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VC.05 Flow Measurements by Integrals
Basics

B.1) Measuring flow across a curve with the integral   

       Ùtlow

thigh
 HField@x@tD, y@tDD . 8y¢@tD, -x¢@tD<L â t

Here's a vector field:
Clear @Field, m, n, x, y D
m@x_, y_ D = 0.8 Sin @yD;
n@x_, y_ D = 0.4 x + 0.1 y;

Field @x_, y_ D = 8m@x, y D, n @x, y D<
80.8 Sin @yD, 0.4 x + 0.1 y <

Here's a curve:
Clear @t D
8x@t_ D, y @t_ D< = 82 Cos@t D, Sin @t D<;
tlow = 0;
thigh = 2 p;

curveplot = ParametricPlot @8x@t D, y @t D<, 8t, tlow, thigh <,
PlotStyle ® 88Thickness @0.01 D, Red <<, AxesLabel ® 8"x", "y" <D;
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Pick a point on the curve, say 8x@ p�����4 D, y@ p�����4 D<, and look at the field 
vector at this point:

 

tt =
p
�����
4

;

Clear @setup D
setup @t_ D : = Show@curveplot, Arrow @Field @x@t D, y @t DD,

Tail ® 8x@t D, y @t D<D, DisplayFunction ® Identity D;

Show@setup @tt D, DisplayFunction ® $DisplayFunction D;
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Now look at the curve with a little segment of fluid centered at the 
base of the field vector:

Clear @fluidbit, center, height, width, h, unittan, center D

unittan @t_ D =
8x ¢@t D, y ¢@t D<

������������������������������������������������
"###############################

x ¢@t D2 + y ¢@t D2

;

center @t_ D = 8x@t D, y @t D<;

fluidbit @center_, t_, h_ D : = Graphics @8Thickness @0.015 D,
Blue, Line @8center - h unittan @t D, center + h unittan @t D<D<D;

h = 0.2;
Show@setup @tt D, fluidbit @center @tt D, tt, h D, PlotRange ® All,

DisplayFunction ® $DisplayFunction D;
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When you check out how the fluid segment moves in a short time 
you'll see approximately this: 

 

flowtime = 0.4;
Show@

setup @tt D, fluidbit @center @tt D + flowtime Field @x@tt D, y @tt DD, tt, h D,
DisplayFunction ® $DisplayFunction D;
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Grab the last two plots and animate.
To get an even better idea, put a microscope on it:

Show@setup @tt D, fluidbit @center @tt D, tt, h D,
PlotRange ® 88x@tt D - 4 h, x @tt D + 4 h<, 8y@tt D - 4 h, y @tt D + 4 h<<,
DisplayFunction ® $DisplayFunction D;

Show@
setup @tt D, fluidbit @center @tt D + flowtime Field @x@tt D, y @tt DD, tt, h D,
PlotRange ® 88x@tt D - 4 h, x @tt D + 4 h<, 8y@tt D - 4 h, y @tt D + 4 h<<,
DisplayFunction ® $DisplayFunction D;
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Grab the last two plots and animate, running at a slow speed. 
Now look at both together:

Show@setup @tt D, fluidbit @center @tt D, tt, h D,
fluidbit @center @tt D + flowtime Field @x@tt D, y @tt DD, tt, h D,
PlotRange ® 88x@tt D - 4 h, x @tt D + 4 h<, 8y@tt D - 4 h, y @tt D + 4 h<<,
DisplayFunction ® $DisplayFunction D;
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The approximate amount of fluid that flowed across the curve in this 
short time is measured by the area of the parallelogram defined by the 
two line segments shown above. 
Put in the vector 
       flowtime HField@x@ttD, y@ttDD . unitnormal@ttDL unitnormal@ttD
for tt = p�����4 , and flowtime= 0.4 as above:

Clear @unitnormal D

unitnormal @t_ D : =
8y ¢@t D, -x ¢@t D<

������������������������������������������������
"###############################

y ¢@t D2 + x ¢@t D2

;

Show@setup @tt D, fluidbit @center @tt D, tt, h D,
fluidbit @center @tt D + flowtime Field @x@tt D, y @tt DD, tt, h D,
Arrow @flowtime Field @x@tt D, y @tt DD . unitnormal @tt D

unitnormal @tt D, Tail ® 8x@tt D, y @tt D<D,
PlotRange ® 88x@tt D - 4 h, x @tt D + 4 h<, 8y@tt D - 4 h, y @tt D + 4 h<<,
DisplayFunction ® $DisplayFunction D;
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Bingo!
The length of the new vector plotted above is 
       flowtime HField@x@ttD, y@ttDD . unitnormal@ttDL. 
Putting ds= length of the fluid segment, you can say that in this 
flowtime, approximately
       flowtime HField@x@ttD, y@ttDD . unitnormal@ttDL ds
units of fluid flow across the segment of the curve in the above plot.
The flow goes with the normal 8y¢@ttD, -x¢@ttD< at this point because
       Field@x@ttD, y@ttDD . unittnormal@ttD > 0:

N@Field @x@tt D, y @tt DD . unitnormal @tt DD
0.801631

See what happens at another point on the curve:

tt =
2 p
���������

3
;

Show@setup @tt D, fluidbit @center @tt D, tt, h D,
fluidbit @center @tt D + flowtime Field @x@tt D, y @tt DD, tt, h D,
Arrow @flowtime Field @x@tt D, y @tt DD . unitnormal @tt D

unitnormal @tt D, Tail ® 8x@tt D, y @tt D<D,
PlotRange ® 88x@tt D - 4 h, x @tt D + 4 h<, 8y@tt D - 4 h, y @tt D + 4 h<<,
DisplayFunction ® $DisplayFunction D;
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Again, putting ds= length of the fluid segment, you can say that in this 
flowtime, approximately
       flowtime HField@x@ttD, y@ttDD . unittnormal@ttDL ds
units of fluid flow across the curve in the above plot.
The flow is opposite the direction of the normal 8y¢@ttD, -x¢@ttD< at this 
point because
       Field@x@ttD, y@ttDD . unittnormal@ttD < 0:

N@Field @x@tt D, y @tt DD . unitnormal @tt DD
-0.470122

 

áB.1.a.i) 

Explain why this tells you that the integral
       Ùtlow

thigh
 Field@x@tD, y@tDD . 8y¢@tD, -x¢@tD< â t:

tlow = 0;
thigh = 2 p;
NIntegrate @Field @x@t D, y @t DD . 8y ¢@t D, -x ¢@t D<, 8t, tlow, thigh <D

0.628319

measures the net amount of fluid flowing across this curve per unit of 
flow time.

áAnswer:

Fixing a particular t, you know that in a short flowtime approximately

              flowtime HField@x@tD, y@tDD . unittnormal@tDL ds 

units of fluid flow across the small segment of the curve of length ds 

centered at 8x@tD, y@tD<. 
Because you integrate  "#########################x¢@tD 2 + y¢@tD 2  to measure length on the 

curve, you know that 

       ds= "#########################x¢@tD 2 + y¢@tD 2 dt. 

This tells you that, in a short flowtime, approximately 

       flowtime Field@x@tD, y@tDD . unittnormal@tD"#########################x¢@tD 2 + y¢@tD 2 dt

units of fluid flow across the a small segment of the curve of length ds 

centered at 8x@tD, y@tD<.
But 

       unitnormal@tD = 8y¢ @tD , -x¢@tD<��������������������������������������"##########################
x¢@tD 2 + y¢ @tD 2

,

so 

       HField@x@tD, y@tDD × unittnormal@tDL "#########################x¢@tD 2 + y¢@tD 2

       = Field@x@tD, y@tDD × 8y¢@tD, -x¢@tD<.

 

This tells you that, in a short flowtime, approximately

       flowtime Field@x@tD, y@tDD × 8y¢@tD, -x¢@tD< dt

units of fluid flow across the small segment of the curve.

Now, cover the whole curve with non-overlapping little segments of 

length ds as above.  Adding the individual measurements together, you 

get the approximate flow-across measurement

       flowtime Sum@HField@x@tD, y@tDD × 8y¢@tD, -x¢@tD< dtL,
8t, tlow, thigh- dt, dt<D

.

       

As dt closes in on 0, these approximate measurements close in on the 

exact measurement

       flowtime Ùtlow

thigh HField@x@tD, y@tDD × 8y¢@tD, -x¢@tD<L â t

of the net flow across the curve in the given flowtime.

To arrive at the measurement of the net flow across the whole curve 

per time unit, divide by flowtime to learn that   

       Ùtlow

thigh HField@x@tD, y@tDD × 8y¢@tD, -x¢@tD<L â t

measures the net flow over the curve per time unit.

If measurements are in gallons and seconds the calculation:
NIntegrate @Field @x@t D, y @t DD . 8y ¢@t D, -x ¢@t D<, 8t, 0, 2 p<D

0.628319

tells you that the net flow of this vector field across the curve above is 

0.628319 gallons per second.
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áB.1.a.ii)

Take another look at the integral
       Ùtlow

thigh HField@x@tD, y@tDD × 8y¢@tD, -x¢@tD<L â t
 for the vector field and the curve specified above:

NIntegrate @Field @x@t D, y @t DD . 8y ¢@t D, -x ¢@t D<, 8t, tlow, thigh <D
0.628319

This tells you that the net flow of this vector field across this curve is 
about 0.63 fluid units per time unit.
Why does this also tell you that the net flow is from inside to outside?

áAnswer:

Look at this plot of 

       Field@x@tD, y@tDD × 8y¢@tD, -x¢@tD<
for tlow £ t £ thigh:

Plot @Field @x@t D, y @t DD . 8y ¢@t D, -x ¢@t D<,
8t, 0, 2 p<, PlotStyle ® 88Thickness @0.01 D, Blue <<,
AxesLabel ® 8"t", "Field.normal" <D;
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        Ùtlow

thigh HField@x@tD, y@tDD × 8y¢@tD, -x¢@tD<L â t

       = area above- area below.

® area above the t-axis = total flow of this vector field across this 

curve in the direction of the normals

       8y¢@tD, -x¢@tD<.
® area below the t-axis = total flow of this vector field across this 

curve opposite the direction of the normals

       8y¢@tD, -x¢@tD<.
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In the case above,    

       Ùtlow

thigh HField@x@tD, y@tDD × 8y¢@tD, -x¢@tD<L â t > 0 :
NIntegrate @Field @x@t D, y @t DD . 8y ¢@t D, -x ¢@t D<, 8t, tlow, thigh <D

0.628319

This tells you that the flow in the direction of the normals is greater 

than the flow against the normals.

Take a look at the normals:
ShowAcurveplot,

Table AArrow @8y ¢@t D, -x ¢@t D<, Tail ® 8x@t D, y @t D<, VectorColor ® RedD,

9t, tlow, thigh,
thigh - tlow
�����������������������������������

8
=EE;
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The normals point out way from the curve.

The upshot:  The net flow of the given vector field across this curve is 

from inside to outside because  

       Ùtlow

thigh
 HField@x@tD, y@tDD . 8y¢@tD, -x¢@tD<L â t > 0 :

NIntegrate @Field @x@t D, y @t DD . 8y ¢@t D, -x ¢@t D<, 8t, tlow, thigh <D
0.628319

áB.1.b.i)

Here's a new vector field:
Clear @Field, m, n, x, y D
m@x_, y_ D = 2 x y;

n@x_, y_ D = x2 - y2 ;

Field @x_, y_ D = 8m@x, y D, n @x, y D<
82 x y, x 2 - y2<

 

Here's a new curve:
Clear @t D
8x@t_ D, y @t_ D< = 8Cos@t D3 , Sin @t D3<;

tlow = 0;
thigh = 2 p;
curveplot = ParametricPlot @8x@t D, y @t D<, 8t, tlow, thigh <,

PlotStyle ® 88Thickness @0.01 D, Red <<, AxesLabel ® 8"x", "y" <D;
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Use the integral
       Ùtlow

thigh
 HField@x@tD, y@tDD . 8y¢@tD, -x¢@tD<L â t

to analyze the net flow of this vector field across this curve.
áAnswer:

à
tlow

thigh

 Field @x@t D, y @t DD . 8y ¢@t D, -x ¢@t D< â t

0

This tells you that the inside-to-outside flow across this curve exactly 
balances the outside-to-inside flow across the curve.
The net flow of this vector field across this curve is 0.

áB.1.b.ii)

Here's another new vector field:
Clear @Field, m, n, x, y D
m@x_, y_ D = x + y;

n@x_, y_ D = x2 + y2 ;

Field @x_, y_ D = 8m@x, y D, n @x, y D<
8x + y, x 2 + y2<

Here's another new curve:
Clear @t D
8x@t_ D, y @t_ D< =

 

81, 0 < + 9Sin @p t D +
1
�����
5

Cos@4 p t D, Cos @p t D +
1
�����
8

Sin @5 p t D=;

tlow = 0;
thigh = 2;

curveplot = ParametricPlot @8x@t D, y @t D<, 8t, tlow, thigh <,
PlotStyle ® 88Thickness @0.01 D, Red <<, AxesLabel ® 8"x", "y" <D;
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Use the integral
       Ùtlow

thigh
 HField@x@tD, y@tDD . 8y¢@tD, -x¢@tD<L â t

to help analyze the net flow of this vector field across this curve.
áAnswer:

The parameterization of the curve involves squirrelly functions, so try 

NIntegrate :
NIntegrate @Field @x@t D, y @t DD . 8y ¢@t D, -x ¢@t D<, 8t, tlow, thigh <,

AccuracyGoal ® 2D
-2.82743

This tells you

       Ùtlow

thigh
 HField@x@tD, y@tDD . 8y¢@tD, -x¢@tD<L â t < 0.

The net flow across this curve is in the opposite direction of the 

normals.

See which way the normals point:
scalefactor = 0.2;

ShowAcurveplot, Table AArrow @ 8y ¢@t D, -x ¢@t D<,

Tail ® 8x@t D, y @t D<, ScaleFactor ® scalefactor, VectorColor ® RedD,

9t, tlow, thigh,
thigh - tlow
�����������������������������������

8
=EE;
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The normals point to the inside of the curve and the net flow is 

opposite to the direction of the these inward-pointing normals.  The 

result: The net flow of this vector field across this curve is from inside 

to outside. Math happens again.

B.2) Measuring flow along a curve with the integral

       Ùtlow

thigh
 HField@x@tD, y@tDD . 8x¢@tD, y¢@tD<L â t

áB.2.a)

Given a vector field Field@x, yD and a curve specified through 
parametric equations 8x@tD, y@tD< with tlow £ t £ thigh, you use the 
integral  
       Ùtlow

thigh
 Field@x@tD, y@tDD . 8y¢@tD, -x¢@tD< â t 

to measure the flow of the field across the curve.
What do you measure when you calculate
       Ùtlow

thigh
 Field@x@tD, y@tDD . 8x¢@tD, y¢@tD< â t? 

áAnswer:

8y'@tD, -x'@tD< is a normal vector, and when you calculate

       Ùtlow

thigh
 Field@x@tD, y@tDD . 8y¢@tD, -x¢@tD< â t,

you measure net flow across the curve.

Analogously, 8x¢@tD, y¢@tD< is a tangent vector, and when you calculate
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       Ùtlow

thigh
 Field@x@tD, y@tDD . 8x¢@tD, y¢@tD< â t,

you measure net flow ALONG the curve.

áB.2.b)

Here's a vector field:
Clear @Field, m, n, x, y, t D
m@x_, y_ D = y Sin @xD;
n@x_, y_ D = -x Cos@yD;

Field @x_, y_ D = 8m@x, y D, n @x, y D<
8y Sin @xD, -x Cos@yD<

And here is a curve C:
tlow = 0;
thigh = 1;

x@t_ D = 6 t H1 - t L;

y@t_ D = 6 t 2 CosA p t
���������

2
E;

curveplot = ParametricPlot @8x@t D, y @t D<, 8t, 0, 1 <,
PlotStyle ® 88Red, Thickness @0.01 D<<, AxesLabel ® 8"x", "y" <,
PlotRange ® All D;
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Use the integral 
       Ùtlow

thigh
 Field@x@tD, y@tDD . 8x¢@tD, y¢@tD< â t

to determine whether the net flow of Field@x, yD along C is clockwise 
or is counterclockwise.

 

áAnswer:

Make the flow-along-the-curve measurement

       Ùtlow

thigh
Field@x@tD, y@tDD × 8x¢@tD, y¢@tD< â t:

NIntegrate @Field @x@t D, y @t DD . 8x ¢@t D, y ¢@t D<, 8t, tlow, thigh <D
-1.46585

Negative.  This means that the flow of Field@x, yD along C is against the 

direction of the tangent vectors 8x¢@tD, y¢@tD< of this parameterization of 

C.

Take a look at some of these tangent vectors:
scalefactor = 0.3;
tanvectors =

Table AArrow @ 8x ¢@t D, y ¢@t D<, Tail ® 8x@t D, y @t D<, VectorColor ® Red,

ScaleFactor ® scalefactor D, 9t, tlow, thigh,
thigh - tlow
�����������������������������������

6
=E;

Show@curveplot, tanvectors D;
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This curve is parameterized in the counterclockwise way.  Because 

       Ùtlow

thigh HField@x@tD, y@tDD × 8x¢@tD, y¢@tD<L â t

turned out negative, this tells you that the flow of this field along this 

curve is clockwise.

Confirm with a plot of some of the tangential components of the field 

vectors on the curve:
Clear @tan, tancomp D
tan @t_ D = 8x ¢@t D, y ¢@t D<;

 

tancomp @t_ D =
Field @x@t D, y @t DD . tan @t D
���������������������������������������������������������������������������

tan @t D . tan @t D
 tan @t D;

ShowAcurveplot,

Table AArrow @tancomp @t D, Tail ® 8x@t D, y @t D<, VectorColor ® Blue D,

9t, tlow, thigh,
thigh - tlow
�����������������������������������
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=EE;
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Yessiree-Bob. 

Net clockwise flow, just as the measurement predicted.  

Math continues to work.

B.3) Measurements by path integrals  

       ÙC
m@x, yD â x + n@x, yD â y

áB.3.a.i)

Here's some crazy looking notation:
       ÙC

m@x, yD â x + n@x, yD â y .
Folks call this a path integral.
Just what is a path integral?

áAnswer:

A path integral needs the following ingredients:

®  It needs two functions m@x, yD and n@x, yD.
®  It needs a curve C with a specified direction.

VC.05.B2®B3  

The resulting path integral written as by

       ÙC
m@x, yD â x + n@x, yD â y. 

The path integral

       ÙC
m@x, yD â x + n@x, yD â y

is calculated by evaluating the old-fashioned integral 

       Ùtlow

thigh
 Hm@x@tD, y@tDD x¢@tD + n@x@tD, y@tDD y¢@tDL â t

where 8x@tD, y@tD<, tlow £ t £ thigh is any parameterization of C that 

gives the curve the same direction as the specified direction of C. 

Look familiar?

When you work with closed curves (like deformed circles with no 

loops), folks all across our planet have agreed to specify the 

counterclockwise direction.  There is a nifty piece of notation to do this.

For closed curves C without loops,

       �C
m@x, yD â x + n@x, yD â y

means that the parameterization you use to evaluate the path integral is 

counterclockwise.

áB.3.a.ii) Calculating a path integral

Calculate
       �C

m@x, yD â x + n@x, yD â y
for the case in which 
       m@x, yD = y - x,
       n@x, yD = 2 x y
and C is the ellipse 
       H x - 1�������������3 L2 + H y�����2 L2 = 1.

áAnswer:
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Enter the vector field and go with a counterclockwise parameterization 

of the ellipse:
Clear @x, y, m, n, t D
m@x_, y_ D = y - x;
n@x_, y_ D = 2 x y;
8x@t_ D, y @t_ D< = 81, 0 < + 83 Cos@t D, 2 Sin @t D<;
tlow = 0;
thigh = 2 p;

curveplot = ParametricPlot @8x@t D, y @t D<, 8t, tlow, thigh <,
PlotStyle ® 88Thickness @0.01 D, Red <<, AxesLabel ® 8"x", "y" <D;
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Check to be sure that the parameterization is counterclockwise:
ShowAcurveplot,

Table AArrow @8x ¢@t D, y ¢@t D<, Tail ® 8x@t D, y @t D<, VectorColor ® RedD,

9t, tlow, thigh,
thigh - tlow
�����������������������������������

6
=EE;
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Good.

Here is the calculation of  

       �C
m@x, yD â x + n@x, yD â y:

NIntegrate @m@x@t D, y @t DD x ¢@t D + n@x@t D, y @t DD y ¢@t D, 8t, tlow, thigh <D

 

-18.8496

Done.

áB.3.b.i) Path integrals as a flow-along-the-curve measurement

Most folks say the path integral
       �C

m@x, yD â x + n@x, yD â y
measures the flow of the vector field 
       Field@x, yD = 8m@x, yD, n@x, yD<
along a closed curve C.
They go on to say that if
       �C

m@x, yD â x + n@x, yD â y > 0,
then the net flow of 
       Field@x, yD = 8m@x, yD, n@x, yD<
along C is counterclockwise, but if
       �C

m@x, yD â x + n@x, yD â y < 0,
then the net flow of Field@x, yD = 8m@x, yD, n@x, yD< along C is 
clockwise.
Where do they get this idea? 

áAnswer:

Remember:

       �C
m@x, yD â x + n@x, yD â y

demands a counterclockwise parameterization.

Also remember:

When a closed curve C is parameterized in the counterclockwise way 

with a parameterization 8x@tD, y@tD< with tlow £ t £ thigh, 

then the tangent vectors 8x¢@tD, y¢@tD< automatically point in the 

counterclockwise direction. 

When you measure the flow of a vector field   

       Field@x, yD = 8m@x, yD, n@x, yD<
along such a curve, you calculate

 

       Ùtlow

thigh
 HField@x@tD, y@tDD × 8x¢@tD, y¢@tD<L â t

       = Ùtlow

thigh
 H8m@x@tD, y@tDD, n@x@tD, y@tDD< × 8x¢@tD, y¢@tD<L â t

       = Ùtlow

thigh
 Hm@x@tD, y@tDD x¢@tD + n@x@tD, y@tDD y¢@tDL â t

       = �C
m@x, yD â x + n@x, yD â y.

The result:

       �C
m@x, yD â x + n@x, yD â y

measures the flow of the vector field Field@x, yD = 8m@x, yD, n@x, yD< 
around a closed curve C.

Consequently, if

       �C
m@x, yD â x + n@x, yD â y > 0,

then the net flow of Field@x, yD = 8m@x, yD, n@x, yD< around C is 

counterclockwise, but if

       �C
m@x, yD â x + n@x, yD â y < 0,

then the net flow of Field@x, yD = 8m@x, yD, n@x, yD< around C is 

clockwise.

áB.3.b.ii)

Calculate
       �C

5 x y â x + Hx3 + y2L â y
where C is the circle 
       x2 + Hy - 1L2 = 4
and interpret the result.

áAnswer:
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       �C
5 x y â x + Hx3 + y2L â y

measures the net flow of the vector field

       Field@x, yD = 85 x y, x3 + y2<
along the circle.

Here are

® a counterclockwise parameterization of C, and 

® the calculation of

       �C
5 x y â x + Hx3 + y2L â y:

Clear @m, n, x, y, t D
tlow = 0;
thigh = 2 p;

8m@x_, y_ D, n @x_, y_ D< = 85 x y, x 3 + y2<;
8x@t_ D, y @t_ D< = 80, 1 < + 2 8Cos@t D, Sin @t D<;

NIntegrate @m@x@t D, y @t DD x ¢@t D + n@x@t D, y @t DD y ¢@t D, 8t, tlow, thigh <D
37.6991

Big time positive.

This tells you that the net flow of the vector field

       Field@x, yD = 85 x y, x3 + y2<
along the circle is strongly counterclockwise.

Check it out with a plot if you don't believe it.
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áB.3.c.i) Path integrals as a flow-across-the-curve measurement

Most folks say the path integral
       �C

-n@x, yD â x + m@x, yD â y
measures the flow of the vector field 
       Field@x, yD = 8m@x, yD, n@x, yD<
across a closed curve C.
They go on to say that if
       �C

-n@x, yD â x + m@x, yD â y > 0,
then the net flow of Field@x, yD = 8m@x, yD, n@x, yD< across C is from 
inside to outside, but if
       �C

-n@x, yD â x + m@x, yD â y < 0,
then the net flow of Field@x, yD = 8m@x, yD, n@x, yD< across C is from 
outside to inside. 
Where do they get this idea? 

áAnswer:

Remember:

       �C
-n@x, yD â x + m@x, yD â y

demands a counterclockwise parameterization.

Also remember:

When a closed curve C is parameterized in the counterclockwise way 

with a parameterization 

       8x@tD, y@tD< with tlow £ t £ thigh, 

then the normal vectors 8y¢@tD, -x¢@tD< automatically point out away 

from the inside to the outside of the curve. 

When you measure the flow of a vector field   

       Field@x, yD = 8m@x, yD, n@x, yD<
across such a curve, you calculate

 

       Ùtlow

thigh
 H Field@x@tD, y@tDD × 8y¢@tD, -x¢@tD<L â t

       = Ùtlow

thigh
 8m@x@tD, y@tDD, n@x@tD, y@tDD< × 8y¢@tD, -x¢@tD< â t

       = Ùtlow

thigh
 Hm@x@tD, y@tDD y¢@tD - n@x@tD, y@tDD x¢@tDL â t

 

       = �C
-n@x, yD â x + m@x, yD â y.

The upshot:

       �C
-n@x, yD â x + m@x, yD â y

measures the flow of the vector field 

       Field@x, yD = 8m@x, yD, n@x, yD<
across C.

To wrap it up: If

       �C
-n@x, yD â x + m@x, yD â y > 0,

then the net flow of Field@x, yD = 8m@x, yD, n@x, yD< across C is from 

inside to outside, but if

       �C
-n@x, yD â x + m@x, yD â y < 0,

then the net flow of Field@x, yD = 8m@x, yD, n@x, yD< across C is from 

outside to inside.

áB.3.c.ii)

Calculate
       �C

Ey  â x - Ex  â y 
where C is the circle 
       x2 + Hy - 0.5L2 = 0.7
and give two interpretations of the measurement.

áAnswer:

 

Here are

® a counterclockwise parameterization of C, and 

® the calculation of

       �C
Ey  â x - Ex  â y :

Clear @m, n, x, y, t D
tlow = 0;
thigh = 2 p;

8m@x_, y_ D, n @x_, y_ D< = 8Ey , -Ex<;

8x@t_ D, y @t_ D< = 80, 0.5 < +
�!!!!!!!!

0.7 8Cos@t D, Sin @t D<;

NIntegrate @m@x@t D, y @t DD x ¢@t D + n@x@t D, y @t DD y ¢@t D, 8t, tlow, thigh <D
-6.3496

Negative.

®  Flow-along measurement interpretation:

       �C
m@x, yD â x + n@x, yD â y

 measures the net flow of 

       Field@x, yD = 8m@x, yD, n@x, yD< along C.

The path integral calculated here was  

       �C
Ey  â x - Ex  â y < 0

So:

The net flow of the vector field

       Field@x, yD = 8Ey, -Ex<
along the circle is clockwise.

®  Flow-across measurement interpretation:

       �C
-n@x, yD â x + m@x, yD â y

 measures the net flow of 

       Field@x, yD = 8m@x, yD, n@x, yD< across C.

The path integral calculated here was  
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       �C
Ey  â x - Ex  â y < 0

So:

The net flow of the vector field

       Field@x, yD = 8-Ex, - Ey<
across the circle is is from outside to inside.

Note carefully that the two interpretations involve 

different vector fields.

B.4) Directed curves; path integrals 

       ÙC
m@x, yD â x + n@x, yD â y,     

       path independence, and gradient fields

áB.4.a)

Lots of folks say that a parameterization gives a curve a direction.
What do they mean by this?

áAnswer:

The direction your parameterization goes specifies a direction for the 

curve.

Here's a curve 8x@tD, y@tD< with a few scaled tangent vectors 8x¢@tD, y¢@tD<:
Clear @x, y, t, direction D
tlow = 0.25;
thigh = 1.25;

8x@t_ D, y @t_ D< = 81 + 3 Sin @2 t D2 Cos@t D, t E t <;

curveplot1 = ParametricPlot @8x@t D, y @t D<, 8t, tlow, thigh <,
PlotStyle ® 88Red, Thickness @0.01 D<<, DisplayFunction ® Identity,
Epilog ® 8Text @"start", 8x@tlow D, y @tlow D<D,

Text @"end", 8x@thigh D, y @thigh D<D<D;

104  



scalefactor = 0.25;

jump =
thigh - tlow
�����������������������������������

6
;

tanvectors =
Table @Arrow @8x ¢@t D, y ¢@t D<, Tail ® 8x@t D, y @t D<, VectorColor ® Red,

ScaleFactor ® scalefactor D, 8t, tlow, thigh - jump, jump <D;

direction1 = Show@curveplot1, tanvectors, AxesOrigin ® 80, 0 <,
AxesLabel ® 8"x", "y" <, PlotRange ® 880, 5 <, 80, 5 <<,
PlotLabel ® "Direction 1", DisplayFunction ® $DisplayFunction D;
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y Direction 1

start

end

You can plot the same physical curve the reverse direction by changing 

the parameterization:
Clear @xx, yy, t D
a = tlow;
b = thigh;

8xx @t_ D, yy @t_ D< = 8x@b - t Hb - aLD, y @b - t Hb - aLD<;

curveplot2 = ParametricPlot @8xx @t D, yy @t D<, 8t, 0, 1 <, PlotStyle ®
88Red, Thickness @0.01 D<<, DisplayFunction ® Identity, Epilog ®
8Text @"start", 8xx @0D, yy @0D<D, Text @"end", 8xx @1D, yy @1D<D<D;

scalefactor = 0.25;

jump =
1 + 0
�������������

5
;

tanvectors = Table @
Arrow @ 8xx ¢@t D, yy ¢@t D<, Tail ® 8xx @t D, yy @t D<, VectorColor ® Red,

ScaleFactor ® scalefactor D, 8t, 0, 1 - jump, jump <D;

direction2 = Show@curveplot2, tanvectors, AxesOrigin ® 80, 0 <,
AxesLabel ® 8"x", "y" <, PlotRange ® 880, 5 <, 80, 5 <<,
PlotLabel ® "Direction 2", DisplayFunction ® $DisplayFunction D;
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end

The curve is physically the same curve, but this new parameterization 

directs it to run from high to low.

Compare: 
Show@GraphicsArray @8direction1, direction2 <DD;

1 2 3 4 5 x

1

2

3

4

5
y Direction 1

start

end

1 2 3 4 5 x

1

2

3

4

5
y Direction 2

start

end

If the curve C is closed (like a deformed circle) and has no loops, then 

there is no natural start or end.  Your parametrization gives a start, an 

end, and a clockwise or counterclockwise direction.  It's all up to you.  

Here is a closed curve parameterized in the counterclockwise direction 

with the start point the same as the end point:
Clear @x, y, t, direction D
tlow = 0;
thigh = 2 p;

8x@t_ D, y @t_ D< = 8H1 + Sin @t D2L Cos@t D, H0.5 + 2 Cos@t D2L Sin @t D<;

curveplot1 = ParametricPlot @8x@t D, y @t D<, 8t, tlow, thigh <,
PlotStyle ® 88Red, Thickness @0.01 D<<, DisplayFunction ® Identity,
Epilog ® 8Text @"start", 8x@tlow D, y @tlow D<, 80, -2<D,

Text @"end", 8x@thigh D, y @thigh D<, 80, 2 <D<D;

 

scalefactor = 0.25;

jump =
thigh - tlow
�����������������������������������

8
;

tanvectors =
Table @Arrow @ 8x ¢@t D, y ¢@t D<, Tail ® 8x@t D, y @t D<, VectorColor ® Red,

ScaleFactor ® scalefactor D, 8t, tlow, thigh - jump, jump <D;

counterclockwise = Show@curveplot1, tanvectors, AxesOrigin ® 80, 0 <,
AxesLabel ® 8"x", "y" <, PlotLabel ® "Counterclockwise",
PlotRange ® All, DisplayFunction ® $DisplayFunction D;
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start

end

Here is the same curve with a clockwise parameterization with the start 

point the same as the end point:
Clear @xx, yy, t D
8xx @t_ D, yy @t_ D< = 8x@thigh - t D, y @thigh - t D<;

curveplot2 = ParametricPlot @8xx @t D, yy @t D<, 8t, tlow, thigh <,
PlotStyle ® 88Red, Thickness @0.01 D<<, DisplayFunction ® Identity,
Epilog ® 8Text @"start", 8xx @tlow D, yy @tlow D<, 80, -2<D,

Text @"end", 8xx @thigh D, yy @thigh D<, 80, 2 <D<D;

scalefactor = 0.25;

jump =
thigh - tlow
�����������������������������������

8
;

tanvectors = Table @
Arrow @ 8xx ¢@t D, yy ¢@t D<, Tail ® 8xx @t D, yy @t D<, VectorColor ® Red,

ScaleFactor ® scalefactor D, 8t, tlow, thigh - jump, jump <D;

clockwise = Show@curveplot2, tanvectors, AxesOrigin ® 80, 0 <,
AxesLabel ® 8"x", "y" <, PlotLabel ® "Clockwise", PlotRange ® All,
DisplayFunction ® $DisplayFunction D;
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For closed curves without loops, the clockwise and counterclockwise 

directions are the only choices you have.

áB.4.b)

Calculate
       ÙC

x Ex y  â x + y Ex y  â y  
where C is the part of the parabola 
       y= x2

starting at 80, 0< and ending at 82, 4<. 
Interpret the meaning of the result.

áAnswer:

Here's everything you need:
Clear @m, n, x, y, t D
tlow = 0;
thigh = 2;

m@x_, y_ D = x Ex y ;
n@x_, y_ D = y Ex y ;

8x@t_ D, y @t_ D< = 8t, t 2<;

curveplot = ParametricPlot @8x@t D, y @t D<,
8t, tlow, thigh <, PlotStyle ® 88Red, Thickness @0.01 D<<,
AxesLabel ® 8"x", "y" <, PlotLabel ® "C and its direction",
Epilog ® 8Text @"start", 8x@tlow D, y @tlow D<, 8-2, -2<D,

Text @"end", 8x@thigh D, y @thigh D<, 82, 2 <D<D;
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Yep, the curve C runs on the parabola y = x2 and starts at 80, 0< and 

ends at 82, 4<.
Here comes the calculation of ÙC

x Ex y  â x + y Ex y  â y:  
NIntegrate @m@x@t D, y @t DD x ¢@t D + n@x@t D, y @t DD y ¢@t D, 8t, tlow, thigh <D

4312.75

Humongously positive.

® Flow-along interpretation:

       ÙC
x Ex y  â x + y Ex y  â y 

measures the net flow of the vector field 

       Field@x, yD = 8x Ex y, y Ex y<
along C. The net flow of this vector field is strongly in the direction of 

the parameterization of the curve (from low to high).

® Flow-across interpretation:

       ÙC
x Ex y  â x + y Ex y  â y 

measures the net flow of the vector field 

       Field@x, yD = 8y Ex y, -x Ex y<
across C. The net flow of this vector field across C is strongly in the 

direction of the normals 8y¢@tD, -x¢@tD<. These normals point to the right 

as you advance along the curve in the direction of the parameterization, 

so the net flow of the vector field 

 

       Field@x, yD = 8y Ex y, -x Ex y<
across C is from above C to below C. 

áB.4.c.i) Fundamental formula for path integrals of gradient fields

Here's a cleared gradient field:
Clear @f, x, y, m, n, gradf, Field D
gradf @x_, y_ D = 8D@f @x, y D, x D, D @f @x, y D, y D<;
8m@x_, y_ D, n @x_, y_ D< = gradf @x, y D;

Field @x_, y_ D = 8m@x, y D, n @x, y D<
8f H1,0 L@x, y D, f H0,1 L@x, y D<

Here's Mathematica's calculation of 
       ÙC

m@x, yD â x + n@x, yD â y
for a cleared parameterization of a curve C that starts at 
8x@tlowD, y@tlowD< and ends at 8x@thighD, y@thighD<: 

Clear @t D

à
tlow

thigh

 Hm@x@t D, y @t DD x ¢@t D + n@x@t D, y @t DD y ¢@t DL â t

-f @x@0D, y @0DD + f @x@2D, y @2DD
Explain where the answer comes from.

áAnswer:

Put:
Clear @gD
g@t_ D = f @x@t D, y @t DD

f @x@t D, y @t DD

Compare:
D@g@t D, t D == m@x@t D, y @t DD x ¢@t D + n@x@t D, y @t DD y ¢@t D

True

This tells you 

       g¢@tD = m@x@tD, y@tDD x¢@tD + n@x@tD, y@tDD y¢@tD.
The fundamental formula of calculus tells you

       f @x@thighD, y@thighDD - f @x@tlowD, y@tlowDD

 

       

       = g@thighD - g@tlowD
       

       = Ùtlow

thigh
g¢@tD â t

       = Ùtlow

thigh Hm@x@tD, y@tDD x¢@tD + n@x@tD, y@tDD y¢@tDL â t

       = ÙC
m@x, yD â x + n@x, yD â y. 

So 

       ÙC
m@x, yD â x + n@x, yD â y 

       = f @x@thighD, y@thighDD - f @x@tlowD, y@tlowDD
in the case that 8m@x, yD, n@x, yD< = Ñ f @x, yD.
The explanation is over.

áB.4.c.ii) Path independence for gradient fields

Now you know why you are guaranteed that
       f@x1, y1D - f @x0, y0D = ÙC

m@x, yD â x + n@x, yD â y
for any curve C starting at 8x0, y0< and ending at 8x1, y1< 
provided 
       8m@x, yD, n@x, yD< = Ñ f @x, yD
for a function f@x, yD.
What calculational advantage do you get from this?
What theoretical advantage do you get from this?

áAnswer:

® Your calculational advantage:

Here's a gradient field:
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Clear @f, x, y, gradf, m, n D
f @x_, y_ D = Sin @p x y D;

gradf @x_, y_ D = 8D@f @x, y D, x D, D @f @x, y D, y D<;
8m@x_, y_ D, n @x_, y_ D< = gradf @x, y D

8p y Cos@p x y D, p x Cos@p x y D<

Because 8m@x, yD, n@x, yD< = Ñ f @x, yD, you are guaranteed that if C is 

any curve running from 80, 0< to 81, 5�����2 <, then 

       ÙC
m@x, yD â x + n@x, yD â y

is given by: 

f A1,
5
�����
2
E - f @0, 0 D

1

Your calculational advantage is that you don't have to set up any 

parameterizations to calculate the path integral  

       ÙC
m@x, yD â x + n@x, yD â y.

® Your theoretical advantage:

When you know that 

       8m@x, yD, n@x, yD< = Ñ f @x, yD, 
then you know that

       ÙC
m@x, yD â x + n@x, yD â y

DOES NOT DEPEND ON THE ROUTE OF THE PATH C takes from 

its start to its end. In fact,the value of

       ÙC
m@x, yD â x + n@x, yD â y

depends ONLY on the starting point and the ending point of C.  

áB.4.c.iii) The net flow of a gradient field along any closed curve is 0

If Field@x, yD = Ñ f @x, yD for a function f@x, yD, then how do you know 
that the flow of Field@x, yD along any closed curve is 0?

áAnswer:
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Put 

       Field@x, yD = 8m@x, yD, n@x, yD< = Ñ f @x, yD.
You are guaranteed that

       f @x1, y1D - f @x0, y0D = ÙC
m@x, yD â x + n@x, yD â y

for any curve C starting at 8x0, y0< and ending at 8x1, y1<.
But for a closed curve C (like a deformed circle) , you know that

       8x0, y0< = 8x1, y1<.
So

       �C
m@x, yD â x + n@x, yD â y

       = f @x1, y1D - f @x0, y0D

       = f @x0, y0D - f @x0, y0D = 0

in the case that C is a closed curve.

That's all there is to it.

Try it out for 8m@x, yD, n@x, yD< = Ñ f @x, yD with 

       f @x, yD = x4 y2,

and with C the circle of radius 0.5 centered at 80, 0<:  

 

Clear @f, x, y, m, n, gradf, Field, t D
f @x_, y_ D = x4 y2 ;

gradf @x_, y_ D = 8D@f @x, y D, x D, D @f @x, y D, y D<;
8m@x_, y_ D, n @x_, y_ D< = gradf @x, y D;

Field @x_, y_ D = 8m@x, y D, n @x, y D<;
tlow = 0;
thigh = 2 p;

8x@t_ D, y @t_ D< = 0.5 8Cos@t D, Sin @t D<;

à
tlow

thigh

 Hm@x@t D, y @t DD x ¢@t D + n@x@t D, y @t DD y ¢@t DL â t

0.

Just as theory predicted.

VC.05 Flow Measurements by Integrals
Tutorials

T.1)  Backward and forward

áT.1.a.i)

Explain why:
If C1 and C2 are the same physical curve, but 
® the starting point of C1 = the ending point of C2   
and 
® the ending point of C1 = the starting point of C2, 
then for any m@x, yD and n@x, yD that come down the pike, you will 
always get
       ÙC1

m@x, yD â x + n@x, yD â y 

       = -ÙC2
m@x, yD â x + n@x, yD â y.

In other words, if you reverse the direction, then you reverse the sign 
of the path integral.

áAnswer:

 

Both 

       ÙC1
m@x, yD â x + n@x, yD â y

and 

       ÙC2
m@x, yD â x + n@x, yD â y

measure the flow of the vector field 

       Field@x, yD = 8m@x, yD, n@x, yD< 
along the same curve. But the interpretation is different in each case, 

because the unit tangent vectors on C1 point in the direction exactly 

opposite of those on C2 .

The opposite direction of the tangent vectors accounts for the minus 

sign.

áT.1.a.ii)

Illustrate by calculating the path integral
       ÙC1

y3 â x + x2 y â y,
where C1 is the segment of the parabola 
       y= x2 
starting at 80, 0< and ending at 82, 4<, and then calculating the path 
integral
       ÙC2

y3 â x + x2 y â y
where C2 is the segment of the same parabola, but starting at 82, 4< 
and ending at 80, 0<.

áAnswer:

Clear @m, n, x, y D
m@x_, y_ D = y3 ;

n@x_, y_ D = x2 y;

To calculate the path integral

       ÙC1
y3 â x + x2 y â y,

where C1 is the segment of the parabola 
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       y = x2 

starting at 80, 0< and ending at 82, 4<, parameterize C1 so that it runs 

from 80, 0< to 82, 4< and integrate:
Clear @t D
x@t_ D = t;

y@t_ D = t 2 ;
tlow = 0;
thigh = 2;
start1 = 8x@tlow D, y @tlow D<

80, 0 <
end1 = 8x@thigh D, y @thigh D<

82, 4 <
C1pathintegral =

NIntegrate @m@x@t D, y @t DD x ¢@t D + n@x@t D, y @t DD y ¢@t D, 8t, tlow, thigh <D
39.619

To calculate the path integral

       ÙC2
y3 â x + x2 y â y

where C2 is the segment of the parabola y = x2 starting at 82, 4< and 

ending at 80, 0<, parameterize C2 so that it starts at 82, 4< and runs to 

80, 0< and integrate:
Clear @x, y D
x@t_ D = 2 - t;

y@t_ D = H2 - t L2 ;
tlow = 0;
thigh = 2;
start2 = 8x@tlow D, y @tlow D<

82, 4 <
end2 = 8x@thigh D, y @thigh D<

80, 0 <
C2pathintegral =

NIntegrate @m@x@t D, y @t DD x ¢@t D + n@x@t D, y @t DD y ¢@t D, 8t, tlow, thigh <D
-39.619

Compare:
8C1pathintegral, C2pathintegral <

839.619, -39.619 <
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Just as you knew in advance; they are negatives of each other.

áT.1.b.i)  

Calculate the path integral 
       ÙC

-x2 y â x + 2 x y â y,
where C starts at 8-1, 2<, runs on a straight line to 88, -1<, and then 
runs on the straight line from 88, -1< to 84, 7<, where C ends.

áAnswer:

Enter the integrands:
Clear @m, n, x, y D
8m@x_, y_ D, n @x_, y_ D< = 8-x2 y, 2 x y <

8-x2 y, 2 x y <

Here's a look at C:
point1 = 8-1, 2 <;
point2 = 88, -1<;
point3 = 84, 7 <;
points = 8point1, point2, point3 <;

Show@Graphics @8Red, Thickness @0.01 D, Line @points D<D,
Axes ® True, AxesLabel ® 8"x", "y" <,
PlotLabel ® "C", Epilog ® 8Text @"Point1", point1, 8-1, 0 <D,

Text @"Point2", point2, 81, 0 <D, Text @"Point3", point3 D<D;
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Here comes the parameterization that makes C run from point1 to 

point2 and then to point3 and the calculation of

       ÙC
-x2 y â x + 2 x y â y:

Clear @x1, y1, x2, y2, t D
8x1@t_ D, y1 @t_ D< = point1 + t Hpoint2 - point1 L;

 

8x2@t_ D, y2 @t_ D< = point2 + t Hpoint3 - point2 L;
tlow = 0;
thigh = 1;

Cpathintegral = NIntegrate @
m@x1@t D, y1 @t DD x1 ¢@t D + n@x1@t D, y1 @t DD y1 ¢@t D, 8t, tlow, thigh <D +

NIntegrate @m@x2@t D, y2 @t DD x2 ¢@t D + n@x2@t D, y2 @t DD y2 ¢@t D,
8t, tlow, thigh <D

624.583

And you're out of here.

áT.1.b.ii) 

Calculate the path integral 
       ÙC

-x2 y â x + 2 x y â y
where C starts at 84, 7<, runs on a straight line to 88, -1< and then runs 
on the straight line from 88, -1< to 8-1, 2<: 

áAnswer:

This is almost the same as in part i) above.

The curve C is physically the same here as it was in part i).

The only difference is that this time the direction of C is the reverse of 

the direction in part i).

To do the calculation, take the answer to part i) above and multiply it 

by -1.

áT.1.c.i)  Clockwise versus counterclockwise

It's late and you're calculating 
       ÙC

y2 â x + H2 x2 + yL â y

where C is the ellipse H x + 1�������������4 L2 + H y�����2 L2 = 1.
In your haste to meet your date at the local hangout, you type:

Clear @m, n, x, y, t D
m@x_, y_ D = y2 ;

n@x_, y_ D = 2 x 2 + y;
8x@t_ D, y @t_ D< = 8-1, 0 < + 84 Sin @t D, 2 Cos @t D<;
answer =

NIntegrate @m@x@t D, y @t DD x ¢@t D + n@x@t D, y @t DD y ¢@t D, 8t, 0, 2 p<D

 

100.531

A friend looking over your shoulder says: "Good work, but your 
answer is wrong because your parameterization is clockwise and not 
counterclockwise."
After looking at a plot of some tangent vectors, you see that your 
parameterization is clockwise. 
And then you say, "The correct answer is:"

correctanswer = -answer

-100.531

Are you right?
áAnswer:

Yes.

T.2)  Screwing up

áT.2.a)

What are the best ways of screwing up the calculation of a path 
integral
       �C

m@x, yD â x + n@x, yD â y?
áAnswer:

The best way to screw up is to give a clockwise parameterization 

instead of a counterclockwise parameterization of C.

The second best way to screw up is to give a counterclockwise 

parameterization that covers C more than once.

Case in point:

Calculate

       �C
-y â x + x â y,

given that C is the circle x2 + y2 = 1.
Clear @m, n, x, y D
m@x_, y_ D = -y;
n@x_, y_ D = x;
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8x@t_ D, y @t_ D< = 8Cos@t D, Sin @t D<;
tlow = 0;
thigh = 4 p;

pathintegral =
NIntegrate @m@x@t D, y @t DD x ¢@t D + n@x@t D, y @t DD y ¢@t D, 8t, tlow, thigh <D

12.5664

Check the parameterization:
curveplot = ParametricPlot @8x@t D, y @t D<,

8t, tlow, thigh <, PlotStyle ® 88Red, Thickness @0.01 D<<,
AxesLabel ® 8"x", "y" <, DisplayFunction ® Identity D;

jump =
p
�����
4

;

tangentvectors =
Table @Arrow @8x ¢@t D, y ¢@t D<, Tail ® 8x@t D, y @t D<, VectorColor ® RedD,
8t, tlow, thigh - jump, jump <D;

Show@curveplot, tangentvectors, DisplayFunction ® $DisplayFunction D;
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So far, so good. Everything looks fine.

Now look at:
8x@tlow D, y @tlow D< == 8x@thigh D, y @thigh D<

True

The starting point and the ending point are the same.

So this parameterization passes the usual tests, but the calculated value 

of 

       �C
-y â x + x â y  

above is DEAD WRONG.

To see why, look at:
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ParametricPlot @8x@t D, y @t D<, 8t, tlow, 2 p<,
PlotStyle ® 88Red, Thickness @0.01 D<<, AxesLabel ® 8"x", "y" <D;
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ParametricPlot @8x@t D, y @t D<, 8t, 2 p, thigh <,
PlotStyle ® 88Red, Thickness @0.01 D<<, AxesLabel ® 8"x", "y" <D;
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As t advances from tlow = 0 to thigh = 4 p as orginally specified, the 

parameterization goes around the curve twice, and this is not what you 

want.  

The right value for

       �C
-y â x + x â y 

is:
tlow = 0;
correctthigh = 2 p;
correctpathintegral = NIntegrate @

m@x@t D, y @t DD x ¢@t D + n@x@t D, y @t DD y ¢@t D, 8t, tlow, correctthigh <D
6.28319

 

T.3)  Recognizing gradient fields:  The gradient test
When you have to calculate a path integral  
       ÙC

m@x, yD â x + n@x, yD â y 
and you recognize that the vector field 
       Field@x, yD = 8m@x, yD, n@x, yD<  
is the gradient field of a function f@x, yD, then a warm comfortable 
feeling radiates through your body.
If you want to exploit the advantages you get from a gradient field, 
you'll have to be in a position to recognize when a given vector field is 
a gradient field.
To this end, go with a cleared gradient field:

Clear @f, gradf, x, y, m, n D
gradf @x_, y_ D = 8D@f @x, y D, x D, D @f @x, y D, y D<;
8m@x_, y_ D, n @x_, y_ D< = gradf @x, y D

8f H1,0 L@x, y D, f H0,1 L@x, y D<
Look at this:

gradtest = D@m@x, y D, y D - D@n@x, y D, x D
0

This tells you that if you have a gradient field 
       Field@x, yD = 8m@x, yD, n @x, y<, 
then
       D@m@x, yD, yD - D@n@x, yD, xD = 0. 

áT.3.a.i)

If you are given a vector field 
       Field@x, yD = 8m@x, yD, n @x, y<
and you learn that
       D@m@x, yD, yD - D@n@x, yD, xD = 0, 
then are you automatically guaranteed that Field@x, yD is a gradient 
field?

áAnswer:

Yes,  provided that neither m@x, yD nor n@x, yD has a singularity 

(blow-up or blow-down).

 

áT.3.a.ii)

Is the vector field
       Field@x, yD = 8ex  Cos@yD, -ex  Sin@yD< 
a gradient field?

áAnswer:

Look at:
Clear @m, n, x, y D
8m@x_, y_ D, n @x_, y_ D< = 8Ex Cos@yD, -Ex Sin @yD<

8Ex Cos@yD, -Ex Sin @yD<

Good; neither m@x, yD nor n@x, yD has any singularities.

Now go with the gradient test:
gradtest = D@m@x, y D, y D - D@n@x, y D, x D

0

Hot dog!

No doubt about it, this vector field is a gradient field.

áT.3.a.iii)

Is the vector field
       Field@x, yD = 8ey  Cos@xD, -ey  Sin@xD< 
a gradient field?

áAnswer:

Look at:
Clear @m, n, x, y D
8m@x_, y_ D, n @x_, y_ D< = 8Ey Cos@xD, -Ey Sin @xD<

8Ey Cos@xD, -Ey Sin @xD<

Good; neither m@x, yD nor n@x, yD has any singularities.

Now go with the gradient test:
gradtest = D@m@x, y D, y D - D@n@x, y D, x D

2 Ey Cos@xD

This is not 0.

Absolutely no doubt about it, this vector field is NOT a gradient field.

VC.05.T1®T3  

áT.3.a.iv) Singularities (blow-ups or blow-downs)

Is the vector field
       Field@x, yD = 8- y�����������������x2 + y2 , x�����������������x2 + y2 < 
a gradient field?

áAnswer:

Look at:
Clear @m, n, Field, x, y D
8m@x_, y_ D, n @x_, y_ D< = 9-

y
�������������������
x2 + y2

,
x

�������������������
x2 + y2

=;

Field @x_, y_ D = 8m@x, y D, n @x, y D<
9-

y
�������������������
x2 + y2

,
x

�������������������
x2 + y2

=

A big fat singularity at 8x, y< = 80, 0<.
You can see this by plotting.

Plot @m@0, y D, 8y, -1, 1 <, PlotStyle ® Red, AspectRatio ® 1D;
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Plot @n@x, 0 D, 8x, -1, 1 <, PlotStyle ® Red, AspectRatio ® 1D;
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This vector field fails the first part of the gradient test.

Now look at the second part of the gradient test:
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gradtest = Simplify @D@n@x, y D, x D - D@m@x, y D, y DD
0

This field passes the second part of the gradient test.

Whether this vector field is a genuine gradient field is in doubt.

Try something else by looking at

       �C
m@x, yD â x + n@x, yD â y

where C is the circle of radius 1 centered at the singularity at 80, 0<: 
Clear @t D
8x@t_ D, y @t_ D< = 8Cos@t D, Sin @t D<;
tlow = 0;
thigh = 2 p;

NIntegrate @m@x@t D, y @t DD x ¢@t D + n@x@t D, y @t DD y ¢@t D, 8t, tlow, thigh <D
6.28319

Not zero.

This tells you for sure that this vector field is not a gradient field.

áT.3.a.v)

Is every vector field a gradient field?
áAnswer:

Hell no.

áT.3.b)

Here's a vector field:
Clear @Field, m, n, x, y D
8m@x_, y_ D, n @x_, y_ D< = 8x2 + 2 x Sin @yD, Sin @5 yD + x2 Cos@yD<;
Field @x_, y_ D = 8m@x, y D, n @x, y D<

8x2 + 2 x Sin @yD, x 2 Cos@yD + Sin @5 yD<
No singularities.
Give it the second part of the gradient test:

gradtest = D@m@x, y D, y D - D@n@x, y D, x D
0

Good. 
Field@x, yD is definitely a gradient field.

 

Try to come up with a function f@x, yD so that
       gradf@x, yD = Field@x, yD.  

áAnswer:

The goal is to come up with a function f @x, yD with

       gradf@x, yD = Field@x, yD.
To do this, fix any point 8a, b< you like and parameterize a line C (or 

other curve) running from 8a, b< to the variable point 8x, y<:
80, 0< is usually a good choice for 8a, b<.

Clear @t D
8a, b < = 80, 0 <;
fixedpoint = 8a, b <;
variablepoint = 8x, y <;
tlow = 0;
thigh = 1;

8x@t_ D, y @t_ D< = fixedpoint + t Hvariablepoint - fixedpoint L
8t x, t y <

To get a function f @x, yD with 

       gradf@x, yD = 8m@x, yD, n@x, yD<, 
all you gotta do is set

       f @x, yD = ÙC
m@x, yD â x + n@x, yD â y

where C is the line (or other curve) running from the fixed point 8a, b< 
to the variable point 8x, y<: 

Clear @f D

f @x_, y_ D = à
tlow

thigh

 Hm@x@t D, y @t DD x ¢@t D + n@x@t D, y @t DD y ¢@t DL â t

1
�����
5

+
x3
��������
3

-
1
�����
5

Cos@5 yD + x2 Sin @yD

Try it out:
Clear @gradf D
gradf @x_, y_ D = 8D@f @x, y D, x D, D @f @x, y D, y D<

8x2 + 2 x Sin @yD, x 2 Cos@yD + Sin @5 yD<

Compare:

 

8m@x, y D, n @x, y D<
8x2 + 2 x Sin @yD, x 2 Cos@yD + Sin @5 yD<

TrigExpand @gradf @x, y DD == TrigExpand @8m@x, y D, n @x, y D<D
True

Great.

This tells you that 

       gradf@x, yD = 8m@x, yD, n@x, yD<
just as you wanted.

See what happens when you go with 8a, b< = 81, p�����2 <: 
Clear @x, y, t D
8a, b < = 91,

p
�����
2
=;

fixedpoint = 8a, b <;
variablepoint = 8x, y <;
tlow = 0;
thigh = 1;

8x@t_ D, y @t_ D< = fixedpoint + t Hvariablepoint - fixedpoint L
91 + t H-1 + xL,

p
�����
2

+ t I-
p
�����
2

+ yM=

Set

       f @x, yD = ÙC
m@x, yD â x + n@x, yD â y

where C is the line running from 8a, b< to 8x, y<: 
Clear @f D

f @x_, y_ D = à
tlow

thigh

 Hm@x@t D, y @t DD x ¢@t D + n@x@t D, y @t DD y ¢@t DL â t

-
4
�����
3

+
x3
��������
3

+ x2 CosA 1
�����
2

Hp - 2 yLE -
1
�����
5

Sin A 5
�����
2

Hp - 2 yLE

Looks bad; check whether it feels good:
Clear @gradf D
gradf @x_, y_ D = 8D@f @x, y D, x D, D @f @x, y D, y D<

9x2 + 2 x Cos A 1
�����
2

Hp - 2 yLE, Cos A 5
�����
2

Hp - 2 yLE + x2 Sin A 1
�����
2

Hp - 2 yLE=

Compare:
8m@x, y D, n @x, y D<
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8x2 + 2 x Sin @yD, x 2 Cos@yD + Sin @5 yD<
TrigExpand @gradf @x, y DD == TrigExpand @8m@x, y D, n @x, y D<D

True

It feels great!

Each time you change the fixed point 8a, b<, you make a different 

function f @x, yD whose gradient is 8m@x, yD, n@x, yD<.
áT.3.c)

What is the value of 
       ÙC

e-5 x y  H3 Cos@3 xD - 5 y Sin@3 xDL â x  
            - 5 x e-5 x y  Sin@3 xD â y
for any curve C running from 8-0.7, 0< to 81.1, 0.4<?

áAnswer:

Here's the vector field:
Clear @Field, m, n, x, y D
8m@x_, y_ D, n @x_, y_ D< =

8E-5 x y H3 Cos@3 xD - 5 y Sin @3 xDL, -5 x E-5 x y Sin @3 xD<;
Field @x_, y_ D = 8m@x, y D, n @x, y D<

8E-5 x y H3 Cos@3 xD - 5 y Sin @3 xDL, -5 E-5 x y x Sin @3 xD<

No singularities (because es > 0 no matter what s is).

Give it the second part of the gradient test:
gradtest = Together @D@m@x, y D, y D - D@n@x, y D, x DD

0

Good. Now you know that

       Field@x, yD = 8m@x, yD, n@x, yD< 
is a gradient field. 

This is really good news because this tells you that

       ÙC
e-5 x y  H3 Cos@3 xD - 5 y Sin@3 xDL â x  

            - 5 x e-5 x y  Sin@3 xD â y

calculates out to the same value no matter what curve C you go with as 
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long as C starts at 8-0.7, 0< and stops at 81.1, 0.4<. This information is 

quite a relief because now you know that you can calculate this integral 

by using any cheap curve C running from 8-0.7, 0< to  81.1, 0.4<. 
One really cheap curve is the straight line parameterized by:

Clear @x, y, t D
start = 8-0.7, 0 <;
end = 81.1, 0.4 <;
tlow = 0;
thigh = 1;
8x@t_ D, y @t_ D< = start + t Hend - start L

8-0.7 + 1.8 t, 0.4 t <

Here comes the calculation of

       ÙC
e-5 x y  H3 Cos@3 xD - 5 y Sin@3 xDL â x  

            - 5 x e-5 x y  Sin@3 xD â y

for any curve C running from 8-0.7, 0< to  81.1, 0.4< :
NIntegrate @m@x@t D, y @t DD x ¢@t D + n@x@t D, y @t DD y ¢@t D, 8t, tlow, thigh <D

0.845731

Not hard at all.

T.4)  Line integrals

áT.4.a)

What do folks mean when they talk about line integrals?

áAnswer:

A line integral is the same thing as a path integral.  This alternate 

terminology is in common use.  This is unfortunate because many path 

integrals involve curves that are not lines.

 

T.5)  Summary of main ideas
Calculus&Mathematica  offers this summary to you 

for your good use and enjoyment.
It comes from the home office to you.

'93

áT.5.a.i) Flow along

If a curve C is parameterized by 8x@tD, y@tD< with tlow £ t £ thigh, then
       ÙC

m@x, yD â x + n@x, yD â y

       Ùtlow

thigh
Field@x@tD, y@tDD . 8x¢@tD, y¢@tD< â t 

       = Ùtlow

thigh
 Hm@x@tD, y@tDD x¢@tD + n@x@tD, y@tDD y¢@tDL â t 

measures of the flow of a vector field 
       Field@x, yD = 8m@x, yD, n@x, yD< 
along the curve C.

áT.5.a.ii)

If you have a closed curve C (like a deformed circle), and if
       �C

m@x, yD â x + n@x, yD â y > 0, 
then the flow of Field@x, yD = 8m@x, yD, n@x, yD< along C is 
counterclockwise.
But if
       �C

m@x, yD â x + n@x, yD â y < 0, 
then the flow of Field@x, yD = 8m@x, yD, n@x, yD< along C is clockwise.

áT.5.b.i) Flow across

If a curve C is parameterized by 8x@tD, y@tD< with tlow £ t £ thigh, then
       ÙC

-n@x, yD â x + m@x, yD â y

       = Ùtlow

thigh
Field@x@tD, y@tDD . 8y¢@tD, -x¢@tD< â t 

       = Ùtlow

thigh H-n@x@tD, y@tDD x¢@tD + m@x@tD, y@tDD y¢@tDL â t
measures of the flow of a vector field 
       Field@x, yD = 8m@x, yD, n@x, yD< 
across the curve C.

 

áT.5.b.ii)

If you have a closed curve C (like a deformed circle), and if
       �C

-n@x, yD â x + m@x, yD â y > 0, 
then the flow of Field@x, yD = 8m@x, yD, n@x, yD< across C is from inside 
to outside.
But if
       �C

-n@x, yD â x + m@x, yD â y < 0, 
then the flow of Field@x, yD = 8m@x, yD, n@x, yD< across C is from 
outside to inside.

áT.5.c.i) Gradient fields

A vector field 
       Field@x, yD = 8m@x, yD, n@x, yD< 
is a gradient field if there is a function f@x, yD with 
       gradf@x, yD = Field@x, yD.
You can be sure a vector field 
       Field@x, yD = 8m@x, yD, n@x, yD< 
is a gradient field if neither m@x, yD nor n@x, yD has singularities and
       D@m@x, yD, yD = D@n@x, yD, xD.

áT.5.c.ii)

 If a vector field 
       Field@x, yD = 8m@x, yD, n@x, yD< 
is a gradient field, then for any closed curve C, you are guaranteed that
       �C

m@x, yD â x + n@x, yD â y = 0.
This tells you that the net flow of a gradient field along any closed 
curve is 0.

VC.05.T3®G1  

áT.5.c.iii)

If a vector field
       Field@x, yD = 8m@x, yD, n@x, yD< 
is a gradient field, then for any curve C, the value of the path integral 
       ÙC

m@x, yD â x + n@x, yD â y 
depends on the location of the starting point of C and the location of 
the end point of C but does not depend on the specific path C takes as 
it runs from its start to its end.

VC.05 Flow Measurements by Integrals
Give it a Try!

Experience with the starred problems will be useful for understanding 
developments later in the course.

G.1)   Flow along and flow across*

áG.1.a)

Here's a vector field:
Clear @x, y, m, n, Field D
8m@x_, y_ D, n @x_, y_ D< = 8x2 - 2 y, -y2 + x<;
Field @x_, y_ D = 8m@x, y D, n @x, y D<

8x2 - 2 y, x - y2<
Here's the circle C of radius 3 centered at 81, 2< parameterized in the 
counterclockwise way:

Clear @t D
8x@t_ D, y @t_ D< = 81, 2 < + 3 8Cos@t D, Sin @t D<;
tlow = 0;
thigh = 2 p;

curveplot = ParametricPlot @8x@t D, y @t D<, 8t, tlow, thigh <,
PlotStyle ® 88Thickness @0.01 D, Red <<, AspectRatio ® Automatic,
AxesLabel ® 8"x", "y" <D;
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Calculate   
       �C

-n@x, yD â x + m@x, yD â y
and use your result to determine whether the net flow of this vector 
field across this curve is from inside to outside, outside to inside, or 0.
Calculate   
       �C

m@x, yD â x + n@x, yD â y 
and use your result to determine whether the net flow of this vector 
field along this curve is clockwise, counterclockwise or 0.

áG.1.b)

Here's a vector field:
Clear @x, y, m, n, Field D
8m@x_, y_ D, n @x_, y_ D< = 80.5 x - 1.2 y, 1 <;
Field @x_, y_ D = 8m@x, y D, n @x, y D<

80.5 x - 1.2 y, 1 <
Here's a parameterization and a plot of a closed curve C: 

Clear @t D
8x@t_ D, y @t_ D< = 83 t H3 - t L, t Ht - 3L2<;
tlow = 0;
thigh = 3;

curveplot = ParametricPlot @8x@t D, y @t D<, 8t, tlow, thigh <, PlotStyle ®
88Thickness @0.01 D, Red <<, PlotLabel ® "The closed curve C",

AspectRatio ® Automatic, AxesLabel ® 8"x", "y" <D;

 

1 2 3 4 5 6
x

1

2

3

4

y The closed curve C

Is C parameterized in the counterclockwise or clockwise way?
Use a path integral to determine whether the net flow of this vector 
field across C is from outside to inside, inside to outside, or 0.
Use a path integral to determine whether the net flow of this vector 
field along C is clockwise, counterclockwise, or 0. 

áG.1.c)

Here's a vector field:
Clear @x, y, m, n, Field D
8m@x_, y_ D, n @x_, y_ D< = 8x3 - 3 x y 2 , 3 x 2 y - y3<;
Field @x_, y_ D = 8m@x, y D, n @x, y D<

8x3 - 3 x y 2, 3 x 2 y - y3<
Here's a parameterization and a plot of a closed curve C. 

Clear @t D

8x@t_ D, y @t_ D< = 93 Sin @t D Cos@t D, Sin @t D2 +
1
�����
6

Cos@6 t D + 2=;

tlow = 0;
thigh = p;

curveplot = ParametricPlot @8x@t D, y @t D<, 8t, tlow, thigh <,
PlotStyle ® 88Thickness @0.015 D, Red <<, AspectRatio ® Automatic,
AxesLabel ® 8"x", "y" <D;

-1.5 -1 -0.5 0.5 1 1.5
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y

Is the curve parameterized in the counterclockwise or clockwise 
way?
Use a path integral to determine whether the net flow of this vector 

 

field across this curve is from outside to inside, inside to outside, or 0.
Use a path integral to determine whether the net flow of this vector 
field along this curve is clockwise, counterclockwise, or 0. 

áG.1.d.i) A gradient field

Here's the gradient field of the function 
       f@x, yD = e2 x - y:

Clear @f, gradf, x, y, m, n, Field D
f @x_, y_ D = E2 x -y ;
gradf @x_, y_ D = 8D@f @x, y D, x D, D @f @x, y D, y D<;
8m@x_, y_ D, n @x_, y_ D< = gradf @x, y D;
Field @x_, y_ D = 8m@x, y D, n @x, y D<

82 E2 x -y , -E2 x -y<
Here's a parameterization and a plot of a closed curve C. 

Clear @t D
8x@t_ D, y @t_ D< = 86 Sin @t D Cos@t D H1 - 0.7 Sin @4 t DL, 3 Sin @t D2 + 2<;
tlow = 0;
thigh = p;

curveplot = ParametricPlot @8x@t D, y @t D<, 8t, tlow, thigh <,
PlotStyle ® 88Thickness @0.01 D, Red <<, AspectRatio ® Automatic,
AxesLabel ® 8"x", "y" <D;
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Explain how you know in advance that the net flow of this vector field 
along this curve is 0.
Use a path integral to determine whether the net flow of this vector 
field across this curve is from outside to inside, inside to outside, or 0.

áG.1.d.ii)

You already know that the net flow of a gradient field along a closed 
curve is guaranteed to be 0.
Is it true that the net flow of a gradient field across a closed curve is 
guaranteed to be 0?
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G.2)   Path integrals: Backward and forward*

áG.2.a.i)

Suppose C1 and C2 are the same physical curve, but the starting point 
of C1 is the ending point of C2 , and the ending point of C1 is the 
starting point of C2. 
Express
       ÙC2

m@x, yD â x + n@x, yD â y 
in terms of
       ÙC1

m@x, yD â x + n@x, yD â y.

áG.2.a.ii) 

Calculate the path integral 
       ÙC1

x2 y â x - 3 x y â y,
where C1 starts at 8-1, 3<, runs to 81, 0< on a straight line, and then 
follows the parabola y= 3 Hx - 1L2 to 82, 3< where it stops.
Then calculate the path integral 
       ÙC2

x2 y â x - 3 x y â y,
where C2 starts at 82, 3<, runs to 81, 0< on the parabola 
y = 3 Hx - 1L2, and then follows the straight line from 81, 0< to 8-1, 3< 
where it stops. 

áTip:

After you've gone to the trouble of calculating  

       ÙC1
x2 y â x - 3 x y â y, 

you should be able to write down the value of 

       ÙC2
x2 y â x - 3 x y â y

with no extra labor.
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áG.2.b) 

Here's a parameterization of the ellipse 
       H x - 1�������������3 L2 + H y + 2�������������2 L2 = 1:

Clear @x, y, t D
tlow = 0;
thigh = 2 p;
8x@t_ D, y @t_ D< = 81, -2< + 83 Sin @t D, 2 Cos @t D<

81 + 3 Sin @t D, -2 + 2 Cos@t D<
Call this ellipse C.
Now look at this calculation:

NIntegrate @y@t D2 x ¢@t D + Hx@t D y@t D + 1L y ¢@t D, 8t, tlow, thigh <D
-37.6991

Does this result calculate  
       �C

y2 â x + Hx y + 1L â y?
If not, how do you modify this result to get the value of
       �C

y2 â x + Hx y + 1L â y?

G.3)   Calculations and interpretations* 
Many different notations for path integrals are in regular use in 
science.  In this problem, you will meet some of them. 
Go with a given vector field
       Field@x, yD = 8m@x, yD, n@x, yD<, 
a curve C, and a direction for C via a parameterization 
       P@tD = 8x@tD, y@tD<, tlow £ t £ thigh. 

 

áIntegrals measuring flow - along- C

All the following four integrals calculate out to the same value, and all 
measure flow of
       Field@x, yD = 8m@x, yD, n@x, yD< 
along C:
i)     ÙC

m@x, yD â x + n@x, yD â y;

ii)    Ùtlow

thigh
Field@x@tD, y@tDD . 8x¢@tD, y¢@tD< â t;

iii)   ÙC
Field@x@tD, y@tDD .â P,

    where â P = 8x¢@tD, y¢@tD< â t;
iv)    ÙC

Field@x@tD, y@tDD . unittan â s.
This last integral is with respect to length measured on the curve from 
the start of the curve.  The way to see that the last integral is the same 
as the others, notice that 

       â s = "#########################
x¢@tD2 + y¢@tD2  â t 

and 
       unittan@tD = 8x¢@tD, y¢ @tD<��������������������������������������"##########################

x¢@tD2 + y¢@tD2
 . 

When you transform to the t variable, you get 
       Field . unittan â s � Field@x@tD, y@tDD . 8x¢@tD, y¢@tD< â t.

 

áIntegrals measuring flow - across- C

All the following four integrals calculate out to the same value, and all 
measure flow of
       Field@x, yD = 8m@x, yD, n@x, yD< 
across C:
i)     ÙC

-n@x, yD â x + m@x, yD â y;

ii)    Ùtlow

thigh
Field@x@tD, y@tDD . 8y¢@tD, -x¢@tD< â t;

iii)   ÙC
Field@x@tD, y@tDD . unitnormal â s.

This last integral is with respect to length measured on the curve from 
the start of the curve.  The way to see that the last integral is the same 
as the others is to notice that 

       â s = "#########################x¢@tD2 + y¢@tD2  â t
and 
       unitnormal@tD = 8y¢@tD, -x¢@tD<��������������������������������������"##########################

x¢@tD2 + y¢ @tD2
.

When you transform to the t variable, you get 
       Field . unitnormal â s � Field@x@tD, y@tDD . 8y¢@tD, -x¢@tD< â t.

áG.3.a.i)

Calculate
       �C

Field . unittan â s  
in the case in which 
     Field@x, yD = 8x2 y2, x y2< 
and the curve C is the ellipse x2 + 2 y2 = 1.
Give an interpretation of the result as a flow-along measurement and 
illustrate with a plot.

áTip:

Remember �C
 demands a counterclockwise parameterization.
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áG.3.a.ii)

Calculate
       �C

Field .â P  
in the case in which 
     Field@x, yD = 8x2 y2, x y2< 
and the curve C is the ellipse x2 + 2 y2 = 1.
Give an interpretation of the result.  

áG.3.a.iii)

Calculate
       �C

Field . unitnormal â s
in the case in which 
     Field@x, yD = 8x2 y2, x y2< 
and the curve C is the ellipse x2 + 2 y2 = 1.
Give an interpretation of the result. 

áG.3.a.iv)

Calculate
       ÙC

Field . unitnormal â s
in the case in which 
     Field@x, yD = 8x2 y2, x y2<
and the curve C is the top half of the ellipse x2 + 2 y2 = 1 starting on 
the far right and ending on the far left.
Give an interpretation of the result.

áG.3.b)

Calculate
       �C

H-5 yL â x + x â y
where C is the circle 
       x2 + Hy - 2L2 = 9 
and interpret the result in two ways:
® As a flow- along- C measurement of a certain vector field and
® As a flow- across- C measurment of another vector field.

áTip:
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Remember �C
 demands a counterclockwise parameterization.

áG.3.c)

Calculate
       �C

Sin@yD â x + Cos@xD â y
where C is the circle 
       x2 + Hy - 1L2 = 0.8 
and give two interpretations of the measurement.

G.4)   Water*
If you like the vector fields plotted in this problem and would like to 
be able to design flows for special situations for yourself, study the 

topic called "conformal mapping" in a complex variables course.

For an incompressible fluid flow, like water flow, the net flow across 
any closed curve C without loops must be 0 unless there are sources 
(spigots) or sinks (drains) inside C.
In addition, for water flow, the net flow along a closed curve C can't 
be positive because you can't have more water at the end of a trip 
around a closed curve than you had at the beginning.
Also the net flow along a closed curve C can't be negative because 
you can't have less water at the end of a trip around a closed curve 
than you had at the beginning. 
The upshot:
For water flow without sources or sinks, you know that net flow 
across any closed curve C without loops must be 0.  And you know 
that net flow along any closed curve C must be 0.
Now look at the vector field 
       Field@x, yD = 80.07 x, -0.14 y< 
shown with the circle C of radius 1 centered at 82, 2<:

Clear @Field, m, n, x, y D;
8m@x_, y_ D, n @x_, y_ D< = 80.07 x, -0.14 y <;
Field @x_, y_ D = 8m@x, y D, n @x, y D<;
vectorfieldplot = Table @

Arrow @Field @x, y D, Tail ® 8x, y <D, 8x, 0, 4, 0.5 <, 8y, 0, 4, 0.5 <D;
8x@t_ D, y @t_ D< = 82, 2 < + 8Cos@t D, Sin @t D<;
tlow = 0;
thigh = 2 p;

 

Cplot = ParametricPlot @8x@t D, y @t D<, 8t, tlow, thigh <,
PlotStyle ® 88Thickness @0.02 D, Red <<, DisplayFunction ® Identity D;

Show@vectorfieldplot, Cplot, AxesLabel ® 8"x", "y" <,
DisplayFunction ® $DisplayFunction D;

This looks like water flowing around a corner. 
Check whether it can be by looking at  
       �C

m@x, yD â x + n@x, yD â y:

ChopAà
tlow

thigh

 Hm@x@t D, y @t DD x ¢@t D + n@x@t D, y @t DD y ¢@t DL â t E

0

Good; the flow of this vector field along this curve is 0.
Now look at
       �C

-n@x, yD â x + m@x, yD â y:

ChopAà
tlow

thigh

 H-n@x@t D, y @t DD x ¢@t D + m@x@t D, y @t DD y ¢@t DL â t E

-0.219911

Whoops!
The flow across this curve is from outside to inside. 
The must be a weak sink (drain) inside C.
The upshot: 
This vector field cannot be a model for water flow without sources 
(spigots) or sinks (drains).

áG.4.a)

Look at the vector field 
       Field@x, yD = 80.14 x, -0.14 y< 
shown with the circle C of radius 1 centered at 82, 2<:

 

Clear @Field, m, n, x, y D;
8m@x_, y_ D, n @x_, y_ D< = 0.14 8x, -y<;
Field @x_, y_ D = 8m@x, y D, n @x, y D<;
vectorfieldplot = Table @

Arrow @Field @x, y D, Tail ® 8x, y <D, 8x, 0, 4, 0.5 <, 8y, 0, 4, 0.5 <D;
8x@t_ D, y @t_ D< = 82, 2 < + 8Cos@t D, Sin @t D<;
tlow = 0;
thigh = 2 p;
Cplot = ParametricPlot @8x@t D, y @t D<, 8t, tlow, thigh <,

PlotStyle ® 88Thickness @0.02 D, Red <<, DisplayFunction ® Identity D;

Show@vectorfieldplot, Cplot, AxesLabel ® 8"x", "y" <,
DisplayFunction ® $DisplayFunction D;

This also looks like water flowing around a corner. 
Go with the curve C plotted above and report on whether the flow 
measurements 
       �C

m@x, yD â x + n@x, yD â y
       �C

-n@x, yD â x + m@x, yD â y
tell you that this vector field cannot be a model for water flow without 
sources (spigots) or sinks (drains).

áG.4.b.i)

Look at this vector field shown with the circle C of radius 0.5 centered 
at 80, 1<:

Clear @Field, m, n, x, y D;
8m@x_, y_ D, n @x_, y_ D< = 80.2 Cos @xD Cosh@yD, 0.4 Sin @xD Sinh @yD<;
Field @x_, y_ D = 8m@x, y D, n @x, y D<;

vectorfieldplot = Table A

Arrow @Field @x, y D, Tail ® 8x, y <D, 9x, -
p
�����
2

,
p
�����
2

,
p
�����
8
=, 8y, 0, 2, 0.5 <E;

8x@t_ D, y @t_ D< = 80, 1 < + 0.5 8Cos@t D, Sin @t D<;
tlow = 0;
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thigh = 2 p;
Cplot = ParametricPlot @8x@t D, y @t D<, 8t, tlow, thigh <,

PlotStyle ® 88Thickness @0.01 D, Red <<, DisplayFunction ® Identity D;

Show@vectorfieldplot, Cplot, AxesLabel ® 8"x", "y" <,
DisplayFunction ® $DisplayFunction D;

This looks like water flowing down on the left toward the x-axis and 
then flowing up on the right.
Go with the curve C plotted above and report on whether the flow 
measurements 
       �C

m@x, yD â x + n@x, yD â y
       �C

-n@x, yD â x + m@x, yD â y
tell you that this vector field cannot be a model for water flow without 
sources (spigots) or sinks (drains).        

áTip:

Use NIntegrate with AccuracyGoal® 2.

áG.4.b.ii)

Look at this vector field shown with the circle C of radius 0.5 centered 
at 80, 1<:

Clear @Field, m, n, x, y D;
8m@x_, y_ D, n @x_, y_ D< = 80.2 Cos @xD Cosh@yD, 0.2 Sin @xD Sinh @yD<;
Field @x_, y_ D = 8m@x, y D, n @x, y D<;

vectorfieldplot = Table A

Arrow @Field @x, y D, Tail ® 8x, y <D, 9x, -
p
�����
2

,
p
�����
2

,
p
�����
8
=, 8y, 0, 2, 0.5 <E;

8x@t_ D, y @t_ D< = 80, 1 < + 0.5 8Cos@t D, Sin @t D<;
tlow = 0;
thigh = 2 p;
Cplot = ParametricPlot @8x@t D, y @t D<, 8t, tlow, thigh <,

PlotStyle ® 88Thickness @0.01 D, Red <<, DisplayFunction ® Identity D;
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Show@vectorfieldplot, Cplot, AxesLabel ® 8"x", "y" <,
DisplayFunction ® $DisplayFunction D;

Again, this looks like water flowing down on the left toward the 
x-axis and then flowing up on the right.
Go with the curve C plotted above and report on whether the flow 
measurements 
       �C

m@x, yD â x + n@x, yD â y, and
       �C

-n@x, yD â x + m@x, yD â y
tell you that this vector field cannot be a model for water flow without 
sources (spigots) or sinks (drains).        

áTip:

Use NIntegrate with AccuracyGoal® 2.

G.5)   Sources and sinks* 
The simplest way to spot a source of new fluid or a drain of old fluid 
at a point 8a, b< is to center a circle C@rD of very small radius r at 8a, b< 
and then to calculate the flow- across- C@rD measurement 
       �C@rD -n@x, yD â x + m@x, yD â y.
If this measurement is positive for ALL very small r's, then you can be 
sure that the point 8a, b< is a source of new fluid.
If this measurement is negative for ALL very small r's, then you can 
be sure that the point 8a, b< is a drain of old fluid.
Try this out on 
     Field@x, yD = 83 x2, 4 y4<:

 

Clear @Field, m, n, x, y D
8m@x_, y_ D, n @x_, y_ D< = 83 x 2 , 4 y 4<;
Field @x_, y_ D = 8m@x, y D, n @x, y D<

83 x 2 , 4 y 4<
Center a circle C@rD of radius r at 8a, b< = 82, 1< 
and calculate the flow- across- C@rD measurement
       �C@rD -n@x, yD â x + m@x, yD â y:

8a, b < = 82, 1 <;
Clear @r, t D
tlow = 0;
thigh = 2 p;
8x@t_ D, y @t_ D< = 8a, b < + r 8Cos@t D, Sin @t D<;

à
tlow

thigh

 H-n@x@t D, y @t DD x ¢@t D + m@x@t D, y @t DD y ¢@t DL â t

28 p r 2 + 12 p r 4

This is positive no matter what r you go with.
The upshot:
® 8a, b< = 82, 1< is a source for new fluid.
Now go with cleared values of 8a, b< and center a circle C@rD of very 
small radius r at 8a, b< and calculate the flow- across- C@rD 
measurement 
       �C@rD -n@x, yD â x + m@x, yD â y:

Clear @a, b, r, t D
tlow = 0;
thigh = 2 p;
8x@t_ D, y @t_ D< = 8a, b < + r 8Cos@t D, Sin @t D<;

à
tlow

thigh

 H-n@x@t D, y @t DD x ¢@t D + m@x@t D, y @t DD y ¢@t DL â t

6 a p r 2 + 16 b 3 p r 2 + 12 b p r 4

This tells you that:
® 8a, b< is a source of new fluid if H3 a+ 8 b3L > 0, 
and 
® 8a, b< is a sink (drain) for old fluid if H3 a+ 8 b3L < 0.
Here's a sample plot of some of the sources and sinks in this vector 
field:

 

sourcesandsinks = Show@Table @
If @3 a + 8 b3 > 0, Graphics @8PointSize @0.015 D, Red, Point @8a, b <D<D,

Graphics @8PointSize @0.025 D, GrayLevel @0.05 D, Point @8a, b <D<DD,
8a, -5, 5, 0.25 <, 8b, -4, 4, 0.25 <D, Axes ® True,

AxesLabel ® 8"x", "y" <D;
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The larger points are sinks; the smaller points are sources.

The sinks are in the lower part of the plot. 
Think of the sources as little individual springs feeding the flow.  
Think of the sinks as little holes through which fluid seeps out as the 
flow goes by.

áG.5.a.i)

Give a sample plot of some of the sources and sinks in the vector field
       Field@x, yD = 8x2, y3<.

áG.5.a.ii)

Give a sample plot of some of the sources and sinks in the vector field
       Field@x, yD = 83 x, -x2 y3<.

áG.5.b) Singularity source

Here's a look at the vector field
       Field@x, yD = 3 8 x������������������x2 + y2 , y������������������x2 + y2 <:
Note the singularity at 80, 0<.

Clear @Field, m, n, x, y D
8m@x_, y_ D, n @x_, y_ D< = 3 9 x

�������������������
x2 + y2

,
y

�������������������
x2 + y2

=;

Field @x_, y_ D = 8m@x, y D, n @x, y D<;
fieldplot =

Table @Arrow @Field @x, y D, Tail ® 8x, y <D, 8x, -5, 5, 2 <, 8y, -5, 5, 1 <D;
singularity = 80, 0 <;
singularityplot =
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Graphics @8Red, PointSize @0.03 D, Point @singularity D<D;

Show@fieldplot, singularityplot,
Axes ® True, AxesLabel ® 8"x", "y" <D;
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y

Go with the circle C of radius 2 centered at the singularity at 80, 0< 
and look at the calculation  
       �C

-n@x, yD â x + m@x, yD â y 
of the flow of this vector field across C :         

Clear @x, y, t D
r = 2;
8x@t_ D, y @t_ D< = r 8Cos@t D, Sin @t D<;
tlow = 0;
thigh = 2 p;

à
tlow

thigh

 H-n@x@t D, y @t DD x ¢@t D + m@x@t D, y @t DD y ¢@t DL â t

6 p

Now go with the circle C1 of radius 1 centered at the singularity at 
80, 0< and look at this calculation  
       �C1

-n@x, yD â x + m@x, yD â y 
of the flow of this vector field across C1:         

Clear @x, y, t D
r = 1;
8x@t_ D, y @t_ D< = r 8Cos@t D, Sin @t D<;
tlow = 0;
thigh = 2 p;

à
tlow

thigh

 H-n@x@t D, y @t DD x ¢@t D + m@x@t D, y @t DD y ¢@t DL â t

6 p
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Now go with any circle Cr of radius r centered at the singularity at 
80, 0< and look at this calculation  
       �Cr

-n@x, yD â x + m@x, yD â y
of the flow of this vector field across Cr:         

Clear @r, x, y, t D
8x@t_ D, y @t_ D< = r 8Cos@t D, Sin @t D<;
tlow = 0;
thigh = 2 p;

à
tlow

thigh

 H-n@x@t D, y @t DD x ¢@t D + m@x@t D, y @t DD y ¢@t DL â t

6 p

No matter what positive radius you go with, the flow of this vector 
field across the circle of radius r centered at the singularity is 6 p.
What clue does this give you about the location of the only source of 
new fluid in this flow?         

G.6)   Gradient fields are where the mathematical action is*

áG.6.a.i)

The curve C1 runs on a straight line starting at 80, 0< and ending at 
81, 2<.  Here's a parameterization of C1 with t running from 0 to 1:

Clear @x1, y1, t D
8x1@t_ D, y1 @t_ D< = 80, 0 < + t 81, 2 <

8t, 2 t <
The curve C2 also starts at 80, 0< and ends at 81, 2<, but C2 runs on the 
parabola 
       y= 2 x2 
Here's a parameterization of C2 with t running from 0 to 1:

Clear @x2, y2, t D
8x2@t_ D, y2 @t_ D< = 8t, 2 t 2<

8t, 2 t 2<
The curve C3 also starts at 80, 0< and ends at 81, 2< but C3 runs on the 
sine curve 
       y= 2 Sin@ p x��������2 D 
Here's a parameterization of C3 with t running from 0 to 1:

 

Clear @x3, y3, t D
8x3@t_ D, y3 @t_ D< = 9t, 2 Sin A p t

���������
2

E=

9t, 2 Sin A p t
���������

2
E=

Take a look:
ParametricPlot A88x1@t D, y1 @t D<, 8x2@t D, y2 @t D<, 8x3@t D, y3 @t D<<,

8t, 0, 1 <, PlotStyle ® 88Red<, 8Blue <, 8Thickness @0.01 D<<,

AxesLabel ® 8"x", "y" <, AspectRatio ®
1
�����
2
E;
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Here are calculations of the three path integrals
       ÙC1

y Sin@x yD â x + x Sin@x yD â y,

       ÙC2
y Sin@x yD â x + x Sin@x yD â y, and

       ÙC3
y Sin@x yD â x + x Sin@x yD â y

in order:
Clear @m, n, x, y D
8m@x_, y_ D, n @x_, y_ D< = 8y Sin @x y D, x Sin @x y D<;
NIntegrate @m@x1@t D, y1 @t DD x1 ¢@t D + n@x1@t D, y1 @t DD y1 ¢@t D, 8t, 0, 1 <D

1.41615

NIntegrate @m@x2@t D, y2 @t DD x2 ¢@t D + n@x2@t D, y2 @t DD y2 ¢@t D, 8t, 0, 1 <D
1.41615

NIntegrate @m@x3@t D, y3 @t DD x3 ¢@t D + n@x3@t D, y3 @t DD y3 ¢@t D, 8t, 0, 1 <D
1.41615

Here are calculations of the three path integrals
       ÙC1

x Sin@x yD â x + y Sin@x yD â y,

       ÙC2
x Sin@x yD â x + y Sin@x yD â y, and

       ÙC3
x Sin@x yD â x + y Sin@x yD â y

in order:

 

Clear @m, n, x, y D
8m@x_, y_ D, n @x_, y_ D< = 8x Sin @x y D, y Sin @x y D<;
NIntegrate @m@x1@t D, y1 @t DD x1 ¢@t D + n@x1@t D, y1 @t DD y1 ¢@t D, 8t, 0, 1 <D

1.77018

NIntegrate @m@x2@t D, y2 @t DD x2 ¢@t D + n@x2@t D, y2 @t DD y2 ¢@t D, 8t, 0, 1 <D
1.86313

NIntegrate @m@x3@t D, y3 @t DD x3 ¢@t D + n@x3@t D, y3 @t DD y3 ¢@t D, 8t, 0, 1 <D
1.59888

Explain how you could have predicted in advance that the first three 
integrals would have calculated out to the same value.
Explain why most knowledgeable folks would have been quite 
surprised if the second three path integrals had all calculated out to be 
equal.

áG.6.a.ii)

Given specific functions m@x, yD and n@x, yD, what do you look for in 
order to recognize whether
       ÙC1

m@x, yD â x + n@x, yD â y = ÙC2
m@x, yD â x + n@x, yD â y

provided C1 and C2 are two curves starting at the same point and 
ending at the same point?

áG.6.b.i) Substitute curves

Here's a curve C running from its start at 8-2, -3< to its end at 85, 4<: 
start = 8-2, -3<;
end = 85, 4 <;
curve = Graphics @8Red, Thickness @0.01 D,

Line @8start, 80, -1<, 8-1, 2 <, 80, 3 <, 82, -1<, 83, 2.5 <, end <D<D;
labels = 8Graphics @Text @"start", start, 8-1, -1<DD,

Graphics @Text @"end", end, 81, 1 <DD<;

Show@curve, labels, Axes ® True, AxesLabel ® 8"x", "y" <,
PlotLabel ® "The curve C" D;
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Some yo-yo asks you how to calculate
       ÙC

y e-x y  â x + x e-x y  â y.
At first your stomach tightens up because you don't want to go to the 
trouble of parameterizing that silly curve C. 
Then your anxiety turns into a smile as you look at
       m@x, yD = y e-x y and n@x, yD = x e-x y.
And then you say: "I don't need to use this silly curve because I can 
use a simple substitute curve C1 with the same start and the same end, 
and then I'll calculate:"
       ÙC1

y e-x y  â x + x e-x y  â y
Come up with the substitute curve C1, make the calculation, and 
explain how you know that your calculation is correct.

áG.6.b.ii)

Go with the same curve C as in part i) immediately above.
If you had been asked to calculate
       ÙC

x e-x y  â x + y e-x y  â y,
would you have even considered the use of a substitute curve?
Why or why not?

áG.6.c.i)

Here's a function f@x, yD:
Clear @f, x, y D
f @x_, y_ D = x2 y

x2 y

Here's the gradient field of this function:
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Clear @gradf, m, n, Field D
gradf @x_, y_ D = 8D@f @x, y D, x D, D @f @x, y D, y D<;
8m@x_, y_ D, n @x_, y_ D< = gradf @x, y D;
Field @x_, y_ D = 8m@x, y D, n @x, y D<

82 x y, x 2<
Here's a closed curve C:

Clear @t D

8x@t_ D, y @t_ D< = 91 + 2 Cos@t D -
1
�����
8

Cos@4 t D, Sin @t D +
1
�����
2

Sin @3 t D=;

tlow = 0;
thigh = 2 p;

curveplot = ParametricPlot @8x@t D, y @t D<, 8t, tlow, thigh <,
PlotStyle ® 88Thickness @0.01 D, Red <<, AxesLabel ® 8"x", "y" <,
Epilog ® 8Text @"start", 8x@tlow D, y @tlow D<, 81.3, -1<D,

Text @"end", 8x@thigh D, y @thigh D<, 81.3, 1 <D<D;
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end

Look at this calculation of
       ÙC

m@x, yD â x + n@x, yD â y
 for 
       8m@x, yD, n@x, yD< = gradf@x, yD. 

pathintegral = à
tlow

thigh

 Hm@x@t D, y @t DD x ¢@t D + n@x@t D, y @t DD y ¢@t DL â t

0

Why should you have been able to predict this result before you did 
the calculation?

áG.6.c.ii)

Here's a function f@x, yD:
Clear @f, x, y D
f @x_, y_ D = Sin @xD Cos@yD;

Here's the gradient field of this function:

 

Clear @gradf, m, n, Field D
gradf @x_, y_ D = 8D@f @x, y D, x D, D @f @x, y D, y D<;
8m@x_, y_ D, n @x_, y_ D< = gradf @x, y D;
Field @x_, y_ D = 8m@x, y D, n @x, y D<

8Cos@xD Cos@yD, -Sin @xD Sin @yD<
Here's a curve C:

Clear @t D

8x@t_ D, y @t_ D< = 92 Cos@t D,
t
�����
3

+ Sin @t D +
1
�����
2

Sin @3 t D=;

tlow = 0.3;
thigh = 4.2;

curveplot = ParametricPlot @8x@t D, y @t D<, 8t, tlow, thigh <,
PlotStyle ® 88Thickness @0.01 D, Red <<, AxesLabel ® 8"x", "y" <,
Epilog ® 8Text @"start", 8x@tlow D, y @tlow D<, 81.3, 1 <D,

Text @"end", 8x@thigh D, y @thigh D<, 8-1, 0 <D<D;
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Look at this calculation of
       ÙC

m@x, yD â x + n@x, yD â y
 for 
       8m@x, yD, n@x, yD< = gradf@x, yD
 as above.

pathintegral =
NIntegrate @m@x@t D, y @t DD x ¢@t D + n@x@t D, y @t DD y ¢@t D, 8t, tlow, thigh <D

-1.37579

Now look at this:
fchange = f @x@thigh D, y @thigh DD - f @x@tlow D, y @tlow DD

-1.37579

Compare:
8pathintegral, fchange <

8-1.37579, -1.37579 <
Why did this happen? 

 

áG.6.d)

Take:
Clear @f, x, y D
f @x_, y_ D = Sin @x2 yD

Sin @x2 yD
Look at gradf@x, yD:

8D@f @x, y D, x D, D @f @x, y D, y D<
82 x y Cos @x2 yD, x 2 Cos@x2 yD<

If C is any curve starting at 80, 1.2< and ending at 82.7, -5.1<, then
       ÙC

2 x y Cos@x2 yD â x + x2 Cos@x2 yD â y
       ÙC

â f  
       = f @2.7, -5.1D - f @0, 1.2D: 

f @2.7, -5.1 D - f @0, 1.2 D
0.496977

Do you agree or disagree? 
Why?

áG.6.e)

Do you think that 
       Field@x, yD = 8y + x2, x - Sin@yD< 
is a gradient field?
If you do, then come up with a function f@x, yD with 
       gradf@x, yD = 8y + x2, x - Sin@yD<.    

áG.6.f)

Suppose you know for sure that Field@x, yD = 8m@x, yD, n@x, yD< is a 
gradient field.  
Explain how you know that the flow of Field@x, yD along any one 
curve starting at 8x0, y0< and ending at 8x1, y1< is the same as the flow 
of Field@x, yD along any other curve starting at 8x0, y0< and ending at 
8x1, y1<.
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G.7)   Work and how the physicists measure it
What's work for some folks is fun for other folks.  Trig identities 
come to mind; they always seem to be work to the math student but 
seem to be fun to the math teacher.  
The physicists have their own technical notion of work.
The physicists envision a vector field 
       Field@x, yD = 8m@x, yD, n@x, yD< 
to represent the force (push) on an object positioned at 8x, y<.  In this 
interpretation, the vector field Field@x, yD is called a force field.
Next, the physicists say that if you push an object along a curve C 
parameterized by by 
       8x@tD, y@tD< with tlow £ t £ thigh, 
then the work done by the force field Field@x, yD for you during the 
duration of the trip is measured by
       ÙC

m@x, yD â x + n@x, yD â y

       = Ùtlow

thigh Hm@x@tD, y@tDD x¢@tD + n@x@tD, y@tDD y¢@tDL â t

       = Ùtlow

thigh
Field@@x@tD, y@tDD . 8x¢@tD, y¢@tD< â t.

This might not be what your own notion of work is, but the physicists 
have a pretty good reason for using that word for this measurement.  
Think of it this way:
If, at a point on the trip
        Field@x@tD, y@tDD . 8x¢@tD, y¢@tD< > 0, 
then at this point the force field Field@x, yD is working this much to 
push the object and you do no work at all.
But if 
        Field@x@tD, y@tDD . 8x¢@tD, y¢@tD< < 0, 
then at this point the force field Field@x, yD is against your efforts to 
advance the object; you are working this much and the force field 
Field@x, yD does no work at all.
With this in mind, you can think of
       ÙC

m@x, yD â x + n@x, yD â y

      = Ùtlow

thigh
Field@@x@tD, y@tDD . 8x¢@tD, y¢@tD< â t
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as a measurement of
       the force field' s work - your work.
® If 
       ÙC

m@x, yD â x + n@x, yD â y

      = Ùtlow

thigh
 Field@@x@tD, y@tDD . 8x¢@tD, y¢@tD< â t = 0,

then the force field did the same amount of work that you did during 
the duration of the trip.
® If 
       ÙC

m@x, yD â x + n@x, yD â y

      = Ùtlow

thigh
 Field@@x@tD, y@tDD . 8x¢@tD, y¢@tD< â t > 0,

then the force field did most of the work during the duration of the 
object's trip.
® If
       ÙC

m@x, yD â x + n@x, yD â y

      = Ùtlow

thigh
 Field@@x@tD, y@tDD . 8x¢@tD, y¢@tD< â t < 0,

then you did most of the work during the duration of the object's trip.

áG.7.a)

Is there a difference between net flow- along- the- curve 
measurements and work?

 

áFull answer given as a gesture of friendship:

Mathematically there is no difference because they are both measured 

by the same formula

       ÙC
m@x, yD â x + n@x, yD â y.

The difference is in the interpretation.

When you are talking about flow - along- the- curve measurements, 

then you envision 

       Field@x, yD = 8m@x, yD, n@x, yD< 
as the velocity vector at 8x, y< of a fluid flow.

The fluid is flowing and the curve is just sitting there.

When you are talking about work, then you envision 

       Field@x, yD = 8m@x, yD, n@x, yD< 
as the force on an object at 8x, y< moving on a curve.

This time the force field is just sitting there and the object is moving on 

the curve.

áG.7.b)

Here is a force field:
Clear @Field, m, n, x, y D
m@x_, y_ D =

x
�����
4

;

n@x_, y_ D =
x - y
�������������

5
;

Field @x_, y_ D = 8m@x, y D, n @x, y D<;
forcefieldplot =

Table @Arrow @Field @x, y D, Tail ® 8x, y <D, 8x, -2, 4 <, 8y, -3, 3 <D;

Show@forcefieldplot, Axes ® Automatic, AxesLabel ® 8"x", "y" <D;
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An object starts at 83.3, 0< and moves through this force field one time 
around the ellipse
       H x - 1�������������2.3 L2 + H y���������1.3 L2 = 1
Which way should the object go (counterclockwise or clockwise) to 
make the force field do most of the work?

áG.7.c)

Comment on the statement:
If a given force field 
       Field@x, yD = 8m@x, yD, n@x, yD< 
is a gradient field, and you are pushing an object from a start point 
8x0, y0< to an end point 8x1, y1<, you might as well push it on the line 
C starting at 8x0, y0< and ending at 8x1, y1<, because if C1 is any other 
curve starting at 8x0, y0< and ending at 8x1, y1<, then
       ÙC

m@x, yD â x + n@x, yD â y 
       = ÙC1

m@x, yD â x + n@x, yD â y.

áG.7.d)

Here is a force field that changes as time t(measured in minutes) 
changes:

Clear @Field, m, n, x, y, t, td D
8m@x_, y_, t_ D, n @x_, y_, t_ D< =

-x  9CosA p t
���������

3
E, Sin A p t

���������
3

E= -
1
�����
2

9-Sin A p t
���������

3
E, Cos A p t

���������
3

E=;

Field @x_, y_, t_ D = 8m@x, y, t D, n @x, y, t D<
9-x CosA p t

���������
3

E +
1
�����
2

Sin A p t
���������

3
E, -

1
�����
2

CosA p t
���������

3
E - x Sin A p t

���������
3

E=
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Here is how this vector field looks at 8x, y< = 81, 1< for 
t = 0, 1, 2, 3, 4, 5, and 6 minutes:

Table @Show@Graphics @8PointSize @0.02 D, Point @81, 1 <D<D,
Arrow @Field @1, 1, t D, Tail ® 81, 1 <D, Axes ® True,
AxesOrigin ® 80, 0 <, PlotRange ® 88-0.5, 2.5 <, 8-0.5, 2.5 <<,
PlotLabel ® "t = " <> ToString @t DD,

8t, 0, 6 <D;
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Animate, running forward at a moderate speed.

At time t, Field@x, y, tD is the vector 8-x, - 1�����2 < rotated by p t�������3  radians. 
The effect is that this time-dependent force field is like a revolving 
force beacon at each point 8x, y<.
Here's an idea of how the whole vector field does its dance: 

 

Table AShowATable AArrow @Field @x, y, t D, Tail ® 8x, y <D,

9x, -2.6, 2.6,
5.2
�����������

3
=, 9y, -1.7, 1.7,

3.4
�����������

3
=E, Axes ® True,

PlotLabel ® "t = " <> ToString @t D, PlotRange ® 88-6, 6 <, 8-5, 5 <<E,

8t, 0, 5 <E;
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Animate.

You are making plans to send an object on a trip around the ellipse 
       x2 + H y�����2 L2 = 1
in the counterclockwise direction through this force field.
The procedure is to start the clock now, wait td seconds, and then start 
the motion so that at time t the object is at the position 
       8x@tD, y@tD< = 8Cos@t - tdD, 2 Sin@t - tdD< 
for 
       td £ t £ td + 2 p.
Your job is to select a delay time td with 0 £ td £ 10 to make the work 
done by the time-dependent force field as large as you can.

áTip:

To calculate work of the time-dependent force field as a function of td, 

you integrate

       m@x@tD, y@tD, tD x¢@tD + n@x@tD, y@tD, tD y¢@tD,
using appropriate limits.

Once you get a formula for work @td], then you can plot to estimate 

what the best td is.
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áG.7.e)

You are moving along the x-axis, starting at 80, 0< and ending at 8s, 0<, 
under a constant force F= 8d1, d2< at all points.
Explain the formula
       work done by the force field= d1 s.
Given that physicists measure force in newtons and distance in meters, 
say why physicists measure work in newton-meters (which they call 
joules).

For your information and enjoyment:

       power= joules� second

One unit of power is also called a watt.  This is where the electric meter 

on the side of your house gets the measurement of kilowatt hour.

A kilowatt hour is 1000 watts times 3600 seconds 

       = 3.6 106 Hjoules�secondL seconds

       = 3.6 106 joules.

Every time you pay your power bill, you are paying for units of work 

done by electricity in keeping your computer running.

áG.7.f)

Write a few words on what you think is the difference between the 
everyday English language definition of work and the technical 
definition of work as used by the physicists.  To get started, think 
about this:
According to the physicists, if there is no change of position, then 
there is no work.
If you must hold a heavy old computer in your arms while you stand 
in place for one hour, the physicists would say that you did no work.  
Do you agree?
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G.8)   Spin fields
Start with a vector field 
       Field@x, yD = 8m@x, yD, n@x, yD<
and make what some folks call the spin field 
       spinField@x, yD = 8-n@x, yD, m@x, yD<.
Here's a vector field:

Clear @x, y, m, n, Field, spinField D
8m@x_, y_ D, n @x_, y_ D< = 8x, y <;
Field @x_, y_ D = 8m@x, y D, n @x, y D<;
spinField @x_, y_ D = 8-n@x, y D, m@x, y D<;
fieldplot =

Table @Arrow @Field @x, y D, Tail ® 8x, y <D, 8x, -3, 3, 2 <, 8y, -3, 3, 2 <D;

Show@fieldplot, Axes ® True D;
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Here's the same vector field plotted together with its spin field:
spinfieldplot = Table @Arrow @spinField @x, y D,

Tail ® 8x, y <, VectorColor ® RedD, 8x, -3, 3, 2 <, 8y, -3, 3, 2 <D;

Show@fieldplot, spinfieldplot, Axes ® True D;
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Again:

 

Clear @x, y, m, n, Field, spinField D
8m@x_, y_ D, n @x_, y_ D< = 90.3 x + 0.2, 0.2 x J1 -

y
�����
3
N=;

Field @x_, y_ D = 8m@x, y D, n @x, y D<;
spinField @x_, y_ D = 8-n@x, y D, m@x, y D<;
fieldplot =

Table @Arrow @Field @x, y D, Tail ® 8x, y <D, 8x, -3, 3, 1 <, 8y, -3, 3, 1 <D;

Show@fieldplot, Axes ® True D;
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Here's the same vector field plotted together with its spin field:
spinfieldplot = Table @Arrow @spinField @x, y D,

Tail ® 8x, y <, VectorColor ® RedD, 8x, -3, 3, 1 <, 8y, -3, 3, 1 <D;

Show@fieldplot, spinfieldplot, Axes ® True D;
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Run some more of these of your own choice to get a feeling for the 
relationship between a vector field and its spin field.

áG.8.a)

Try to describe the geometric relationship between a vector field and 
its spin field.

áTip:

Think rotation.

 

áG.8.b)

True or false:
Trajectories of a vector field 
       Field@x, yD = 8m@x, yD, n@x, yD< 
cross the trajectories of the spin field 
       SpinField@x, yD = 8-n@x, yD, m@x, yD< 
at right angles.
Try to explain your response.

áG.8.c.i)

Explain why:
If C is a closed curve directed in the counterclockwise way, then the 
measurement of the flow of a vector field 
       Field@x, yD = 8m@x, yD, n@x, yD< 
across C is the same as the measurement of the flow of its spin field 
       spinField@x, yD = 8-n@x, yD, m@x, yD< 
along C.
Consequently, if the net flow of 
       Field@x, yD = 8m@x, yD, n@x, yD<
across C is from inside to outside, then the net flow of 
       spinField@x, yD = 8-n@x, yD, m@x, yD<
along C is counterclockwise.

áG.8.c.ii)

In what way is the measurement of the net flow of a vector field 
       Field@x, yD = 8m@x, yD, n@x, yD<
along C related to the measurement of the net flow of its spin field 
       spinField@x, yD = 8-n@x, yD, m@x, yD<
across C?
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áG.8.d.i)

True or false:
If a vector field  
       Field@x, yD = 8m@x, yD, n@x, yD<
is a gradient field, then you are guaranteed that its spin field 
       spinField@x, yD = 8-n@x, yD, m@x, yD<
is also a gradient field.

áTip:

       Field@x, yD = 8m@x, yD, n@x, yD< = 82 x y, x2< 
is a gradient field because 

       D@x2, xD = D@2 x y, yD = 2 x.

Is spinField@x, yD = 8-x2, 2 x y< also a gradient field?

áG.8.d.ii)

Suppose Field@x, yD is a function and
       Field@x, yD = 8Df @x, yD, xD, D@f @x, yD, yD<  
is its gradient field, and that neither D@f@x, yD, xD nor D@f @x, yD, yD has 
any singularities. 
What condition on    
       ¶2f @x,yD�������������������¶x2 + ¶2f @x,yD�������������������¶y2  
       = D@f@x, yD, 8x, 2<D + D@f @x, yD, 8y, 2<D 
guarantees that the spin field
       spinField@x, yD = 8-D@f @x, yD, yD, D@f @x, yD, xD< 
passes the gradient test?

G.9)  "Calculus Cal" screws up again
You remember Calculus Cal, that lab pest who talks a lot but produces 

nothing. What most people don't know is that last semester Cal dropped 
Calculus&Mathematica  because he found that it was not hard to slide 

through the traditional course with a C. Besides, Cal never understood 
much anyway; so the traditional course emphasizing rote methods over 

concepts suits him just fine. On the other hand, Cal still comes to the 
Mathematica lab because he likes to press buttons and likes the chance 

to be a pest.
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Today, Cal is in the lab doing his homework for the traditional course. 
Of course, he has hardly looked at his text or at the Basics and 
Tutorials of this lesson.  Here are Cal's halfbaked responses to some 
problems:
Your job is to do them right.  

áG.9.a)

® Cal's problem: 
Calculate the path integral
       ÙC

y Cos@xD â x + 2 x y â y
where C is the line starting at 80, 0< and ending at 8 p�����2 , 4<
® Cal's solution:
       ÙC

y Cos@xD â x + 2 x y â y

       = y Sin@xD ì80,0<
8p�2,4< + x y2 ì80,0<

8p�2,4<

       = H4 - 0L + HH p�����2 L 16- 0L = 8 p + 4.  

áG.9.b)

® Cal's problem:
Given m@x, yD = x y and n@x, yD = x2

�������2   
Calculate the path integral
       ÙC

m@x, yD â x + n@x, yD â y
where C is the line starting at 80, 0< and ending at 81, 2<.
® Cal's solution:
       D@m@x, yD, yD = x
and 
       D@n@x, yD, xD = x.
So 
       D@m@x, yD, yD = D@n@x, yD, xD,
and this tells me that 8m@x, yD, n@x, yD< is a gradient field. 
Therefore
       ÙC

m@x, yD â x + n@x, yD â y = 0.  

 

áG.9.c)

® Cal's problem:
Given m@x, yD = x2 + y   and n@x, yD = y2 - x  
Calculate the path integral
       �C

m@x, yD â x + n@x, yD â y
where C is the circle of radius 3 centered at 81, 2<.
® Cal's solution:

Clear @m, n, x, y, t D
m@x_, y_ D = x2 + y;

n@x_, y_ D = y2 - x;
tlow = 0;
thigh = 4 p;
8x@t_ D, y @t_ D< = 81, 2 < + 3 8Sin @t D, Cos @t D<;

à
tlow

thigh

 Hm@x@t D, y @t DD x ¢@t D + n@x@t D, y @t DD y ¢@t DL â t

36 p

áG.9.d)

® Cal's problem:
Given 
       m@x, yD = x2 - y + y2

�������������������������x2 + y2  
and 
       n@x, yD = x + x2+ y2

������������������������x2 + y2

Calculate the path integral
       �C

m@x, yD â x + n@x, yD â y
where C is the circle of radius 1 centered at 80, 0<.
® Cal's solution:
Look at the gradient test:

Clear @m, n, x, y D

m@x_, y_ D =
x2 - y + y2

���������������������������
x2 + y2

;

n@x_, y_ D =
x + x2 + y2

���������������������������
x2 + y2

;

Together @D@m@x, y D, y D - D@n@x, y D, x DD
0

 

This guarantees that 8m@x, yD, n@x, yD< is a gradient field and so
       �C

m@x, yD â x + n@x, yD â y = 0.

G.10)  Force fields and their trajectories
A vector field is a function that spits out vectors. You make a 2D 
vector field by taking two regular functions m@x, yD and n@x, yD and 
throwing them into the two slots:

Clear @Field, m, n, x, y D;
m@x_, y_ D = 0.2 y;
n@x_, y_ D = -0.4 x;
Field @x_, y_ D = 8m@x, y D, n @x, y D<

80.2 y, -0.4 x <
You plot a vector field by plotting the vector Field@x, yD with its tail at 
8x, y< for a selection of points 8x, y<:

vectorfieldplot = Table @
Arrow @Field @x, y D, Tail ® 8x, y <D, 8x, -2, 2, 0.5 <, 8y, -2, 2, 0.5 <D;

Show@vectorfieldplot, Axes ® True, AxesLabel ® 8"x", "y" <D;
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If you go with the usual interpretation of this vector field as velocity 
vectors of fluid flow and you drop a cork into the flow at 8-0.5, 0<, 
then the cork advances on a trajectory of the vector field:

8a, b < = 8-0.5, 0 <;
starterpoint = 8a, b <;

Clear @Derivative, x, y, t D
endt = 12;
approxsolutions =

NDSolve @8x ¢@t D == m@x@t D, y @t DD, y ¢@t D == n@x@t D, y @t DD,
x@0D == a, y @0D == b<, 8x@t D, y @t D<, 8t, 0, endt <D;

VC.05.G9®G10  

Clear @trajectory D
trajectory @t_ D =
8x@t D �. approxsolutions P1T, y @t D �. approxsolutions P1T<;

trajectoryplot = ParametricPlot @trajectory @t D, 8t, 0, endt <,
PlotStyle ® 88Red, Thickness @0.01 D<<, DisplayFunction ® Identity D;

starterplot = Graphics @8Red, PointSize @0.04 D, Point @starterpoint D<D;

Show@vectorfieldplot, starterplot, trajectoryplot,
PlotRange ® All, PlotLabel ® "Flow trajectory", Axes ® True,
AxesLabel ® 8"x", "y" <, DisplayFunction ® $DisplayFunction D;
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On the other hand, if you interpret this vector field as a force field, 
and you put an object of mass 4 into this force field at 8-0.5, 0<, and 
you give it an initial velocity of 80, 0<, then the path of this object isn't 
the trajectory you see above.  
Reason:
One of Newton's laws says 
       force= mass acceleration.  
So the object moves on a curve parameterized by 8x@tD, y@tD< with
       Field@x@tD, y@tDD = mass 8x¢¢@tD, y¢¢@tD<
with 
       8x@0D, y@0D< = 8-0.5, 0< and 8x¢@0D, y¢@0D< = 80, 0<.
Here's a look:

endt = 12;
mass = 4;
8a, b < = 8-0.5, 0 <;

Clear @Derivative, x, y, t D
approxsolutions = NDSolve @

8m@x@t D, y @t DD == mass x²@t D, n @x@t D, y @t DD == mass y ²@t D, x @0D == a,
x ¢@0D == 0, y @0D == b, y ¢@0D == 0<, 8x@t D, y @t D<, 8t, 0, endt <D;

Clear @forcetrajectory D
forcetrajectory @t_ D =

121  



8x@t D �. approxsolutions P1T, y @t D �. approxsolutions P1T<;
forcetrajectoryplot = ParametricPlot @forcetrajectory @t D, 8t, 0, endt <,

PlotStyle ® 88Red, Thickness @0.01 D<<, DisplayFunction ® Identity D;
newstarterplot = Graphics @8Red, PointSize @0.04 D, Point @8a, b <D<D;

Show@vectorfieldplot, newstarterplot, forcetrajectoryplot ,
PlotRange ® All, PlotLabel ® "Force trajectory",
DisplayFunction ® $DisplayFunction D;

Force trajectory

áG.10.a)

Experiment with different masses and report what you observe.
Does lowering the mass make the trajectory more or less responsive to 
the desires of the force field? 

áG.10.b)

Here's a new force field shown with its two singularities:
Clear @Field, m, n, x, y D
q = -2.5;
qq = -1.5;
8x0, y0 < = 82, 0 <;
8x1, y1 < = 8-2, 0 <;

8m@x_, y_ D, n @x_, y_ D< =
q 8x - x0, y - y0<

������������������������������������������������������
Hx - x0L2 + Hy - y0L2

+
qq 8x - x1, y - y1<

������������������������������������������������������
Hx - x1L2 + Hy - y1L2

;

Field @x_, y_ D = 8m@x, y D, n @x, y D<;

forcefieldplot = Show@Graphics @8PointSize @0.04 D, Point @8x0, y0 <D<D,
Graphics @8PointSize @0.04 D, Point @8x1, y1 <D<D,
Table @Arrow @Field @x, y D, Tail ® 8x, y <D, 8x, -5, 5, 2 <, 8y, -5, 5, 2 <D,
Axes ® True, AxesLabel ® 8"x", "y" <D;
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Here's what happens when you put an object of mass 0.9 into this 
force field at 83, 4< and you give it an initial velocity of 
       8x¢@0D, y¢@0D< = 8-2, 0<:

mass = 0.9;
8a, b < = 83, 4 <;
endt = 25;

Clear @Derivative, x, y, t D
approxsolutions = NDSolve @

8m@x@t D, y @t DD == mass x²@t D, n @x@t D, y @t DD == mass y ²@t D, x @0D == a,
x ¢@0D == -2, y @0D == b, y ¢@0D == 0<, 8x@t D, y @t D<, 8t, 0, endt <D;

Clear @forcetrajectory D
forcetrajectory @t_ D =
8x@t D �. approxsolutions P1T, y @t D �. approxsolutions P1T<;

forcetrajectoryplot = ParametricPlot @forcetrajectory @t D, 8t, 0, endt <,
PlotStyle ® 88Red, Thickness @0.01 D<<, DisplayFunction ® Identity D;

starterplot = Graphics @8Red, PointSize @0.04 D, Point @8a, b <D<D;

Show@forcefieldplot, starterplot, forcetrajectoryplot,
PlotRange ® All, Axes ® True, AxesLabel ® 8"x", "y" <,
DisplayFunction ® $DisplayFunction D;
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Quite an electric trip.
Experiment with what happens when you keep everything the same 
but start by giving it an initial velocity of 

 

       8x¢@0D, y¢@0D< = 8-v, 0<
for a selection of v's like v= 0, 1, 3, and 4. 
Report on your results.
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