f, x, vy, gradf, a, b 1

fIx,y 1 =5—% (x2 +y2);

gradf [x_,y_ 1={DIf[xy 1, x1,DIf[xy 1 yI}
{-x, -y}

VC.03.G9

Here is a plot showing both
fla+ dx, b+ dy] and fa, b + df
for {a, B ={-1, 1.
Clear [dx, dy, df ]
{ab}={-11}
df =gradf [a, b 1. {dx,dy }
dx - dy
h =0.5;
fplotd = ParametricPlot3D [{dx, dy,f [a+dx,b +dy]l},
{dx, -h, h}, {dy, -h, h}, DisplayFunction - Identity  1;
dfplotd =
ParametricPlot3D [{a+dx,b +dy,f [a,b]1+df}, {dx, -h,h}, {dy, -h,h},
PlotPoints - {7, 7 }, DisplayFunction - Identity ] /. Polygon - Line;

bothd =
Show[fplot, dfplotd, ViewPoint - CMView, AxesLabel - {"dx", "dy", "™ },
PlotRange - All, Boxed - False, DisplayFunction - $DisplayFunction 1;

See it from a different viewpoint:
| newlookd = Show[bothd, ViewPoint - {-4,7,4 }1;

w
w o s oo
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Look familiar?
See all four plots:
| Show[GraphicsArray [ {{both, bothd }, {newlook, newlookd }}11;

5 "l

For functions of two variables, is the first approach (linearizations)
doing different things from the second approach (differentials), or are
the two approaches doing the same thing but describing it differently?
Which approach do you prefer?

0G.9.c)

As you may have guessed, the guy who wrote this problem prefers the
idea of linearizations to the idea of differentials, but sometimes
differentials are just the ticket for making quick estimates.
Take:

Clear [f, gradf, X, y 1

fIx_y_1=104 (% (x+2y) - (xyz)m]:

gradf [x_,y_ 1={D[f[xy 1 x1.D[f[xy 1 yI}

1 2 (2 2 x
{104 (57 3 <x§/2>“ ] B (xy2y>2/3 J}
You are sitting ata, B = {0.5, 3} and you have two choices:
- Increase x from a to-a dx for a small number dx.
— Increase y from b to b dy for a small number dy.
To see which of these choices should you take to incréasg fis
much as you can, look at:
Clear [dx, dy, df ]
{a,b}={0501 };
df = N[gradf [a, b ]. {dx, dy }]
2.28108 dx - 4.9225 dy

Increasing x a little bit will drive[k, y] up.
Increasing y a little bit will drive[k, y] down.
Check:
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dx =0.2;

dy = 0.2;

{fla+dx,b 1,f [a,b1,f [a, b +dy]}

{1.13055, 0.648292, 0.114164 }

Yep. To drive fx, y] up, increase x and forget about y.
Handy little tool for making quick estimates.
You go with

fix, yl = 128.3+ 608.7((x?y®) £ 2x+3y)).
You are sitting ata, b = {4.7, 2.9 and you have two choices:
- Increase x from a to-a dx for a small number dx.
- Increase y from b to b dy for a small number dy.
Which should you do to driveX, y] up?
Which should you do to drivéX, y] down?

5

oTip:
You're getting tired; so as a gesture of good will and friendship, here i
some code:
Clear [f, gradf, x, y 1
fIx,y 1]=1283 +608.7 (-% (2x +3y) + (x2 y3)1’5);
gradf [x_,y_ 1={DIf[xy 1, x1,DIf[xy 1 y1}
2 2xy? 3 3x2y?
{608.7 [’g + W] 608.7 [73 oy TS }

Clear [dx, dy, df 1]

{a,b}={47,29 1},

df = N[gradf [a, b ]. {dx, dy }]
-61.2401 dx +77.8114 dy

G.10) Keeping track of constituent costs

Calculus&Mathematica first learned of this problem from Dick Duffin of
Carnegie Mellon University, Pittsburgh, Pennsylvania.

The location is near Pittsburgh on the bank of the Monongehela River
not far from the old Westinghouse East Pittsurgh plant.

You've got the job of shipping V cubic feet of old steel shavings
across the river by barge. To do this, you'll make a box to put the
shavings in for the barge shipment.

Put

x= length of the box in fep

y= width of the box in feet, and

z= height of the box in feet.
The material for the box consists of five rectangular pieces.
The bottom has area x y; the material for it costs $a per square foot. £
in dollars,

bottom cost axy.
Another two pieces (the sides) have area x z each; these cost $b per
square foot. So in dollars

side cost 2bxz.
And the other two pieces (the ends) have area y z; these cost $c per
square foot. So in dollars,

endcost 2cyz.
The tugboat captain tells us that she will charge d dollars for each trip
You have V cubic feet of shavings; so you'll'll nggg trips. Soin
dollars,

transportation cost 4.

xyz"®
The bottom line is

overall cost= bottom cost+ side cost+ end cost+ transportation cost.
What should the ratios

bottom cost : side cost : end cost : transportation cost
be if the overall cost is at a minimum?
Give a formula for the minimum cost and the corresponding optimal
dimensions, X, y, and z, in terms of a, b, ¢, d, and V.
How does the minimum cost change if the captain changes her mind
and charges @ dollars per trip?

G.11) The great pretender
0G.11.a.i)

VC.03.G%-G11

If you are dealing with a functiorixX] of one variable and you find a
crest afxo, f[Xo]} and you find that’{x] = 0 only at x= xg, then can
you be sure thatpmmaximizes fx]?

O0G.11.a.ii)

If you are dealing with a functioriX] of one variable and you find a
dip at{xp, f[xo]} and you find that'fx] = 0 only at x= Xg, then can
you be sure thatpminimizes fx]?

0G.11.b)

Here's a plot of
fix, yl =x3 + €%Y — 3x¢
in the vicinity of{1, 0.
Clear [f, x,y 1
fIx,y_ 1=x3+E¥ -3xEY;
Plot3D [f[x,y 1, {X, -05,2 }, {y, -15,05 1}, PlotRange - {-1,11},
ViewPoint - CMView, AxesLabel - {"x", "y", "f [xy 1"}1;

Here is a plot of some level curves ff,fy].
| ContourPlot  [f [X,y 1, {x, -05,2 }, {y, -15,05 1}, PlotRange - {-1,1}1;
0.5

0

-0.5

050 0.5 1 1.5
The darker the shading, the lower the function.

0G.11.b.i)

See the dip?
Locate the bottom of the dip by finding where the gradienpofyf is
{0, O}.

Clear [gradf ]

gradf [x_,y_1={DIf[xy 1, x1.DIf[xy ]l yIlh

NSolve [gradf [x,y ] =={0,0 }]
[{Log 3z ] > Ly Log [] -2y })
0G.11.b.ii)
Look at:

| gradf [x,y ]
(-3FY +3x2,3E% -3F x}
Are there any othdixg, Yo}'s at which the gradient of
fix, yl =x3 + &Y — 3x¢
is{0, 0}?

0G.11.b.iii)

Is the point you found in part i) a genuine minimizer of
fix, yl =x3 + &% — 3x¢

or just a pretender?

In fact, does
fix, yl =x3 + €Y — 3x¢

even have a minimizer?

O0G.11.c)

True or false:
If you have a function[k, y] with the properties that
— The plot of fx, y] has a dip afxo, Yo, f[Xo, Yol};
— The only solution of
gradfx, yl = {0, O}
is X = Xg and y= yo,
then{xo, Yo} is the minimizer of f, y].
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