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flowtime = 0.4;

Show[
2D and 3D Measurements setup [tt 1, fluidbit  [center [tt ] «flowtime Field  [x[tt 1,y [tt 1], %t h 1,
DisplayFunction - $DisplayFunction 1;
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VC.05 Flow Measurements by Integrals os
Basics i x
B.1) Measuring flow across a curve with the integral Grab the last two plots and animate.
thigh . To get an even better idea, put a microscope on it:
oI (Field[x[t], yLtI] . {y'[t], =X’ [t]}) d't g leridea, p P
tlow ) Show[setup [tt 1, fluidbit [center [tt ],tt, h 1,
Here's a vector field: PlotRange - {{x[tt 1-4h,x [tt 1+4h}, {y[tt 1-4hy [tt 1+4h}},

DisplayFunction - $DisplayFunction 1;

Clear [Field, m, n, x, y 1
:]E:_ 5_ } : gi fln+ O[Sily Show[
LY . dy; setup [tt 71, fluidbit [center [tt ] + flowtime Field [X[tt ],y [tt 11, &, h 1,
. i PlotRange - {{x[tt ] -4h,x [tt 1+4h}, {y[tt ]-4h,y [tt ]+4h}},
Fleld. X y_ IT={mXxyl,ni[xy1l} DisplayFunction - $DisplayFunction 1;
{0.8Sin [y],04x +0.1ly } y
Here's a curve: 1.4
Clear [t] L2
{xX[t_1,y [t_1}={2Cos[t],Sin [t]}; \1
tlow =0; 0.8
thigh =2m; 0.6
0.4
curveplot = ParametricPlot ~ [{x[t],y [t]1}, {t, tlow, thigh h 0.2
PlotStyle - {{Thickness [0.01 ], Red }}, AxesLabel - {"x","y" }1;
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y y
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Pick a point on the curve, s@{ %], y[ %]}, and look at the field 0.8
vector at this point:

o=, Grab the last two plots and animate, running at a slow speed.
4
Clear [setup ] Now look at both together:
setup [t_ 1 := Show[curveplot, Arrow [Field [x[t1,y [t1], Show([setup [tt ], fluidbit [center [tt ],t, h 1,
Tail - {x[t],y [t]}], DisplayFunction - Identity  1; fluidbit [center [tt ] +flowtime Field [x[tt 1,y [t 11, &, h 1,
PlotRange - {{x[tt 1-4h,x [tt 1+4h}, {y[tt 1-4h,y [tt 1+4h}},
Show([setup [tt ], DisplayFunction - $DisplayFunction 1; DisplayFunction - $DisplayFunction 1,
y y

Now look at the curve with a little segment of fluid centered at the

base of the field vector: short time is measured by the area of the parallelogram defined by the
Clear [fluidbit, center, height, width, h, unittan, center ] two line segments shown above.
unitan [t ] = XLy Put in the vector
T vy 2 rowtime(FieId[>_<[tt], y[tt]] . unitnormaltt]) unitnormaltt]
for tt = %, and flowtime= 0.4 as above:

center [t ] ={x[t],y [t]l} Clear [unitnormal ]

- ) ) ) Lyt =Xty
fluidbit [center_, t_, h_ ] : = Graphics [{Thickness [0.015 1], unitnormal [t ] = —————;

Blue, Line [{center -hunittan [t], center +hunittan [t1}]}1; «[y, [t12+x/[t]2

h =0.2;

L Show([setup [tt 7, fluidbit [center [tt ],tt, h 1,
Show([setup [tt ], fluidbit [center [tt ],tt, h ], PlotRange - All, fluidbit

center [tt flowtime Field X [tt 1, 1t ,tt, h s
DisplayFunction - $DisplayFunction 1; L [ty xIt 1,y [t 11 !

Arrow [flowtime Field [X[tt ],y [tt 1] .unitnormal [tt 1

y unitnormal  [tt 1, Tail - {x[tt 1,y [tt 1}1,

PlotRange - {{x[tt 1 -4h,x [tt 1+4h}, {y[tt 1-4h,y [tt ]+4h}},
DisplayFunction - $DisplayFunction 1;

y

When you check out how the fluid segment moves in a short time
you'll see approximately this:
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Bingo!
The length of the new vector plotted above is
flowtime(Field[x[tt], y[tt]]. unitnormaltt]).
Putting ds= length of the fluid segment, you can say that in this
flowtime, approximately
flowtime(Field[x[tt], y[tt]]. unitnormaltt]) ds
units of fluid flow across the segment of the curve in the above plot.
The flow goes with the norm#&’[tt], —x’[tt]} at this point because
Fieldx[tt], y[tt]]. unitthormaltt] > O:
| N[Field [x[tt ],y [tt 1].unitnormal [t 11
0.801631
See what happens at another point on the curve:
2r
Tv
Show([setup [tt ], fluidbit [center [tt ],tt, h 1],
fluidbit [center [tt ] + flowtime Field [x[tt ],y [t 11,tt,h 1,
Arrow [flowtime Field [X[tt 1,y [tt 1].unitnormal [tt 1
unitnormal [t 1, Tail - {x[tt 1,y [tt 1}1,

PlotRange - {{x[tt 1 -4h,x [tt ]+4h}, {y[tt 1-4hy [tt ]+4h}},
DisplayFunction - $DisplayFunction 1;

t =

Again, putting ds= length of the fluid segment, you can say that in this
flowtime, approximately
flowtime (Field[x[tt], y[tt]]. unittnormaltt]) ds
units of fluid flow across the curve in the above plot.
The flow is opposite the direction of the normltt], —x’[tt]} at this
point because
Fieldx[tt], y[tt]]. unitthormaltt] < O:
| N[Field [x[tt ],y [tt 1].unitnormal [t 11
-0.470122

OB.1.a.i)
Explain why this tells you that the integral
[0 Field[x[t], y[t]] . {y'[t], ~X'[t]} dt:
tlow =0;
thigh =2
Nintegrate  [Field [x[t],y [t]]. {y'[t], -x"[t]}, {t, tlow, thigh 11
0.628319

measures the net amount of fluid flowing across this curve per unit of

flow time.

OAnswer:
Fixing a particulat, you know that in a shoflowtime approximately
flowtime (Field[x[t], y[t]] . unittnormalt]) ds
units of fluid flow across the small segment of the curve of ledgth
centered a{x[t], y[t]}.

Because you integraty X'[t]2 + y’[t] > to measure length on the
curve, you know that

ds=+/x/[t]12 +y’[t]? dt.
This tells you that, in a shcflowtime, approximately

flowtime Fieldx[t], y[t]] . unittnormalt] v x’[t] 2 + y’[t] 2 dt
units of fluid flow across the a small segment of the curve of ledgith
centered a{x[t], y[t]}.

But
unitnorma|t] = LXMW _
VX[t2+y[t?
)

(Field[x[t], y[t]]- unittnormalt]) v x'[t]% + y’[t]®
= Field[x[t], y[t]]- {y’[t], —=x"[t]}.
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This tells you that, in a shcflowtime, approximately

flowtime Field x[t], y[t]]- {y’[t], —x'[t]} dt
units of fluid flow across the small segment of the curve.
Now, cover the whole curve with non-overlapping little segments of
lengthds as above. Adding the individual measurements together, you
get the approximate flow-across measurement

flowtime Sunj(Field[x[t], y[t]]-{y’[t], =x’[t]} dY),.
{t, tlow, thigh— dt, dg]

As dt closes in 010, these approximate measurements close in on the

exact measurement
flowtime " (Field[x[t], y[t]]-{y'[t], - [t]}) dt
of the net flow across the curve in the giflowtime.
To arrive at the measurement of the net flow across the whole curve
per time unit, divide bflowtime to learn that

fioih Fielex(t], yItl]-{y'[t], ~X[t)) dt

tlow
measures the net flow over the curve per time unit.
If measurements are in gallons and seconds the calculation:
| Nintegrate  [Field [x[t1,y [t1]. {y'[t], -x"[t]}, {t, 0,2 m}]
0.628319
tells you that the net flow of this vector field across the curve above is

0.628319 gallons per second.

OB.1.a.ii)
Take another look at the integral
th h 1 ’ 4 i
[ (FieldIx[t], yItl1-fy’[t], —X'[t]}) 't
for the vector field and the curve specified above:
| Nintegrate [Field [x[t],y [t1]. {y’[t], -x"[t]}, {t tlow, thigh 1
0.628319
This tells you that the net flow of this vector field across this curve is
about 0.63 fluid units per time unit.
Why does this also tell you that the net flow is from inside to outside?
OAnswer:
Look at this plot of
Field[x[t], y[tl]- {y’[t], -X'[t]}
for tlow < t < thigh:
Plot [Field [x[t],y [t1]. {y'[t]l, -x"[t]1},
{t, 0, 2 s}, PlotStyle - {{Thickness [0.01 1, Blue }},

AxesLabel - {"t", "Field.normal" 1
Fi el d. nor mal

[0S (Field[x]t], yt]]-{y’[t], ~X'[t]}) dt
= areaabove- area below.

-0.5
-1

— area above thtzaxis = total flow of this vector field across this
curve in the direction of the normals

{y'Itl, —x[t]}.
— area below thtaxis = total flow of this vector field across this
curve opposite the direction of the normals

{y'It], =x[t]}.
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In the case above,

thigh . , , .

[owe (Field[xt], yItI]-{y'[t], -X'[t]}) dt > O:
| Nintegrate  [Field [x[t]1,y [t1]. {y'[t], -x"[t1}, {t tlow, thigh }1
0.628319

This tells you that the flow in the direction of the normals is greater
than the flow against the normals.
Take a look at the normals:

Show[curveplot,
Table [Arrow [{y’'[t], -x"[t]1}, Tail - {x[t],y [t]}, VectorColor
thigh - tlow

LIS

- Red],

{t, tlow, thigh,

y
3

2

-2
-3
The normals point out way from the curve.

The upshot: The net flow of the given vector field across this curve is
from inside to outside because

thigh . , , i
[ (Field[X[t], yIt]] . {y'[t], -X'[t]}) dt > 0:
| Nintegrate [Field [x[t]1,y [t1]. {y'[t1, -x"[t1}, {t tlow, thigh }1
0.628319
OB.1.b.J)

Here's a new vector field:

Clear [Field, m, n, x,y 1
mx_,y_ ]1=2xy;
N,y 1=x"-y%

Field [x_, y_ 1={mx,y 1,n Xy 1}
(2xy,x 2-y?)

Here's a new curve:

Clear [t]
(X[_ 1,y [t_1} = {Cos[t]13, sin [t]%};

tlow =0;

thigh =2

curveplot = ParametricPlot [{X[t],y [t]1}, {t tlow, thigh },
PlotStyle - {{Thickness [0.01 ], Red }}, AxesLabel - {"x","y" }1;

Use the_ilntegral
"N (Eield[x[t], yit]] . {y’[t], —X'[t]}) dt

tlow
to analyze the net flow of this vector field across this curve.

OAnswer:

thigh
| Low Field [x[t],y [t1]. {y'[t], -x'[t]}dt
0
This tells you that the inside-to-outside flow across this curve exactly
balances the outside-to-inside flow across the curve.
The net flow of this vector field across this curve is 0.

OB.1.b.ii)

Here's another new vector field:
Clear [Field, m, n, X,y 1
MX_, y_ 1=X+Y;
nixLy_ 1=x2+y%

Field [x_,y_1={mXxy1l,n[xy]l1}
x+y, x 2+y?)
Here's another new curve:

Clear [t]
X[ 1,y [t 1}=

VC.05.B1-B2

1 1
{1,0 }+ {Sin [xt]+ gCOs[47rt],Cos [wt]+ gsin [5rxt1};

tlow =0;
thigh =2;
curveplot = ParametricPlot [{x[t1,y [t1}, ({t tlow, thigh 1
PlotStyle - {{Thickness [0.01 ], Red }}, AxesLabel - {"X","y" }1;
y
1
' 5
' X
' lw
-1

Use the integral
high .
o (Field[x[t], yItl] . {y'[t], -X[t]}) d't
to help analyze the net flow of this vector field across this curve.

OAnswer:
The parameterization of the curve involves squirrelly functions, so try

Nintegrate
Nintegrate  [Field [x[t],y [t1]. {y [t], -x"[t]}, {t tlow, thigh 1
AccuracyGoal - 2]
-2.82743

This tells you
MO Eieldx[t], VIt]] . {y'[t], —X[t]}) dt < 0.

tlow
The net flow across this curve is in the opposite direction of the

normals.
See which way the normals point:

scalefactor =0.2;

Show[curveplot, Table
Tail - {x[t],y [t]}, ScaleFactor

thigh - tlow

)

[Arrow [ {y’[t], -x"[t]1},

- scalefactor, VectorColor - Red],

{t, tlow, thigh,

The normals point to the inside of the curve and the net flow is
opposite to the direction of the these inward-pointing normals. The
result: The net flow of this vector field across this curve is from inside
to outside. Math happens again.

B.2) Measuring flow along a curve with the integral
9" (Field[xIt], yItl] - ([t], Y'[tI) d't

tlow

0B.2.a)

Given a vector field Field, y] and a curve specified through
parametric equation{x[t], y[t]} with tlow < t < thigh, you use the
integral
high .
ﬂto\f Field[x[t], y[t]] . {y'[t], -X'[t]} dt
to measure the flow of the field across the curve.

What do you measure when you calculate
oS Fietdix[t], yit]] . (x'[t], y'[t]} dt?
OAnswer:

{y'[t], —x'[t]} is a normal vector, and when you calculate
high .
oo Field[x[t], y[t]] . {y'[t], —X'[t]} dt,
you measure net flow across the curve.

Analogously {X'[t], y’[t]} is a tangent vector, and when you calculate
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j{lhigh FIe'd[X[t], y[t]] ) {X'[t], y’[t]} dt,

low
you measure net flow ALONG the curve.
OB.2.b)
Here's a vector field:
Clear [Field, m, n, x,y,t 1

mix_,y_ 1=ySin [x];
nix_, y_1=-xCoslyl;

Field [x_,y_ 1={mx,y 1,n[xy 1}
{ySin [x], -xCos[y]}
And here is a curve C:
tlow =0;

thigh =1;
X[t_1=6t (1-t);
wt
yIt 1 =GIZCOS[T]§
curveplot = ParametricPlot [{x[t],y [t]}, {t 0,1 1},

PlotStyle - {{Red, Thickness [0.01 ]}}, AxesLabel - {"x","y" 1},
PlotRange - All 1;

<

[
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Use the integral
high .
o Fieldx(t], ylt]] . {(x'[t], y'[t]} dt
to determine whether the net flow of Fipldy] along C is clockwise

or is counterclockwise.

OAnswer:

Make the flow-along-the-curve measurement
thigh . , , .
ﬂoﬁ Field[x[t], y[t]]- {X'[t], y'[t]} dt:
| Nintegrate  [Field [x[t1,y [t1]. {xX'[t1,y  [t1}, {t tlow, thigh }1
-1.46585

Negative. This means that the flowFieldx, y] alongC is against the
direction of the tangent vectc{x’[t], y’[t]} of this parameterization of
C.

Take a look at some of these tangent vectors:

scalefactor =0.3;
tanvectors =
Table [/-\rrow [{x'[t],y [t]}, Tail - {x[t],y [t]}, VectorColor - Red,
thigh - tlow
ScaleFactor - scalefactor 1, {t, tlow, thigh, gT}]
Show [ curveplot, tanvectors 1;

This curve is parameterized in the counterclockwise way. Because
o (FiEldIX[t], VL1 - X Tt], Y[t dt

turned out negative, this tells you that the flow of this field along this

curve is clockwise.

Confirm with a plot of some of the tangential components of the field

vectors on the curve:

Clear [tan, tancomp ]
tan [t_] = {x"[t],y [t]1};

VC.05.B2-B3

tancomp [t 1] = Field [x[t],y [t]].tan [t] fan [t1:
tan [t].tan [t]

Show[curveplot,
Table [Arrow [tancomp [t ], Tail - {x[t],y [t]1}, VectorColor - Blue 1,

X thigh - tlow
t, tlow, thigh, _— )
{1, tow, thig ]

y

1.5
1.25

0.5

0.5 1 15 2 25 %
Yessiree-Bob.
Net clockwise flow, just as the measurement predicted.

Math continues to work.

B.3) Measurements by path integrals
Jomix, yldx + nix, yldy

oB.3.a.i)

Here's some crazy looking notation:
Jomix, yldx + nix, yldy .

Folks call this a path integral.

Just what is a path integral?

OAnswer:

A path integral needs the following ingredients:
— It needs two functionm[x, y] andn[x, y].
- It needs a curvC with a specified direction.

The resulting path integral written as by
Jomix, yldx + nix, yldy.
The path integral
Jomix, yldx + nix, yldy
is calculated by evaluating the old-fashioned integral
SR (enlx[t], Yt X [t] + nixIt], yit]y[t) dt

wher:|30{V>v<[t], y[t]}, tlow < t < thigh is any parameterization Cfthat
gives the curve the same direction as the specified directCn of
Look familiar?
When you work with closed curves (like deformed circles with no
loops), folks all across our planet have agreed to specify the
counterclockwise direction. There is a nifty piece of notation to do this.
For closed curveC without loops,

§C m(x, yldx + n[x, yldy
means that the parameterization you use to evaluate the path integral |
counterclockwise.

OB.3.a.ii) Calculating a path integral

Calculate

$oMIx, YIdx + n[x, yldy
for the case in which

mx, yl=y - X,

X, y] = 2xy
and C is the ellipse

(55 +(H%=1.

OAnswer:
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Enter the vector field and go with a counterclockwise parameterizatiol
of the ellipse:

Clear [x,y,m,n, t ]

mX_,y_1=y-X

nix_, y_ 1=2xy;

X[t 1,y [t_1}={1,0}+{3Cos[t],2Sin [t]};

tlow =0;

thigh =2

curveplot = ParametricPlot [{X[t],y [t1}, {t tlow, thigh },
PlotStyle - {{Thickness [0.01 ], Red }}, AxesLabel - {"x","y" }1;

Check to be sure that the parameterization is counterclockwise:

Show[curveplot,
Table [Arrow [{x'[t],y [t]1}, Tail
thigh - tlow
6

- {x[t1,y [t]}, VectorColor - Red],

HIE

{t, tlow, thigh,

Good.
Here is the calculation of

$oMIx, yldx + n[x, yldy:

| Nintegrate [m[x[t],y [t]11 X [t]1+n[x[t],y [t]11Yy [t], {t tlow, thigh }1

-18.8496

Done.

OB.3.b.i) Path integrals as a flow-along-the-curve measurement
Most folks say the path integral
§c m[x, yldx + n[x, yldy
measures the flow of the vector field
Fieldx, yl = {m[x, yI, n[x, I}
along a closed curve C.
They go on to say that if
$omIx, yldx + n[x, yldy >0,
then the net flow of
Fieldx, yl = {m[x, y], n[x, yI}
along C is counterclockwise, but if
9§c mix, yldx + n[x, yldy <0,
then the net flow of Field, y] = {m[x, y], n[x, y]} along C is
clockwise.
Where do they get this idea?

OAnswer:
Remember:
$o MIx, yldx + nix, yldy
demands a counterclockwise parameterization.
Also remember:
When a closed cunC is parameterized in the counterclockwise way
with a parameterizatio{x[t], y[t]} with tlow < t < thigh,
then the tangent vectao{x’[t], y’[t]} automatically point in the
counterclockwise direction.
When you measure the flow of a vector field
Fieldx, y] = {m[x, y], n[x, yI}
along such a curve, you calculate

VC.05

thigh
tlow

(Field[x[t], y[t]]- {X'[t], y'[t]) d't

_ (thigh
~ Jtlow

Amix(tl, yitl, nix[t], y[t - [t y'[t} dt

_ fthigh
~ Jtlow

(mix(t], Y[t X' [t] + n{x[t], y[t]]y'[t]) &t

= $omIx, yldx + nix, yldy.
The result:

ﬁc m[x, yldx + n[x, yldy
measures the flow of the vector ficField[x, y] = {m[x, y], n[x, yl}
around a closed cunC.
Consequently, if

4;0 m[x, yldx + n[x, yldy >0,
then the net flow acField[x, y] = {m[x, Y], n[x, y]} aroundC is
counterclockwise, but if

$emix, yldx + n[x, yldy <0,
then the net flow acField[x, y] = {m[x, Y], n[x, y]} aroundC is
clockwise.

0B.3.b.ii)

Calculate
$o5xydx + (3 + y3)dy
where C is the circle
X+(y-1°=4
and interpret the result.

OAnswer:

$o5xydx + (3 + yA)dy
measures the net flow of the vector field
Fieldx, y] = {5xy, x® + y?}
along the circle.
Here are
— a counterclockwise parameterizatiorCyfand
- the calculation of
$o5xydx + (3 + yA) dy:
Clear [m,n, x,y,t ]
tlow =0;
thigh =2,

(M, Y_ 1,0 IXL Yo 1) = (5xy, x 2 +y2);

{X[L 1,y [t_1}=10,1}+2{Cos[t],Sin [t]};

Nintegrate
37.6991

Big time positive.

This tells you that the net flow of the vector field
Fieldx, y] = {5xY, X + y?}

along the circle is strongly counterclockwise.

Check it out with a plot if you don't believe it.

[MIX[t],y (11X [t] +n[X[t],y [t]11y" [t], {t tow, thigh

.B3

H
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0OB.3.c.i) Path integrals as a flow-across-the-curve measurement

Most folks say the path integral
fﬁc —-n[x, yldx + m[x, yldy
measures the flow of the vector field
Fieldx, y] = {m[x, y], n[x, yI}
across a closed curve C.
They go on to say that if
§C -n[x, yldx + m[x, yldy > 0,
then the net flow of Fiela, y] = {m[x, y], n[x, y]} across C is from
inside to outside, but if
$e —NIx, yldx + mlx, yldy <0,
then the net flow of Field, y] = {m[X, y], n[X, y]} across C is from
outside to inside.
Where do they get this idea?

oAnswer:
Remember:
$e —nlx, yldx + mlx, yldy
demands a counterclockwise parameterization.
Also remember:
When a closed cuncC is parameterized in the counterclockwise way
with a parameterization
{x[t], y[t]} with tlow < t < thigh,
then the normal vecto{y’[t], —x’[t]} automatically point out away
from the inside to the outside of the curve.
When you measure the flow of a vector field
Field[x, y] = {m[x, y], n[x, yI}
across such a curve, you calculate

9" ( Field[x[t], yit]]- {y'[t], ~X[t]}) dt
thigh , )

= Jiow (MIXtL, YItIL, nix[t], YLt - {y'[t], —=X'[t]} d't
thigh , ,

= Jiow (MIXIEL YITTY'[t] = nixIt], y[t]] X [t]) d't

= ﬁc —n[x, yldx + m[x, y] dy.
The upshot:
9§c -n[x, yldx + m[x, yldy
measures the flow of the vector field
Fieldx, yl = {m[x, y], n[x, yI}
acrossC.
To wrap it up: If
$ —NIX, yldx + mix, yldy >0,
then the net flow aoField[x, y] = {m[x, y], n[X, y]} acros<C is from
inside to outside, but if
5ﬁc -n[x, yldx + m[x, yldy < 0,
then the net flow aoField[x, y] = {m[x, y], n[X, y]} acros<C is from
outside to inside.

OB.3.c.ii)
Calculate
$. B dx-E*dy
where C is the circle
X+ (y-05°=07
and give two interpretations of the measurement.

OAnswer:

VC.05.B3-B4

Here are
— a counterclockwise parameterizatiorCyfand
- the calculation of

$ BV dx-E*dy:

Clear [m, n, x,y,t 1

tlow =0;

thigh =2,

{mix_, y_ 1,n[x,y_ 1} ={F, -E'};
{X[t_ 1,y [t_1}=10,05 }++V07 {Cos[t], Sin [t]};

Nintegrate  [m[x[t],y [t]1]I X [t]+n[x[t],y [t1]1Yy [t], {t tlow, thigh }1
-6.3496

Negative.
- Flow-along measurement interpretation:
fﬁc mx, yldx + n[x, yldy
measures the net flow of
Field[x, y] = {m[x, y], n[x, y]} alongC.
The path integral calculated here was
$- B dx-E*dy <0
So:
The net flow of the vector field
Fieldx, y] = {EY, —-E*}
along the circle is clockwise.
— Flow-across measurement interpretation:
5£C—n[x, yldx + m[x, y]dy
measures the net flow of
Field[x, y] = {m[x, y], n[x, y]} acros<C.
The path integral calculated here was

$ BV dx-E*dy<0
So:
The net flow of the vector field
Fieldx, y] = {-E*, - Y}
across the circle is is from outside to inside.

Note carefully that the two interpretations involve
different vector fields.

B.4) Directed curves; path integrals
Jomix, yldx + nx, yldy,
path independence, and gradient fields

OB.4.a)

Lots of folks say that a parameterization gives a curve a direction.
What do they mean by this?

OAnswer:

The direction your parameterization goes specifies a direction for the

curve.
Here's a curv{x[t], y[t]} with a few scaled tangent vect{x’[t], y'[t]}:

Clear [x,y, t, direction 1
tlow = 0.25;
thigh = 1.25;

{X[t_1,y [t_1}={1+3Sin [2t]%Cos[t],tE '};

curveplotl = ParametricPlot [{x[t].,y [t1}, {t tlow, thigh }.
PlotStyle - {{Red, Thickness [0.01 ]}}, DisplayFunction - |dentity,
Epilog - {Text ["start", {X[tlow 1,y [tlow ]}],
Text ["end", {x[thigh 1,y [thigh 1}1}1;
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s

You

directionl

scalefactor = 0.25;
ium thigh -tlow
jump = 5 B
tanvectors =

Table [Arrow [{x'[t]1,y “[t]}, Tall - {x[t],y [t]}, VectorColor - Red,

ScaleFactor - scalefactor 1, {t tlow, thigh - jump, jump }1;

= Show [ curveplotl, tanvectors, AxesOrigin - {0,01},
}, PlotRange - {{0,5}, {0,5 }},

AxesLabel - {"x", "y"
- $DisplayFunction 1;

PlotLabel - "Direction 1", DisplayFunction
Direction 1

d

st

T2 3 4 5%

can plot the same physical curve the reverse direction by changit

the parameterization:

s

curveplot2

direction2

Clear [xx,yy,t 1
a
b = thigh;

= tlow;

X1 yy [ 1} ={x[b-t (b-a)l,y [b-t (b-a)]};

= ParametricPlot [{xx[t],yy [t]}, {t, 0,1 3}, PlotStyle >
{{Red, Thickness [0.01 ]}}, DisplayFunction - Identity, Epilog -
{Text ["start", {xx [0],yy [01}], Text ["end", {xx[11,yy [1]1}1}];

scalefactor = 0.25;
ium 1+0

jump = 5
tanvectors = Table [

Arrow [ {xx'[t],yy "[t1}, Tail - {xx[t],yy [t1}, VectorColor - Red,

ScaleFactor - scalefactor 1, {t 0,1 -jump, jump 1}1;
= Show [ curveplot2, tanvectors, AxesOrigin - {0,01},
}, PlotRange - {{0,5}, {0,5 }},

AxesLabel - {"x","y"
- $DisplayFunction 1;

PlotLabel - "Direction 2", DisplayFunction

Direction 2

start

e
T 2 3 4 5%

The curve is physically the same curve, but this new parameterizatior

directs it to run from high to low.

Compare:
| Show[GraphicsArray [ {directionl, direction2 311
5)’ Direction 1 5)’ Direction 2
d start
4 4
3 3
2 \ 2

[N

T2 3 4 3% 5X

If the curveC is closed (like a deformed circle) and has no loops, then
there is no natural start or end. Your parametrization gives a start, ar
end, and a clockwise or counterclockwise direction. It's all up to you.
Here is a closed curve parameterized in the counterclockwise directio

with the start point the same as the end point:

Clear [X, Yy, t, direction ]
tlow =0;
thigh =2

(X[t 1,y [t_1}={(1+Sin [t]?) Cos[t], (0.5 +2Cos[t]?)Sin [t]};

[{x[t],y [t]1}, {t tlow, thigh 1,
- ldentity,

= ParametricPlot

PlotStyle - {{Red, Thickness [0.01 ]}}, DisplayFunction

Epilog - {Text ["start", {x[tlow 1,y [tlow 1}, {0, -2}],
Text ["end", {x[thigh 1,y [thigh 1}, {0, 2 }1}];

curveplotl

scalefactor = 0.25;
um thigh -tlow
Jump = 3 ;
tanvectors =

ScaleFactor - scalefactor 1, {t tlow, thigh
= Show [ curveplotl, tanvectors, AxesOrigin

}, PlotLabel - "Counterclockwise",

- $DisplayFunction 1;

counterclockwise
AxesLabel - {"x", "y"

PlotRange - All, DisplayFunction
Count er & ockwi se

Table [Arrow [ {x"[t1,y '[t1}, Tail - {x[t],y [t]}, VectorColor
- jump, jump }1;

VC.05.B4

Here is the same curve with a clockwise parameterization with the star

point the same as the end point:

Clear [xx,yy,t 1
X[t 1,yy [t 1} ={x[thigh -t],y [thigh -t]};

= ParametricPlot [{xx[t],yy [t1}, {t tlow, thigh

curveplot2
- {{Red, Thickness [0.01 ]}}, DisplayFunction

PlotStyle
Epilog - {Text ["start",
Text ["end”, {xx [thigh 1,yy [thigh 1}, {0,2 }1}1;

scalefactor = 0.25;

. thigh - tlow
ump = —M8——;
Jump 5
tanvectors = Table [

ScaleFactor - scalefactor 1, {t tlow, thigh

clockwise = Show[curveplot2, tanvectors, AxesOrigin
AxesLabel - {"x","y" 1}, PlotLabel - "Clockwise", PlotRange
DisplayFunction - $DisplayFunction 1;

d ockwi se

- |dentity,
{xx [tlow ], yy [tlow ]}, {0, -2}],

Arrow [ {xx'[t]1,yy "[t]}, Tal - {xx[t]1,yy [t]1}, VectorColor
- jump, jump }1;

- {0,0 1},

For closed curves without loops, the clockwise and counterclockwise

directions are the only choices you have.

OB.4.b)

Calculate
JoXBEY dx+yEY dy
where C is the part of the parabola
2
y=X
starting a0, O} and ending &R, 4.
Interpret the meaning of the result.

OAnswer:

Here's everything you need:

Clear [m,n, x,y,t 1]
tlow =0;
thigh =2;

mix_, y_ 1=xE*Y;
npx_ y_ 1=yEY;

XTI 1,y (1Y ={tt %)

= ParametricPlot [{x[t1l,y [t1},
}, PlotStyle

}, PlotLabel

curveplot
{t, tlow, thigh
AxesLabel - {"x", "y"
Epilog - {Text ["start",
Text ["end", {x[thigh 1,y [thigh 1}, {2, 2 }1}1;

- "C and its direction”,

- {{Red, Thickness [0.01 1}},

{x[tlow 1,y [tlow 1}, {-2, -2}1,
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nd its direct
4

end
3

2

1

tart

Yep, the curveC runs on the paraboy = x? and starts &0, 0} and
ends ai2, 4.

Here comes the calculation [ xE*Y dx +yE*Y dy:

| Nintegrate  [m[x[t],y [t11 X [t]1+n[x[t],y [t]11Yy [t], {t tlow, thigh }1]
4312.75

Humongously positive.
- Flow-along interpretation:

JoXEY dx+yEY dy
measures the net flow of the vector field

Field[x, y] = x E*Y, y BYY}
alongC. The net flow of this vector field is strongly in the direction of
the parameterization of the curve (from low to high).
- Flow-across interpretation:

JoXEY dx+yEY dy
measures the net flow of the vector field

Fieldx, y] = {y E*Y, -x E*Y}
acrossC. The net flow of this vector field acrcCsis strongly in the
direction of the normal{y’[t], —x’[t]}. These normals point to the right
as you advance along the curve in the direction of the parameterizatic
so the net flow of the vector field

Fieldx, y] = {y E*Y, —x E*Y}
acros<C is from abov¢C to belowC.

OB.4.c.i) Fundamental formula for path integrals of gradient fields

Here's a cleared gradient field:

Clear [f, x, y, m, n, gradf, Field 1

gradf [x_,y_ 1={(DIf[xy 1, x1.DIf[xy 1 yI}

{mix_, y_ 1,n [x_,y_ 1} =gradf [x,y 1;

Field [x_,y_ 1={mixy 1,n[xy1l1}

(f (1,0) [X, Y ]'f (0,1) X,y 1}

Here's Mathematica's calculation of

Jomix, yldx + nix, yldy
for a cleared parameterization of a curve C that starts at
{x[tlow], y[tlow]} and ends &x[thigh], y[thigh]}:

Clear [t]

thigh
j (MIXTt],y [t11X7[t] + nix[t],y [t]]y"[t]) dt
tlow

-fIX[0],y [01] +f [X[2], Yy [2]]
Explain where the answer comes from.

OAnswer:

Put:

Clear [g]
gl 1 =fxtl,y [t1]
fIxt],y [t]]

Compare:

| Dlgrt], t T==mx[t],y [t11X" [t]+n[Xx[t],y [t1]y'[t]
True

This tells you
o[t = mx[t], y[t]] X'[t] + n[x[t], It y'[t].
The fundamental formula of calculus tells you
f[x[thigh], y[thigh]] — f[x[tlow], y[tlow]]

VC.05.B4

= g[thigh] — g[tlow]

_ rthigh
~ Jtlow

g'[t]dt

_ fthigh
~ Jilow

(MIX[t], YLt X' [t] + nx[t], yIty'[tD) dt
= [omix, yldx+ n[x, yl dy.

So
Jomix, yldx + nix, yldy
= f[x[thigh], y[thigh]] — f[x[tlow], y[tlow]]

in the case thefm[x, y], n[x, y]} = Vf[x, y].

The explanation is over.

OB.4.c.ii) Path independence for gradient fields

Now you know why you are guaranteed that

fix1, y1l = flxo, Yol = [ mIx, yldx + n[x, yldy
for any curve C starting &, Yo} and ending aftxy, y1}
provided

{mix, yl, nix, yl} = Vf[x, y]
for a function fx, y].
What calculational advantage do you get from this?
What theoretical advantage do you get from this?

OAnswer:
- Your calculational advantage:
Here's a gradient field:

Clear [f, x,y, gradf, m, n 1
fIx,y_ 1=Sin[nxy]l;
gradf [x_,y_ 1={DIf[xy 1, x1,DIf[xy 1 yIlh

{mix_,y_ 1.n[x,y_ 1} =gradf [xy ]
{nyCos[nxy], nxCos[nxy]}

Because¢m[x, y], n[x, y]} = Vf[X, y], you are guaranteed thaCfis
any curve running fror{0, 0} to {1, %}, then
Jomix, yldx + nix, yldy
is given by:
| f[1, ;]-f[o,O]
1
Your calculational advantage is that you don't have to set up any
parameterizations to calculate the path integral
Jomix, yldx + n[x, yldy.
- Your theoretical advantage:
When you know that
{mix, yl, nix, yl} = VI[x, yl,
then you know that
fc mx, yldx + n[x, yldy
DOES NOT DEPEND ON THE ROUTE OF THE PATCltakes from
its start to its end. In fact,the value of
fc m[x, yldx + n[x, yldy
depends ONLY on the starting point and the ending poiCt of
OB.4.c.iii) The net flow of a gradient field along any closed curve G

If Field[x, y] = Vf[x, y] for a function fx, y], then how do you know
that the flow of Fielfk, y] along any closed curve is 0?

OAnswer:
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Put
Fieldx, y] = {m[x, y], n[X, y]} = Vf[X, y].
You are guaranteed that
fIx1, y11 = f[xo, Yol = [o mIx, yldx + n[x, yldy
for any curveC starting a{Xo, Yo} and ending &Xy, y1}.
But for a closed curvC (like a deformed circle) , you know that
{X0, Yo} = {X1, Y1}
So
$eMIx, yldx + nix, yldy

= f[x1, y1] = f[Xo, Yol

= f[Xo, Yol = f[Xo, Yol =0
in the case theC is a closed curve.
That's all there is to it.
Try it out for{m[x, y], n[x, yl} = Vf[x, y] with
flx, y1=x*y?,
and withC the circle of radiu0.5 centered 0, 0}:

Clear [f, x, y, m, n, gradf, Field, t 1
fIx,y 1=x*y?

gradf [x_,y_ 1={(DIf[xy 1, x1,DIf[xy]1 yI}
{mix_,y_ 1,n [x_,y_ 1} =gradf [xy 1;

Field [x_,y_ 1={mxyl,n[xy]l}
tlow =0;
thigh =2

{x[t_1,y [t_1} =05 {Cos[t],Sin [t]};

thigh
J (MIX[t],y [t11X [T +nIx[t],y [t11y’ [t]) dt
tl

low

0.
Just as theory predicted.

VC.05 Flow Measurements by Integrals
Tutorials

T.1) Backward and forward

oT.l.a.)

Explain why:

If C; and G are the same physical curve, but
- the starting point of €= the ending point of &€
and

- the ending point of €= the starting point of &,

then for any rfx, y] and rix, y] that come down the pike, you will

always get
Je,mix, yldx+ nix, yldy
= —fczm[x, yldx+ n[x, yldy.

In other words, if you reverse the direction, then you reverse the sign

of the path integral.

OAnswer:

VC.05.B4-T1

Both

Jo,mix, yldx+ nix, yldy
and

fczm[x, yldx + n[x, yldy
measure the flow of the vector field

Fieldx, y] = {m[x, y], n[x, yI}
along the same curve. But the interpretation is different in each case,
because the unit tangent vector<C,rpoint in the direction exactly
opposite of those cC, .
The opposite direction of the tangent vectors accounts for the minus
sign.

oT.1.a.ii)

lllustrate by calculating the path integral

fcly3 dx+ x2ydy,
where G is the segment of the parabola

2

y=X
starting a0, 0} and ending a2, 4}, and then calculating the path
integral

fC2y3 dx+ x2ydy
where G is the segment of the same parabola, but startif®) 4t
and ending af0, 0}.

OAnswer:

Clear [m,n, X,y ]

mix_ y_ 1=y%

Ny 1=X0y;

To calculate the path integral

fcly3 dx+ x2ydy,
whereC; is the segment of the parabola

y=x?
starting a{0, 0} and ending &2, 4}, parameterizC, so that it runs

from {0, 0} to {2, 4} and integrate:
Clear [t]
X[t 1=t
yIL 1 =t%
tlow =0;
thigh = 2;
startl = {x[tlow ],y [tlow ]}
{0,0}
| endl = {x[thigh 1,y [thigh 1}
(2,4}
| C1lpathintegral =
Nintegrate  [m[x[t],y [t]1]1 X [t]1+n[x[t],y [t1]y’ [t], {t tlow, thigh 11
39.619

To calculate the path integral
Jo Y3 dx+ x2ydy
2
whereC, is the segment of the paraby = x? starting ai{2, 4} and
ending a0, 0}, parameterizC, so that it starts {2, 4} and runs to
{0, O} and integrate:
Clear [Xx,Vy ]
X[t 1=2-t
yIt1=(2-t)%
tlow =0;
thigh =2;
start2 = {x[tlow ],y [tlow ]}
2,4}
| end2 = {x[thigh 1,y [thigh 1}
0,0}
C2pathintegral =
Nintegrate  [m[x[t],y [t]1I X [t]+n[x[t],y [t11Yy [t], {t tlow, thigh 11
-39.619

Compare:

| {C1lpathintegral, C2pathintegral }
(39.619, -39.619 }
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Just as you knew in advance; they are negatives of each other.

oT.1.b.)

Calculate the path integral

Jo—X®ydx+ 2xydy,
where C starts ¢t 1, 2}, runs on a straight line {8, —1}, and then
runs on the straight line frof8, —1} to {4, 7}, where C ends.

OAnswer:

Enter the integrands:

Clear [m, n, X,y 1
(MIX_, y_ 1,0 X, y_ 1} = {-x?y, 2xy }
(-x%y,2xy }

Here's a look ¢C:

pointl = {-1,2};

point2 = {8, -1};

point3 = (4,7 };

points = {pointl, point2, point3 }

Show[Graphics [{Red, Thickness [0.01 ], Line [points ]}1,
Axes - True, AxesLabel - YY),

PlotLabel - "C", Epilog - {Text ["Pointl", pointl,

Text ["Point2", point2,

C
Por gt 3

{-1,011,
{1, 0 }1, Text ["Point3", point3 131,

<

pntl

R

Here comes the parameterization that miCtesn frompointl to
point2 and then tpoint3 and the calculation of
Jo—X2ydx+ 2xydy:

Clear [x1, Y1, x2,y2,t 1
{x1[t_1,yl [t_]1}=pointl +t (point2 - pointl );

{X2[t_1,y2 [t_]1}=point2 +t (point3 - point2 );

tlow =0;
thigh =1;
Cpathintegral = Nintegrate [

mx1[t],yl [t1] XL/ [t]+n[x1[t],yl [t]]yl'[t], {t tlow, thigh 31+
Nintegrate  [m[x2 [t],y2 [t11X2'[t] +n[X2[t],y2 [t]1]y2"[t],
{t, tlow, thigh 1
624.583

And you're out of here.

OT.1.b.ii)
Calculate the path integral
Jo—X2ydx+ 2xydy
where C starts 44, 7}, runs on a straight line {8, —1} and then runs
on the straight line fron8, -1} to{-1, 2:

OAnswer:
This is almost the same as in part i) above.
The curveC is physically the same here as it was in part i).
The only difference is that this time the directiorCois the reverse of
the direction in part i).
To do the calculation, take the answer to part i) above and multiply it
by -1.

OT.1.c.i) Clockwise versus counterclockwise

It's late and you're calculating
JoY2dx+@2x2 + y)dy
where C is the ellipsetst)” + (%)2 = 1.
In your haste to meet your date at the local hangout, you type:
Clear [m, n, x,y,t ]
mix_, v 1 =y%
Nix_,y_ 1=2x2+y;
{X[t_ 1,y [t 1}=(-1,0}+{4Sin[t],2Cos [t]};
answer =
Nintegrate [m[x[t],y [t]1]1X'[t]+n[x[t],y [t11y [t], {t0,2 =}]

VC.05.T1

100.531
A friend looking over your shoulder says: "Good work, but your
answer is wrong because your parameterization is clockwise and not
counterclockwise."
After looking at a plot of some tangent vectors, you see that your
parameterization is clockwise.
And then you say, "The correct answer is:"

I correctanswer = —answer

-100.531
Are you right?

OAnswer:

Yes.

T.2) Screwing up

OT.2.a)
What are the best ways of screwing up the calculation of a path
integral
$oMIx, yldx + nix, yldy?
OAnswer:
The best way to screw up is to give a clockwise parameterization
instead of a counterclockwise parameterizatioC.of
The second best way to screw up is to give a counterclockwise
parameterization that coveCsmore than once.
Case in point:
Calculate
$e -y dx+ xdy,
given thaiC is the circlex? + y? = 1.

Clear [m,n, X,y 1]
mx_,y_1=-y;
nix_, y_1=x

{X[t_1,y [t_1}={Cos[t], Sin [t]};
tlow =0;
thigh =4

pathintegral =
Nintegrate  [m[x[t],y [t]]x [t]+n[x[t],y [t]1]Yy [t], {t tlow, thigh ]
12.5664

Check the parameterization:

curveplot = ParametricPlot [{x[t],y [t1},
{t, tlow, thigh }, PlotStyle - {{Red, Thickness [0.01 1}},
AxesLabel - {"x","y" 1}, DisplayFunction - Identity 1;

) s

ump = —;

Jump 2

tangentvectors =

Table [Arrow [{x'[t],y "[t1}, Taill - {x[t]1,y [t]1}, VectorColor - Red],
{t, tlow, thigh - jump, jump }1;

Show[curveplot, tangentvectors, DisplayFunction - $DisplayFunction 1;

So far, so good. Everything looks fine.

Now look at:

| (xrtiow 1,y [tlow 1} == {x[thigh 1,y [thigh 1}
True

The starting point and the ending point are the same.
So this parameterization passes the usual tests, but the calculated valt
of
$o -y dx+ xdy
above is DEAD WRONG.
To see why, look at:
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ParametricPlot [{xX[t],y [t1}, {t tlow,2 7},
PlotStyle - {{Red, Thickness [0.01 ]}}, AxesLabel - {"X","y" }1;

ParametricPlot [{x[t1,y [t1}, {t 2 w, thigh 1},
PlotStyle - {{Red, Thickness [0.01 ]}}, AxesLabel - {"x","y" }1;

Ast advances frortlow = 0 tothigh = 4 as orginally specified, the

parameterization goes around the curve twice, and this is not what yo

want.
The right value for
b -y dx+ xdy
is:
tlow =0;
correctthigh =2
correctpathintegral = Nintegrate [
mix[t],y [t11x [t]1+n[x[t],y [t1]y [t], {t tlow, correctthigh }1
6.28319

T.3) Recognizing gradient fields: The gradient test

When you have to calculate a path integral
Jomix, yldx+ nix, yldy
and you recognize that the vector field
Fieldx, y] = {m[x, y], n[x, yI}
is the gradient field of a functioriX, y], then a warm comfortable
feeling radiates through your body.
If you want to exploit the advantages you get from a gradient field,

you'll have to be in a position to recognize when a given vector field i<

a gradient field.
To this end, go with a cleared gradient field:
Clear [f, gradf, x, y, m, n 1
gradf [x_,y_ 1={DIf[xy ], x,DIf[xyl y1}
{mix_,y_ 1,n [x_y_ 1} =gradf [xy ]
(A oy g, f Oy 13
Look at this:
| gradtest =D[mix,y 1, y1-DInixy 1, x1
0
This tells you that if you have a gradient field
Fieldx, y] = {m[x, y], n[x, y},
then
Om(x, y1, yI - DIn[x, y], x] = 0.
oT.3.a.0)

If you are given a vector field
Fieldx, y] = {m[x, y], n[x, y}
and you learn that
qm[xv Y]: Y] - D[n[x, y]v X] = 01
then are you automatically guaranteed that Fxelg is a gradient
field?

OAnswer:
Yes, provided that neithm[x, y] norn[x, y] has a singularity
(blow-up or blow-down).

VC.05.T1->T3

oT.3.a.0i)

Is the vector field
Fieldx, y] = {¢* Cody], —€* Sinly]}
a gradient field?
OAnswer:
Look at:

Clear [m,n, X,y 1
{mx_,y_ 1,n [Xx_y_ 1} ={(E"Cos[y], -E*Sin [y]}
{E* Cos[y], -E*Sin [y]}

Good; neithem[x, y] norn[x, y] has any singularities.

Now go with the gradient test:

| gradtest =D[m[x,y 1, y1-DIn[x,y 1, x1
0

Hot dog!
No doubt about it, this vector field is a gradient field.

oT.3.a.iii)
Is the vector field
Fieldx, y] = {¢¥ Cogx], —€ Sin[x]}
a gradient field?
OAnswer:
Look at:

Clear [m, n, X,y 1]
{mIx_, y_ 1,n [X_,y_ 1} = {EY Cos[x], -EY Sin [x]}
{EY Cos[x], -E Sin [x]}

Good; neithem[x, y] norn[x, y] has any singularities.

Now go with the gradient test:

| gradtest =D[m[X,y 1, ¥y 1-D[n[x,y ], X ]
2EY Cos[x]

This is not0.

Absolutely no doubt about it, this vector field is NOT a gradient field.

OT.3.a.iv) Singularities (blow-ups or blow-downs)

Is the vector field
Fieldx, yl = {- 257 257
a gradient field?

OAnswer:

Look at:
Clear [m, n, Field, x, y 1

X
(mix_,y_ 1,nIx,y_ 1} ={-

b

Field [x,y_ 1={mxyl,n[xyl}
A big fat singularity a{x, y} = {0, 0}.
You can see this by plotting.
| Plot [ISE)Q y 1, {y, -1,1}, PlotStyle - Red, AspectRatio -»11;

75|

-1 -0.5 g 1
-25
-50

-75

| Plot [n[x,0 ], {x, -1, 1}, PlotStyle - Red, AspectRatio -»17;

75

50,

25L

T 0.5 1
-2

50)
- 75
-100

This vector field fails the first part of the gradient test.
Now look at the second part of the gradient test:
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| gradtest = Simplify [D[n[x,y 1, x 1 -D[m[x,y 1, ¥y 11
0

This field passes the second part of the gradient test.
Whether this vector field is a genuine gradient field is in doubt.
Try something else by looking at

$o MIx, yldx+ nix, yldy
whereC is the circle of radiul centered at the singularity{0, O}:

Clear [t]

{X[t_ 1,y [t_1}={Cos[t], Sin [t]};
tlow =0;

thigh =2

Nintegrate [m[x[t],y [t11 X [t]1+n[x[t],y [t]11Yy [t], {t tlow, thigh }1
6.28319

Not zero.

This tells you for sure that this vector field is not a gradient field.

OT.3.a.v)
Is every vector field a gradient field?

OAnswer:

Hell no.

OT.3.b)

Here's a vector field:
Clear [Field, m, n, X,y 1
{MIX_, y_ 1,n [X,, y_ 1} = {x>+2xSin [y], Sin [5y] +x?Cos[yl};
Field [x_,y_ 1={mXxy 1, nIxy1l}
(x?+2xSin [y],x 2 Cos[y] +Sin [5y]}
No singularities.
Give it the second part of the gradient test:
| gradtest =D[m[x,y 1, y 1-DIn[x,y 1, x ]
0

Good.
Field[x, y] is definitely a gradient field.

Try to come up with a functioriX, y] so that
gradfx, y] = Field[x, y].

OAnswer:
The goal is to come up with a functif[x, y] with
gradflx, y] = Field[x, y].
To do this, fix any poin{a, b} you like and parameterize a liCz(or
other curve) running fror{a, b to the variable poir{x, y}:

{0, 0} is usually a good choice for {a, b}

Clear [t]

{a,b}={00}

fixedpoint ={a, b}

variablepoint ={XYy};

tlow =0;

thigh =1;

{X[t_1,y [t 1} = fixedpoint +t (variablepoint - fixedpoint )
{tx,ty }

To get a functioif [, y] with
gradflx, yl = {m[x, yl, n[x, yl},
all you gotta do is set
fIx, yI = [omix, yldx+ n[x, yldy
whereC is the line (or other curve) running from the fixed p{a, i

to the variable poir{x, y}:
Clear [f]

thigh
fixoy 1 =J (MIx[t],y [t1]1x'[t]+n[x[t],y [t]]y" [t])dt
l

low

1 x3 1 2w
.5—+T—A5—Cos[5y]+x Sin [y]

Try it out:

I Clear [gradf ]
gradf [x_,y_ 1={DIf[xy 1, x1,DIf[xy 1 yI}
(x? +2xSin [y],x 2Cos[y] +Sin [5y]}

Compare:
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| (mix.y 1.nixy 1}

(x?2 +2xSin [y],x 2 Cos[y] +Sin [5y]}

| TrigExpand [gradf [x,y 1] == TrigExpand [{m[X,y 1,n [X,y 1}]
True

Great.
This tells you that
gradflx, y] = {m[x, yl, n[x, yI}
just as you wanted.
See what happens when you go via, bt = {1, Z}:

Clear [x,y,t ]

s
,by={1, =}
@by =t 7}

fixedpoint ={a b}

variablepoint ={X,y}

tow =0;

thigh = 1;

{X[t_1,y [t 1} = fixedpoint +t (variablepoint - fixedpoint )
s s

{1+'[ (-1+x), E+t (*§~+Y>}
Set

fIx, yI = [ mix, yldx+ nix, yldy
whereC is the line running fror{a, b} to {x, y}:
Clear [f]

thigh

fIx,y_ 1] =£ (MIX[t],y [t11x [t]+n[x[t],y [t]1]y"[t])at
tlow

4 x3 1 1 5

—§—+§—+XZCOS[§ (N—Zy)] —€S|n [5 (N—Zy)}

Looks bad; check whether it feels good:

Clear [gradf ]
gradf [x_,y_ 1={DIf[xy 1, x1,DIfIxy 1 yI}

{x2+2xC05[% (m-2y)], Cos [% (r-2y)] +x%Sin [% (m-2y)]}

Compare:
| (mix.y 1,nixy 1}

(x? +2xSin [y],x 2 Cos[y] +Sin [5y]}
| TrigExpand [gradf [X,y 1] == TrigExpand [{m[X,y 1,n [X, ¥y 1}]
True

It feels great!
Each time you change the fixed pc{a, b, you make a different
functionf[x, y] whose gradient i{im[x, y], n[X, y]}.

oT.3.¢)

What is the value of
Jo€°*Y (3Co¢3x] - 5y Sin[3x]) dx
- 5xe XY Sin3x]dy
for any curve C running from+0.7, @ to {1.1, 0.4?

OAnswer:

Here's the vector field:

Clear [Field, m, n, X,y 1
{mx_,y_ 1,n[x_,y_1}=
{E"5*XY (3Cos[3x]-5ySin [3x]), -5XE-®*Y Sin [3x]};
Field [x_,y_ 1={mXxy 1l nixy]l}
{ESXY (3Cos[3x] -5ySin [3x]), -5E°*Y xSin [3x]}

No singularities (becaus® > 0 no matter whes is).

Give it the second part of the gradient test:

] gradtest = Together [D[m[x,y 1, y 1-DIn[x,y 1, x 1]
0

Good. Now you know that
Field[x, y] = {m[x, y], n[x, yI}
is a gradient field.
This is really good news because this tells you that
Jo€%*Y (3Co¢3x] - 5y Sin[3x]) dx
- 5xe XY Sin3x]dy
calculates out to the same value no matter what Ciyweu go with as
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long asC starts a{—0.7, @ and stops 1.1, 0.4. This information is
quite a relief because now you know that you can calculate this integr
by using any cheap curC:running from{-0.7, g to {1.1, 0.4.

One really cheap curve is the straight line parameterized by:

Clear [x,y,t 1]

start = {-0.7,0 };

end = {1.1, 04 };

tlow =0;

thigh =1;

{X[t_1,y [t_]}=start +t (end -start )
{-0.7 +1.8t,04t 1}

Here comes the calculation of
Jo€%*Y (3Co¢3x] - 5y Sin[3x]) dx
- 5xe Y Sin[3x]dy
for any curveC running from{-0.7, G to {1.1, 0.4 :

I Nintegrate  [m[x[t],y [t]1] X' [t]1+n[x[t],y [t1]y’[t], {t tlow, thigh }1]

0.845731
Not hard at all.

T.4) Line integrals
0T.4.a)

What do folks mean when they talk about line integrals?
OAnswer:

A line integral is the same thing as a path integral. This alternate
terminology is in common use. This is unfortunate because many pail
integrals involve curves that are not lines.

T.5) Summary of main ideas

Calculus&Mathematica offers this summary to you
for your good use and enjoyment.
It comes from the home office to you.
'93

OT.5.a.i) Flow along

If a curve C is parameterized byft], y[t]} with tlow < t < thigh, then
f%m[x, yldx+ n[x, yldy
[os? Fieldx[t], yltll. (x'[t], '[t]} dt
high
= ﬂto\l,s (MIX[t], Y[t X' [t] + niX[t], Y[t y’[tD) dt
measures of the flow of a vector field
Fieldx, y] = {m[x, yl, n[x, yI}
along the curve C.

OT.5.a.ii)
If you have a closed curve C (like a deformed circle), and if
$omIx, yldx+ nix, yldy >0,
then the flow of Fielgk, y] = {m[x, y], n[x, y]} along C is
counterclockwise.
But if
$e MIx, yldx + nix, yldy <0,
then the flow of Fielgk, y] = {m[x, y], n[x, y]} along C is clockwise.
OT.5.b.i) Flow across
If a curve C is parameterized by{t], y[t]} with tlow < t < thigh, then
Jo—nix, yldx + mix, yldy
= f;;fh Field[x{t], yItl]. {y'[t], -X'[t]} dt
h
= fiod ™ (=nIx[t], Y[t X'[t] + mx[t], y[t]]y'[t]) dt
measures of the flow of a vector field
Fieldx, yl = {m[x, y], n[x, yI}
across the curve C.
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OT.5.b.ii)

If you have a closed curve C (like a deformed circle), and if

$e —nIx, yldx + mix, yldy >0,
then the flow of Fielgk, y] = {m[x, yI, n[X, y]} across C is from inside
to outside.
But if

$e—nIx, yldx + mix, yldy <0,
then the flow of Fielfk, y] = {m[x, y], n[x, y]} across C is from
outside to inside.

OT.5.c.i) Gradient fields

A vector field
Fieldx, y] = {m[x, y], n[x, yl}

is a gradient field if there is a functiofxf y] with
gradfx, y] = Field[x, y].

You can be sure a vector field
Fieldx, y] = {m[x, y], n[x, y]}

is a gradient field if neither R, y] nor rx, y] has singularities and
Dm(x, yl, y] = D[n[x, yI, x].

oT.5.c.ii)

If a vector field
Fieldx, y] = {m[x, y], n[x, yI}
is a gradient field, then for any closed curve C, you are guaranteed tha
9€c m[x, yldx + n[x, y]dy = 0.
This tells you that the net flow of a gradient field along any closed
curve is 0.

OT.5.c.iii)

If a vector field
Fieldx, y] = {m[x, yl, n[x, y1}
is a gradient field, then for any curve C, the value of the path integral
Jomix, yldx + nix, yldy
depends on the location of the starting point of C and the location of
the end point of C but does not depend on the specific path C takes as
it runs from its start to its end.

VC.05 Flow Measurements by Integrals
Giveita Try!

-
Experience with the starred problems will be useful for understanding
developments later in the course.

G.1) Flow along and flow across*

0G.1.a)

Here's a vector field:
Clear [x,y, m, n, Field ]
{MIXL Yy 1,0 XLy 1) = (X2 -2y, -yZ +x};
Field [x_,y_ 1={mx,y 1,n Xy 1}
x2-2y,x -y?%}
Here's the circle C of radius 3 centerefflat?} parameterized in the
counterclockwise way:

Clear [t]

X[ 1,y [t_1}=1{1,2}+3{Cos[t],Sin [t]};

tlow =0;

thigh =2m;

curveplot = ParametricPlot [{x[t1,y [t1}, ({t tlow, thigh 1
PlotStyle - {{Thickness [0.01 ], Red }}, AspectRatio - Automatic,

AxesLabel - {"X","y" }1;
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N
Calculate

$e —nIx, yldx + mix, yldy
and use your result to determine whether the net flow of this vector
field across this curve is from inside to outside, outside to inside, or 0.
Calculate

§C mix, yldx + n[x, yldy
and use your result to determine whether the net flow of this vector
field along this curve is clockwise, counterclockwise or 0.

0G.1.b)

Here's a vector field:
Clear [X,y, m, n, Field 1
{m[x_,y_1,n[x,y_1}={05x -12y,1 };
Field [x_,y_1={mXxyl.n[xy 1}
{05x -12y,1 }
Here's a parameterization and a plot of a closed curve C:

Clear [t]
(XTI 1,y 1} ={3t (3-1),t (t -3)?%};
tlow =0;
thigh =3;

curveplot = ParametricPlot [{x[t],y [t]}, {t tlow, thigh }, PlotStyle -
{{Thickness [0.01 ], Red }}, PlotLabel “The closed curve C",
AspectRatio - Automatic, AxesLabel - YL

y The closed curve C

1T 2 3 4 5 8 *

Is C parameterized in the counterclockwise or clockwise way?
Use a path integral to determine whether the net flow of this vector
field across C is from outside to inside, inside to outside, or 0.

Use a path integral to determine whether the net flow of this vector
field along C is clockwise, counterclockwise, or 0.

0G.1.c)

Here's a vector field:
Clear [Xx, Yy, m,n, Field 1
(MDX_, y_ 1,0 XL y_ 13 = (x®-3xy?,3x2y-y3})
Field [X,y_ 1={mxy1,n[xy]l1}
x®-3xy?,3x 2y -y%)
Here's a parameterization and a plot of a closed curve C.
Clear [t]

: ) 2 1 .
(X[t 1,y [t_1}={3Sin [t]1Cos[t], Sin [t] +ECOS[61]+2},

tlow =0;

thigh =

curveplot = ParametricPlot [{xX[t],y [t1}, {t tlow, thigh },
PlotStyle - {{Thickness [0.015 ], Red }}, AspectRatio - Automatic,

AxesLabel - {"X","y" }I;
y

.6
2.4

-I5 -1 -0.5 0.5 1 1.5%
Is the curve parameterized in the counterclockwise or clockwise
way?
Use a path integral to determine whether the net flow of this vector
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field across this curve is from outside to inside, inside to outside, or 0.
Use a path integral to determine whether the net flow of this vector
field along this curve is clockwise, counterclockwise, or O.

O0G.1.d.i) A gradient field

Here's the gradient field of the function
fix, y] = e#*V:
Clear [f, gradf, x, y, m, n, Field 1
fCy_ 1=8%Y;
gradf [x_,y_ 1={DIf[xy 1, x1,DIfIxy 1 yIl}
{MIx_, y_ 1,n [x,,y_ 1} =gradf [xy 1;
Field [x_,y_ 1={mXxyl,n[xy 1}
2 E2X-Y, 7E2x—y}
Here's a parameterization and a plot of a closed curve C.

Clear [t]

{X[t_1,y [t 1} ={6Sin [t]Cos[t] (1-0.7Sin [4t]),3Sin [t]%+2};

tlow =0;

thigh =

curveplot = ParametricPlot [{x[t1,y [t1}, {t tlow, thigh },
PlotStyle - {{Thickness [0.01 ], Red }}, AspectRatio - Automatic,

AxesLabel - {"X","y" }1;
y

3.

awosa

2.
-4 -2 2 4
Explain how you know in advance that the net flow of this vector field
along this curve is 0.
Use a path integral to determine whether the net flow of this vector
field across this curve is from outside to inside, inside to outside, or 0.

0G.1.d.ii)

You already know that the net flow of a gradient field along a closed
curve is guaranteed to be 0.

Is it true that the net flow of a gradient field across a closed curve is
guaranteed to be 0?

X

G.2) Path integrals: Backward and forward*

O0G.2.a.i)
Suppose ¢and G are the same physical curve, but the starting point
of C; is the ending point of £, and the ending point of;Gs the
starting point of G.
Express

Jo, mix. yldx + nix, yldy
in terms of
Jo, mix, yldx + nix, yldy.
0G.2.a.ii)
Calculate the path integral
fcl x2ydx - 3xydy,
where G starts af—1, 3}, runs tof1, 0} on a straight line, and then
follows the parabola ¥ 3(x — 1) to {2, 3} where it stops.
Then calculate the path integral
fcz x2ydx— 3xydy,
where G starts af2, 3}, runs to{1, 0} on the parabola
y = 3(x — 1)?, and then follows the straight line frdrh, 0} to (-1, 3}
where it stops.
oTip:
After you've gone to the trouble of calculating
fcl x2ydx - 3xydy,
you should be able to write down the value of
fcz X2ydx - 3xydy
with no extra labor.
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0G.2.b)
Here's a parameterization of the ellipse
O+ (R = 1

Clear [x,y,t 1

tlow =0;

thigh =2

{X[t_1,y [t_1}={1, -2} +{3Sin [t],2Cos [t]}
{1+3Sin [t], -2+2Cos[t]}

Call this ellipse C.

Now look at this calculation:
I Nintegrate [y [t12Xx'[t]+ (X[t1y[t]+1)y [t], {t tlow, thigh }1
-37.6991

Does this result calculate

$oY2dx + (xy+ 1)dy?
If not, how do you modify this result to get the value of
P Y2dx + (xy + 1)dy?

G.3) Calculations and interpretations*

Many different notations for path integrals are in regular use in
science. In this problem, you will meet some of them.
Go with a given vector field
Fieldx, y] = {m[x, y], n[x, y1},
a curve C, and a direction for C via a parameterization
Rt] = {x[t], y[t]}, tlow < t < thigh.

Olntegrals measuringflow — along- C

All the following four integrals calculate out to the same value, and all
measure flow of
Fieldx, y] = {m[x, yl, n[x, yI}

along C:
i) fchm[x, yldx + n[x, yldy;
i) 9" Field[x[t], y[t]]. (x'[t], y[t]} dt;
iii) fC Field[x[t], y[t]].dP,

whered P = {x'[t], Y'[t]} dt;
v) . o Field(x[t], y[t]] . unittand’s.
This last integral is with respect to length measured on the curve fromr
the start of the curve. The way to see that the last integral is the sam
as the others, notice that

ds= X[t + y[t]? dt

and
X[ty [t])

unittat] = .
] VX2 + yit’
When you transform to the t variable, you get
Field . unittals «— Field[x[t], y[t]]. {X[t], Y'[t]} 4.
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Olntegrals measuringflow — across— C

All the following four integrals calculate out to the same value, and all
measure flow of
Fieldx, yI = {m[x, y], n[x, yl}
across C:
) Jo-nix yldx + mx, yldy;
i) [0 Field[x[t], yIt]]. {y'[t], ~X[t]} dt;
iii) fo Field[x[t], y[t]] . unithormald's.
This last integral is with respect to length measured on the curve from
the start of the curve. The way to see that the last integral is the same
as the others is to notice that
ds= X[t + y[t]? dt
and
unitnormgt] = —Y L1

Ve yi
When you transform to the t variable, you get
Field . unitnormad's «— Field[x[t], y[t]].{y'[t], —=X[t]} d't.

0G.3.a.i)

Calculate
¢ Field . unittand's
in the case in which
Fieldx, y] = {x2y?, xy?}
and the curve C is the ellipsé x 2y? = 1.
Give an interpretation of the result as a flow-along measurement and
illustrate with a plot.
oTip:

Remembefc demands a counterclockwise parameterization.

0G.3.a.ii)

Calculate
4. Field.dP
in the case in which
Fieldx, y] = {x2y?, xy?}
and the curve C is the ellipsé x 2y? = 1.
Give an interpretation of the result.

0G.3.a.iii)

Calculate
¢ Field. unitnormatis
in the case in which
Fieldx, y] = {x?y?, xy?}
and the curve C is the ellipsé x 2y? = 1.
Give an interpretation of the result.

0G.3.a.iv)

Calculate
J Field . unitnormalis
in the case in which
Fieldx, y] = {x?y?, xy?}
and the curve C is the top half of the ellipderx2y? = 1 starting on
the far right and ending on the far left.
Give an interpretation of the result.

0G.3.b)

Calculate
$o(=5Y)dx + xdy
where C is the circle
X+(y-2°=9
and interpret the result in two ways:
- As a flow- along— C measurement of a certain vector field and
- As a flow— across- C measurment of another vector field.
aTip:
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RemembefﬁC demands a counterclockwise parameterization.

0G.3.c)
Calculate
9§c Sinfy]dx + Cogx]dy
where C is the circle
X+ (y-1)2%=
and give two interpretations of the measurement.

G.4) Water*

If you like the vector fields plotted in this problem and would like to
be able to design flows for special situations for yourself, study the
topic called "conformal mapping" in a complex variables course.

For an incompressible fluid flow, like water flow, the net flow across
any closed curve C without loops must be 0 unless there are sources
(spigots) or sinks (drains) inside C.
In addition, for water flow, the net flow along a closed curve C can't
be positive because you can't have more water at the end of a trip
around a closed curve than you had at the beginning.
Also the net flow along a closed curve C can't be negative because
you can't have less water at the end of a trip around a closed curve
than you had at the beginning.
The upshot:
For water flow without sources or sinks, you know that net flow
across any closed curve C without loops must be 0. And you know
that net flow along any closed curve C must be 0.
Now look at the vector field

Fieldx, y] = {0.07x, —0.14y}
shown with the circle C of radius 1 centered2at2}:

Clear [Field, m, n, X,y ;
{mx_, y_ 1,0 [x,y_ 1} ={007x, -0.14y };
Field [x_,y_ 1={mXxyl.n[xy]l}
vectorfieldplot = Table [
Arrow [Field [x,y ], Tail - {x,y }1, {x, 0,4,05 }, {y.0,4,05 3B
X[ 1,y [t 1Y=1{2,2}+{Cos[t],Sin [t]};
tlow =0;
thigh =2

Cplot = ParametricPlot
PlotStyle

[{x[t],y [t]}, {t tlow, thigh 1

- {{Thickness [0.02 1, Red }}, DisplayFunction - |dentity 1;

Show vectorfieldplot, Cplot, AxesLabel - XYy,
DisplayFunction - $DisplayFunction 1;

|
|
|
|

Thls looks like water flowing around a corner.
Check whether it can be by looking at

$e MIx, yldx + n[x, yldy:

thigh
| Chop[J:I (MIX[t],y [E1]x [T +n[x[t],y [t11y"[t]) at]
0
Good; the flow of this vector field along this curve is 0.
Now look at
b —nIx, yldx + mix, yldy:

thigh

| Chop[fucw (-NIX[t],y (L1 X [t1+mx[t],y [t11y [t])dt]

-0.219911
Whoops!
The flow across this curve is from outside to inside.
The must be a weak sink (drain) inside C.
The upshot:
This vector field cannot be a model for water flow without sources
(spigots) or sinks (drains).

0G.4.a)
Look at the vector field
Fieldx, y] = {0.14x, —0.14y}

shown with the circle C of radius 1 centeredat?}:
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Clear [Field, m, n, x, y 1;
{mix_,y_ 1,n [x,y_ 1}=014 {x, -y}
Field [x_,y_ 1= {m[x y1L.nixyl)
vectorfieldplot = Table [
Arrow [Field [x,y ], Tal - {x,y }], {x,0,4,05 1}, {y,0,4,05 }I;
X[ 1,y [t1}=1{2, 2} +{Cos[t],Sin [t]};

tlow =0;
thigh =2
Cplot = ParametricPlot [{x[t],y [t]1}, ({t tlow, thigh },
PlotStyle - {{Thickness [0.02 1, Red }}, DisplayFunction - Identity 1;
Show[vectorfieldplot, Cplot, AxesLabel - XYY,

\ \\\\\\

|
3 \\\\
\

- $DisplayFunction 1;

\\\

\\\
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ThIS also looks like water flowing around a corner.
Go with the curve C plotted above and report on whether the flow
measurements
$o MIx, yldx + nix, yldy
$e —NIx, yldx + mx, yldy
tell you that this vector field cannot be a model for water flow without
sources (spigots) or sinks (drains).
O0G.4.b.i)
Look at this vector field shown with the circle C of radius 0.5 centered
at{0, 1:
Clear [Field, m, n, X,y 1,
{m[x_,y_ 1,n [Xx_,Yy_ 1} ={02Cos [x] Cosh[y], 0.4Sin [x] Sinh [y]};

Field [x_,y_ 1={mxy 1. n[xy]l}
vectorfieldplot = Table [

. . s T 7T
Arrow [Field [x,y 1, Tail - {xy }1, {x Y E} {y,0,2,05 1];
{X[t_1,y [t 1}={0,1}+05 {Cos[t],Sin [t]};

tlow =0;
thigh =2
Cplot = ParametricPlot [{x[t1,y [t1}, {t tlow, thigh }
PlotStyle - {{Thickness [0.01 ], Red }}, DisplayFunction - Identity 1;
Show[vectorfieldplot, Cplot, AxesLabel - Y,

DisplayFunction - $DisplayFunction 1;

ThIS looks like water flowing down on the left toward the x-axis and
then flowing up on the right.
Go with the curve C plotted above and report on whether the flow
measurements
$ mIx, yldx + nix, yldy
$e —NIx, yldx + mix, yldy
tell you that this vector field cannot be a model for water flow without
sources (spigots) or sinks (drains).
oTip:
UseNIntegrate wittAccuracyGoakb 2.

0G.4.b.ii)
Look at this vector field shown with the circle C of radius 0.5 centered
at{0, 1}:

Clear [Field, m, n, x, y 1;
{mx_, y_ 1. n [x, 1} = {0.2Cos [x] Cosh[y], 0.2Sin [x] Sinh [y1};

Field [x_,y_1= {m[x y1,nixyl}h
vectorfieldplot = Table [
Arrow [Field [x,y 1, Tail - {x,y 31, {x iy —} {y,0,2,05 1];
{X[t_1,y[t.1}={0,1}+05 {Cos[t], Sin [t]}
tlow =0;
thigh =2m;
Cplot = ParametricPlot [{x[t1,y [t]1}, ({t tlow, thigh },
PlotStyle - {{Thickness [0.01 ], Red }}, DisplayFunction - Identity 1;
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Show [ vectorfieldplot, Cplot, AxesLabel - Yy,
DisplayFunction - $DisplayFunction 1;

| \\\\4////1

I
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x-axis and then flowing up on the right.
Go with the curve C plotted above and report on whether the flow
measurements
9§C m[x, yldx + n[x, y]dy, and
$e —NIX, yldx + mix, yldy
tell you that this vector field cannot be a model for water flow without
sources (spigots) or sinks (drains).
aTip:

UseNIntegrate witrAccuracyGoab 2.

G.5) Sources and sinks*

The simplest way to spot a source of new fluid or a drain of old fluid
at a point{a, by is to center a circle [¢] of very small radius r g8, b}
and then to calculate the flowacross- C[r] measurement

$op N, YIdx + mix, yldy.
If this measurement is positive for ALL very small r's, then you can be
sure that the poirig, b is a source of new fluid.
If this measurement is negative for ALL very small r's, then you can
be sure that the poifa, b} is a drain of old fluid.
Try this out on

Fieldx, y] = {3x2, 4y*}:

Clear [Field, m, n, x,y 1
(M, y_ 1,0 X, y_ 11 = {3x% 4y *};
Field [x_,y_ 1={mx,y 1,n([xy 1}
(3x%, 4y 4y
Center a circle @] of radiusrata, g = {2, 1
and calculate the flow across- C[r] measurement

$oy ~NIX Y1dx + mix, yldy:

{aby={21}

Clear [r,t ]

tlow =0;

thigh =2

X[ 1,y [t 1Y={a b}+r {Cos[t], Sin [t]};

thigh
j (-nIX[t],y [tITX[t]+mx[t],y [t]]y'[t])dt

tlow
28 nr? 412 r?

This is positive no matter what r you go with.

The upshot:

- {a, B ={2, 1} is a source for new fluid.

Now go with cleared values @, 3 and center a circle[@ of very
small radius r afa, i and calculate the flow across- C[r]
measurement

$eg N, YIdX + mix, yldy:

Clear [a, b, 1, t 1

tlow =0;

thigh =2

X[ 1,y [t 1Y={a b}+r {Cos[t], Sin [t]};

thigh
j (-nIX[t],y [tIIx"[t]+mix[t],y [t1]y'[t])dt

tlow
6anr?+16b3nr2+12bnr?

This tells you that:

- {a, b is a source of new fluid {Ba+ 8b3) > 0,

and

- {a, B is a sink (drain) for old fluid if3a+ 8b3) < 0.

Here's a sample plot of some of the sources and sinks in this vector
field:

VC.05.G4-G5

sourcesandsinks = Show[Table [
If [3a+8b%>0, Graphics  [{PointSize [0.015 ], Red, Point [{a, b }]}1,
Graphics [ {PointSize [0.025 ], GrayLevel [0.05 ], Point [{a, b }1}1],
{a, -5,5,025 1}, {b, -4,4,025 }],Axes - True,
AxesLabel - {"X","y" }I;
y

The larger points are sinks; the smaller points are sources.
The sinks are in the lower part of the plot.
Think of the sources as little individual springs feeding the flow.
Think of the sinks as little holes through which fluid seeps out as the
flow goes by.

0G.5.a.)
Give a sample plot of some of the sources and sinks in the vector field
Fieldx, y] = {x?, y®}.
0G.5.a.ii)

Give a sample plot of some of the sources and sinks in the vector field
Fieldx, y] = {3x, —x2y3}.

OG.5.b) Singularity source

Here's a look at the vector field
Fieldx, yl = 3{%5 w5 b
Note the singularity &0, 0}.
Clear [Field, m, n, x,y 1
X y
M, y_ 1,0 XL y_ 1} =3{W' W};
Field [x_y_ 1={mxy1,nixyl}

fieldplot =
Table [Arrow [Field [x,y ], Tal - {x,y }], {X, -5,5,2 }, {y, -5,5,1 }1;
singularity ={0,01};

singularityplot =

Graphics [{Red, PointSize  [0.03 1, Point [singularity 1315

Show [fieldplot, singularityplot,
Axes - True, AxesLabel - {"x","y" }1;
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Go with the circle C of radius 2 centered at the singularit9,ad
and look at the calculation

$o—nIx, yldx + mlx, yldy
of the flow of this vector field across C :

Clear [Xx,y,t 1

r =2;

{X[t_1,y [t_1}=r {Cos[t], Sin [t]};
tlow =0;

thigh =2

thigh
ﬁ (-NIX[t],y [L11X/[t]+mx[t],y [t11y'[t]) 4t
tlow
6

Now go with the circle €of radius 1 centered at the singularity at
{0, 0} and look at this calculation

$o. —NIX, yldx + mix, yldy

1

of the flow of this vector field across;C

Clear [x,y,t ]

r =1;

{X[t_1,y [t_1}=r {Cos[t], Sin [t]};
tlow =0;

thigh =2m;

thigh
J (-NIX[t],y (11X [t] +mx[t],y [t]]y'[t])dt
1l

low

6
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Now go with any circle €of radius r centered at the singularity at
{0, O} and look at this calculation

$e —nIx, yldx + m[x, yldy
of the flow of this vector field across:C

Clear [r, X, Y, t 1

{XIt_1,y [t_1}=r {Cos[t],Sin [t]};

tlow =0;

thigh =2

thigh
J' (-n[x[t],y [t11 X' [t]+mx[t],y [t]]y [t])dt

tlow

6
No matter what positive radius you go with, the flow of this vector
field across the circle of radius r centered at the singularityt.is 6
What clue does this give you about the location of the only source of
new fluid in this flow?

G.6) Gradient fields are where the mathematical action is*

0G.6.a.i)

The curve G runs on a straight line starting{@t 0} and ending at
{1, 2. Here's a parameterization of @ith t running from 0 to 1:
I Clear [x1,yl,t ]
OAT 1.yl [ 13 ={0,0}+t {1,2}
{t,2t }
The curve G also starts &0, 0} and ends 4dtl, 2}, but G runs on the
parabola
y=2x?
Here's a parameterization of @ith t running from 0 to 1:
Clear [x2,y2,t 1]
ORI 1,y2 [t1} = {t 2t %}
2t 2y
The curve G also starts &0, 0} and ends 4dtl, 2} but G runs on the
sine curve
y=2Sin[Z%]
Here's a parameterization of @ith t running from 0 to 1:

Clear [x3,y3,t 1]
G 1,y3 [t 1} = {t 2Sin [%]]

{t, 2sin [%] }

Take a look:

ParametricPlot [{(xl [t1,yl [t1}, {xX2[t],y2 [t1}, {x3[t1,y3 [t1}},
{t, 0,1 1}, PlotStyle - {{Red}, {Blue }, {Thickness [0.01 1}},

1
AxesLabel - {"x","y" }, AspectRatio - E];

y
2

1.5
1
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Here are calculations of the three path integrals
Jo. ySinixyldx + xSinxyldy,
1
Jo, ySinixyldx + xSinxyldy, and
2
fc ySin[xyldx + x Sinxy]dy
3
in order:
Clear [m, n, X,y 1
{m[x_,y_ 1,n [x,y_ 1} ={ySin [xyl,xSin [xyl}k
Nintegrate [m[x1[t],yl [t]1]1x1 [t]+n[x1[t],yl [t11yl'[t], {t, 0,1 }]
1.41615
| Nintegrate [m[x2[t]1,y2 [t]]IXx2'[t]+n[x2[t],y2 [t11y2'[t], {t, 0,1 }]
1.41615
| Nintegrate [m[x3[t],y3 [t]11x3"[t]1+n[x3[t],y3 [t11y3"[t], {t, 0,1 }]
1.41615
Here are calculations of the three path integrals
Jo. xSinxyldx + ySinxyldy,
1
Jo, xSinixyldx + ySinxyldy, and
2
Jo. xSinxyldx + y Sinxyldy
3
in order:

VC.05.G5-G6

Clear [m,n, X,y 1]
(mix_,y_ 1.n [, y_ 1} ={xSin [xyl,ySin [xyl}
Nintegrate  [m[x1[t],yl [t]]1 X1 [t]+n[x1[t],yl [t11yl'[t], {t 0,1 1}]
1.77018
| Nintegrate  [m[X2 [t],y2 [t1]x2'[t]+n[x2[t],y2 [t11y2'[t], {t 0,1 }]
1.86313
| Nintegrate  [m[x3[t],y3 [t]]1x3"[t]+n[x3[t],y3 [t11y3'[t], {t,0,1 1}]
1.59888
Explain how you could have predicted in advance that the first three
integrals would have calculated out to the same value.
Explain why most knowledgeable folks would have been quite

surprised if the second three path integrals had all calculated out to be

equal.
O0G.6.a.ii)

Given specific functions @, y] and rix, y], what do you look for in
order to recognize whether

Jo, mix, yldx + nix, yldy = [ mIx, yldx + n[x, yldy
provided G and G are two curves starting at the same point and
ending at the same point?

O0G.6.b.i) Substitute curves

Here's a curve C running from its star{-a2, —3} to its end at5, 4}:
start = {-2, -3};
end = {5,4 };
curve = Graphics [{Red, Thickness [0.01 ],
Line [{start, {0, -1}, {-1,2}, {0,331}, {2, -1}, {3,25 },end }1}1;
labels = {Graphics [Text ["start", start, {-1, -1311,
Graphics [Text ["end", end, {1,13}11);

Show[curve, labels, Axes - True, AxesLabel - XYY,
PlotLabel - "The curve C" 1;

The curve C
4

Some yo-yo asks you how to calculate

Joye™dx + xe™vdy.
At first your stomach tightens up because you don't want to go to the
trouble of parameterizing that silly curve C.
Then your anxiety turns into a smile as you look at

nix, yl = ye™¥ and rix, y] = xe™*V.
And then you say: "l don't need to use this silly curve because | can
use a simple substitute curve ®ith the same start and the same end,
and then I'll calculate:"

fcl yeXVdx + xe*Vdy
Come up with the substitute curve,@ake the calculation, and
explain how you know that your calculation is correct.

0G.6.b.ii)
Go with the same curve C as in part i) immediately above.
If you had been asked to calculate
Jo xe™Vdx + ye™vdy,
would you have even considered the use of a substitute curve?
Why or why not?

0G.6.c.i)

Here's a function[k, y]:
Clear [f, x,y 1
fIx,y_1=x2y
X2y
Here's the gradient field of this function:
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Clear [gradf, m, n, Field 1
gradf [x_,y_1={(DIf[x,y 1, x1.,DIf[Xx,y 1 y1}
{Mx_, y_ 1,n [X,,y_ 1} =gradf [xy 1;
Field [x_,y_1={mXxyl,n[xy]l}
(2xy, x 2}
Here's a closed curve C:
Clear [t]

1 1
(X[ 1,y [t_1}={1+2Cos[t] —gCos[4t],Sin [t]+ESin 13t1}

tlow =0;
thigh =2,

curveplot = ParametricPlot [{X[t],y [t]1}, {t tlow, thigh },
PlotStyle - {{Thickness [0.01 ], Red }}, AxesLabel - {"x","y" 1},
Epilog - {Text ["start", {x[tlow 1,y [tlow 1}, {1.3, -1}],
Text ["end", {x[thigh 1,y [thigh 1}, {1.3,1 }1}1;

start

Look at this calculation of
Jomix, yldx + n[x, yldy

for
{m[x, yI, n[x, y]} = gradf]x, y].
thigh
| pathintegral =f (MX[t],y [t1IX [t]+n[x[t],y [t1]1y [t])dt
tlow
0

Why should you have been able to predict this result before you did
the calculation?

0G.6.c.ii)

Here's a function[k, yI:
Clear [f,x,y 1
I f[x_,y_ 1=Sin[x]Cos[y];
Here's the gradient field of this function:

Clear [gradf, m, n, Field 1

gradf [x_,y_ 1={DIf[xy ], x],DIf[xy 1l yIlh

{mix_, y_ 1,0 [x_,y_ 1} =gradf [xy ];

Field [x_,y_1={mXxy1l,n[xy 1}
{Cos[x] Cos[y], -Sin [x] Sin [y]}
Here's a curve C:
Clear [t]

t : 1

(X[t 1,y [t1}={2Cos[t], —3—+S|n [t]+ ?Sln 13t1};
tlow =0.3;
thigh =4.2;

curveplot = ParametricPlot [{x[t],y [t]}, {t tlow, thigh 1,
PlotStyle - {{Thickness [0.01 ], Red }}, AxesLabel - {"x","y" 1},
Epilog - {Text ["start", {x[tlow ],y [tlow 1}, {1.3,1 }1,

Text ["end”, {x[thigh 1,y [thigh 1}, {-1,01}1}1;
y

-2 -1 ' 1 2
Look at this calculation of
Jomix, yldx + nlx, yldy
for
{m[x, y], n[x, yI} = gradfx, y]
as above.
pathintegral =
Nintegrate [m[x[t],y [t11 X [t]1+n[x[t],y [t]11y [t], {t tlow, thigh 1
-1.37579
Now look at this:
| fchange =f [x[thigh 1,y [thigh 11 -f [x[tlow 1,y [tlow 11
-1.37579
Compare:
] {(pathintegral, fchange }
(-1.37579, -1.37579 }

Why did this happen?

VC.05.G6-G7

0G.6.d)

Take:
Clear [f, x,y 1
fIx,y_1-=Sin[x?y]
Sin [x%y]
Look at gradfx, yI:
| Of (xy 1, x1,DIf[xy 1, ¥I1}
{2xyCos [x?y],x 2 Cos[x?y]}
If C is any curve starting 40, 1.2 and ending &f2.7,-5.1}, then
Jo2xyCodx?yldx + x* Cogx?yldy
Jc df
=f[2.7,-5.1] - f[0, 1.2:
| fr27, -511-1[0,12 ]
0.496977
Do you agree or disagree?
Why?

O0G.6.e)

Do you think that
Fieldx, y] = {y + x?, x— Sin[y]}

is a gradient field?

If you do, then come up with a functiofxf y] with
gradfx, y] = {y + x4, x— Sinfy]}.

0G.6.f)

Suppose you know for sure that Figldy] = {m[X, y], n[x, yl} is a
gradient field.

Explain how you know that the flow of Figld y] along any one
curve starting afxo, Yo} and ending afix;, y1} is the same as the flow
of Fieldx, y] along any other curve starting{as, yo} and ending at
{X1, y1}.

G.7) Work and how the physicists measure it

What's work for some folks is fun for other folks. Trig identities
come to mind; they always seem to be work to the math student but
seem to be fun to the math teacher.
The physicists have their own technical notion of work.
The physicists envision a vector field

Fieldx, y] = {m[x, y], n[x, yI}
to represent the force (push) on an object positioned . In this
interpretation, the vector field Fidhd y] is called a force field.
Next, the physicists say that if you push an object along a curve C
parameterized by by

{x[t], y[t]} with tlow < t < thigh,
then the work done by the force field Fipddy] for you during the
duration of the trip is measured by

fc m[x, yldx + n[x, yldy

= Jio® (mix[t], y[t]] X'[t] + nIx[t], y[t]]y'[t]) dt

= ﬂtov'f“ Field[[x[t], y[t]]. {x[t], y'[t]} dt.
This might not be what your own notion of work is, but the physicists
have a pretty good reason for using that word for this measurement.
Think of it this way:
If, at a point on the trip

Fieldx[t], y[t]]. {x'[t], y'[t]} > O,
then at this point the force field Fi¢ld y] is working this much to
push the object and you do no work at all.
But if

Fieldx[t], y[t]]. {X'[t], y'[t]} < O,

then at this point the force field Fi¢ld y] is against your efforts to
advance the object; you are working this much and the force field
Field[x, y] does no work at all.
With this in mind, you can think of

Je mlx, yldx + n[x, yldy

= Jios® Field[x[t], ylt]] . (x'[t], y'[t]} dt

~ Jtlow
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as a measurement of
the force fieldS work — your work.
- If

Jomix, yldx + nix, yldy

= [ Field[[x[t], yItll. {[t], y[t]} dt =0,
then the force field did the same amount of work that you did during
the duration of the trip.
- If

fC m[x, yldx + n[x, yldy

= [ Field[[x[t], y[t]]. (X'[t], y[t]) dt > O,
then the force field did most of the work during the duration of the
object's trip.
- If
Jomix, yldx + nix, yldy
= [ Field[[x[t], y[t]]. (X'[t], y[t]} dt < O,
then you did most of the work during the duration of the object's trip.

0G.7.a)

Is there a difference between net flevalong— the— curve
measurements and work?

OFull answer given as a gesture of friendship:

Mathematically there is no difference because they are both measure
by the same formula
fc m(x, y] dx + n[x, y]dy.
The difference is in the interpretation.
When you are talking aboflow — along— the— curve measurements,
then you envision
Field[x, y] = {m[x, y], n[x, yl}
as the velocity vector {x, y} of a fluid flow.
The fluid is flowing and the curve is just sitting there.
When you are talking about work, then you envision
Field[x, y] = {m[x, y], n[x, y]}
as the force on an object{x, y} moving on a curve.
This time the force field is just sitting there and the object is moving ol
the curve.

0G.7.b)
Here is a force field:
Clear [Field, m, n, x, y 1

mix_,y_ 1=

X A x

-y
nx_, = ;
[x_y_ 1 5

Field [x_,y_ 1={mxy1,n[xy]l}
forcefieldplot =

Table [Arrow [Field [x,y 1, Taill - {x,y }1, {x, -2,4}, {y, -3,31}];

Show[ forcefieldplot, Axes - Automatic, AxesLabel - YL

VC.05.G7

-

A N
?il,///
SN
A7
N YA

An object starts 8.3, @ and moves through this force field one time
around the ellipse

(253" + (§5)° =1
Which way should the object go (counterclockwise or clockwise) to

make the force field do most of the work?

o0G.7.c)

Comment on the statement:
If a given force field

Fieldx, y] = {m[x, y], n[x, yI}
is a gradient field, and you are pushing an object from a start point
{Xo, Yo} t0 an end poin{xy, y1}, you might as well push it on the line
C starting afxo, Yo} and ending afxy, y1}, because if €is any other
curve starting axq, Yo} and ending afxy, y1}, then

Jomix, yldx + n[x, yldy

= fcl m[x, yldx + n[x, yldy.

o0G.7.d)
Here is a force field that changes as time t(measured in minutes)
changes:
Clear [Field, m, n, x, vy, t, td 1

{mix_ y_, . I,nx,y.,t 1}=

ot nt 1 nt wt
-x {Cos[—1, Si —]}-={-Sin [—], C —1\n
x {cos[ Z-], sin [Z-]}- 2 {-sin [Z5], cos [Z])
Field [x_,y_.,t_ 1={mxyt 1,n[xyt 1}

Cos[ﬁ} - x Sin [%H

7Tt] 1 [l]' 1 4

{—)(Cos[T + 5 Sin [ >

Here is how this vector field looks ¢, y} = {1, 1} for
t=0,1, 2,3, 4,5, and 6 minutes:

Table [Show[Graphics [{PointSize [0.02 ], Point [{1,1 }]}],
Arrow [Field [1,1,t ], Tall - {1,1}], Axes - True,
AxesOrigin - {0, 0 }, PlotRange - {{-0.5,25 }, {-05,25 1}},
PlotLabel "t = "<>ToString [t]],
{t.0,6 1}1;
t =0

/

0.5 1 1.5 2 2.5

t =1

0.5 1 1.5 2 2.5
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:Z - Animate.
’ You are making plans to send an object on a trip around the ellipse
2 R+ ($P=1
ve \ in the counterclockwise direction through this force field.
! The procedure is to start the clock now, waidconds, and then start
05 the motion so that at timethe object is at the position
OO IS s {x[t], y[t]} = {Codt —tg], 2Sin[t — tq]}
-0. . for
2. -

5

5 h=st<tyg+ 2nm.

2 Your job is to select a delay timgwith 0 < ty < 10 to make the work
15 done by the time-dependent force field as large as you can.

1

5

/ oTip:

To calculate work of the time-dependent force field as a functity) of

- - v you integrate

-0.5
Animate, running forward at a moderate speed. mix[t , t , 1Tt + nix[t , t , v It ,
At time t, Fieldx, v, t] is the vectof—x, —%} rotated by%t radians. ) [xt y[]. ] _[ ]_ XLt yitl, 0y I
The effect is that this time-dependent force field is like a revolving using appropriate limits.
force beacon at each point y}. Once you get a formula fwork [ty], then you can plot to estimate

Here's an idea of how the whole vector field does its dance: what the besty is.

Table [Show[Table [Arrow [Field [x,y,t 1, Tail - {xy }1, oG.7 e)
5.2 3.4 o
(x -26.26, —=} {y -17.17,  —=}] Axes - Tre, You are moving along the x-axis, starting@t0} and ending afs, 0,
PlotLabel -t = "<>ToSting [t], PlotRange - {{-6,6}, {-55 }}], under a constant force#{d;, d,} at all points.
{t 0,5 1]; Explain the formula

t-0 work done by the force field d; s.
4 Given that physicists measure force in newtons and distance in meters
2 say why physicists measure work in newton-meters (which they call

T .

joules).
6 42 | 2z 4% . . ) .

—a For your information and enjoyment:
9 power= joules/second
t-1 One unit of power is also callecwatt. This is where the electric meter

/4 on the side of your house gets the measuremekilowatt hour.

41 | A kilowatt hour is1000 watts time3600 seconds

| .
6 -4 /V ] 7 4s = 3.6 1¢ (joules/secondseconds

2l / =3.610 joules.
4

Every time you pay your power bill, you are paying for units of work

1
N

4 done by electricity in keeping your computer running.
§ }z - 0G.7.f)
O A\ SR TN Write a few words on what you think is the difference between the
(A % everyday English language definition of work and the technical

definition of work as used by the physicists. To get started, think
about this:

According to the physicists, if there is no change of position, then
there is no work.

— 2 _— If you must hold a heavy old computer in your arms while you stand
T N7 — in place for one hour, the physicists would say that you did no work.

-6 TA—- 2 72 —4 6
- Do you agree?

1
w

119



G.8) Spin fields
Start with a vector field

Fieldx, yI = {m[x, y], n[x, y]} o
and make what some folks call the spin field

spinField, y] = {-n[x, y], m[x, y]}.
Here's a vector field:

Clear [X,y, m, n, Field, spinField 1

{mx_, y_ I,.n[x,y_1}={Xy}

Field [x_,y_ 1={mxyl.n[xy]l}

spinField  [x_, y_ 1={-n[Xy 1, m[xy 1};

fieldplot =

Table [Arrow [Field [x,y 1, Taill - {x,y }1, {Xx, -3,3,2 }, {y, -3,3,2 }I;

Show/[fieldplot, Axes
6
\ \“ / /
~_\} .
-6 -4 -2 2 4 6
— o\ T
VA RN
-6
Here's the same vector field plotted together with its spin field:

= Table [Arrow [spinField [Xx,y 1,
-»Red], {x, -3,3,2 }, {y, -3,3,2 }1;

- True 1;

spinfieldplot
Tail - {x,y }, VectorColor

Show[fieldplot, spinfieldplot, Axes - True 1;

<2 4

Again:

Clear [X,y, m, n, Field, spinField 1
{mMix_,y_ 1,n [x,y_ 1} ={03x +02,02x (1 - é)}

Field [x_,y_ 1={mXxyl.n[xy]l}

spinField [x_,y_]={-n[Xy 1], m[xy 1}

fieldplot =

Table [Arrow [Field [x,y 1, Taill - {x,y }1, {x, -3,3,1 }, {y, -3,3,1 }1;

Show[fieldplot, Axes - True 1;
o3t
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Here's the same vector field plotted together with its spin field:

NN
AN

spinfieldplot = Table [Arrow [spinField [Xx,y 1,
Tail - {x, y }, VectorColor -»Red], {x, -3,3,1 }, {y, -3,3,1 }1;
Showt[fieldplot, spinfieldplot, Axes - True ];
4
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Run some more of these of your own choice to get a feeling for the
relationship between a vector field and its spin field.
0G.8.a)

Try to describe the geometric relationship between a vector field and
its spin field.
aTip:

Think rotation.

VC.05.G8-G9

0G.8.b)

True or false:
Trajectories of a vector field
Fieldx, y] = {m[Xx, y], n[x, I}
cross the trajectories of the spin field
SpinFielg, y] = {-n[x, yl, m[x, y]}
at right angles.
Try to explain your response.

0G.8.c.i)
Explain why:
If C is a closed curve directed in the counterclockwise way, then the
measurement of the flow of a vector field
Fieldx, y] = {m[x, y], n[x, yI}
across C is the same as the measurement of the flow of its spin field
spinFielfix, y] = {-n[x, yl, m[x, y]}
along C.
Consequently, if the net flow of
Fieldx, y] = {m[x, y], n[x, yl}
across C is from inside to outside, then the net flow of
spinFiel@, y] = {-n[x, y], m[x, y]}
along C is counterclockwise.

0G.8.c.ii)
In what way is the measurement of the net flow of a vector field
Fieldx, yI = {m[x, y], n[x, yl}
along C related to the measurement of the net flow of its spin field
spinFielf, y] = {-n[x, y], mx, yl}
across C?

0G.8.d.i)

True or false:
If a vector field
Fieldx, y] = {m[x, y], n[x, yI}
is a gradient field, then you are guaranteed that its spin field
spinFielfx, y] = {-n[x, y], m[x, y]}
is also a gradient field.
oTip:

Field[x, y] = {m[x, y], n[x, Y]} = {2xy, %}
is a gradient field because
D[x?, x] = D[2XY, Y] = 2X.
Is spinFieldx, y] = {-x?, 2 xy} also a gradient field?

0G.8.d.ii)

Suppose Fiel, y] is a function and
Fieldx, y] = {Df[x, y1, x], DIf[x, yI, yI}
is its gradient field, and that neithefflx, y], x] nor D[f[x, y], y] has
any singularities.
What condition on
JPHIx,y] PPExy]

ax? ay?
=DIf[x, y]. {x, 2] + DIf[x, y], {y, 2}]
guarantees that the spin field
spinFielfx, y] = {-DIf[x, yl, yl, DIf[x, y], x]}
passes the gradient test?

G.9) "Calculus Cal" screws up again

You remember Calculus Cal, that lab pest who talks a lot but produces
nothing. What most people don't know is that last semester Cal dropped
Calculus&Mathematica because he found that it was not hard to slide
through the traditional course with a C. Besides, Cal never understood
much anyway; so the traditional course emphasizing rote methods over
concepts suits him just fine. On the other hand, Cal still comes to the
Mathematica lab because he likes to press buttons and likes the chance
to be a pest.
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Today, Cal is in the lab doing his homework for the traditional course.

Of course, he has hardly looked at his text or at the Basics and
Tutorials of this lesson. Here are Cal's halfbaked responses to some
problems:

Your job is to do them right.

0G.9.a)

- Cal's problem:
Calculate the path integral

nyCos[x] dx + 2xydy
where C is the line starting ¢, 0} and ending at%, 4}
- Cal's solution:

JoyCodx]dx + 2xydy

=y Sinix] 55" + xy? 55"
=(@4-0+((5)16-0=8x+ 4.

0G.9.b)

— Cal's problem:
Given nix, y] = xy and 1ix, y] = %-
Calculate the path integral
fc m[x, yl dx + n[x, yldy
where C is the line starting ¢, 0} and ending afl, 2.
- Cal's solution:
Omix, y1, yI = x
and
DOin[x, y], x] = x.
So
Om(x, y1, yI = D[n[x, Y], x],
and this tells me tham[x, y], n[x, yl} is a gradient field.
Therefore
fc mix, yldx + nx, yldy = 0.

0G.9.c)

— Cal's problem:
Given mix, y] =x?>+y and fix, y] = y? - x
Calculate the path integral

ﬁc m(x, yldx + n[x, yldy
where C is the circle of radius 3 centere¢ilat?).
- Cal's solution:

Clear [m, n, x,y,t 1

mpC, y_ 1 =x% 4y,

XLy 1=y2-x%

tlow =0;

thigh =4

(XIt_1,y [t_1} = (1,2 }+3{Sin [t], Cos [t1};

thigh
J (MEX[E], Yy (11X [t] +n[x[t],y [t]]y"[t])dt
l

low

36 7t
0G.9.d)
- Cal's problem:
Given
mix, y] = £z
and
X, y] = X524

Calculate the path integral
$omix, yldx + n[x, yldy
where C is the circle of radius 1 centere¢Da)}.
— Cal's solution:
Look at the gradient test:

Clear [m, n, X,y 1]

X2 - 2
mpC,y ] =YY
X2 +y2
X +X2 +y2
Ny 1= XY
x2 +y2
Together [D[mM[X,y 1, y 1-D[n[x, ¥y 1, X 11
0

VC.05.G%-»G10

This guarantees tham[x, y], n[x, yl} is a gradient field and so
§C mx, yldx + n[x, yldy = 0.

G.10) Force fields and their trajectories

A vector field is a function that spits out vectors. You make a 2D
vector field by taking two regular functiongxny] and nx, y] and
throwing them into the two slots:

Clear [Field, m, n, X, y 1;

mix_,y_1=02y;

nix.,y_1=-04x;

Field [x,y_ 1={mXxy1,nixyl}
{0.2y, -04x}
You plot a vector field by plotting the vector Fiptdy] with its tail at
{x, y} for a selection of point&, y}:

vectorfieldplot = Table [
Arrow [Field [x,y 1, Tal - {Xx,y }1, {X, -2,2,05 1}, {y, -2,2,05 1}I;

Show[vectorfieldplot, Axes - True, AxesLabel - {"x","y" 1}1;

If you go with the usual interpretation of this vector field as velocity

vectors of fluid flow and you drop a cork into the flow{a0.5, @,

then the cork advances on a trajectory of the vector field:
{a,b}={-050 };

starterpoint ={a b}
Clear [Derivative, X, Y, t 1
endt =12;

approxsolutions =
NDSolve [{x"[t] ==m[x[t],y [t]],y [t]==n[x[t],y [t]],
X[0] ==a,y [0] ==b}, {x[t],y [t1}, {t O, endt 1}I;

Clear [trajectory 1
trajectory [t 1=
{X[t ] /. approxsolutions [11,y [t ] /. approxsolutions i1}
trajectoryplot = ParametricPlot [trajectory [t1, {t 0,endt 1},
PlotStyle - {{Red, Thickness [0.01 ]}}, DisplayFunction - Identity 1;
starterplot = Graphics [{Red, PointSize  [0.04 ], Point [starterpoint 131;

Show[vectorfieldplot, starterplot, trajectoryplot,
PlotRange - All, PlotLabel - "Flow trajectory”, Axes - True,
- $DisplayFunction 1;

AxesLabel - {"x","y" }, DisplayFunction
Flow tr¥jectory

On the other hand, if you interpret this vector field as a force field,
and you put an object of mass 4 into this force field-at5, @, and
you give it an initial velocity of0, 0}, then the path of this object isn't
the trajectory you see above.
Reason:
One of Newton's laws says
force= mass acceleration.
So the object moves on a curve parameterizegt[iby y[t]} with
Fieldx[t], y[t]] = masgx”[t], y"”[t]}
with
{x[0], IO} = {=0.5, § and{x’[0], y'[O]} = {0, O}
Here's a look:

endt =12;
mass = 4,
{a,b}={-050 };

Clear [Derivative, X, y, t 1

approxsolutions = NDSolve [
{mx[t],y [t]] ==massx”[t],n [X[t],y [t]] ==massy”[t], x [0] ==a,
X’[0] ==0,y [0] ==b,y "[0] == 0}, {x[t],y [t]1}, {t O, endt 1}I;

Clear [forcetrajectory 1
forcetrajectory [t1=
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{X[t] /. approxsolutions 11,y [t] /. approxsolutions I11};

forcetrajectoryplot = ParametricPlot [forcetrajectory [t1, {t 0, endt 1},
PlotStyle - {{Red, Thickness [0.01 ]}}, DisplayFunction - Identity 1;
newstarterplot = Graphics [{Red, PointSize  [0.04 ], Point [{a, b }]}1;

Show [ vectorfieldplot, newstarterplot, forcetrajectoryplot,
PlotRange - All, PlotLabel - "Force trajectory”,
DisplayFunction - $DisplayFunction 1;

Force trajectory

0G.10.a)
Experiment with different masses and report what you observe.

Does lowering the mass make the trajectory more or less responsive

the desires of the force field?

0G.10.b)

Here's a new force field shown with its two singularities:
Clear [Field, m, n, x, y 1

q=-25;

qq = -1.5;

(x0,y0 } = {2,0};

(xLyl }={-20}

q{x-x0,y -y0} . qq {x -x1,y -yl}
(x-x0)%+ (y-y0)2  (x-x1)2+ (y-y1)?’
Field [x_y_ 1={mxy1,nxy]l}

{mix_, y_ I,n X, y_1}=

forcefieldplot = Show[Graphics [{PointSize [0.04 ], Point [{x0,y0 }]}1,
Graphics [{PointSize [0.04 1, Point [{x1,yl }]}1,
Table [Arrow [Field [x,y 1, Tall - {X,y }1, {X, -5,5,2 }, {y, -5,5,2 }1,
Axes - True, AxesLabel - {"X","y" }1;

Here's what happens when you put an object of mass 0.9 into this
force field at{3, 4} and you give it an initial velocity of
{X'[0], y'[0l} = {-2, O}

mass = 0.9;
{ab}={34}
endt = 25;
Clear [Derivative, X, Yy, t 1
approxsolutions = NDSolve [
{mIx[t],y [t]] ==massx”[t],n [Xx[t],y [t]] ==massy”[t], X [0] ==a,
X"[0] == -2,y [0] ==b,y "[0] == 0}, {x[t],y [t]}, {t 0 endt }I;
Clear [forcetrajectory 1
forcetrajectory [t1-=
{X[t] /. approxsolutions 11,y [t] /. approxsolutions [11};
forcetrajectoryplot = ParametricPlot [forcetrajectory [t1, {t 0, endt 1},
PlotStyle - {{Red, Thickness [0.01 ]}}, DisplayFunction - Identity 1;
starterplot = Graphics [{Red, PointSize  [0.04 ], Point [{a, b }]}1;
Show [ forcefieldplot, starterplot, forcetrajectoryplot,
PlotRange - All, Axes - True, AxesLabel - Y,
DisplayFunction - $DisplayFunction 1;

Experiment with what happens when you keep everything the same

but start by giving it an initial velocity of

{X'[0], y'[O]} = {-v, O}
for a selection of v's like ¥ 0, 1, 3, and 4.
Report on your results.

VC.05.G10
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