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VC.04 2D Vector Fields and Their
Trajectories
Basics

B.1) Vector fields and their trajectories

OB.1.a) Vector fields

A vector field is a function that spits out vectors. You make a 2D
vector field by taking two regular functions[xny] and rjx, y], and
throwing them into the two slots:

Clear [Field, m, n, x, y 1;

mix_, y_ 1=05 (y-1);

nix,y_1=03 (x-05);

Field [x_,y_ 1={mxy1.n[xy1}

{05 (-1+y),03 (-05 +x)}

You plot a vector field by plotting the vector, Fipldy], with its tail

at{x, y} for a selection of point, y}:

vectorfieldplot = Table [
Arrow [Field [x,y 1, Taill - {x,y }], {X, -3,3,05 3}, {y, -3,3,05 1}I;
Show [ vectorfieldplot, Axes - True, AxesLabel B A 3
y
;j/f//
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A mad rush to the lower left and the upper right.

OB.1.a.i)
What's a good way of interpreting this plot?
OAnswer:
Look at what went into the plot.
The plot shows field vectoField[x, y] plotted with their tails &{x, y}

for a selection of point{x, y}. The selection of points was:

pointplot = Table [Graphics [{Red, PointSize  [0.02 ], Point [{X,y }1}],
{Xx, -3,3,05 1}, {y, -3,3,05 }1I;
Show [pointplot, Axes - True, AxesLabel - {"x","y" }1;

The plot shows field vectorField[x, y], plotted with their tails at the
points{x, y} shown above.
Take a look:

] Show[pointplot, vectorfieldplot, Axes - True, AxesLabel - {"X","y" }1;

.

Now you're ready to interpret the plot.

Think of the wholexy-plane as fluid flowing with currents and eddies.

- The vectors represent the flow of the fluid at their tails.
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— The length of each vector indicates the speed of the fluid flow at its
tail.

— The direction of each vector indicates the direction of the flow.

In the plot above, some of the fluid is flowing off to the lower left and
some of it is flowing off to the upper right.

The upshot:

The field vectolField[x, y] with tail at{x, y} represents the speed and
the direction with which a cork {x, y} moves away fror{x, y} as it is
caught by the flow.

OB.1.a.ii) Trajectories

This part will not run successfully unless all of the
instructions in part i) above have been activated.

Continue to go with the same vector field, Figld/], as used in part
i) above and look at this plot:

{a,b}={2 -1}

starterpoint ={a b},

Clear [Derivative, X, y, t 1

equationx =x'[t] ==m[x[t],y [t]];

equationy =y’[t] = H[X[l],y[l]];

starterx =x[0] ==

startery =y[0] ==

endtime = 6;

approxsolutions = NDSolve [{equationx, equationy, starterx, startery },
{x[t1,y [t1}, {t O, endtime 1}];

Clear [trajectory 1
trajectory [t 1=
{X[t] /. approxsolutions [11.,y [t ] /. approxsolutions [i1};
trajectoryplot = ParametricPlot [trajectory [t]1, {t O, endtime 3},
PlotStyle - {{Red, Thickness [0.015 ]}}, DisplayFunction - Identity 1;
starterplot = Graphics [{Red, PointSize  [0.06 ], Point [starterpoint 131;

Show [ vectorfieldplot, starterplot, trajectoryplot, PlotRange - All,
DisplayFunction - $DisplayFunction 1;

Some folks like to call the path you see a "trajectory” of the vector
field. Other folks call this path a "streamline" of the vector field.
What's going on here?

OAnswer:

Run it again with a different starting point.

{a,b}={3 -051}

starterpoint ={a b},

Clear [Derivative, X, y, t 1
equationx =x'[t] ==m[x[t],y [t]1];
equationy =y'[t] ==n[x[t],y [t1];

starterx =X[0] == a;

startery =y[0] ==b;

endtime = 6;

approxsolutions = NDSolve [{equationx, equationy, starterx, startery },

{x[t1,y [t1}, {t 0, endtime }1;
Clear [newtrajectory 1
newtrajectory [t 1=
{X[t] /. approxsolutions [11.,y [t ] /. approxsolutions 011},
newtrajectoryplot = ParametricPlot [newtrajectory [t1, {t O, endtime },
PlotStyle - {{Red, Thickness [0.015 ]}}, DisplayFunction - |dentity 1;
newstarterplot =
Graphics [{Red, PointSize  [0.06 ], Point [starterpoint 131
Show [vectorfieldplot, newstarterplot, newtrajectoryplot,
PlotRange - All, DisplayFunction - $DisplayFunction 1;
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See both plots together:

Show vectorfieldplot, starterplot, newstarterplot,
trajectoryplot, newtrajectoryplot, PlotRange - All,
DisplayFunction - $DisplayFunction 1;

Now get down to brass tacks.

These plots depict the path of a cork dropped in the flow defined by
Field(x, yl = {m[x, yI, n[x, yI}

at the starter point.

Reason: The specifications in the differential equation:
starterpoint {a, b,
equationx= (X'[t] = m[x[t], y[t]]),
equationy= (y'[t] = n[x[t], y[t]],
starterx= (x[0] = @), and
startery= (y[0] = b)

tell you that the path will start {a, b, and that at each point

{x[t], y[t]} on the path, the field vector

Field[x[t], y[t]] = {m[x[t], y[t]], n[X[t], y[t]}
with tail at{x[t], y[t]} is tangent to the path. In fact, at each point
{x[t], y[t]} on the path, the field vector

Field[x[t], y[t]] = {m[x[t], y[t]], n[x[t], y[t]]}
is the velocity vector of the cork as it floats on its merry way.
Take a look at this plot which makes Field vectors twice as long as
they really are:

scalefactor =2,
velvectors = Table [Arrow [Field eetrajectory [t], Tail - trajectory [ti,
ScaleFactor - scalefactor 1, {t, O, endtime, 1 1

Show[trajectoryplot, starterplot, velvectors,
DisplayFunction - $DisplayFunction 1;

-8 -6 -4 -2 «; 2

newvelvectors =
Table [Arrow [Field eenewtrajectory [t ], Tail - newtrajectory [ti1,
ScaleFactor - scalefactor 1, {t, O, endtime, 1 1

Show[trajectoryplot, starterplot, velvectors, newtrajectoryplot,

newstarterplot, newvelvectors, DisplayFunction - $DisplayFunction 1;
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To really get a lot out of this, go back to the beginning and type in a
new vector field and redo everything above until you too go with the
flow.

oB.1.a.iii)

How does the vector field

Fieldx, yI = {m[x, y], n[x, yl}
govern the actual path of the cork dropped into the flow?

OAnswer:

If the cork finds itself at a positic{x, y}, then it has to go with the

flow. The flow at{x, y} is in the direction of:

] Field [xy1
{05 (-1+y),03 (-05 +x)}

To go with the flow, the cork must lea{x, y} in the direction of the
vectorField[x, y]. As the cork progresses, it corrects its direction
instantaneously at each point to keep on the course that the flow
determines.

As you saw above, the result is the{x, y} is any point on the actual
path of the cork, then the veciField[x, y] with its tail at{x, y} is
tangent to the actual path of the cork.

B.2) Flow of vector fields along curves; flow of vector fields
across curves: Visual inspection

0OB.2.a) Flow of a vector field ACROSS a curve

Describe the net flow across the ellipse parameterized by
At] = {6 Cogt], 4Sin[t]}

with 0 < t < 2 of a fluid whose velocity is given by the vector field
Fieldx, y] = {x— 1, y}.

OAnswer:

Enter the vector field:

Clear [Field, m, n, X, y 1

mx_,y_ ]=x-1

n[x_,y_ 1=y,

Field [x_,y_ 1={mx,y 1,n[xy1}
{-1+x,y }

Here's a look at the curve and the vector field:

vectorfieldplot =
Table [Arrow [Field [x,y 1, Tail - {x,y }1, {X, -6,6,1 }, {y, -4,4,2 }1;
Clear [t]
X[t_1=6Cos[t];
y[t_1=4Sin[t];
curveplot = ParametricPlot [{x[t],y [t]1}, {0, 2 =},
PlotStyle - {{Red, Thickness [0.01 ]}}, DisplayFunction - Identity 1;

Show [ vectorfieldplot, curveplot, Axes
AxesLabel - {"x","y" 1}, DisplayFunction

S\

- True, AspectRatio - Automatic,
- $DisplayFunction 1;

Your goal here is to analyze what the flow is doing at the points right
on this curve.
To do this, look at the field vectors at points right on the curve and
ignore what's happening elsewhere:

jump = g:

fieldvectors = Table [Arrow [Field [x[t],y [t]],
Tail - {x[t],y [t]1}], {t 0,2 o -jump,jump }I;
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Show([
curveplot, fieldvectors, AxesOrigin
AxesLabel - {"x","y" 1}, DisplayFunction

- {0, 0 }, AspectRatio - Automatic,
- $DisplayFunction 1;

-7.
These vectors indicate the direction and the speed of the flow at point
of the curve at the tails of the field vectors.

No doubt about it.

The net flow of this vector field across this curve is from inside to
outside.

OB.2.b)

Describe the net flow across the ellipse parameterized by
Rt] = {6 Codt], 4Sin[t]}

with 0 <t < 27 of a fluid whose velocity is given by the vector field
Fieldx, yl ={y - 1, y+ x}.

OAnswer:

Enter the vector field:

Clear [Field, m, n, x, y 1

mx_,y_ 1=y-1

NX_Ly_1=y+Xx

Field [x_,y_1={mXxy1l,nI[xy]l}
{-1+y,Xx +y}

Here's a look at the curve and the vector field:

vectorfieldplot =
Table [Arrow [Field [x,y 1, Taill - {x,y }1, {x, -6,6,1 }, {y, -4,4,2 }1;

Clear [t]
X[t_1=6Cos[t];

y[t_ 1=4Sin[t];

curveplot = ParametricPlot [{x[t],y [t1}, {t0,2 =},

PlotStyle - {{Red, Thickness [0.01 ]}}, DisplayFunction - Identity 1
Show[vectorfieldplot, curveplot,

Axes - True, AspectRatio - Automatic, AxesLabel - Yy,

DisplayFunction - $DisplayFunction 1;

The curve and the vector field are two independent creatures. One hi
no influence on the other. Your goal here is to analyze what the flow i
doing at the points right on this curve.
To do this, look at the field vectors at points right on the curve, and
ignore what's happening elsewhere:

jump = =

fieldvectors = Table [Arrow [Field [x[t],y [t]],
Tail - {x[t],y [t1}], {t, 0,2 s -jump, jump }1;

Show [
curveplot, fieldvectors, AxesOrigin
AxesLabel - {"x","y" '}, DisplayFunction

- {0, 0 }, AspectRatio - Automatic,
- $DisplayFunction 1;

y
10|
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These vectors indicate the direction and the speed of the flow at points
of the curve at the tails of the field vectors.
No doubt about it.

The net flow of this vector field across this curve is from inside to
outside.

OB.2.c)

Describe the net flow across and along the ellipse parameterized by
Rt] = {5Codt], 3Sin[t]}

with 0 < t < 2 of a fluid whose velocity is given by the vector field
Fieldx, yl = {x-y, Z}.

OAnswer:

Enter the vector field:

Clear [Field, m, n, X,y 1
MX_, y_ 1=X-Y;
y.
nix_,y_1= >
Field [x_,y_1={mXxy 1, ni[xy]l}

x-y. 1}

Here's a look the curve and the vector field:

vectorfieldplot = Table [Arrow [Field [x,y ], Tail - {Xx,y }1,

{x, -6,6,1 3}, {y, -4,4,2 }];

Clear [t]
X[t 1=5Cos[t];
y[t_1=3Sin [t];

curveplot = ParametricPlot [{x[t]l,y [t]1}, {t, 0,2 w},

PlotStyle - {{Red, Thickness [0.01 ]}}, DisplayFunction - Identity  1;
Show [ vectorfieldplot, curveplot,

Axes - True, AspectRatio - Automatic, AxesLabel - LYY,

DisplayFunction - $DisplayFunction 1;

N\

e
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JINSS...
Your goal here is to analyze what the flow is doing at the points right
on this curve.
To do this, look at the field vectors at points right on the curve and

ignore what's happening elsewhere:

. n

ump = —;

Jump 3

fieldvectors = Table [Arrow [Field [x[t],y [t]],

Tail - {x[t],y [t]1}], {t 0,2 o -jump,jump }];
Show[

curveplot, fieldvectors, AxesOrigin
AxesLabel - {"x","y" 1}, DisplayFunction

-10 - 10 x
4
These vectors indicate the direction and the speed of the flow at points
of the curve at the tails of the field vectors.
Looking at the plot, you can see: that:

— The net flow of this vector field across this curve is from inside to
outside.

- {0, 0 }, AspectRatio - Automatic,
- $DisplayFunction 1;

— The net flow of this vector field along this curve is counterclockwise.
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B.3) Flow of vector fields along curves; flow of vector fields
across curves

0B.3.a.i)

Try to describe the net flow across and along the ellipse parameterize
by
Rt] = {5Codt], 3Sin[t]}
with 0 < t < 27 of a fluid whose velocity is given by the vector field
Fieldx, y] = {* + y— 1, 0.5(x + y)}.

OAnswer:

Enter the vector field:

Clear [Field, m, n, x, y 1

MOy 1= eyl

NX_y_ 1=05 (x+y?);

Field [x_,y_1={mXxy1l.n[xy 1}
{-1+ % +y, 05 (x+y%)}

Here's a look at the curve and the vector field:

= Table [Arrow [Field [x,y ], Taill - {X,y }1,
{x, -6,6,1 3}, {y, -4,4,2 }1;

vectorfieldplot

Clear [t]

x[t_]=5Cos[t];

yl[t.1=3Sin[t];

curveplot = ParametricPlot [{x[t],y [t]1}, {t, 0,2 =},
PlotStyle - {{Red, Thickness [0.01 ]}},
DisplayFunction - Identity  1;

Show [ vectorfieldplot, curveplot,
Axes - True, AspectRatio
AxesLabel - {"x","y" '},
DisplayFunction - $DisplayFunction 1;

- Automatic,
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Your goal here is to analyze what the flow is doing at the points right

on this curve. To do this, look at the field vectors at points right on the
curve and ignore what's happening elsewhere:
ump = —;

fieldvectors = Table [Arrow [Field [x[t],y [t1],
Tail - {x[t],y [t1}], {t, 0,2 s -jump, jump }1;

outcome = Show[curveplot, fieldvectors, AxesOrigin
AspectRatio
DisplayFunction

- {0,0},
- Automatic, AxesLabel - LYy
- $DisplayFunction 1;

It's hard to tell from this plot whether the net flow along the curve is
clockwise or counterclockwise.

And it's hard to tell from this plot whether the net flow across the curv
is from outside to inside or from inside to outside. You can spot some
features:

- The plot indicates clockwise flow along the curve at the top and the
bottom with counterclockwise flow along the curve on the left and on
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the right.

— The plot also indicates that the flow across the curve is from inside
to outside at the top and on the left, but, on the bottom, the flow across
the curve is from ouside to inside.

OB.3.a.ii) Using tangential components to help make a visual
inspection of the flow ALONG a curve

Here's the plot of
Fieldx, y] = {4 + y - 1, 0.5(x + y)}
at points on the curve in part i) above:
] Show[outcome 1;

Look at the components of these field vectors in the direction of the
tangent vectors to the curve:

Clear [tangent, tancomponent ]
tangent [t ] ={x"[t],y [t1};

Field [x[t],y [t]1].tangent [t]

tancomponent [t_] =
tangent [t].tangent [t ]

tangent [t];

actualflowalong = Table [
Arrow [tancomponent [t ], Tail - {x[t],y [t]1}], {t,0,2 =x-jump,jump }1;

flowalongplot = Show[ curveplot, actualflowalong,
AxesOrigin - {0, 0 }, AspectRatio - Automatic, AxesLabel - XYy,
DisplayFunction - $DisplayFunction 1;

<

This is not a plot of the tangent vectors for the
parameterization of the curve.
This is a plot of the components of the field vectors in
the direction of the tangent vectors for the curve.

What does this plot of the tangential components of the field vectors
tell you?

OAnswer:

Look again:

] Show(flowalongplot 1;
y

No doubt about it.
The net flow of this vector field along this curve is clockwise.

OB.3.a.iii) Using normal components to help make a visual
inspection of the flow across a curve

What do you do to make a visual estimation of the flow of the vector
field in part i) above across the ellipse?

OAnswer:
Plot the components of the field vectors in directions perpendicular to
the curve. To do this, look at:
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Clear [tangent, normal 1
tangent [t_] = {x"[t],y [t]};
normal [t_1={y [t], -x"[t1};
normal [t].tangent [t]

0

The upshot:
normalt] = {y’[t], —x'[t]}
is perpendicular to the curve at the pdx[t], y[t]}.
Here comes the plot of the normal components of the field vectors on
the curve:

Clear [normalcomponent ]
Field [x[t],y [t]1].normal [t]

normalcomponent [t_] = normal [t1;
normal [t].normal [t]
actualflowacross = Table [Arrow [normalcomponent [t 1],
Tail - {x[t],y [t]1}], {t 0,2 o-jump,jump }71;
flowacrossplot = Show [curveplot, actualflowacross,
AxesOrigin - {0, 0 }, AspectRatio - Automatic, AxesLabel - XYY,

DisplayFunction - $DisplayFunction 1;

-4
There is some flow from outside to inside, but there's a heck of a lot

more flow from inside to outside.
No doubt about it; the net flow of this vector field across this curve is
from INSIDE TO OUTSIDE.

VC.04 2D Vector Fields and Their
Trajectories
Tutorials

T.1) Flow across and flow along: Visual inspection

Here's a vector field:
Clear [Field, m, n, x, y 1

mx_y_ 1=1
nix_,y_1=y-Sin [x];
Field [x_,y_1={mXxy1l,n[xy]l}

1y -Sin [x]}
Here's a curve:

Clear [t]
{X[t_]1,y [t 1}={08Cos [t],05Sin [t]};

curveplot = ParametricPlot [{xX[t],y [t]1}, {t0,2 =},
PlotStyle - {{Thickness [0.01 ], Red }}, AxesLabel - {"x","y" }1;
y
0.4
0.2
75 -0.5-0.25 0.25 0.5 0.76 ¥
-0.2
-0.4

OT.1.a.i) Flow across
Give a visual analysis of the flow of this vector field across this curve.

OAnswer:

First, plot the vector field on the curve:

VC.04.B3-T1

jum A

Jump = o

fieldvectors = Table [Arrow [Field [x[t],y [t1],
Tail - {x[t],y [t1}], {t 0,2 o -jump, jump }I;

outcome = Show[curveplot, fieldvectors 1;
y

7

-1

It looks like the net flow of this vector field across this curve is from
inside to outside, but there is some flow from outside to inside on the
left. To get a more accurate picture of the flow of this vector field
across this curve, look at the normal components of the field vectors
plotted above.

Clear [normal ]
normal [t_ ] ={y'[t], -X"[t1};

Clear [normalcomponent ]
Field [x[t],y [t]1].normal [t]
normal [t].normal [t]
actualflowacross = Table [Arrow [normalcomponent [t ],
Tail - {x[t],y [t]1}], {t 0,2 o -jump,jump }];

normalcomponent  [t_1] = normal [t1;

= Show[curveplot, actualflowacross 1

flowacrossplot

Now there's no doubt about it; the net flow of this vector field across
this curve is from inside to outside.

OT.1.a.ii) Flow along
Give a visual analysis of the flow of this vector field along this curve.

OAnswer:
First, plot the vector field on the curve:
jump = 7
Jump = o
fieldvectors = Table [Arrow [Field [x[t],y [t]],
Tail - {x[t],y [t]1}], {t 0,2 & -jump,jump }];

outcome = Show[curveplot, fieldvectors 1;

-1

It looks like the net flow of this vector field along this curve is
clockwise, but there is some counterclockwise flow along this curve at
the bottom. To get a more accurate picture of the flow of this vector
field along this curve, look at the tangential components of the field
vectors plotted above.

Clear [tangent ]
tangent [t ] ={X"[t],y [t]};
Clear [tancomponent ]
tancomponent [t_ ] = Field [x[t1 y [t1].tangent [t] tangent [t ];
tangent [t].tangent [t ]
actualflowalong = Table [
Arrow [tancomponent [t ], Tail - {x[t],y [t]1}], {t,0,2 =x-jump,jump }1;

flowalongplot = Show [ curveplot, actualflowalong 1;
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This is not a plot of the tangent vectors for the
parameterization of the curve.
This is a plot of the components of the field vectors in
the direction of the tangent vectors for the curve.

Now there's no doubt about it; clockwise flow along this curve

overwhelms the counterclockwise flow. The net flow of this vector
field along this curve is clockwise.

oT.1.a.iii)
Review what happened in the parts above.
OAnswer:

Here's the vector field plotted on the curve:

] Show[outcome ;
y

1%
=
LY,
>

0.5 s x

-1

Here are the normal components of the vectors in the plot above:

] Show[outcome, actualflowacross 1;

-1

-1.5

You use these normal components to read off the net flow across the

curve.

Here are the tangential components of the vectors in the plot above:

| Show[outcome, actualflowalong 1;

You use these tangential components to read off the net flow across t

curve.

T.2) Differential equations and and their associated vector
fields

Calculus&Mathematica is pleased to say that this
problem was greatly influenced by the book
Differential Equations, A Dynamical Systems Approach, Part 1
by J. H. Hubbard and B. H. West (Springer-Verlag, New York,1991).
If you like this problem, then you'll want to experiment
with the vector fields in the first chapter of that book.

VC.04.T1->T2

OT.2.a)

When you have a differential equation like
yIXI=2x-y[x], _
you can make the associated vector field
DEFieldx, y] = {1, 2x — y}:
Clear [DEField, x,y 1]
DEField [x_,y_ 1={1,2x -y};
scalefactor =0.2;
DEFieldplot =
Table [Arrow [DEField [x,y 1, Tall - {x,y }, ScaleFactor - scalefactor 1,

I R RIS )|

Show[DEFieldplot, Axes - Automatic, AxesLabel - UYL

The flow of this field pulls all the trajectories down from the upper
left, turns them around, and spits them out at the upper right.

Try it:

Clear [m, n]

{m[X_,y_ 1.,n [Xx,y_ 1} =DEField [x,y 1;

{a,b}=1{-36,4 };

starterpoint ={a b},

Clear [Derivative, X, y, t 1

equationx =x'[t]==m[x[t],y [t]];

equationy =y’[t]==n[x[t],y [t]];

starterx =x[0] ==a;

startery =y[0] ==b;

endtime =7,

approxsolutions = NDSolve [{equationx, equationy, starterx, startery },

{x[t1,y [t1}, {t 0, endtime 1}I1;

Clear [trajectory 1

trajectory [t 1=
{X[t ] /. approxsolutions [11,y [t 1 /. approxsolutions i1}
trajectoryplot = ParametricPlot [trajectory [t1, {t O, endtime 1},
PlotStyle - {{Red, Thickness [0.01 ]}}, DisplayFunction - Identity 1;

starterplot = Graphics [{Red, PointSize  [0.06 ], Point [starterpoint 111
trajectory = Show[DEFieldplot, starterplot, trajectoryplot,
PlotRange - All, Axes - Automatic, AxesLabel - Yy,

DisplayFunction - $DisplayFunction 1;

What's the significance of the trajectories in the DEField?

Answer:

The trajectory plotted above is nothing but a plot of a solution of the
given differential equation
y'[X] = 2x — y[x] with y[-3.6] = 4.
To see why, look at the ingredients of the trajectory plotter above:
| (ab}
(-36,4 }
| equationx =x’"[t]==m[x[t],y [t]]
X'[t]==1
| equationy =
y[t]==2x1t]
| starterx =
X[0] == -3.6
| statery =y[0]==b
y[0] == 4

=nix[t],y [t]1]
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These equations tell you that this trajectory is the same as the plot of
solution of the differential equation
V'[X] = 2x — y[x] with y[-3.6] = 4.
Here's the plot of the solution of the differential equation
V'[X] = 2x — y[x] with y[-2] = 0.
as a trajectory in this vector field:

{a,b}={-2,0}
starterpoint ={a, b}

Clear [Derivative, X, Y, t ]
equationx =Xx'[t] ==m[x[t],y [t1];
equationy =y’[t] nexptl,y [t1n

starterx = x[0] == a

startery =y[0] ==b;

begintime = -1;

endtime =7;

approxsolutions = NDSolve [{equationx, equationy, starterx, startery },
{X[t1,y [t1}, ({t begintime, endtime 1

Clear [trajectory 1
trajectory [t 1=
{X[t] /. approxsolutions [11,y [t ] /. approxsolutions Iin};

trajectoryplot =
ParametricPlot [trajectory [t1, {t, begintime, endtime },

PlotStyle - {{Red, Thickness [0.01 ]}}, DisplayFunction - Identity ];
starterplot = Graphics [{Red, PointSize [0.06 ], Point [starterpoint 131;
trajectory = Show[DEFieldplot, starterplot, trajectoryplot,

PlotRange - All, Axes - Automatic, AxesLabel - Y'Y,

DisplayFunction - $DisplayFunction 1;

Beautiful, darn beautiful.

aT.2.b)

Here's another look at the vector field coming from the differential
equation
YIX] = 2x - y[x]:
Clear [DEField, x,y 1
DEField [x_,y_1={1,2x -y};
scalefactor =0.2;
DEFieldplot = Table [Arrow [DEField [x,y 1, Taill - {x,y },
ScaleFactor - scalefactor 1, X -4,4,1 3} {y, -4,4,1 }1;

Show[DEFieldplot, Axes - Automatic, AxesLabel - YL

What does this plot tell you about the solutions of this differential
equation?

OAnswer:
Good question.
It tells you a lot. It tells you that no matter how youssahdb so that
{a, B is within the plot range above, the solution of

y'[X] =2x - y[x] withy[a] = b

will go down on the left and will turn itself around and go up on the
right.
This plot tells you one heckuva lot more than does the formula coming
from:

Clear [x,y,a,b ]
DSolve [{y’[x] ==2x -y [x],y [a] ==b},y [X],X ]
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({Y[X] >E* (-(-2+2a-b) B2 -2EX +2E* x) }}
But this formula does tell you that any solution of
Y [X] =2x- y[x]withy[a] =b
does get sucked onto the line
y=2x-2
whenx is large and positive.

You can also see this fact in tDEField plot:
sucker =Plot [2Xx -2, {X, -1,4},
PlotStyle - {{Thickness [0.02 ], Red }}, DisplayFunction - Identity 1;

Show[DEFieldplot, sucker, Axes - Automatic, AxesLabel S XYY,
DisplayFunction - $DisplayFunction 1;

That's mathematics at work.

T.3) Flow across a curve and the sign of the dot product
Field[x[t], yIt]]. {y'[t], =x"[t]}
Flow along a curve and the sign of the dot product

Field[x[t], yItll. {X'[t], y'[tD

Given a two dimensional curve parameterized by
{x[t], y[t]} witha<t<b,
you can get a tangent vector{ft], y[t]} that points in the direction
of the parameterization by setting
tangent] = {X'[t], y'[t]}. _
You can also get a normal vector{dt], y[t]} by setting
normait] = {y’[t], —x'[t]}.
Try them out:
Clear [x, Yy, t, tangent, normal ]
(X[ 1,y [t_1}={2Cos[t],Sin [t1};
tangent [t ] ={xX"[t],y [t]};
normal [t_1={y’[t], -x"[t]};
curveplot = ParametricPlot [{x[t],y [t]}, {0, 2 =},
PlotStyle - {{Thickness [0.01 ], Red }}, DisplayFunction - Identity 1;
jump = E;
tangentvectors =

normalvectors = Table [Arrow [normal [t], Tail - {x[t],y [t]},
VectorColor - SteelBlue 1, {t,0,2 s -jump,jump }];

Show[curveplot, tangentvectors, normalvectors, AxesLabel - "X,y
AspectRatio - Automatic, DisplayFunction - $DisplayFunction 1,
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The tangent vector$x'[t], Y'[t]}, tell you that the curve is
parameterized in the counterclockwise way.

The normal vectorgy’[t], —x'[t]}, point to the outside of the curve.

Try another curve:

Clear [x, Y, t, tangent, normal
{X[t_ 1,y [t 1}={Cos[t] (1-05Sin [3t]),Sin [t]};
tangent [t_] = {x"[t],y [t]}
normal [t_]={y'[t], -X"[t]1};
curveplot = ParametricPlot [{x[t],y [t]1}, {t,0,2 =},
PlotStyle - {{Thickness [0.01 1, Red }}, DisplayFunction - |dentity 1;

jump = Z;
=5
tangentvectors =

normalvectors = Table [Arrow [normal [t ], Taill - {x[t],y [t]1},
VectorColor - SteelBlue 1, {t,0,2 x-jump, jump }1;

Show [ curveplot, tangentvectors, normalvectors, AxesLabel
AspectRatio - Automatic, DisplayFunction - $DisplayFunction 1;

Again, the tangent vectotg’[t], y'[t]} tell you that the curve is
parameterized in the counterclockwise way.

The normal vector§y’[t], —x’[t]} point to the outside of the curve.
Try another curve:

Clear [X,y, t, tangent, normal 1
X1y [t 1y={t (27-1),2Sin [t]};
tangent [t_]={x"[t],y [t]1};
normal [t ] ={y'[t], -X"[t]};
curveplot = ParametricPlot [{x[t],y [t]1}, {t0,2 =},
PlotStyle - {{Thickness [0.01 1, Red }}, DisplayFunction - |dentity 1;

. 7
ump = —;
jump 3

tangentvectors =

normalvectors = Table [Arrow [normal [t ], Taill - {x[t],y [t]},

VectorColor - SteelBlue 1, {t,0,2 x-jump,jump }1;

Show[curveplot, tangentvectors, normalvectors, AxesLabel - Y,
DisplayFunction - $DisplayFunction 1;

-6

This time, the tangent vectops [t], y’[t]} tell you that the curve is
parameterized in the clockwise way.

This time, the normal vectofyg’[t], —x’[t]} point to the inside of the
curve.

0T.3.a.i) Counterclockwise versus clockwise

Is it true that:

— When a closed curve is parameterizedx], y[t]} in the
counterclockwise way, then the normal vecterft], —x’[t]} always
point to the outside of the curve?

- When a closed curve is parameterized@jt], y[t]} in the
clockwise way, then the normal vectdy4[t], —x’[t]} always point to
the inside of the curve?

OAnswer:
Yes.
In fact, as you walk around the curve in the direction of the
parameterization, the normal vec{y’[t], —x’[t]} always points to
your right.

Table [Arrow [tangent [t], Taill - {x[t],y [t]1}], {t, 0,2 -jump, jump }1;

Table [Arrow [tangent [t], Tal - {x[t],y [t1}], {t, 0,2 os-jump, jump }1;
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OT.3.a.ii) Your choice of normals

Given a curve parameterized by
{x[t], y[t]} with a<t < b,
you have your choice of normal vectorgdt], y[t]}:
You can opt for
ty'[t, =X [tl},
or you can go with
Dlunittart], t]

where
unittant] = — XLy
Discuss the merits of each.
OAnswer:

For hand work{y’[t], —x’[t]} is more easily calculated than is
D(unittarit], t]. The choice of which to use depends on what you want
to do.

- If you want a normal that always points to the right as you advance
on the curve in the direction of the parameterization, go with

{y’[t], =x'[t]}.

- If you want a normal that always points with the curvature, go with
D[unittart], t].

You probably know how hancD[unittar{t], t] can be.

If you want to see how handy’[t], —x’[t]} can be, go on to the next
problem.

OT.3.b) Flow across a curve and the sign of the dot product

Field[x[t], yIt]]. {y’[t], =X'[t]}
Here's a vector field:

Clear [Field, m, n, x,y 1
mix_,y_ 1=14x2;
nix_, y_ 1=y-Sin [x];
Field [x_,y_ 1={mxy 1. nixy1l}
{1.4x 2,y -Sin [x]}
Here's a curve:
Clear [t]
{X[t_1,y [t_1}={Cos[t], 05Sin [t]};

curveplot = ParametricPlot [{x[t1,y [t1}, {t,0,2 =},
PlotStyle - {{Thickness [0.01 ], Red }}, AxesLabel - {"X","y" }1;

Look at this plot of some of the unit tangent vectors
unittangerjt] = XYM
. . . g . .X, [[]2 +y/ [ﬂz . .
pointing in the direction of the parameterization:
Clear [t, unittangent 1
Ity [t}

unittangent [t 1= ;
VX [t12 +y it 12
: U
Jump = X
unittangents = Table [Arrow [unittangent [ti,
Tail - {x[t],y [t]}, VectorColor - Red], {t,0,2 -jump,jump }1;

Show[curveplot, unittangents 1;
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This plot tells you that the curve is parameterized in the
counterclockwise way.
And this tells you that the normal vectgt[t], —x’[t]} at{x[t], y[t]}
points to the outside of the curve.
Now look at this plot of

Fieldx[t], y[tI] . {y’[t], =x[t]}:

dotplot = Plot [Field [X[t],y [t11. {y'[t]l, -x"[t1}, {t 0,2 =},

PlotStyle - {{Thickness [0.01 ], Blue }}, AxesLabel - {"t",™ 1},

1
AspectRatio - 7 PlotLabel - "Dot Plot" ];

Dot Pl ot

T2 \z 4f 5 e !
-0.25
-0.5
-0.75

Interpret this plot.

OAnswer:

This is a plot of
Field(x[t], y[tl] . {y'[t], =x"[t]}.
When
Field(x[t], y[t]].{y’[t], -x'[t]} > O,
the flow of the vector field across the curve is in the direction of the
outward normal vectc{y’[t], —x'[t]}.
When
Field[x[t], y[t]].{y’[t], -x'[t]} <O,
the flow of the vector field across the curve is opposite to the directior
of the outward normal vectdy’[t], —x'[t]}.
Since the normal{y’[t], —x’[t]} point out from the curve, the upshot is

this:
At a point{x[t], y[t]} on the curve, the flow across the curve is:
- from inside to outside when
Field[x[t], y[t]] . {y’[t], -X'[t]} > O
- from outside to inside when
Field[x[t], y[t]].{y[t], -x'[t]} < O.
Armed with this insight, take another look at the plot of
Field[x[t], y[t]] . {y’[t], —=x'[t]}:

] Show[dotplot 1;
Dot Pl ot

Eye-ball estimates tell you that the flow of this vector field across this

curve is

— from inside to outside at poir{x[t], y[t]} with
O<t<25andd.3<t<2n

- from outside to inside at poir{x[t], y[t]} with

27<t<4.1.
Using Find R OO0t you can get more accurate estimates if you like.
Check it out:
outl = Table [
. . 25 +0
Arrow [Field [x[t],y [t]1], Tail - {x[t1,y [t]}], {t O, 25, 5 1B

out2 = Table [Arrow [Field [x[t],y [t1], Tail - {x[t],y [t1}],
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{tas,2 = % (2n-43)}];

inl = Table [Arrow [Field [x[t],y [t]1], Tail - {x[t]l,y [t1}],
41 -27

27y,
Show[curveplot, outl, out2 1

y

T

Outward flow across the curve at the plotted points on the curve.

{t.27,41,

This is a good representative plot of the part of this vector field that
flows from inside to outside across this curve.
Now look at:

] Show(curveplot, in1 1;

Inward flow across the curve at the plotted points on the curve.

This is a good representative plot of the part of this vector field that
flows from outside to inside across this curve.

And you set up both plots by doing nothing more than eyeballing a plot
of

Field[x[t], y[t]] . {y’[t], =x'[t]}.
Math works.

OT.3.c) Flow along a curve and the sign of the dot product
Field[x[t], yIt]]. {x’[t], y'[t]}

Alert C&M participants will note that this problem is
nothing but a copy and paste job of part b) above.

Here's a vector field:
Clear [Field, m, n, x,y ]
mix_, y_ 1=3x-y%
nix_y_ 1=2y;
Field [x_,y_ 1={mxy1l,nixyl}
8x-y% 2y}
Here's a curve:
Clear [t]
{X[t_1,y [t_1} = {Cos[t] (Cos[t]1?+1),Sin [t1};

curveplot
PlotStyle

= ParametricPlot [{x[t],y [t1}, {t, 0,2 wm},
- {{Thickness [0.01 ], Red }}, AxesLabel - {"X","y" 1}];

Look at this plot of some of the unit tangent vectors
unittangerjt] = X0y _
o g o Xy L
pointing in the direction of the parameterization:
Clear [t, unittangent ]
Ity Ity

VX [t1% 4y [t )2

unittangent [t1=

) s
ump = —;
Jump 3

unittangents = Table [
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Arrow [unittangent [t], Tail - {x[t],y [t1}], {t 0,2 -jump,jump }1;

Show [ curveplot, unittangents 1

This plot tells you that the curve is parameterized in the
counterclockwise way.
Now look at this plot of
Fieldx[t], y[tll . {x'[t], Y'[t]}:
dotplot = Plot [Field [X[t],y [t11. {x'[t]l,y [t1}, {t 0,2 =},
PlotStyle - {{Thickness [0.01 ], Blue }}, AxesLabel - {"t",™ 1},
AspectRatio - —;— PlotLabel - "Dot Plot" ];

Dot Pl ot

6
4
2
t

-2
-4
-6
Interpret this plot.

OAnswer:

This is a plot of
Field(x[t], y[t]] . {x[t], y'[t]}.
When
Field(x[t], y[t]].{x[t], y'[t]} > O,
the flow of the vector field along the curve is in the direction of the
tangent vecto{x'[t], y’[t]}.

When
Fieldx[t], y[t]]. {x'[t], y'[t]} <O,
the flow of the vector field along the curve is opposite the direction of
the tangent vectdx’[t], y'[t]}.
Because the tanger{x’[t], y’[t]} point in the counterclockwise
direction, the upshot is:
At a point{x[t], y[t]} on the curve, the flow along the curve is:
— counterclockwise wheField[x[t], y[t]].{X'[t], Y’[t]} > O
- clockwise wherField[x[t], y[t]].{X[t], y'[t]} < O.
Armed with this insight, take another look at the plot of
Field[x[t], y[t]].{x'[t], y'[t]}

again:
] Show[dotplot 1;
Dot Pl ot
6
4
2
3 3 7 et

-2
-4
-6

Eye-ball estimates tell you that the flow of this vector field along this
curve is
- clockwise at point{x[t], y[t]} with
O<t=<land3.1l<t<5.1
- counterclockwise at poin{x[t], y[t]} with

l2<t=<3and5.2<t=<2nm.
Using FindROOtyou can get more precise estimates if you like.
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Check it out:
clockwisel = Table |
. . 1+0
Arrow [Field [x[t],y [t1], Tail - {x[t],y [t1}], {t 0,1, 5 i
clockwise2 = Table [Arrow [Field [x[t],y [t]],
. 51 -31
Tail - {x[t1,y [t1}], {t 31,51, 5 Ik
counterclockwisel = Table [
X . 3-12
Arrow [Field [x[t],y [t]1], Tal - {x[t],y [t1}], {t, 1.2, 3, 5 }]
counterclockwise2 = Table [Arrow [Field [x[t],y [t1],
1
Tail - {x[t1,y [t]}], {t52,2 = 5 (27-52)1];
Show[curveplot, clockwisel, clockwise2 1;

Clockwise flow along the curve at the plotted points on the curve.
This is a good representative plot of the part of this vector field that
flows in the clockwise direction along this curve.

Now look at:

| Show[curveplot, counterclockwisel, counterclockwise2 1;

Counterclockwise flow along the curve at the plotted points on the
curve.
This is a good representative plot of the part of this vector field that

flows in the counterclockwise direction along this curve.
And you set up both plots by doing nothing more than eyeballing a plot
of
Field[x[t], y[t]]. {x'[t], Y'[t]}.
Math works again.

T.4) The 2D electric field

In the electric interpretation, a vector field

ElectricFielgx, y] = {m[x, y], n[x, yl}
is a vector such that

ElectricFieldx, y]. U
measures the instantaneous voltage drop when you{leayein the
direction of a unit vector U.
This is the same as saying ElectricFig|d/] represents the force the
field places on a unit charge at the pgioty}.

oT.4.a)

Here's a plot of the electric field resulting from a point charge of size
2 at{0.50, 1.50:
Clear [ElectricField, x, y 1
q=2;
{a, b} = {050, 1.50 };
q{x-ay -b}

ElectricField DLy 1= —————
(x-a)2+ (y-b)?
{ 2 (-05 +x) 2 (-15 +vy) }
(<05 +x)%+ (<15 +y)?" (-05 +x)2+ (-15 +y)?

Here's how this electric field looks:

Show[Graphics [{Red, PointSize [0.08 ], Point [{a, b }1}],
Table [Arrow [ElectricField [Xx,y 1, Tal - {x,y }1,
{x, -1,3}, {y,0,4 }1, Axes - Automatic 1;
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Ta-Da.
How do you interpret this plot?

OAnswer:

The electric field vectoiElectricFieldX, y], plotted as above, with tail
at{x, y} points in the direction of biggest voltage drop, and the length
of the vector represents the size of the voltage drop in that direction.
Reason: If you leav{x, y} in the direction of a unit vectU, then the
instantaneous voltage drop is

ElectricFieldx, y].U

= ||ElectricFieldXx, y]|| ||U|| Codangle betweeh

= ||ElectricFieldx, y]|| Codangle betweeh
becausq|U|| = 1.
This tells you that the instantaneous voltage drop is as big as possible
when

ElectricFieldx, y].U

= ||ElectricFieldx, y]|| Codangle betweeh
is as big as possible. This happens when

Codangle betweeh= 1,
which is the same as saying tangle betwees: 0.
The upshot:

To get the biggest instantaneous voltage drop, you take

U = ElectricFieldxy)
~ |[ElectricFieldx,yl|l *

The direction of the biggest instantaneous voltage drop is the directiol
of

ElectricFieldx, y].
The size of the biggest instantaneous voltage drop is

ElectricFieldx, y] . -Eectichieldxy]

||ElectricFieldx,y]||
_ l[ElectricFieldxyllI>
~ |ElectricFieldx,y]||

= ||[ElectricFieldx, y]|l.

This means theElectricFieldx, y] points in the direction of the biggest
instantaneous voltage drop, and that the instantaneous voltage drop i
this direction i<||[ElectricFieldx, y]||.

OT.4.b)

What do you get when you put a charge of size
1.5 a{-0.875, 0.37%

and a charge of size
-1.5 at{0.875, 0.37%?

OAnswer:

You get something pretty interesting.

Start by adding the electric fields resulting from the two point charges

Clear [ElectricField1, ElectricFieldF2, CombinedElectricField, X, y 1
ql = 1.5;

{al, bl } = {-0.875,0.375 };

ql {x-al,y -bl}

ElectricField1 N
(x -al)?+ (y -bl)?

[x,y_ 1=

g2 = -1.5;
{a2, b2 } = {0.875,0.375 };
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92 {x-a2,y -b2}
(x -a2)2 + (y -b2)2 "

x.y_ 1=
[X, y 1 + ElectricField2 X,y 1

ElectricField2 [X,y_1=
CombinedElectricField
ElectricField1

Show[Graphics [{Red, PointSize [0.08 1, Point [{al, bl }]}1,

Graphics [ {Blue, PointSize [0.08 ], Point [{a2, b2 }1}1, Table [Arrow [
CombinedElectricField X,y 1, Taill = {x,y }], {x, =3,3}, {y, -2,41}],

Axes - Automatic 1;

That's a little hard to interpret. To get a better idea, look at the unit
electric field, which shows the direction of the greatest instantaneous
voltage drop but does not show the size of the drop.

Clear [unitfieldvector 1

unitfieldvector [X_, y_ 1 = CombinedElectricField x.y1/
(V (CombinedElectricField [X, ¥y 1.CombinedElectricField

Show[Graphics [{Red, PointSize [0.08 ], Point [{al, bl }]}1,

Graphics [ {Blue, PointSize [0.08 ], Point [{a2, b2 }1}],

Table [Arrow [unitfieldvector [x,y 1, Tal - {x,y }1,
{x, -3,3,05 1}, {y, -2,4,05 1}1,

Axes - Automatic 1;

xyn)
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Hot plot.

Well worth waiting for.

The juice is pouring away from the positive charge toward the negative
charge just like it does in the movies.

T.5) Troubleshooting plots of vector fields

To get a good visualization of a vector field, you can plot the field as
it comes:

Clear [Field, x,y ]
Field [x_,y_ 1={x?+1y?2};
fieldplot = Table [

Arrow [Field [x,y ], Tall - {x,y }1, {x, -3,3,05 1}, {y, -3,3,05 }1;
Show([fieldplot, Axes

- Automatic, AxesLabel - YO

In some cases, such as this one, the vectors plot out so long that you
have a hard time visualizing the flow of the field.
Other times, the field vectors might plot out so short that you can't see

them clearly.
In such cases, you might want to apply a scale factor:
scalefactor =0.1;

scaledfieldplot =
Table [Arrow [Field [x,y ], Tail - {x,y }, ScaleFactor - scalefactor 1,
{x, -3,3,05 1}, {y, -3,3,05 }];

Show[scaledfieldplot, Axes - Automatic, AxesLabel - LY
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In a scaled plot such as this one, the lengths of the vectors are

proportional to the speed of the flow, just as they were in the unscalec

plot.

Sometimes you can't get any satisfactory scaled plot. In this case yot

might want to try the unit field plot.

Clear [unitField ]

Field s
unitField [X,y_ 1= © xy]

Field [x,y 1.Field [xy ] ’
unitfieldplot = Table [Arrow [unitField [X,y 1, Tal - {x,y }1,
{x, -3,3,05 }, {y, -3,3,05 }I;

Show [unitfieldplot, Axes - Automatic, AxesLabel = Ny

i

g

el BSOS

E =
77z

This plot of unitFieldix, y] shows only direction and not speed of the
flow. You can also get the unitfieldplot with the option
ScaleFactor» Normalize:

unitfieldplot = Table [Arrow [Field [x,y ], Taill - {x, ¥y },
ScaleFactor - Normalize ], {x, -3,3,05 1}, {y, -3,3,05 1}1I;

Show [unitfieldplot, Axes - Automatic, AxesLabel - Y3

— e

Ry 7 X

e =
177

There's one more neat trick that folks like to do: You can plot a scale:

unit field plot, and color the vectors according to their magnitudes.
It's not too hard to do, but does require a little work first.

Clear [colorfieldplot, max, color 1
max = Max[Flatten [
Table [Norm[N[Field [x,y 111, {x, -3,3,.5 }, {y, -3,3,.5 }111;
color [x_,y_1:=
N[Norm[Field [x,y 111 01 N[Norm[Field [x,y 111 ;.
max T max I
colorfieldplot = Table [Arrow [unitField [X,y 1, Tall - {x,y },
VectorColor - Evaluate [color [Xx,y ]], ScaleFactor -051],
{x, -3,3,.5 } {y, -3,3,5 1},

RGBColor |

Show[ colorfieldplot, Axes - Automatic ];
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The hottest vectors are red and the coolest are blue.
Not bad, huh?
OT.5.a)

Plots of unit fields like the plot above are usually a joy to view but
producing them has some inherent drawbacks.
What are these drawbacks?

OAnswer:

VC.04.T5-G1

— Because all the vectors are the same length, you are not able to use
this plot to visualize the speed of the flow. All you see is the direction.
- If Field[x, y] has a complicated formula, then making the table of
unit field vectors can burn a heck of a lot of computer time.

Still, when the conditions are right, unit field plots can be irresistible.
As always in Calculus&Mathematica, the choice is yours.

oT.5.b)

Here's an unsuccessful attempt to plot unitffiely] for
Fieldx, y] = {x, y}:
Clear [Field, x,y ]

Field [x_,y_l={xy}
Clear [unitField 1

. Field [x,y 1
unitField [X,y_1= :
\Field [x,y ].Field [x vy ]
unitfieldplot = Table [Arrow [unitField [x,y 1, Tail - {x,y }],

X, -3,3,05 1}, {y, -3,3,05 }];
Show [unitfieldplot, Axes - Automatic 1;

coziindet : Indeterminate expression 0. ComplexInfinity encountered.
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Your job is to say why the plot didn't run successfully, and to replace
it with a workable plot.

OAnswer:

N
\
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N
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This plot went wittField[x, y] = {x, y}.
It didn't run because it attempted to plot

unitFieldx, y] = 7% when{x, y} = {0, 0}.

This turned out to be garbage because

_— (0.0}
unitField0, O] computes out to bm ,

and neither Mathematica nor anything else can make sense of this.
You can fix this by jiggling the plotting limits so the point

{x, y} = {0, 0} doesn't come up in the plot:
unitfieldplot = Table [Arrow [unitField [x,y 1, Tail - {x,y }],
{x, -3.1,29, 05 }. {y, -3,3,05 1}I;
Show [unitfieldplot, Axes - Automatic 1;
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All right.

VC.04 2D Vector Fields and Their
Trajectories
Give Them a Try!

-
Experience with the starred problems will be useful for understanding
developments later in the course.

G.1) Looking for sinks (drains)*
0G.1.a)

Calculus&Mathematica thanks former C&M student
Jennifer Lee Cassidy for suggesting this problem.

Here is a vector field and a plot:
Clear [Field, x,y ]
Field [x_,y_ ]={-0036xE * +0.123y,0123x -0.087yE ¥'};
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) Field [x,y ] .
fieldplot = Table [Arrow [m Tail - {xy}],
+Norm[Field [x,y

25 25
, -1.25, 1.25, — 1} , -1.25, 1.25, — 1
Ix =S =Sl

Show[fieldplot, Axes

- True, AxesLabel - {"x","y" 1}1;

As you can see from the plot, if you drop a cork into this flow at any
starting point within the plot other th&@, 0}, then it will float along
to one of two special points and stop dead.
Plot some trajectories in an effort to find the approximate locations of
these two special points.

aTip:

Copy, paste and edit.

O0G.1.b) Scaling a vector field

Here's an unscaled plot of a two dimensional vector field:
Clear [Field, x, y 1
Field [x_,y_ ] ={184 -08x°3-82y, -82x -04y3%};
fieldplot =
Table [Arrow [Field [x,y 1, Taill - {x,y }1, {X, -5,5}, {y, -5,51}1;

Show[fieldplot, Axes
y

- True, AxesLabel -S> YOG

This plot sucks. You can't see what's happening.

Give a scaled plot of this vector field at the same points to show it off
to good advantage.

Pretend that this field represents fluid flow and use your good plot to
determine whether there are any drains within the plot. If you can't
spot them visually, run some trajectories and see where they lead yot

G.2) Flow along and flow across*

Here's the vector field

Fieldx, y] = {x+ %, x— %}
plotted at selected points on the circle of radius 2 centeféd @t
Clear [Field, m, n, x, y 1

y
m[x_, =X+ =
[X_ y_ 1 *3

y
nx_, =X - =;
[x_y_ 1 >

Field [x_,y_ 1={mXxy 1, n[xy]l}
Clear [t]

{X[t_1,y [t_1}={1,0}+2{Cos[t],Sin [t]};

curveplot = ParametricPlot [{x[t],y [t]1} {t0,2 =},
PlotStyle - {{Thickness [0.01 1, Red }}, DisplayFunction - |dentity 1;
. g
ump = —;
jump 2
fieldoncurve = Table [Arrow [Field [x[t],y [t]],
Tail - {x[t1,y [t]}], {t 0,2 o-jump, jump }I;
Show [
curveplot, fieldoncurve, AxesOrigin - {0, 0 }, AspectRatio - Automatic,

AxesLabel - {"x","y" '}, DisplayFunction

- $DisplayFunction 1;

VC.04.G1:G2

Clear [tangent, tancomponent 1
tangent [t_]={X"[t],y [t]};
Field t1, t .t t t
tancomponent [t_] = © [x[t1 y [t11.tangen il tangent [t ];
tangent [t].tangent [t]
actualflowalong = Table [

Arrow [tancomponent [t ], Tail - {x[t],y [t]1}], {t, 0,2 m-jump,jump }1;

flowalongplot = Show [ curveplot, actualflowalong,
AxesOrigin - {0, 0 }, AspectRatio - Automatic, AxeslLabel
DisplayFunction - $DisplayFunction 1;
y

SO0y )

1 /
i 2 i 5%

0G.2.a.0)

You make the call:

Is the net flow of this vector field along this curve clockwise or
counterclockwise?

0G.2.a.ii)

Go with the same vector field and the same curve as above, but this
time look at normal components of the vector field at points on the
curve:
Clear [normal, normalcomponent 1
normal [t_]={y'[t], -X"[t]};
Field [x[t],y [t]].normal [t]
normal [t].normal [t]
actualflowacross = Table [Arrow [normalcomponent [t ],
Tail - {x[t],y [t]1}], {t 0,2 o -jump,jump }];

normalcomponent  [t_] =

normal [t1];

flowacrossplot = Show[curveplot, actualflowacross,
AspectRatio - Automatic, AxesLabel S Yy,
DisplayFunction - $DisplayFunction 1;

-2
You make the call:

Is the net flow of this vector field across this curve from inside to
outside or from outside to inside?

G.2.b)
Here's a new vector field plotted at a selection of points on an ellipse:
Clear [Field, m, n, x,y,t 1
m[x JXoy.
DOy 1= ==
X+Yy X
nix.,y_1-= > )

Field [x_,y_ 1={mxyl.n[xy]l}
{X[t_1,y [t_1}=4{2,1}+{2Cos[t],Sin [t]};

curveplot = ParametricPlot [{x[t],y [t]1}, {0, 2 =},
PlotStyle - {{Thickness [0.01 ], Red }}, DisplayFunction - Identity 1;
) s
ump = —;
Jump T}
fieldoncurve = Table [Arrow [Field [x[t],y [t]],
Tail - {x[t1,y [t]}], {t 0,2 = -jump, jump }I;
Show[
curveplot, fieldoncurve, AxesOrigin - {0, 0 }, AspectRatio - Automatic,

AxesLabel - {"x","y"

}, DisplayFunction - $DisplayFunction 1;
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Plot, as in parts a.i) and a.ii), the tangential and normal components ¢ Clear [x, . t, tangent, normal 1 .
the field vectors on this curve and then make the calls: Oy I s o cas [ L7si T
- Is the net flow of this vector field along this curve clockwise or normal [t_ 1= {y’ [t], -X"[t]1}
counterclockwise? (:urvleplotI = Parameht.ritlz(Plot [{x[t], yd[t 1}, _{t,lo, 2 77}, son .
- Is the net flow of this vector field across this curve from inside to | Plosyle > {{Thickness [001 3, Red 33, DisplayFunction ~ Identty 1
outside or from outside to inside? jump = =
tangentvectors =
DG.Z.C) Table [Arrow [tangent [t], Tail - {x[t],y [t]}], {t,0,2 s -jump,jump }1;
. " . . . normalvectors =
erred§ a rlew v;ecto(; gl%}plotted at a selection of points on the circle Table [Arrow [normal [t1,Tail » (X[t1,y [t1}], {t0,2 »~jump, jump }1:
of radius 1 centered &2, O}:
Clear [Field, m, n, X, y, t ] Show[curvgplot, tangentve;torst normalvec_tors, AxesLabeI_ - Xy,
AspectRatio - Automatic, DisplayFunction - $DisplayFunction 1;

mpx_, y_ 1=x3-3xy?;
nIxLy_ 1=-3x2y+y%
Field [x_,y_ 1={mXxyl.n[xy]l}
{X[t_1,y [t_1}={Cos[t], Sin [t]};
curveplot = ParametricPlot [{x[t],y [t]1}, {t,0,2 =},
PlotStyle - {{Thickness [0.01 ], Red }}, DisplayFunction - |dentity 1;

jump = A
jump = I
fieldoncurve = Table [Arrow [Field [x[t],y [t]],
Tail - {x[t],y [t]1}], {t, 0,2 ox-jump,jump }1;
Show/[curveplot, fieldoncurve, 0G.3.a.iii) Direction of the normal vector{y’[t], —X[t]} at {x[t], y[t]}
Axes - True, AspectRatio - Automatic, AxesLabel S XYY . . . .
DisplayFunction - $DisplayFunction 1 When a closed curve is parameterizedX¥j, y[t]} in the clockwise

way, then as you advance along the curve in the direction of the
parameterization, which way do the normal vectgtg], —x’[t]} at
{x[t], y[t]} point, to the right to the inside of the curve, or to the left to
the outside of the curve?

oTip:

Take a look at this:

.2 Clear [x, vy, t, tangent, normal 1
Plot, as in parts a.i) and a.ii), the tangential and normal components ¢ (X[t_1.y [t_1}={06Sin [t],17Cos [t]};
these field vectors on this curve and then make the calls: ol LR
- Is the net flow of this vector field along this curve clockwise, curveplot = ParametricPlot  [{x[t1,y [t1} {L0,2 =),
counterclockwise, or is the flow of this vector field along this curve 0 PlotStyle  » {{Thickness [0.01 ], Red }}, DisplayFunction > Identity ];
in the sense that the counterclockwise flow balances the clockwise jump = %;
flow? tangentvectors =
- Is the net flow of this vector field across this curve from inside to Table [Arrow [tangent [t], Tail - {x[t],y [t]1}]. {1 0,2 s -jump, jump }1;
outside or from outside to inside, or is the flow of this vector field e o (romal [£1.Tal > (X[t 1y 121, (0.2 7~ jump. iump 31:
across this curve 0 in the sense that the inward flow balances the ’ ’ B ' '
outward flow? Show[cuwgplot, tangentve(.:torst normalvegtors, AxesLabeI. > %y,
AspectRatio - Automatic, DisplayFunction - $DisplayFunction 1;
G.3) Normals, tangents and dot plots*
0G.3.a.i) Direction of the tangent vecto{x’[t], y'[t]} at {x[t], y[t]}
When a closed curve is parameterizedX¥i, y[t]}, then as you
advance along the curve in the direction of the parameterization,
which way do the tangent vectdss[t], y'[t]} at{x[t], y[t]} point; in
the direction you are going, or in the direction opposite to the
direction you are going? 0G.3.b.i)
OG.3.a.ii) Direction of the normal vector{y’[t], —x'[t]} at {x[t], Y[t]} Here's a vector field:
. . . Clear [Field, m, n, X, y 1
for a counterclockwise parameterization MLy 11
When a closed curve is parameterizedxi$i, y[t]} in the o LS
counterclockwise way, then as you advance along the curve in the (1, 8in [xy])
direction of the parameterization, which way do the normal vectors Here's a curve:
{y’[t], =x’[t]} at{x[t], y[t]} point, to the right to the outside of the Clear [t1
curve, or to the left to the inside of the curve? _ 1
aTip: {X[t 1,y [t_1} = {Cos[t], Sin [t]+ —3—S|n [2t1};
curveplot = ParametricPlot [{x[t],y[tl}, {0, 2 =},
Take a look at this: PlotStyle - {{Thickness [0.01 ], Red }}, AxesLabel - {"x","y" }1;

y

Look at this plot of some of the unit tangent vectors
unittangerft] = 1y

Vi i

pointing in the direction of the parameterization:
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Clear [t, unittangent 1 gradfieldplot =
X It1,y "It} Table [Arrow [gradf [x,y ], Tail - {X,y }, ScaleFactor - scalefactor 1,
unittangent [t ] = ———————; {x, -2,2,05 1}, {y, -2,2,05 }1I;
X [t12 ey ]2
. Show[maximizerplot, gradfieldplot, Axes - Automatic,
jump = E; AxesLabel - {"X","y" }1I;
unittangents = Table [Arrow [unittangent [ti1,
Tail - {x[t],y [t]}, VectorColor -» Red], {t,0,2 -jump, jump }1; \
Show[curveplot, unittangents 1; \
N
_2/ N x
7
e
X O0G.4.a.0)
15 _ Why did this happen?
Now I_ook at this plot o_f Where are the trajectories in this gradient field headed?
Fieldx[t], y[t]]. unittangent]: What do you learn about a functioixfy] by looking at a plot of its
dotplot = Plot [Field [x[t],y [t]].unitangent [t], {,0,2 n}, gradient field?
PlotStyle - {{Thickness [0.01 ], Blue }}, AxesLabel - {"t",™ 1}, ..
1 O0G.4.a.ii)
AspectRatio - —]; L . .
2 This time go with the function
— 2
! f[X, y] T 1+(y-22+15(x-17 "
0.5 Say why you are sure thd, y} = {1, 28 maximizes fx, y]. Then plot
y why'y y y p
. the (scaled) gradient field of¥, y] near{1, 2.
ro2 N U4 Describe what you see and explain why you see it.
-0.5
0G.4.a.iii)
- ) You are given a certain functiofixf y] and the information that
Interpret this plot. {a, b, fa, b}
0G.3.b.ii) sits on tfh[e to]p of a crest of the surface given by
. ) . . . z=f[x, yl.
Go with the same vector field and curve as in part i) and look at this You center a small circle &, b and plot the gradient field off, y]
plot of on this circle.

FieldXx[t], yItl] . {y'[t], —x'[t]}: Is the net flow of the gradient field o, y] across this circle from

inside to outside or from outside to inside?

dotplot = Plot [Field [x[t], t11. {y'[t], -x"[t]1}, {t, 0,2 =}, : R
IflotSter > [({Thickr[les[s] [)é.(gll]], BI(J,e [)1, Axesf_aa)t}el {-> o ’ 1, DG4bI) Mlnlml.Zel’S
AspectRatio - ~]; This time go V\lll'[h? ,

2 ﬂ:X’y]zeg(X"'zy)..

5 Clear [f, gradf, Field, x, y 1

1 fIx_ y_ 1=EF 2y,

5

gradf [x_,y_ 1={DIf[xy 1 x1,DIfIxy 1 yIl}
Field [x_,y_ 1 =gradf [x,y ]

t 2 1 (g2 2 4 _1 2 2
1 2 3 4 6 (x2+2y?) (x?2+2y?)
t {gE” x g EY v}

This is the gradient field of
fix, y] = g5 6+ 25",
Note that{x, y} = {0, 0} minimizes fx, y].
Here's a plot of the scaled gradient field [of fy] shown with the

Interpret this plot. Does your answer change if you replace
{y’[t], =X[t]}
by the normalized vector

YTt} o minimizer at{0, 0}:
X[t + y [t : minimizerplot = Graphics [{Red, PointSize  [0.04 ], Point [{0,0 }]}1;
scalefactor =0.8;
gradfieldplot =
G4) The most important vector field of them all: Table [Arrow [gradf [x,y ], Tail - {X, y }, ScaleFactor - scalefactor 1],
x -1,1,025 }, {y, -1,1,025 }];
. . %
The gradlent fleld Show[minimizerplot, gradfieldplot, Axes - Automatic,
One way to come up with a vector field is to take a functirnyf AxesLabel - {"","y" }1;
and put 4
Fieldx, yl = gradfx, y] = Vf[x, yl. N 77
Try it out: NN Vs
Clear [f, gradf, Field, x, y 1 ~~ 1o

1
fIx,y 1 =1-E (x? +15y ?);

5
gradf [x_,y_ 1={(DIf[x,y 1, x1,DIf[X,y 1, ¥1} 1
Field [x_,y_ 1 =gradf [X, ¥y ] ‘15
{(-x -15y) _ Why did this happen?
This is the gradient field of What are the trajectories in this gradient field trying to get away from?

fix, yl=1- & (x+ 1.5y).
Note that{x, y} = {0, 0} maximizes [x, y].
Here's a plot of the scaled gradient field [of, fy] shown with the
maximizer af0, O}

maximizerplot = Graphics [{Red, PointSize [0.04 1, Point [{0,0 }1}1;
scalefactor =02;
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0G.4.b.ii)

You are given a certain functiofxf y] and the information that

{a, b, fla, b}
sits on the bottom of a dip of the surface given by

z=f[x, yl.
You center a small circle &, b and plot the gradient field ofX, y]
on this circle. Is the net flow of the gradient field pf,fy] across this
circle from inside to outside or from outside to inside?

0G.4.c) Crests and dips

Here's a plot of the surface

— _ Sin[2x] +Sin[3y]
z= flx, y] = S0

for-1<x=<land-1<y=<1:
Clear [f,x,y 1
Sin [2x] +Sin [3y] |
05 +x2+y2
Plot3D [f[x,y 1, {x, -1,11}, {y, -1,1}, AxesLabel - {"x", "y", "z" },
ViewPoint - CMView];

fix,y 1=

0.
y 1

Here's a plot of the (scaled) gradient field of the same function for the

same x's and the same y's:

Clear [gradf ]

gradf [x_,y_1={DIf[xy 1, x1,.DIf[xy 1 yI}h

scalefactor =0.07;

gradfieldplot =

Table [Arrow [gradf [Xx,y 1, Taill - {x,y }, ScaleFactor - scalefactor 1,
{x, -1,1,02 1}, {y, -1,1,02 }1;

Show [gradfieldplot, Axes - Automatic, AxesLabel - YO

What information about the crests and dips on the surface does this
plot of the gradient field of{k, y] convey?
Use the information in this plot and the FindMinimum instruction to
locate the positiofia, b, fla, b]} of the top of the highest crest, and the
position{c, d, f[c, d]} of the bottom of the deepest dip on the part of
the surface

z=f[x, yl
plotted above.

0G.4.d) The negative gradient field

Here's a contour plot of
fix, y] = 1.2 + 2.9¢" — 8.2xy2.
for
08<x=<13and0.&ky=<1.2:
Clear [f,x,y 1
fIX,y_ 1=12E% +29EY -82xy 2
ContourPlot  [f [x,y ], {x, 08,13 }, {y,07,12 }I;

1.2

1.1
1
0.9

0.8

0'8,8 0.9 1 1.1
There's a dip bottoming out &, b, fa, bj} for some{a, b} near

{1, 1.

Look at a plot of the (scaled) negative gradient in the vicinifyl o1}.

1.21.3

VC.04.G4-G5

Clear [negativegradient 1
negativegradf  [x_,y_ 1 =-{DIf[x,y ], x1,D[f[x,y 1, ¥y 1}
scalefactor =0.01;
neggradfieldplot = Table [
Arrow [negativegradf [X,y 1, Tal - {x,y }, ScaleFactor - scalefactor 1.

{x 08,13, %}, {v.08, 12 %}]?

Show [ neggradfieldplot, Axes - Automatic, AxesLabel - YO

| 1\1

\
NN
N
Look at that flow.

Use what you see in the plot above, and then use the FindMinimum
instruction to get a good estimate of the péntb, fla, b} at the

bottom of the dip.

Add a plot of{a, b} to the plot of the negative gradient field above.
Describe what you see and say why you see it.

How do trajectories in this negative gradient field look when they pass
through the part of the negative gradient field plotted above?

G.5) Differential equations and their associated vector
fields*

0G.5.a)

Here's the vector field coming from the differential equation
yIXI = yIxJ? = x.

Clear [DEField, x,y 1

DEField [x_,y_ ]={l,y?-x};

scalefactor 0.3;

DEFieldplot
Table [Arrow [DEField [x,y 1, Tall - {x,y }, ScaleFactor - scalefactor 1,

{x -2, %}, . -22 %}]?

Show[DEFieldplot, Axes - Automatic, AxesLabel - YL

Look at the slopes of those field vectors.
Add plots of the solutions of
YIx] = y[x]? — x with y{—-1.5] = -2
and
Y[x] = y[x]? — x with y{0] = -1
as trajectories of the vector field to the DEField plot above, and
discuss the relation between the plots of the solutions and the DEField
Finally, examine the flow of this vector field, and use it to describe the
behavior of solutions of the differential equation
yIx] = yIx]? - x
that pass through the part of the xy-plane plotted above.
oTip:

DSolve cannot find a formula for the solution of either of these
differential equations:

| Clear [x, Y, Derivative ]
DSolve [{y’[X] ==y [x]?-X,y [-15] == -2}, y [X], X ]
{{y [x] - - (1.00000000000000

(AiryAiPrime  [x] + 0.65782344695619 AiryBiPrime [X1)) /
(AiryAi  [x] + 0.65782344695619 AiryBi [x])1:00000000000000 4 4
Clear [x,y, Derivative ]
| DSolve [{y’[x] ==Y [x]1%-xy [0]==-1},y [X],X]

AiryBiPrime  [x] (-3¢ Gamma}]-+/3 Gamma %))
325 Gamma § | -3 Gamma | } }
AiryBi [x] (-3'/6 Gamma ] -+/3 Gamma % )
3273 Gamma 5 | -3 Gamma 5|

AiryAiPrime  [x] +

y[x] - -
{{ AiryAi  [x] +
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This is not a deficiency of Mathematica. No man, woman, or machine 0G.5.c)
has ever been able to come up with a formula for the solution. It's an Plot the vector field coming from the differential equation

unfortunate fact of science that most differential equations have
solutions for which no clean formula is available.
The consequence:
With no formula available, the best way to get an idea of how the
solutions of

y'[X] = yIx]* - x
look is to look at the flow of thDEField coming from this differential
equation.

0G.5.b.i)

Here's the vector field coming from the differential equation
YIx]=ylx] (1- %)

Those who have been on the C&M bandwagon from the beginning
will recognize this as the logistic differential equation.

Clear [DEField, x,y ]
DEField [, y_ 1={Ly (1- %)};

scalefactor =0.3;
DEFieldplot =
Table [Arrow [DEField [x,y 1, Taill - {x,y }, ScaleFactor - scalefactor 1.

8 4
,0,8  —1} {v.0,4, —1}|;
xo8 =} {04 )]
cutoff = Graphics [{Red, Thickness [0.01 ], Line [{{-0.5,2 }, {85,2 }}I1}I;

Show[ cutoff, DEFieldplot, Axes
PlotLabel - "Logistic field" 1;

y Logistic field
4
3&

b e e e e e e e -~

- True, AxesLabel - XYy,

S

Use what you see to describe the fundamental difference between the

behavior of a solution of
YIX] = yIx] (1 - %)
whose plot goes through a pojat b with b> 2
and the behavior of a solution of
YIX] =yIx] (1- %)
whose plot goes through a pojat b with 0< b < 2.

0G.5.b.ii)

Here's more of the vector field coming from the logistic differential
equation

YIX]=yixl (1~ %)

Clear [DEField, x,y 1

DEField [x_,y_ 1={ly (1_ %)};

scalefactor 0.3;

DEFieldplot
Table [Arrow [DEField [x,y 1, Tal - {x,y }, ScaleFactor - scalefactor 1,

4
,0,10,1 , . -2,4, —1}|;
x no{y o}

cutoff =
Graphics [{Red, Thickness [0.01 ], Line [{{-0.5,2 }, {105, 2 }}1}I;

Show[DEFieldplot, cutoff, Axes - True, AxeslLabel -S> YO

a

it - - 2 22 222z 2
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-3
Now you see three distinct types of solutions of

yIx]=yixl (21— 2.
Describe the three distinct types of solutions in words.

YIx] = xylx]
for a healthy selection ¢k, y}'s with
—-4<x=<4and-3=<y=<3.
Apply an appropriate scale factor so you can see what's going on.
Look at the resulting plot of the vector field, and describe how
solutions with y—4] > 0 are fundamentally different from solutions
with y[-4] < 0.

G.6) Trajectories: Can they cross?

0G.6.a) Crossing of trajectories

Calculus&Mathematica thanks Professor Stephanie Alexander of the
University of lllinois for helpful conversations about these problems.

Can two trajectories of a vector field ever cross over each other like
this:
This instruction will not run successfully unless you have run the
intializations of this notebook.

] Show(crisscross, DisplayFunction - $DisplayFunction 1;

Why or why not?
oTip:

Think of it this way:
At the cross-over point, which way must the floating cork move?

0G.6.b) Crossing of plots of solutions of differential equations

You have a differential equation
YIx] =[x, yIx]].
If you have a formula for[k, y] and you start with
y0l =1,
then you can use NDSolve to plot out a functifx yvith
M0] = 1 and y[x] = f[x, y[x]].
On the other hand if you start witfiof = 2, then you can use
NDSolve to plot out a function[y] with
MO] = 2 and y[x] = f[Xx, Y[x]].

The question here is: Can the plots of these two solutions ever cross

over each other like this:

| Show/[crisscross, DisplayFunction - $DisplayFunction 1;

Why or why not?

G.7) Dirifting along with a tumbleweed

0G.7.a)

Wind is swirling through the desert region
-4<x=<4,0=<y=<8.
At a point{x, y} in this region, the velocity of the wind is
windx, y] = {0.18+ 0.6Sin[y], )},
Here is a picture of the wind as you look down from a helicopter at
this desert region:

Clear [wind, X,y 1

012y

wind [x_, = {0.18 + 0.6 Sin | e
Doy 1= + vl T3

windplot =
Show[Table [Arrow [wind [X,y 1, Tall - {X,y }1, {X -4,413}, {y,0,8 }1I,
Axes - Automatic, AxesLabel - XYL

92



F -2 74 X

A tumbleweed drifting along was spotted at the ppha, 2}.

Add a plot of the approximate path of this drifting tumbleweed to the
plot above.

G.8) Logistic harvesting revisited

Those who have been with Calculus&Mathematica
from the beginning may recognize this problem.

Take the logistic equation
yItl =aylt](1- 4

with 0<a and O< b.

And start with O< y[0] < b.

As t advances from 0, you are guaranteed thiaigyows with some

pep until \ft] gets near b.

Once yt] gets near b, therty settles into global scale with
tIimy[t] =b.

Check it out with with & 0.23 and b= 13:

a =0.23;
b =13;
Clear [DEField, t,y 1]

DEField [t,y_ 1={Lay (1- %)};
scalefactor =
DEFieldplot =
Table [Arrow [DEField [t,y 1, Taill - {t,y }, ScaleFactor - scalefactor 1,
52 b

t,0,52, —}, {v,0,b, —}];

{ ) = 1]
bline = Graphics [{Red, Line [{{0, b}, {52,b }}1}1;

2.5;

Show[DEFieIdplot, bline, Axes - Automatic, AxesLabel - Yy,
AspectRatio -»%];
y
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You can see that the trajectories start low on the left and are sucked
onto the line y= b plotted at the very top:

endtime = 52;

starter =2;
Clear [t,y, Derivative, fakey 1
solution = NDSolve |
, y[t] - .
{y'rt1==ayrtl (1- —b—-J,y [0] ==starter },y [t1, {t O, endtime }];

fakey [t_] =y[t] /. solution I11;
solutionplot = Plot [{fakey [t]}, {t, O, endtime 1,
PlotStyle - {{Red, Thickness [0.01 ]}}, DisplayFunction - |dentity 1;

Show[DEFieldplot, solutionplot, bline,
1
Axes - Automatic, AxesLabel - "ty }, AspectRatio - >

DisplayFunction

- $DisplayFunction B
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Try it again with y0] = 5:
starter =5;
Clear [t,y, Derivative, fakey ]
solution = NDSolve |
{y'rt1==ayrti (1- y—[;—]),y [0] == starter  },y [t], {t O, endtime }];

fakey [t_] =y [t] /.solution [11;
solutionplot = Plot [{fakey [t]}, {t, O, endtime }
PlotStyle - {{Red, Thickness [0.01 ]}}, DisplayFunction - Identity 1;

Show[DEFieIdeot, solutionplot, bline,

1
Axes - Automatic, AxesLabel - Mty }, AspectRatio - >

DisplayFunction - $DisplayFunction ] H
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You get a reasonable interpretation of the logistic differential equation
Yt =ayt] (1- 1) with 0< y[0] < b

by imagining that §t] is number of catfish (in thousands) in a given

lake on a catfish farm t weeks after the lake was stocked y@ith y

catfish. As time goes on, the catfish population increases until it

reaches its steady-state population of b catfish.

But the catfish farmer doesn't grow catfish as pets; the farmer is in

business to harvest catfish and to sell them so that hungry folks can

fry them up and then wash them down with a couple of cold beers or
iced teas.

0G.8.a.i)

Measure time in weeks, assume that the farmer wants to harvest r fish
per week, and explain why

yltl=aytia- 4 -r
lays the base for a reasonable model.

0G.8.a.ii)

Go with the model

yltl=aytla- $H-r,
where t measures the number of weeks that harvesting goes on,
a=0.23, b= 13 (thousand fish), and the weekly harvest=x5
(thousand fish).
Here is the associated DEField:

The reason that b = 13is that 13000ish is the
greatest number of fish the lake can support.
a =0.23;
b =13;
r =0.5;
Clear [DEField, t,y ]

DEField [t,y_ 1={Lay (1-%)4};

scalefactor 2.5;

DEFieldplot
Table [Arrow [DEField [t,y ], Tail - {t,y }, ScaleFactor - scalefactor 1.
52 b
t, 0, 52, —} {yv,0b —1}];
{ R =]
bline = Graphics [{Red, Line [{{O0,b}, {52,b }}1}];

Show[DEFieIdeot, bline, Axes - Automatic, AxesLabel - Mty 1

1
AspectRatio - > 1:
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Examine the vector field and use what you see to estimate the smalle Here is water flowing into a drain §.5, 0.5:
number of fish the lake must contain at the begin(iirg0) to sustain Clear [drainField, x,y ]
the weekly harvest of+ 0.5 (thousand fish) for a full 52 consecutive {ab}=0505 }
weeks. drainstrength = 0.57,
drainField DLy 1= drainstrength {x-ay -b}
oG.8.a.iii) - (x-a)%+ (y-b)?
' H 1 drainfieldplot =
Here's what happer.ls with a harvest ef.5 (thousand fish) per week Table [Arow [drainField [y 1Tl o 00y M 6 <443, (v <2.33]:
from the same lake: drain = Graphics [{Blue, PointSize [0.04 ], Point [{a, b }1}1;
r =1.5;
Clear [DEField, t,y ] Show [drainfieldplot, drain,
) y AxesLabel - {"Xx","y" }, Axes - Automatic 1];
DEField [t_,y_ 1={L,ay (1 - —) -t}
b y
scalefactor = 2.5; - ~ v N3 1 / .
DEFieldplot =

~ ~ ~ 2 - -
Table [Arrow [DEField [t,y 1, Taill - {t,y }, ScaleFactor - scalefactor 1, A I

{t0 52, %}, {v.0.b, %}]?

- - - <1 ~ - -

X

bline = Graphics [{Red, Line [{{0,b}, {52,b }}1}1; -4 -2 . 2 4
- - - 71 N ~ ~
Show[DEFieIdplot, bline, Axes - Automatic, AxesLabel - "ty }, . e e 42 N
AspectRatio - %]; Here is water flowing out of a spigot{at1.5, 0.5:

Clear [spigotField, x, y 1
{aa, bb } = {-1.5,05 };

12.5

spigotstrength = 0.67;

710 § § § § § § § § § § § § spigotField DLy ]= spigotstrength {x-aay -bb}

B NRNRNRNRNANRNRNANRNANRNN (x-aa)2+ (y -bb)>

T NNANANANANANANANANANANAN i )

\ \ \ \ \ \ \ \ \ \ \ \ spigotfieldplot = .

2.5 \ \ \ \ \ \ \ \ \ \ \ \ Table [Arrow [spigotField [x,y 1, Tail - {x,y }1, {x, -4,4}, {y, -2,31}];

,&%%-%E%W%O—k t spigot = Graphics [{Red, PointSize  [0.04 ], Point [{aa, bb }]1}1;
-2.5

Show[spigotfieldplot, spigot,
AxesLabel - {"x","y" }, Axes - Automatic 1;

Harvesting at the level= 1.5 (thousand fish) per week is a very bad y

idea because all the trajectories that start on the far left are going A

negative before the end of the 52-week period under study. This DA T SR
means that before the end of the 52-week period, all the fish will be N 1
gone and harvesting will have to stop no matter how many fish you . 2' 5 X

start out with.
Your job is to use DEField plots to estimate the largest possible

PP | NN

. A N N
ere is water flowing under the influence of all three together:
Weel;%]hfl;\gftterrate r (in thousands) and a number H ter fl g under the infl f all three togeth
so that if the lake starts out containing starter fish, combirtiongia oy
then the harvest can continue for the full 52-week period. currentField  [x,y ] +drainField  [x,y ] +spigotField  [x,y 1;
Once you have your estimates for r af@] y starter, show the CO“/:b‘“a“O”ﬁe'gP'otf il Table [ T » -
resulting DEField together with the plot of the solution of row [combinationField D4y 1 Tal o D0y 31 4 4k Y =209 3
y[t] = ay[t] 1- &b”) -r Show [ combinationfieldplot, drain, spigot,
with y[o] = starter. AxesLabel - {"x","y" }, Axes - True ];
aTip: — - — /3)/ _ — = —
If you can't come up with a grand theory, prospect a little bit. What B | B,
happens witlr = 1.25? How abour = 0.95? - - ]. 1 - - =
Remember you are after an estimate, not an exact number. 7 ¢ 3 E

G.9) Water flow with spigots and drains Experiment with different strengths and positions of the sources and
0G.9.a) sinks and report on your observations.
What happens you make the spigot strength equal to the drain

Here is water flowing from left to right: strength, and you put the drain and the spigot close together?

e e X ] How big does the current strength have to be in relation to the spigot
curentField  [x_,y ] = currentstrength (1,0} strength and the drain strength to make the influence of the drain and
currentfieldplot = Table [ the spigot negligible?

Arrow [currentField [,y 1, Taill - {x,y }1, {X, -4,41%}, {y, -2,31}1;

Show[ currentfieldplot, Axes - Automatic ];
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G.10) 2D Electrical fields

0G.10.a)

Plot and describe the two dimensional electric field resulting from
equal charges of the same sigf1ab, g and{-1.5, Q.
Include a plot of the unit vector field.

aTip:

Make sure that your plot does not ask for the vectors at the points
(1.5, @ and{-1.5, Q.

0G.10.b) Dipoles

A dipole can be approximated by two charges of the same magnitude
but opposite sign separated by a small distance.

Dipoles are especially important in atomic theory.

Richard Feynman explains it this way:

"Although an atom or molecule remains neutral in an external
electronic field, there is a tiny separation of its positive and negative

charges, and it becomes a microscopic dipole."

From The Feynman Lectures on Physics
by Richrad P. Feynman, Robert B. Leighton, and Matthew Sands,
Addison-Wesley, 1964.

Plot and describe the electric field resulting from a positive charge at
{0.01, g and the opposite charge of the same magnitutieOad1, Q.
Include a plot of the unit vector field.

aTip:

All hell breaks loose ne{0, 0}, so make sure your plot does not ask
for the vectors too close {0, 0O}.

G.11) Gradient fields for max-min. Hamiltonian fields for
level curves, and implicitly defined functions

0G.11.a.i) Gradient systems

Given a function fix, y], you get the gradient ofX, y] by going with
gradfx, yl = {oxf[x, yl, dy f[x, y1}.
This is the same as saying

X, X,
Vilx, y] = {25, A0

To get the gradient field you just go with
Fieldx, y] = gradfix[t], y[t]],
which is the same as putting

- ofxyl Oflx,
Fieldx, y] = { 220, g;y] ).

Here's the gradient field coming from
fix, yl = x Cody] +y Sin[x]:
Clear [m, n, X, Y, t, f, gradf, Field 1;
fIx,y_ 1 =xCos[y] +0.3y 2Sin [x];
gradf [x_,y_ 1 ={ofIxy]l of[xyl}
{mix_,y_ 1,n[x_,y_ 1} = gradf [x,y I;

Field [x_,y_1 = {mXxy1l,ni[xy]l}
{0.3y 2 Cos[x] +Cos[y], 0.6ySin [x] -xSin [y]}
Here's a trajectory in this gradient field ¢f,fy] starting at a random

point:
{a, b } = {Random[Real, {-1,1 }], Random [Real, {-1,1}1};
starterpoint ={a, b}

Clear [x,y,t 1;

equationx =Xx'[t] ==m[x[t],y [t1];
equationy =y’[t] ==n[x[t],y [t]];
starterx = x[0] == a;
startery =y[0] ==b

endtime =7;
approxsolutions = NDSolve [{equationx, equationy, starterx, startery },
{x[t],y [t1}, ({t O, endtime }1;

Clear [trajectory 1;
trajectory [t]1=

VC.04.G16-G11

{X[t] /. approxsolutions [11.y [t ] /. approxsolutions 111},
trajectoryplot =
ParametricPlot [trajectory [t1, {t O, endtime }, PlotStyle -
{{CadmiumOrange, Thickness  [0.015 ]}}, DisplayFunction - Identity 1;

starterplot = Graphics [{Red, PointSize  [0.06 ], Point [starterpoint 111
Show[stanerplot, trajectoryplot, PlotRange - All, Axes - True,
AxesLabel - {"x","y" }, DisplayFunction - $DisplayFunction,
AspectRatio  » ————];
GoldenRatio

Agree that{xtrajectonyft], ytrajectoryt]} specifies the point on this
trajectory at time.

Here's what happens tf{xfrajectonyt], ytrajectoryt]] ast advances
from 0:

Clear [xtrajectory, ytrajectory 1;
{xtrajectory [t_ 1, ytrajectory [t1}=
{x[t1,y [t1} /. approxsolutions I11;

Plot [f [xtrajectory [t ], ytrajectory [ti1,
{t, 0, endtime }, PlotStyle - {{Red, Thickness [0.015 1}},
AxesLabel - {"t", "f [xtrajectory [t ].ytrajectory [t11"3}1;

rajectory(t],ytrajectory

Going up. Use your knowledge of the fact that when you plot
gradflx, y] with tail at{x, y}, the direction of gradk, y] is the
direction of greatest initial increase ifxfy] to explain why this

curve had no choice but to go up.
Explain this bold statement:
No matter what function[X, y] you go with, if
{xtrajectonyt], ytrajectoryt]}
parameterizes a trajectory in the gradient fieldxfy], then you are
guaranteed thafxXtrajectonft], ytrajectoryit]] goes up as t goes up.

0G.11.a.ii)

Here's a new vector field:

Clear [m, n, X, Y, t, Field 1;
mx_,y_]1 = 02x + 15y;
nix,y_1=-05x -02y;

Field [x_,y_ 1= {mxy l.n[xyIl}
And one of its trajectories:

{a,b}={-4, -3};
starterpoint ={a b}

Clear [x,y,t 1;

equationx =x'[t] ==m[x[t],y [t]];

equationy =y’[t]==n[x[t],y [t]1];

starterx =X[0] == a;

startery =y[0] ==b

endtime = 8;

ndssol = NDSolve [ {equationx, equationy, starterx, startery },
{x[t1,y [t]1}, {t O, endtime }1;

Clear [trajectory 1;
trajectory [t_1={x[t]/.ndssol [17,y [t] /.ndssol [1]};
trajectoryplot =
ParametricPlot [trajectory [t]1, {t O, endtime 3}, PlotStyle -
{{CadmiumOrange, Thickness  [0.015 ]}}, DisplayFunction - Identity ];
starterplot = Graphics [{Red, PointSize  [0.06 ], Point [starterpoint 131

Show[starterplot, trajectoryplot, PlotRange - All, Axes - True,
AxesLabel - {"x","y" 1}, DisplayFunction - $DisplayFunction 1;
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<

An elliptical closed curve.

How does the shape of this trajectory signal (with no extra

calculation) that the given system is not a gradient system?
aTip:

Remember from part i) above:

No matter what functiof[x, y] you go with, if

{xtrajecton|t], ytrajectoryt]}

parameterizes a trajectory in the gradient fielf[x, y], then you are

guaranteed that
f[xtrajectonyt], ytrajectoryt]]
goes up atgoes up.

0G.11.b.i)

Here's the gradient of

fix, y] =x3+ E®Y - 3x P
Clear [f, gradf, x, y 1;

fIx_,y_ 1=x3+E% -3xEY;

gradf [x_,y_ 1={f[xy 1, oyf[xy 1}
(-3EY +3x%,3E% 3P x}
Here's the corresponding gradient field:
Clear [m, n, X, Y, t, Field 1;
{mix_,y_ 1,n [x,y_ 1} = gradf [x,y I;

Field [x_,y_ 1 = gradf [X, Yy ]

(-3FY +3x2,3E% -3F x}
You can see thdil, 0} is a point at which gragf, y] = {0, 0}:

{xcritical, ycritical } = {0}
gradf [xcritical, ycritical 1
0,0}

Look at the level curves ofX, y] in the vicinity of
{xcritical, ycritical}:

h=0.2
levelcurves = ContourPlot  [Evaluate [f[X,y 11,
{x, xcritical - h, xcritical +h}, {y, ycritical - h, yeritical +h},
ContourSmoothing - Automatic, AxesLabel - YL
0.2z

0.1
0

-0.1

Z

08809 1 L1 1.2

The lighter shading indicates larger values of f[X, y]
Throw in the flow of this gradient field:
flowplot = Table [Arrow [Field [x,y ], Tal - {xy},
VectorColor - Red, ScaleFactor - 0.1, HeadSize - 0.02 1,
h
{x, xcritical - h, xcritical +h, g}
- - h
{y, ycritical - h, yeritical +h, g}]
equilibplot =
Graphics [{PointSize [0.04 ], Gold, Point [ {xcritical, ycritical 131
Show[levelcurves, flowplot, equilibplot, Axes - True, AxesOrigin -
{xcritical, ycritical }, AxesLabel - {"x","y" 1}, PlotRange -~
{ {xcritical - h, xcritical +h}, {ycritical - h, ycritical +hy}y,
PlotLabel - "Actual flow with level curves" 1;

VC.04.G11

tual Df.|2 wi yh level curv

What does all this graphical information give you about what happens
to f[x, y] at the plotted critical poir{icritical, ycriticaly?

0G.11.b.ii)

Go with this function:
Clear [f, gradf, x, y 1;

X+2y
fx,y ]=————m—
1+x24y2
X+2y
1+x2+y2

Say how you know in advance that this function has a global
maximizer and a global minimizer.

0G.11.b.iii)

Stay with the same function and calculate its gradient:

Clear [f, gradf, X, y 1;
X+2y

fIx., = ——
Doy ] 1+x24+y2

gradf [x_,y_ 1={ofixy]l &fixy]l}

C2x (x+2y) 1 _ 2y (x+2y) | 2 ]
(1+x2+y2)2  1+x2+y2'  (1,x2,y2)2  1+x2+y?
Look at this:

] Chop[N[Solve[gradffx,y] == {0,0}]]]

{{X > -0.447214,y - -0.894427 }, (X - 0.447214,y - 0.894427 }}
This gives you two candidates for global maximizers and minimizers.
Study in the manner of part i) each of these points in effort to
determine which is the global maximizer and which is the global

minimizer.
Can you come up with an alternate way of making this determination?

0G.11.c) Fishing for possible maximizers

Just as you are working on gradients and max-min, an old retired prof
(sort of a geezer) sits down at a computer next to you and says, "I
don't use Solve commands or anything like that when | am looking for
maximizers in a certain region. Instead | just go fishing in the gradient
flow. For instance if | am trying to find local max's né@yr 0} of

tX, y] _ E’°'3(X’°'4If;r;[xy+0.4j ,
I throw four corks in like this:

Clear [xstarter, ystarter, k 1;

h=2;

{xstarter  [1], ystarter [11} = {h, 0 };
{xstarter  [2], ystarter [21} = {0, h };
{xstarter  [3], ystarter [31} = {-h,0 };
{xstarter  [4], ystarter [41} = {0, -h};

starterplots = Table [Graphics [{Red, PointSize [0.04 ],

Point [{xstarter  [k], ystarter [k1}1}1, (k. 1,4 }1;
starterlabels = Table [Graphics [{Red,

Text ["start", {xstarter [k, ystarter [k1}, {0,131}1, {k,1,4 31;
Show[starterplots, starterlabels, PlotRange - All, Axes - True,

AxesLabel - {"X","y" }1;

S8t

"Then | enter the function and plot the trajectories in the gradient field
that start at the plotted points and then | see where they go:"

Clear [f, gradf, m, n, x,y,t 1;
E-03 (-04) Sin [xy +0.4 ]
fIx,y 1= ;
1+y2

gradf [x_,y_ 1={of[xy 1, of[xy 1}
{mix_, y_ 1, n[x_,y_ 1} =gradf [x,y 1;
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equationx = Xx’[t]
equationy =y’[t]
endtime = 25;

mix[t],y [t]1];
nixrel, y [t

ndssoll = NDSolve [{equationx, equationy, x [0] ==h,y [0] == 0},
{x[t],y [t]1}, {t O, endtime }];

ndssol2 = NDSolve [{equationx, equationy, x [0] ==0,y [0] == h},
{X[t1,y [t1}, {t O, endtime 138

ndssol3 = NDSolve [{equationx, equationy, x [0] == -h,y [0] == 0},
{x[t],y [t1}, {t O, endtime 1}];

ndssol4 = NDSolve [{equationx, equationy, x [0] ==0,y [0] == -h},

{x[t],y [t1}, {t O, endtime }1;

Clear [trajectoryl, trajectory2, trajectory3, trajectory4 1;
trajectoryl [t_1={x[t],y [t]} /. ndssoll [1T;
trajectory2 [t ]={x[t],y [t]} /.ndssol2 [1];
trajectory3 [t_1={x[t],y [t]} /. ndssol3 [1T;
trajectory4 [t_1={x[t],y [t]} /.ndssol4 [1T;
trajectoryplots = ParametricPlot [
{trajectoryl [t ], trajectory2 [t ], trajectory3 [t ], trajectory4 [t1y,
{t, 0, endtime }, PlotStyle - {{CadmiumOrange, Thickness  [0.015 1}},
DisplayFunction - Identity 1;
endplots =
{Graphics [{Blue, PointSize [0.04 ], Point [trajectoryl [endtime 1]1}1,
Graphics [ {Blue, PointSize [0.04 ], Point [trajectory2 [endtime 11}1,
Graphics [ {Blue, PointSize [0.04 ], Point [trajectory3 [endtime 1]13}1,
Graphics [ {Blue, PointSize [0.04 ], Point [trajectory4 [endtime 1]1}1};

Show[starterplots, starterlabels, trajectoryplots,

endplots, PlotRange - All, Axes - True, AxesLabel - {"x","y" 1},
DisplayFunction - $DisplayFunction 1;

y

s@3rt
The old guy goes on to say, "Those blue dots at traje¢engiimd,
trajectory2endtimd, trajectory3endtimg and trajectoryfendtimg

are the points at which the trajectories stalled. So, goldurn it, I'm
pretty well convinced that these are worth investigating as maximizers

Is this guy still with it?

Does his idea have any merit?.
If so, explain why.

0G.11.d.i) Hamiltonian systems

Given a function fi, y], you get the gradient system coming from
f[x, yl by going with

mx, y1 = d«f[x, y] (which is the same a&l1)

rx, yl = dyf[x, yl (which is the same a@%‘yl)

If you're running this lesson from Windows, the funny characters above
are partial derivative symbols.

and putting
{X'[t], Y'[t]} = {mx[t], y[t], nix[t], y[ti]}.

Given a functiorf[x, y], you get the Hamiltonian system coming from

f[x, yI by going with
m[x, y] = =0y f[x, y] (which is the same z—‘”%’yl)
n[x, yl = dxf[x, y] (which is the same aﬁ%yl)
and putting
{X'[t], y'[t]} = {mIx[t], y[t]], n[x[t], y[t]]}.

Here's the Hamiltonian system coming from
2 ; 2.
flx, yl =y* -y Sin[ 3]~
Clear [m, n, x, y,t, f 1;
2 ’ X .2
fIx,y_1 =y2-ySin [5] B
(M, Y_ 1,0 X Y- 1 = (-0 [X Y 1, 0q [X Y 1%

hamiltoniansystem
(X [t],y [t1} =

{mx[tl,y [t11, n [x[tl,y [t11});

ColumnForm [Thread [hamiltoniansystem 11

VC.04.G11

X [t] ==sin (X% _2y 1)
Y [t] ==-% Cos[X5L)sin [ XLy y[t)
Here's a random trajectory in this Hamiltonian flow:

{a, b} = {Random[Real, {-2, 2 }1, Random [Real, {-2,21}1};
starterpoint ={a b},

Clear [x,y,t 1;
equationx =x'[t] ==m[x[t],y [t]1];
equationy =y’[t] ==n[x[t],y [t1];

starterx =Xx[0] == a;

startery =y[0] == b;

endtime =7;

ndssol = NDSolve [ {equationx, equationy, starterx, startery }

{x[t1,y [t1}, {t 0, endtime }I1;

Clear [trajectory 1;
trajectory [t_1={x[t] /.ndssol [17,y [t] /.ndssol [1]};
trajectoryplot =
ParametricPlot [trajectory [t], {t O, endtime 3}, PlotStyle -
{{CadmiumOrange, Thickness  [0.015 ]}}, DisplayFunction - Identity 1;
starterplot = Graphics [{Red, PointSize  [0.06 ], Point [starterpoint 1315

Show[stanerplot, trajectoryplot, PlotRange - All, Axes - True,

AxesLabel - {"x","y" 1}, DisplayFunction - $DisplayFunction,
1
AspectRatio  » ——————1;
GoldenRatio

y
-0.05
-0.075
-0.1
-0.125
-0.15
-0.175

1 2 3 x
-0.

Agree thafxtrajectoryit], ytrajectoryit]} specifies the point on this
trajectory at time.
Here's what happens tpxfrajectonyft], ytrajectoryt]]:

Clear [xtrajectory, ytrajectory H
{xtrajectory [t_ 1, ytrajectory [t 1}={x[t],y [t]} /.ndssol [1];

Plot [f [xtrajectory [t ], ytrajectory [ti1,

{t, 0, endtime }, PlotStyle - {{Red, Thickness [0.015 1}},
AxesLabel - {"t", "f [xtrajectory [t ],ytrajectory [t11":,
PlotRange - {f[a,b]1-2,f [a,b]+2}];

f [xtrajectory[t],ytrajectory[t]]

1.

Ok aN

0.

-0.5

-

-1.5

Got any idea why that happened?

0G.11.d.ii)

Here's the Hamiltonian system coming from
fix, yl = x> -5 Sinx]y + 4y%
Clear [f, gradf, m, n, X,y 1
fIx,y_ 1 =x?-5Sin [x]y+4y?,
{mix_, y_ 1, nIX_, y_ 1} = {-0y [X, ¥y 1, Ox [X Yy I}
hamiltoniansystem =
(X' [t1y [t1} == {mx[t],y [t]1],n [X[t],y [t1]1});

ColumnForm [Thread [hamiltoniansystem 11
X [t] ==58Sin [x[t]]-8y[t]
Y[t]==2x[t]-5Cos[x[t]]y[t]
Here's a trajectory for this system shown with a contour plot of some
of the level curves offk, yI:

{a, b } = {Random[Real, {-5,5 }], Random [Real, {-3,3}]};
starterpoint ={a b}

Clear [x,y,t 1;

equationx =x'[t]==m[x[t],y [t]];

equationy =y’[t] ==n[x[t],y [t]];

starterx =X[0] == a;

startery =y[0] ==b;

endtime =5;

ndssol = NDSolve [ {equationx, equationy, starterx, startery 1,

{X[t1,y [t1}, {t O, endtime }1;

Clear [trajectory 1
trajectory [t_1={x[t] /.ndssol [17,y [t] /.ndssol [1]};
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Show[levelcurves, starterplot, trajectoryplot,
PlotRange - All, Axes - True, AxesLabel - Yy,
DisplayFunction - $DisplayFunction 1;

7
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Rerun several times

Give your opinion about why each plot turns out the way it does.
0G.11.d.iii) Defining y in terms of x implicitly via f[x,y] = f[a,b]

Go with:

Clear [f,x,y 1;
fIx,y_1=-23Sin [y]+09Cos [3.0x ]

09Cos [3.x ] -23Sin [y]
When you set
fix, y1 =f[0, O]
and vary x, then y also has to vary to maintain the equality
fix, yI =f[0, 0.
So, when you set
fix, yI =10, 0,
you are implicitly defining y in terms of of x.
Mathematicacan give you the formula for y in terms of x:

sols =Solve [f[x,y ]==f[0,01.y1];
y[x_1=N[y /.sols [1],6 ]
1. ArcSin  [0.0434783 (-9. +9.Cos [3.x ])]

And you can plot at least part diy} as a function of x:

ParametricPlot  [{x,y [x1}, {X 0,5 1},
PlotStyle - {{Magenta, Thickness [0.01 ]}}, AxesLabel - {"x","y

. 1
AspectRatio - 5 ] ;

At every point{x, y} on this curve, you are guaranteed that
fix, yI =f[0, OI:
x = Random[Real, {0, 5 }1;
fIxy [x]1==[0,0]
True

Plot [f [X, ¥y [x1], {x, 0,6 }, PlotStyle - {{Blue, Thickness [0.01 1}3},

1
AxesLabel - {"x","f [xy [x]1]"}, AspectRatio - X

PlotRange - {f [0,0]-1,f [0,0]+1}];
fIx,y(x1]
1.75
1.5
1.25

1
0.75
0.5
0.25

1 2 3 4 5 6
Now go with:
Clear [f,x,y 1;
fIx_,y_1=-23Sin [y]+E®] Cos[3.0x ]
ECOSY] Cos[3.x ] -2.3Sin [y]
When you set
fix, y] = f[0, 0],

you are implicitly defining y in terms of x. But when you go to

Mathematicafor a formula for y in terms of x, you get:
] sols = Solvel[flx,y] == f[0,0],y]

trajectoryplot =
ParametricPlot [trajectory [t1, {t, O, endtime }, PlotStyle -
{{CadmiumOrange, Thickness  [0.015 ]}}, DisplayFunction - ldentity
starterplot = Graphics [{Red, PointSize  [0.06 ], Point [starterpoint
levelcurves = ContourPlot  [Evaluate [f[x,y 1], {X, -7,7 %}, {y, -4,4},
ContourSmoothing - Automatic, DisplayFunction - Identity 1;

VC.04.G11

Solve [EC*SIY) Cos[3.x ] -2.3Sin [y] ==E,y ]
No dice. No formula is available.
In spite of this apparent setback, you can use a trajectory plot in an
appropriate Hamiltonian system to come up with a nice plot of y in
terms of x through the implicit definition
fix, y] = f[0, 0O].
Do it.
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