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VC.06 Sources, Sinks, Swirls and
Singularities
Basics

B.1) Using a 2D integral to measure flow across closed
curves

OB.1.a)

Explain this:
To calculate the net flow of a vector field
Fieldx, y] = {m[x, y], n[x, y]}
across the boundary C of a region R, you have your choice:
- You can go through the labor of parameterizing C, and then
calculate
$c —nix, yldx + mix, yldy,
- or, if the field has no singularities inside R, you can put
divFieldx, y] = D[m[x, yI, X] + D[n[x, yl, y]
and calculate the 2D integral
[ |, divFieldix, yldx dy.

OAnswer:
Back in the lesson on 2D integrals (Lesson 2.05), you met up with the
Gauss-Green formula. The Gauss-Green formula says Cas the
boundary curve of a regicR, then you are guaranteed that

§c -n[x, yldx + m[x, yldy

= [ [, divFieldx, yl dx dy.
Go withField[x, y] = {m[x, y], n[X, y}, and put
divField[x, y] = D[m[x, y], X] + D[n[x, yI, y]
and read off
§c -n[x, yldx + m[x, yldy
= [ [, divFieldx, yl dx dy.
BecauseSEC -n[x, yldx + m[x, y]dy measures the net flow of
Fieldx, y] = {m[x, y], n[x, y]} acrossC, you are guaranteed that
[ |, divFieldix, yldxdy
makes the same measurement.

OB.1.b)

Here's the rectangle R with corner$-&, —1}, {3, -1}, {3, 1}, and
{-3, 1:
Rplot =Show[Graphics [{Red, Thickness [0.01 ],
Line [{{-3, -1}, {3, -1}, {3, 1}, {-3, 1}, {-3, -1}}1}1,
1

Axes - True, AxesLabel - {"X","y" }, AspectRatio

I:

B —
GoldenRatio

Use a 2D integral to measure the net flow of the vector field
Fieldx, y] = {x3+y, x— y}
across the boundary curve C of this rectangle.

OAnswer:

Enter the vector field:
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Clear [x,y, m,n, Field 1
(MG y_ 1,0 DGy 13 =03 +y, x -y)

Field [x_,y_ I={mxyl.nixy]l}
Calculate the divergencdivFieldx, y]:
Clear [divField ]
divField [x_,y_1=D[m[x,y ], X1 +D[n[x,y 1,y 1
-1+3x2
Take another look R:
] Show[Rplot ];
y
0.5
3 2 -1 1 2 x
-0.5

Calculate | [, divField[x, y] dx dy:
| Jl ja divField [x y ]dxdy
1Jd3
96

Big time positive. This means that the net flow of this vector field
across the boundary of this rectangle is from inside to outside.
There must be a lot of sources of new fluid inside the rectangle.

oOB.1.c.i)

Take a look at divFiel, y] for the vector field
Fieldx, y] = {Sinly] — x, Cogx] — y}:
Clear [X, Yy, m, n, Field, divField 1
{MIX_, y_ 1,0 [X_, y_ 1} = {Sin [y] -x Cos [x] -y}

Field [x_,y_ 1={mxyl.nixy]l}
divField [x_,y_ 1=D[m[x,y 1,x1+D[n[x,y 1,y 1

-2
You look at this and note that
divFieldx, y] <0

no matter whatx, y} is, and then you say:

"Good, this tells me that the flow of this vector field across any closed
curve is from outside to inside."

You are right.

Why are you right?

OAnswer:
Take any closed cunC, and calR the regiorC encloses. You can
calculate the net flow
§C—n[x, yldx + m[x, y]dy
of Field[x, y] = {m[Xx, yl], n[x, y]} acrossC by calculating the 2D
integral
[ [ divFieldx, yldxdy.
Because
divField[x, y] <0
no matter whafx, y} you go with, you are guaranteed that
[ | divFieldx, yldxdy <O.
So:
§C -n[x, yldx + m[x, yldy = ffR divField[x, y]dxdy < 0
no matter what closed curC:you go with.
This tells you that the flow of this vector field across any closed curve
is from outside to inside.
Good deal.

oB.1.c.ii)

Take a look at divFiel, y] for the vector field
Fieldx, y] = {Sin[y] + x°, Cogx] + y®}
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Clear [Xx,y, m, n, Field, divField 1

{MIX_, y_ 1,0 [x_, y_ 1} = {Sin [y] +x%, Cos [x] +y*};
Field [x_,y_ 1={mx,yl.n[xy1l}

divField [x_,y_ 1=D[mx,y ],x]1+D[n[x,y 1,y ]

5x4+3y?
You look at this and note that
divFieldx, y] > 0
unless{x, y} = {0, 0}, and then you say:

"Good, this tells me that the flow of this vector field across any closed

curve is from inside to outside."
You are right.
Why are you right?

OAnswer:

Take any closed cunC, and calR the regiorC encloses. You can
calculate the flow
§c —-n[x, y]dx + m[x, yldy
of Field[x, y] = {m[X, yI, n[x, y]} acros<C by calculating the 2D
integral
[ [, divFieldix, yldx dy.
Because
divFieldx, y] > 0
except at one point, you are guaranteed that
[ |, divFieldx, yldxdy > 0.
So:
_<§C —-n[x, yldx + m[x, yldy
= [ [ divFieldx, yldxdy >0
no matter what closed curC:you go with.

This tells you that the flow of this vector field across any closed curve

is from inside to outside.
DivField[x, y] is a really handy tool.

B.2) Sources, sinks, and the divergence of a vector field

OB.2.a) The meaning of the sign of
divField[x, y] = D[m[x, y], X] + D[n[x, yl, y]

Given a vector field

Fieldx, yl = {m[x, y], n[x, yl},
you calculate

divFieldx, y] = D[m[x, y], x] + D[n[x, y], yI.
How does the sign of

divFieldx, y] = D[m[X, Y1, X] + D[N[X, Y1, Y]
tell you whetheix, y} is a source of new fluid or a sink (drain) for old
fluid?

OAnswer:

If divField[xo, Yo] > O, then the poir{Xxq, Yo} is a source of new fluid.
If divField[xo, Yo] < 0, then the poir{xg, Yo} is a sink for old fluid.
Here's why:
Take a small circliC centered &{xo, Yo}. Calculate the flow of
Field[x, y] acrossC by calculating
9§c -n[x, yldx + m[x, yldy
= [ [ divFieldx, yldxdy.
Here's the kicker:
If
divField[xo, Yol > O,
then it is positive for al{x, y}'s close t{xo, Yo}. S0 ifC is so small that
divField[xo, Yo] > O
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at all{x, y}'s insideC, then you see that

560 -n[x, yldx + m[x, yldy

= [ [ divField(x, y] dxdy > 0.
This means that divField[xg, Yo] > 0, then the net flow cField[x, y]
across small circles centerec{xg, Yo} is from inside to outside.
The upshot:
If divField[xq, Yo] > O, then the poin{xg, Yo} is a source of new fluid.
Similarly, if divField[xq, Yo] < O, then the net flow cFieldx, y] across
small circles centered {xg, Yo} is from outside to inside.
So:
If divField[xo, Yo] < O, then the poin{xg, Yo} is a sink for old fluid.
Check this out:
Go withFieldx, y] = {3xy, y} and look adivField[x, y]:

Clear [x,y, Field, m, n, divField 1

{mix_, y_ 1,n[x,y_ 1} ={3xy,y }

Field [x_,y_1={mxy1l.nixy1l}

divField [x_,y_ 1=D[m[x,y 1, x1+D[n[x,y 1,y 1
1+3y

See whether the poi{0, 2} is a source or a sink:
| divField [0, 2]
7
Positive. This tells you that the po{0, 2} is a source.
Take a look at this vector field on a small circle center¢0, 2} to see

whether this calculation agrees with reality:

point = {0, 2 };

radius =0.1;

pointplot = Graphics [{PointSize [0.04 ], Point [point 1}1;
Clear [x,y,t ]

{X[t_1,y [t_1}=point +radius {Cos[t],Sin [t]};

tlow =0;
thigh =2m;
smallcircle = ParametricPlot [{X[t],y [t1}, {t tlow, thigh 1,
PlotStyle - {{Red, Thickness [0.01 ]}}, DisplayFunction - |dentity 1;
scalefactor = 0.05;
fieldplot = Table [Arrow [Field [x[t],y [t]], Tal - {x[t],y [t]},
thigh -t
ScaleFactor - scalefactor ], {t, tlow, thigh, %}];

Show [ pointplot, smallcircle, fieldplot,
Axes - True, AxesLabel - {"X","y" }, AspectRatio - Automatic,
DisplayFunction - $DisplayFunction 1;

| %ﬁ x
Confirm by looking at the normal components of the field vectors on
the curve:

Clear [normal ]

normal [t_]={y'[t], -X"[t]};

Clear [normalcomponent ]

normalcomponent [t_] = Field [x[t1.y [t1].nomal [t} normal [t ];
normal [t].normal [t]

. T .
Jump = 5
actualflowacross =
Table [Arrow [normalcomponent [t], Taill - {x[t],y [t1},
ScaleFactor - scalefactor 1, {t, 0,2 o -jump,jump }1;
Show [ pointplot, smallcircle, actualflowacross,
Axes - True, AxesLabel - {"X","y" }, AspectRatio - Automatic,
DisplayFunction - $DisplayFunction 1;
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Yessiree, Bob. The plot shows a lot more flow from inside to outside
than from outside to inside.
Just as you would expect on a small circle centered at a source.

OB.2.b) Sources and sinks

Here's a vector field:
Clear [Field, m, n, X,y 1
{Mmx_,y_ 1.n [x_,y_ 1} ={Sin [x] Cos[y], Sin [y] Cos[x]};
Field [x_,y_1={mXxy1l,ni[xy]l}
{Cos[y] Sin [x], Cos [x] Sin [y]}
Give a sample plot of some of the sources and sinks in this vector
field.

OAnswer:

Here'sdivField[X, y]:
Clear [divField 1]
divField [x_,y_ 1=D[mx,y ],x]1+D[n[x,y 1,y ]
2Cos[x] Cos[y]

A point{x, y} is a source idivField[x, y] > 0, and{x, y} is a sink if
divFieldx, y] < 0.

Here comes the plot:

sourcesandsinks = Show[Table [If [N[divField [x,y 11 >0,
Graphics [{PointSize [0.015 ], Red, Point [{X,y }1}],
Graphics [{PointSize [0.025 ], GrayLevel [0.5 1, Point [{X,y }1}11,
{X, -5,5,025 }, {y, -4,4,025 1}], Axes - True,
AxesLabel - {"x","y" }1;

.;;<
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i
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Alternate squares of sources and sinks.

Think of the sources as little individual springs feeding the flow.
Think of the sinks as tiny little holes through which fluid seeps out as
the flow goes by.

OB.2.c.i) All sources insideC

If every point inside a closed curve (like a deformed circle) C is a
source of a given vector field, and if the vector field has no
singularities inside C, then how do you know that the net flow of the
given vector field across C is automatically from inside to outside?

OAnswer:
If every point inside a closed curCzis a source of a given vector
field, then
- new fluid is oozing out of each point insiCe and
— there there is no place withCito absorb excess outside-to-inside
flow.
The result:
If every point inside a closed curCzis a source of a given vector
field, then the flow of this vector field acrcCsis automatically from
inside to outside.

For example, look at:

Clear [Field, m, n, x, y, divField 1

(MDX_, y_ 1,0 Xy 1= 03 -y, y 3 exy

Field [x_,y_ 1={mxyl.n[xy]l}

divField [x_,y_ 1=D[mx,y ],x]1+D[n[x,y 1,y ]

3x2+3y?
Unless{x, y} = {0, 0}, divField[x, y] > 0.
This tells you that all poini{x, y} excep#{0, 0} are sources for
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Field[x, y] and the lone exception is not a sink.

This vector field has no singularities.

So:

On the basis of this information you can say with confidence and
authority that the flow of this vector field across any closed curve is
from inside to outside.

OB.2.c.ii) All sinks insideC

If every point inside a closed curve (like a deformed circle) C is a sink
of a given vector field, and if the vector field has no singularities
inside C, then how do you know that the net flow of the given vector
field across C is automatically from outside to inside?

OAnswer:

If every point inside a closed curCzis a sink of a given vector field,
then

- old fluid is soaking into each point insiCz and

- there there is no place withCito generate excess inside-to-outside
flow.

The result:

If every point inside a closed curCzis a sink of a given vector field,
then the flow of this vector field acroCsis automatically from outside
to inside.

For example, look at:

Clear [Field, m, n, X, y, divField 1

{mix_, y_ 1,0 D,y 13 =gy -x% x -y7y

Field [x_,y_ 1={mxyl.n[xy]l}

divField [x_,y_ 1=D[m[x,y 1,x1+D[n[x,y 1,y 1]

3x2-7y"

Unless{x, y} = {0, 0}, divField[x, y] < 0.

This tells you that all point{x, y} except{0, 0} are sinks foField[x, y]
and the lone exception is not a source.

This vector field has no singularities.

So:

On the basis of this information you can say with confidence and
authority that the flow of this vector field across any closed curve is
from outside to inside.

The region insidC is like a big vacuum sucking up fluid.

OB.2.c.iii) No sources or sinks insidC

If there are no sinks and there are no sources of a given vector field
inside a closed curve (like a deformed circle) C, and if the vector field
has no singularities inside C, then how do you know that the net flow
of the given vector field across C is 0?
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OAnswer:

If there are no sinks and there are no sources of a given vector field
insideC, and there are no singularities insClethen no new fluid is
injected and no old fluid is sucked up insCle

So:

- What flows from inside to outside must be replaced by equal outsid
to inside flow.

- What flows from outside to inside must be replaced by equal inside
to outside flow.

The result:

If there are no sinks and there are no sources of a given vector field
insideC, and there are no singularities insClethen the net flow of

the vector field acrosC isO.

For example, look at:

Clear [Field, m, n, x, y, divField 1

{m[x_,y_ 1,n [x_,y_ 1} ={Cos[x] Cosh[y], Sin [x] Sinh [y]};

Field [x_,y_ 1={mxy 1, n[xy]l}

divField [x_,y_1=D[m[x,y ], Xx1+D[n[x,y 1.y 1

0

This tells you that this vector field has no sources or sinks.
This vector field has no singularities, so:
On the basis if this information you can say with confidence and
authority that the net flow of this vector field across any closed curve i

0.

OB.2.d) Divergence

Why do most folks call divFiela, y] the divergence of a vector field
Field[x, y]?

OAnswer:

The name fits.

If divFieldx, y] > 0, then new fluid is oozing out of the point

{x, y} and diverges elsewhere.

If divFieldx, y] < O, then old fluid is sucked into the point

{x, y} and converges onto this point.

If divFieldx, y] = 0, then no new fluid is introduced, and no old fluid
is sucked off as the flow passes{x, y}.

B.3) Flow-across-the-curve measurements in the presence
of singularities

The presentation of this problem was heavily influenced by
The Feynman Lectures on Physics
by Richard P. Feynman, Robert B. Leighton, and Matthew Sands,
Addison-Wesley, 1964.

0OB.3.a) Singularities

Here are two closed curves, each parameterized correctly in the
counterclockwise way:

Clear [x1, Y1, x2,y2,t 1

tlow =0;

thigh =2
(L[], yL [t ]
(2[t1,y2 [t]

}={1,0}+4 {Cos[t],0.6Sin [t]};
}={1,0}+2{Cos[t],Sin [t]};
curves =
ParametricPlot [{{x1[t],yl [t1}, {x2[t1,y2 [t]1}}, {t tlow, thigh },
PlotStyle - {{Red, Thickness [0.01 ]}, {Red, Thickness [0.01 ]1}},
AxesLabel - {"x","y" 1},
Epilog - {Text ['C1", {-0.6,0.7 }], Text ["C2", {3.5,16 }1}1;

VC.06.B2-B3

Go with
Fielqsx, yl = {m[x, y1, n[x, yI}

=50 o)

and look at the measurements
e, ~nlx, yldx + mix, yldy,
and
$e, ~nlx, yldx + mix, yldy
of the flow of this vector field across each curve:
Clear [Field, m, n, x,y 1
6 X 6y
X2 +y2 ' X2 4y2
Field [x_,y_ 1={mxy 1,n[xy 1}

b

(mix_,y_ 1.n[x.y_ 1} ={

flowacrossC1 =
Nintegrate  [-n[x1[t],yl [t]]x1 [t] +m[x1[t], yl [t]]yl [t],
{t, tlow, thigh }1

37.6991
flowacrossC2 = Nintegrate [
-n[x2[t],y2 [t]11x2'[t]+m[x2[t],y2 [t]]y2'[t], {t tlow, thigh }1
37.6991

The curves are different, but the flow of this vector field across the
one curve is the same as the flow of this vector field across the other.
Was this an accident?

OAnswer:

You got it right.

In mathematics, there are no accidents.

Take a look at the vector field.

| Field [xy 1
{ 6 X 6y }
X2 +y2' x24y2

Note the nasty singularity {0, O}.

| Field [0,01]
wozindet : Indeterminate expression 0 Complexinfinity encountered.
{Indeterminate, Indeterminate }

Look atdivField[x, y]:

Clear [divField ]
divField [x_,y_ 1 =Together [D[m[x,y 1,x]1+D[n[x,y 1,y 1]
0

Ah-ha!

The vector field has no sources or sinks other than at the singularity at
{0, O}.

Check out the position of the singularity relative to the curves:

singularity ={0,0};
singularityplot = Graphics [{PointSize [0.03 ], Point [singularity 131,
Show[curves, singularityplot 1;

The singularity is not between the curves.

And because there are no sources or sinks anywhere but at the
singularity, you know that the same amount of fluid that flows across
the inner curve also flows across the outer curve.

This is why when you measure the flow of the vector field
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Fieldx, yI = {m[x, y]. n[x, yI}
= {xzi—xyzv xfi—yz},
as above, you get
e, —nIx, yIdx + mlx, y]dy
= §, N, yldx + m[x, yldy
0OB.3.b) Avoiding grisly parameterizations by encapsulating the
singularities.

Look at the following curve C:
Cplot = Graphics [{Thickness [0.01 ], Red, Line [{{7,0}, {4,4 1}, {551},
{-1,61} {-2,3} {-521} {-3, -4} {1, -2}, {4 -3}, {7.0}}]1}]:
label = Graphics [Text ['C", {2.5,5 }11;
Show [ Cplot, label, Axes - True, AxesLabel - XYY,
AspectRatio - Automatic 1;
y

-4
Calculate the flow of
i - 2(x-2) 2(¢y-1)
FleI(IX,_y] = {(Xf?)zxﬂy?l)z y (X72)2y+(y71)2 } o
across C without going to all the bother of parameterizing C.

OAnswer:

This is definitely a case in which a little knowledge can save a lot of
work. Only a bean-counting dweeb would find pleasure in
parameterizing that silly polygonal curCs

Clear [Field, m, n, x,y 1

2 (x-2)
MX_Y_ ] = ——ap———
(x=2)%+(y-1)
2 -1
DLy 1= (y-1)

x-2)2+ (y-12’
Field [x_,y_ 1={mXxy1,nIxy1l}
{ 2 (-2 +X) 2 (-1+y) }
(-2+x)%2+ (-1+y)2" (-2+%)%+ (-1+y)?
Note the singularity &2, 1}.

| Field [2,1]
wozindet : 0Cc
{Indeterminate, Indeterminate }

Look atdivField[x, y]:

] Together [D[m[x,y 1,x]+D[n[x,y 1.y 1]
0

Good.

If there were no singularities insiiCs then this information would be
enough to tell you that the flow of this field acrG$s 0. But the nasty
singularity (blow-up) a{2, 1} inside the curviC might be a sink or

finity encountered.

source.

This won't hold you back because you can pull off a pretty neat stunt:

Encapsulate the singularity by centering a little ciC,earound the
singularity ai{2, 1}, taking care that the little circle lies completely
within C.

Here's one:

singularity ={2,1},;

Clear [x1,yl,t 1]

{x1[t_1,yl [t_]} = singularity +05 {Cos[t],Sin [t]};

Cilplot = ParametricPlot [{x1[t],yl [t1}, {t 0,2 =},
PlotStyle - {{Thickness [0.01 ], Red }}, DisplayFunction

singularityplot =

Graphics [ {Blue, PointSize [0.03 ], Point [singularity 1}1;
extralabel = Graphics [Text ["C1", {1.3,0.6 1}11;

- Identity 1;

VC.06.B3

Show[Cplot, Clplot, singularityplot, label,
extralabel, PlotRange - All, Axes - True, AxesLabel - Yy,
AspectRatio - Automatic, DisplayFunction - $DisplayFunction 1;

-4
Because

divField[x, y] = D[m[x, y], x] + D[n[x, y], y]=0
at all points between the circC; and the ugly curvC, and because
there are no singularities between the two curves, you can be certain
that that the flow of this vector field across the little ciiC,ais the
same as the flow of this vector field acrCssIn other words,

fc—n[x, yldx + m[x, yldy

= §cl —n[x, yldx + m[x, y] dy.
The beauty of this is that you can calculate

fcl -n[x, yldx + m[x, yldy
with a couple flicks of your fingers:

flowacrossC1 = Nintegrate [
-n[xX1[t],yl [t11 X1 [t]+mx1(t],yl [t]11yl'[t], {t0,2 }]
12.5664

The net flow across the little circC; is from inside to outside.

There was a gushing source at the singularity.

The flow of the given vector field acroCsis the same as the flow of of
this field acros:C;:

] flowacrossC = flowacrossC1
12.5664

And you did this without going to the trouble of parameteri.Cng

A little knowledge saved a lot of work.

Does anyone other than a wuss really want to parameterize that silly
curve?

OB.3.¢) Encapsulating two singularities

Stay with the same curve C as in part b):
Cplot = Graphics [{Thickness [0.01 1, Red, Line [{{7,0}, {4,4}, {55},
{(-1,61}, {-2,3}, {-5,2}, {-3, -4}, {1, -2}, {4, -3}, {7,01}1}];
label = Graphics [Text ["C", {2.5,5 }11;

Show[Cplot, label, Axes - True, AxesLabel - Yy,
AspectRatio - Automatic 1;
y

P
-4
Go with:
Clear [Field, m, n, x,y 1
X-2 2 (x+3)
mix_,y_ 1= - '
(x-2)24+(y-1)2  (x+3)%2+ (y+2)?
nCy_ 1= y-2 L

(x-2)24+(y-1)2  (x+3)24+ (y+2)2’
Field [x_,y_ 1={mx,y 1,n[xy 1}

{ -2 +X B 2 (3+X)
(2+x)2+ (-1+y)2  (B+x)2+ (2+y)?’
-1+y 2 (2+y)
(—2+x)2+ (-1+y)2  (B+x)2+ (2+y)2}

Calculate the flow of this vector field across C without breaking into a
heavy sweat.

OAnswer:

Look at the vector field again.

127



VC.06.B3-T1

| Field [x,y ] . .
i 2x L 2@3x) VC.06 Sources, Sinks, Swirls and
(—2+x)2+ (-1+y)2  (3+x)2+ (2+y)2’ . .
1.y 22y Singularities
(-2+x)2+ (-1+y)2  (3+x)2+ (2+y)? TUtOfi&'S
Note the singularities at {2, 1} and af{-3, —2}.

] (Field [2,17], Field [-3, -2]}

{ {Indeterminate, Indeterminate 1, {Indeterminate, Indeterminate 13 Tl) The p|eaSUre of Ca|CU|ating path integrals
Now look at: fc mix, yldx + nix, yldy
] Together [D[m[x,y 1,x ] +D[n[x, y 1.y 1]
o when
Good. DIn[x, yI, x] = DIm[x, yl, y1 =0
The vector field has no sources or sinks aside from the singularities. OT.1.a.i) No singularity insideC
Encapsulate the singularities by centering a little cCylat the Here is a curve:
singularity ai{2, 1}, and centering another little circC, at the Cplot = Graphics [{Thickness [0.01 ], Red, Line [{{7,0}, {2,2}, {551},
. . . . . . (-2,2}, {-4,1}, {-5, -3}, {-3, -4}, {1, -2}, {4 -3}, {7.0}}}];
singularity ai{—3, —2} taking care that both little circles lie completely label = Graphics [Text ["C", (25,45 }1];
within C, and taking care that they do not invade each other's territory Show[Cplot, label, Axes - True, AxesLabel = (X", "y"  },
. AspectRatio - Automatic 1;
Here are two very acceptable circles: y
singularityl ={2,1}; c
singularity2 = {-3, -2}; 4

Clear [x1, Y1, x2,y2,t 1
{x1[t_1,yl [t_]} = singularityl +0.8 {Cos[t],Sin [t]1};
{X2[t_1,y2 [t_]} = singularity2 +0.4 {Cos[t],Sin [t1};
littlecircles =
ParametricPlot [{{x1[t],yl [t1}, {x2[t1,y2 [t1}}, {1, 0,2 =},
PlotStyle - {{Thickness [0.01 ], Red }, {Thickness [0.01 ], Red }},
DisplayFunction - Ildentity  1; -4
singularityplot = Here are two functions [, y] and rix, yI:
{Graphics [{Blue, PointSize [0.02 ], Point [singularityl 131,
Graphics [ {Blue, PointSize [0.02 ], Point [singularity2 131}
extralabels =
{Graphics [Text ["C1", {1,0.5 }1], Graphics [Text ["C2", {-3, -1.3 }11};

Clear [m,n, X,y ]
2 (x -6)

mx_,y ]=x+—"1" "
ey -Dn°

2 4 2 (-6 +X)
Show [ Cplot, littlecircles, singularityplot, label, (-6+x)2+ (-1+y)*
extralabels, PlotRange - All, Axes - True, AxesLabel - Y, 4 (y-1)°8
AspectRatio - Automatic, DisplayFunction - $DisplayFunction 1; | nix_y_ 1=y« —
(x=-6)“+(y-1)
Y 4(-1+y)® 2
62 1oy)* Y
4 Note the singularity &6, 1} and plot it:
2 singularity ={6,11};
C@ singularityplot = Graphics [{PointSize [0.03 ], Point [singularity 131,
2 4 67 %
Show[Cplot, singularityplot, label, Axes - True,

AxesLabel - {"x","y" }, AspectRatio - Automatic 1;
4

Because
divFieldx, y] = D[m[X, y], X] + D[n[x, y],y] =0
at all points between the circles and the ugly cCyand since there

are no singularities between the circles Chgou can be certain that
the net flow acrosC is given by

Good.
-n[x, yldx + m[x, yld : _ L .
9§C X 1 x. yldy The singularity is not inside the region enclosed by C.
= fcl —-n[x, yldx + m[x, yldy + 5602 —-n[x, yldx + m[x, yldy. Now check Dn[x, y], x] - D[m[X, y], y:
Here you go with just a couple flicks of your fingers: | Together [Dn[x,y 1. x 1-DImix,y 1, y 11
flowacrossC1 = Nintegrate [ 0
-n[xL[t],yl [t11 XL/t +mx1t],yl [t]1yl [t], {t0,2 =m}]; Good. ) )
flowacrossC2 = Nintegrate [ Now, without further calculation, you can be sure that
SNIX2[t],y2 [E]11X27[t]+mX2[t],y2 [t1]1y2'[t], {t 0,2 m}1; _
fc m(x, yldx + n[x, yldy = 0.
flowacrossC = flowacrossC1  + flowacrossC2 Why can you be sure of this?
-6.28319 OAnswer:
The net flow of this vector field acroGsis from outside to inside. At Go with the m[x,y] and n[x,y] used above.
least one of the singularities must have been a big time sink. $emix, yldx + nx, yldy

measures the net flow of the vector field
Field[x, y] = {n[x, y], —m[x, yI}
acros<C.

Stop here and read again.
The vector field you are working with here is

Field(x, y] = {n[x, y], -m[X, y]}.
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The divergence of THIS vector field is
DIn(x, yl, x] - DIm(X, y1, 1.
This vector field has no singularities insCeand because
divField[x, y] = D[n[x, y], x] - D[m[X, y], y] = 0,
this vector field has no sources or sinks wiiCin And because you
can't get something out of nothing, the net flow of this vector field
acros<C isO.
So
$omIx, yldx + nix, yldy = 0.
If this stings your brain, you could use the Gauss-Green formula to
explain this.
The Gauss-Green formula says theC is the boundary curve of a
regionR, then you are guaranteed that
$emix, yldx + nix, yldy
= [ [ (DIn[x, yl, x] - D[, y1, y) dxdy
= [ [,0dxdy=0.
OT.1.a.ii) A singularity inside C

Here's the same curve:
Cplot = Graphics [{Thickness [0.01 ], Red, Line [{{7,01}, {2,21}, {55},
{-2,2}, {-4,1}, {-5 -3}, {-3, -4}, {1, -2}, {4, -3}, {7,01}}1}];
label = Graphics [Text ['C", {25,45 1}]11;

Show[Cplot, label, Axes - True, AxeslLabel - XYY,
AspectRatio - Automatic ;

-4
Here are two new functions[r y] and rix, y]:
Clear [m, n, X,y 1

1-y
m[x_,y_]:—
(x+2)%+ (y-1)?
1-y
(2+x)%2+ (-1+y)?
nix - X +2
| AR PPN TE
2+X

(2+x)2 4+ (-1+y)2
Note the singularity &t-2, 1} and plot it:

singularity ={-2,1};
singularityplot = Graphics [{PointSize [0.03 ], Point [singularity 131
Show [ Cplot, singularityplot, label, Axes - True,

AxesLabel - {"x","y" '}, AspectRatio - Automatic ];

-4
This time the singularity is inside the region enclosed by C.
Now check Dn[x, y], x] = D[m[X, y], yI:

| Together [DInix,y 1,x1-DImix,y 1,y 1]

0

If there were no singularities inside C, then this information would be

enough to tell you that ~ §_mix, yldx + n[x, yldy = 0, but this

VC.06.T1

does not tell you that

$omix, yldx + n[x, yldy =0
because of the nasty singularity (blow up) inside the curve C.
Encapsulate the singularity by centering a little circjeaCthe
singularity, taking care that the circle lies completely within C.
Here's one:

Clear [x1,yl,t ]
{x1[t_1,yl [t_ 1]} = singularity +0.5 {Cos[t],Sin [t]};
Clplot = ParametricPlot [{x1[t],yl [t1}, {t 0,2 o},

PlotStyle - {{Thickness [0.01 ], Red }}, DisplayFunction - Identity 1;
singularityplot = Graphics [{PointSize [0.03 ], Point [singularity 131;
extralabel = Graphics [Text ["C1", {-1.2,1 }]1;

Show[Cplot, Clplot, singularityplot, label,
extralabel, PlotRange - All, Axes - True, AxesLabel - Yy,
AspectRatio - Automatic, DisplayFunction - $DisplayFunction 1;

-4
Now you can be sure that
$eMIX, yldx + nix, yldy
= §Cl m[x, yldx + n[x, yldy
which is given by:
I Nintegrate [mx1[t],yl [t1] X1 [t]+n[x1[t],yl [t]1yl'[t], {t 0,2 =}]
6.28319

Explain why you can be sure that this calculation is correct.

OAnswer:

Go with them[x, y] andn[x, y] used above.

$omIx, yldx + nix, yldy
measures the net flow of the vector field

Field[x, y] = {n[x, y], -m[x, y]}
acrossC. This vector field has no singularities betwCzandC,, and
because

divField[x, y] = DIn[x, y], X] - D[m[x, y], y] = 0,
this vector field has no sources or sinks betwCemdC;. And
because you can't get something out of nothing, the net flow of this
vector field acrosC is the same as the net flow of this vector field
acros<C.
So

fc m[x, yldx + n[x, yldy

= §Cl m[x, yldx + n[x, yldy.
You've got a hard time using the Gauss-Green formula to explain this
directly, because the Gauss-Green formula can fail \Chencloses a
singularity.

OT.1.a.iii) Two singularities insideC

Here is the same curve again:
Cplot = Graphics [{Thickness [0.01 ], Red, Line [{{7,01}, {2,2}, {551},
{-2,2}, {-4, 1}, {-5 -3}, (-3, -4}, {1, -2}, {4, -3}, {7,01}}1}];
label = Graphics [Text ["C", {2.5,45 1}11;

Show[Cplot, label, Axes - True, AxesLabel - Yy,
AspectRatio - Automatic 1;
y
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Here are two new functions[r y] and rix, y]:

Clear [m,n, X,y 1
3(1l-y) y+1

(x+2)2+ (y-1)2 * (x+2)2+ (y+1)?

mix_,y_ 1=

3(1-y) . 1+y
2+x)2+ (-1+y)2  (2+x)%2+ (1+y)?
3 (X +2) X +2

|n[x_,y_]= 2 2 2 2
(X+2)°+(y-1) (X+2)7+ (y+1)

3 (2+X) ~ 2 +X
2+x)2+(-1+y)2  (2+x)2+(L+y)?
Note the singularities &t 2, 1} and{-2, —1} and plot them:
singularityl ={-2,1};
singularity2 ={-2, -1};
singularityplot = {Graphics [{PointSize [0.03 ], Point [singularityl 11,
Graphics [ {PointSize [0.03 ], Point [singularity2 131}

Show [ Cplot, singularityplot, label, Axes - True,
AxesLabel - {"x","y" '}, AspectRatio - Automatic ];

-4
The singularities are inside the region enclosed by C.
Now check Dn[x, y], x] = D[m[X, yI, yI:

] Together [D[n[x,y I,x1-D[mxy 1,y 1]

0

If there were no singularities inside C, then this information would be
enough to tell you tha}ﬁc m[x, yldx + n[x, yldy is 0 . But this does

not tell you that

$omix, yldx + nix, yldy =0
because of the nasty singularities inside the curve C.
Encapsulate the singularities by centering a little cirglat®ne
singularity and centering another little circle & the other

singularity, taking care that both little circles lie completely within C,

and that @ and G don't touch or invade each other's territory.
Here are two suitable circles:

Clear [x1, Y1, x2,y2,t 1
{x1[t_1,yl [t_]} = singularityl +0.5 {Cos[t],Sin [t]};
{X2[t_1,y2 [t_]} = singularity2 +0.5 {Cos[t],Sin [t]1};

littles = ParametricPlot  [{{x1[t],yl [t1}, {x2[t],y2 [t1}}, {, 0,2 =},
PlotStyle - {{Thickness [0.01 1, Red }}, DisplayFunction - Identity 1;

singularityplot = {Graphics [{PointSize [0.03 ], Point [singularityl 131,
Graphics [ {PointSize [0.03 ], Point [singularity2 131}

extralabels =

{Graphics [Text ["C1", {-1.2,1 }11, Graphics [Text ["C2", {-1.2, -1}]11};

Show [ Cplot, littles, singularityplot, label, extralabels,
PlotRange - All, Axes - True, AxesLabel - Yy,
AspectRatio - Automatic, DisplayFunction - $DisplayFunction 1;

-4
Now you can be sure that

$emIx, yIdx + nix, yldy

= 9€C1 m[x, yldx + n[x, yldy + 9€c2 m[x, yldx + n[x, yldy,
which is given by:

I Nintegrate  [m{x1[t1,yl [t]]x1'[t]+n[x1[t],yl [t11yl [t], {t 0,2 =x}]+

Nintegrate [M[x2[t],y2 [t]]1X2'[t]1+n[x2[t],y2 [t1]y2'[t], {t, 0,2 m}]
12.5664

Explain why you can be sure that this calculation is correct.
OAnswer:

Go with them[x, y] andn[x, y] used above.
$eMIX, yldx + nix, yldy

measures the net flow of the vector field
Fieldx, y] = {n[x, yI, -m[x, y]}

VC.06.T1>T2

acrossC. This vector field has no singularities betwCzand the little
circles, and because

divField[x, y] = D[n[x, y], x] - D[m[x, y], y] =0,
this vector field has no sources or sinks betwCiemd the little circles.
And because you can't get something out of nothing, the net flow of
this vector field acrosC is the same as the net flow of this vector field
across one little circle added to the net flow of this vector field across
the other little circle.
So

fc m[x, yldx + n[x, yldy

= 56(:1 m[x, yldx + nx, yldy + 5602 mix, yldx + n[x, yldy.

OT.1.b) Path integrals

Here are two new curves both correctly parameterized in the
counterclockwise way:

Clear [x1,yl, x2,y2,t 1

tlow =0;

thigh =2m;

{x1[t_1,yl [t_1}=2{Cos[t],06Sin [t]+0.2Sin [2t]};
{X2[t_1,y2 [t_1}={1,0}+05 {Cos[t],Sin [t]};

curves =
ParametricPlot [{{x1[t1,yl [t1}, {x2[t]1,y2 [t]}}, {t tlow, thigh },
PlotStyle - {{Red, Thickness [0.01 1}, {Red, Thickness [0.01 ]1}},
AxesLabel - {"x","y" 1}, PlotRange - All,
Epilog - {Text ["C1", {-0.6,0.75 }], Text ["C2", {1.2,0.35 1}1}1;

Given functions rfx, y] and 1ix, y], what do you check to be sure that
$e, mIx, YIdx + nx, yldy
= §Cz m(x, yldx + n[x, yldy

without going to all the bother of making the individual calculations?

OAnswer:
If no singularities o{m[x, y], n[x, y]} pop up betweeC; andC,, and
if
DIn[x, y1, x] = DIm[x, y], y] =0
at all points betweeC; andC,,
then you can be sure that
5501 m(x, y]dx + n[x, y]dy
= 5602 m[x, yldx + n[x, yldy.

T.2) Using a 2D integral to measure flow along closed curves
This problem is a copy, paste and edit job of B.2)
OT.2.a)

Explain this:

To calculate the net flow of a vector field
Fieldx, y] = {m[x, y], n[x, yI}

along the boundary C of a region R, you have your choice:

- You can go to all the labor of parameterizing C and then calculate
$e MIX, yIdx + n[x, yldy.

— Or if the field has no singularities inside R, you can put
rotFieldx, y] = D[n[x, y], x] — D[m[X, I, y]

and calculate the 2D integral
[ [ rotFieldx, yldx dy.

OAnswer:
Back in the lesson on 2D integrals, you met up with the Gauss-Green
formula. The Gauss-Green formula says thCti$ the boundary curve
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of a regiorR, then you are guaranteed that
$oMIx, yldx + n[x, yldy
= [ [, DInlx, yl, X - DIm[x, yl, yldx dy.
Go withField[x, y] = {m[x, y], n[x, y]} and put
rotFieldx, y] = D[n[X, y], x] = D[m[X, Y], I,
and read off
§c m(x, yldx + n[x, yldy
= [ [, rotFieldx, yldxdy.
Because
9€c m[x, yldx + n[x, yldy
measures the flow Field[x, y] = {m[x, y], n[x, y]} alongC, you are
guaranteed that
= [ [ rotFieldx, yldxdy
makes the same measurement.
aT.2.b)

Here is the rectangle R with cornerg-a2, —1}, {2, -1}, {2, 1}, and
{-2, 1
Rplot = Show[Graphics [{Red, Thickness [0.01 1,
Line [{{-2, -1}, {2, -1}, {2,1}, {-2,1}, {-2, -1}}1}],
Axes - True, AxesLabel - {"x","y" }1;
y

0.5

Use a 2D integral to measure the net flow of the vector field
Fieldx, y] = {x+ y%, x - y?}
along the boundary curve C of this rectangle.

OAnswer:

Enter the field:

Clear [X, Yy, m,n, Field 1
{MDX_, y_ 1,0 XL Y- 11 = (x+y2, x -y°};
Field [x_,y_1={mXxy1l,n[xy 1}

(x+y?% x -y?}
CalculaterotFieldx, y]:
Clear [rotField ]
rotField [X,y_1=D[n[x,y 1, x1-D[m[x,y 1,y 1
1-2y
Take another look R:
] Show[Rplot 7;

0.5

-0.5

Calculate [, rotFieldx, yldxdy:
| J'1 JQ rotField  [x,y ] dx dy
1do2
8

Positive.

This tells you that the net flow of this vector field along the boundary

of this rectangle is counterclockwise.

VC.06.T2

aT.2.c.i)

Take a look at rotFie[d, y] for the vector field
Fieldx, y] = {Sin[x] + y, Cogy] — x}
Clear [x,y, m, n, Field, rotField 1
{Mx_, y_ 1,n X, y_ 1} ={Sin [x] +Yy, Cos [y] -X};
Field [x_,y_ 1={mxyl.nixy]l}
rotField [X,y_ 1=D[n[Xx,y 1,x1-D[mx,y 1,y1
-2

You look at this and note that
rotFieldx, y] <0
no matter whatx, y} is. And then you say:
"Good, this tells me that the flow of this vector field along any closed
curve is clockwise."
You are right.
Why are you right?
OAnswer:
Take any closed cunC and calR the regiorC encloses. You can
calculate the flow
$e mIx, yldx + nix, yldy
of Fieldx, y] = {m[x, y], n[x, y]} alongC by calculating the 2D integral
[ [ rotFieldx, yldxdy .
Because
rotFieldx, y] <0
no matter wha(x, y} you go with, you are guaranteed that

[ [ rotFieldx, yldxdy < 0.
So
$omIx, yldx + n[x, yldy
= [ [, rotFieldx, yldxdy <0
no matter what closed curC:you go with.

This tells you that the flow of this vector field along any closed curve
is clockwise.

OT.2.c.ii)

Take a look at rotFie[d, y] for the vector field
Fieldx, y] = {Sin[x] - y°, Cody] + x*}
Clear [x,y, m, n, Field, rotField 1

{MIX_, y_ 1,0 [X,, y_ 1} = {Sin [x] -y®, Cos [y] +x°};
Field [x_,y_ 1={mXxy 1, ni[xy]l}

rotField [X,y_ 1=D[n[x,y 1,x1-D[m[x,y 1,y ]
3x2+5y*

You look at this and note that

rotFieldx, y] > 0
unless{x, y} = {0, 0. And then you say:
"Good, this tells me that the net flow of this vector field along any
closed curve is counterclockwise."
You are right.
Why are you right?

OAnswer:

Take any closed cunC, and calR the regiorC encloses. You can
calculate the flow
SEc mx, yldx + n[x, yldy
of Fieldx, y] = {m[x, y], n[x, y]} alongC by calculating the 2D integral
[ [ rotFieldx, yldxdy.
Because
rotFieldx, y] > 0
except at one point, you are guaranteed that
i fR rotFieldx, y] dxdy > 0.
So
fc m[x, yldx + n[x, yldy
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= [ [, rotFieldx, yldxdy > 0
no matter what closed curC:you go with.
This tells you that the net flow of this vector field along any closed
curve is counterclockwise.

T.3) Rotation (swirl) of a vector field
This problem is a copy, paste, and edit job of B.2).

OT.3.a) Fingering a vector field to get the meaning of the sign of
rotField[x, y] = D[n[x, yl, X] = DIm[x, yI. y]

Given a vector field Field, y] = {m[x, y], n[x, y1}, lick the tip of
your index finger and touch it to a poim, yo} while the vector field
is in full flow. What does the sign of

rotFieldXxo, Yol
tell you about the about the swirl your finger feels?
lllustrate with a plot.

oAnswer:

If rotFieldxg, Yol > 0, then you feeField[x, y] swirling around
{Xo0, Yo} in the counterclockwise way.
If rotFieldxp, Yol < 0, then you felField[x, y] swirling arounc{xo, Yo}
in the clockwise way.
Here's why:
Take a small circliC centered &{xo, Yo}. Calculate the flow of
Field[x, y] alongC by calculating

9§c m[x, yldx + n[x, yldy = ffR rotFieldx, yl dx dy.
Here's the kicker:
If

rotFieldxo, Yol > O,

then it is positive for al{x, y}'s close t({Xg, Yo}, S0 ifC is so small that
rotFieldxg, yo] > 0
at all{x, y}'s insideC, then you see that
fﬁc m[x, yldx + n[x, yldy = ffR rotFieldx, yldxdy > O.
The upshot:
If rotFieldxg, Yol > 0, then the net flow cField[x, y] along small
circles centered {Xg, Yo} is counterclockwise.
Similarly, if rotFieldXo, Yo] < 0, then the net flow cFieldx, y] along
small circles centered {Xg, Yo} is clockwise.
Check this out for the following vector field {0, 0}:

Clear [X,y, m, n, Field, rotField 1
mix_, y_ 1 =x+3y%
nx_,y_1=y+6x

Field [x_,y_ 1={mXxyl.n[xy]l}

rotField [x_,y_ ] =D[n[Xx,y 1,X]1-D[m[x,y 1,y 1]
6-6y

Look at:

| rotField [0,01]
6

Positive.
This mean<Field[x, y] swirls arounc{0, 0} in the counterclockwise
way. Take a look at what the vector field is doing {0, O}:

VC.06.T2>T3

fingerpoint ={0,01};
h =0.5;

scalefactor =0.1;
fieldplot =

Table [Arrow [Field ee (fingerpoint +{X,y }), Tail - fingerpoint +{X, Y},
h h
ScaleFactor - scalefactor 1, {x, -h, h, 5} {y. -h,h, E.}]
fingerpointplot = Graphics [{PointSize [0.07 1, Point [fingerpoint 1}31;

Show[fingerpointplot, fieldplot, Axes - Automatic,
AspectRatio - Automatic, PlotRange - All, AxesLabel - YL

Lick the tip of your index finger, put the tip of your finger at the point,
and feel the counterclockwise swirl.

OT.3.b) Clockwise versus counterclockwise

Here's a vector field:

Clear [Field, m, n, X,y 1
{mIx_,y_ 1,n [x_,y_ I} ={Sin [x] Cos[2y], Sin [y] Cos[2X]};

Field [x_,y_ 1={mXxyl,nI[xy 1}
{Cos[2y] Sin [x], Cos [2x] Sin [y]}
Give a sample plot of some of the poifxtsy} about which this vector
field swirls in the counterclockwise way.

OAnswer:

Here'srotField X, y]:
Clear [rotField ]
rotField [x_,y_ 1=D[n[Xx,y 1,x]1-D[mx,y 1,y 1
-2Sin [2x] Sin [y] +2Sin [x] Sin [2y]

The vector field swirls aroun{x, y} in the counterclockwise way if

rotFieldx, y] > 0. Here comes the plot:

Show([Table [If [N[rotField X,y 11 >0,
Graphics [{PointSize [0.02 ], Red, Point [{X,y }1}],
Graphics [ {PointSize [0.01 ], Blue, Point [{X,y }1}11,
{Xx, -5,5,025 1}, {y, -4,4,025 1}], Axes - True,
AxesLabel - {"x","y" 3}1;

The larger points are points at which the swirl is counterclockwise; the
smaller points are points at which the swirl is either

OT.3.c) Rotation (swirl) at a point

Why do most folks call rotFie[d, y] the rotation of a vector field
Fieldx, y]?

OAnswer:

0 or clockwise.

The name fits.

If rotFieldx, y] > 0, then the fluid swirls arour{x, y} in the
counterclockwise way.

If rotFieldx, y] < 0, then the fluid swirls arour{x, y} in the clockwise
way.

If rotFieldx, y] = 0, then the fluid has no swirl at all as it passes by
{x, y}.
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T.4) Summary of main ideas.

Calculus&Mathematica offers this summary to you
for your good use and enjoyment.
It comes from the home office to you.
'99

OT.4.a.i) Sources versus sinks

If

Fieldx, y] = {m[x, yI, n[x, yI}
is a vector field, then a poif, y} is:
— a source of new fluid if

divFieldx, y] = D[m[x, yI, X] + D[n[x, y], y] >0
— a sink for old fluid if

divFieldx, y] = D[m[x, y], X] + D[n[x, y], y] <0
- neither a source nor a sink if

divFieldx, y] = D[m[x, y], X] + D[n[x, y], y] = 0.

OT.4.a.ii) Counterclockwise versus clockwise swirl

If

Fieldx, yI = {m[x, yI, n[x, yI}
is a vector field, then a the swirl about a pginty} is:
— counterclockwise provided

rotFieldx, y] = D[n[x, y], X] — D[m[x, y],y] >0
— clockwise provided

rotFieldx, y] = D[n[x, y], X] — D[m[x, y], y] <O.

OT.4.b.i) Flow across

If C is a closed curve and R is the region inside C, then the net flow o

a vector field

Fieldx, yl = {m[x, y], n[x, yI}
across C is measured by

$e —NIx, yldx + mlx, yldy = [ [, divField(x, y]dxdy
provided there are no singularities inside C.
(Here divFieldx, y] = D[m[X, y], X] + D[n[x, y], yI.)
If divField[x, y] = 0 at all points inside C, and there are no
singularities inside C, then the net flow of Fieldy] across C is 0.
If divField[x, y] > O at all points inside C, and there are no
singularities inside C, then the net flow of Figldy] across C is from
inside to outside.
If divField[x, y] < 0 at all points inside C, and there are no
singularities inside C, then the net flow of Figldy] across C is from
outside to inside.

OT.4.b.ii) Flow along

If C is a closed curve and R is the region inside C, then the net flow o

a vector field

Fieldx, y] = {m[x, yl, n[x, yI}
along C is measured by

$omIx, yldx + n[x, yldy = [ [_ rotFieldx, yldxdy
provided there are no singularities inside C.
(Here rotFieldx, y] = D[n[x, y], x] - D[m[X, I, yI.)
If rotField[x, y] = O at all points inside C, and there are no
singularities inside C, then the net flow of Fieldy] along C is 0.
If rotField[x, y] > O at all points inside C, and there are no
singularities inside C, then the net flow of Fieldy] along C is
counterclockwise.
If divField[x, y] < O at all points inside C, and there are no
singularities inside C, then the net flow of Fieldy] along C is
clockwise.

VC.06.T4-G1

OT.4.c.i) Singularities and flow-across measurements

Given a vector field Fiel, y] = {m[X, y], n[X, Y1},
if C; and G are two closed curves withy @unning inside gC; is
allowed to touch ¢) and if
- there are no singularities of Figldy] between € and G, and
- DivField[x, y] = D[m[x, y], X] + D[n[x, y], y] =0
at all points(x, y} between ¢and G,
then

e, —NIx, yldx + mix, yldy

= §c, ~nlx, yIdx + mix, yl dy,

so that the net flow of Field, y] across & equals the net flow of
Field[x, y] across &.

OT.4.c.ii) Singularities and path integrals

Given functions rfx, y] and i, y], if
— C; and G are two closed curves with; @unning inside @C; is
allowed to touch ¢), and if
— neither nfix, y] nor rx, y] has a singularity anywhere between C
and G, and if
> DIn[x, yl, x] - D[m[x, y], y] =0,
then
§C1 mix, yldx +n[x, yldy

= fﬁcz m(x, yldx + n[x, yldy.

VC.06 Sources, Sinks, Swirls and
Singularities
Give them a Try!

-
Experience with the starred problems will be useful for understanding
developments later in the course.

G.1) Sources, sinks and swirls*

O0G.1.a.i)

Go with
Fieldx, y] = {€* Sinly], € Cody]}.
Calculate
divFieldx, y]
and use the result to say why the net flow of Fielgt] across any
closed curve is 0.

OG.1.a.ii)
Go with
Fieldx, y] = {x, y}.
Calculate
divFieldx, y]

and use the result to say why the net flow of Fielgt] across any
closed curve is from inside to outside.

0G.1.b.i)

Go with
Fieldx, y] = {€* Siny], € Cody]}.
Calculate
rotFieldx, y]
and use the result to say why the net flow of Fielgl] along any
closed curve is 0.

0G.1.b.ii)

Go with
Fieldx, y] = {y, —x}.
Calculate
rotFieldx, y]
and use the result to say why the net flow of Fielg] along any
closed curve is clockwise.
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0G.1.c)

Here is the rectangle R with corners at
{-1,-2},{5,-2}, {5, 2, and{-1, 2
Rplot = Show[Graphics [{Red, Thickness [0.01 ],
Line [{{-1, -2}, {5, -2}, {5,2}, {-1,2} {-1, -2}}1}],
Axes - True, AxesLabel - {"x","y" }1;
y

a

1

-1

Use the formula

b —nIx, yldx + m[x, yldy

= [ [ divFieldx, yl dxdy
to measure the net flow of the vector field

Fieldx, y] = (X2 + 2y?, X2 - 2y?)
across the boundary curve C of R. Is the net flow of this vector field
across C from outside to inside, or is it from inside to outside?
Next, use the formula

$e X, yldx + n[x, yldy

= [ [x (OIn[x, yl, x] = DIM[x, yl, y) dxdy.
to measure the net flow of the vector field

Fieldx, y] = (X% + 2y?, X2 - 2y?)
across the boundary curve C of R. Is the net flow of this vector field
along C counterclockwise or clockwise?

0G.1.d.J)

Here's a vector field:

Clear [Field, m, n, x, y 1
{MIX_,y_ 1,n [X,Y_ 1} ={Cos[x] Cos[2y], Cos [y] Cos[2X]};

Field [x_,y_ 1={mxy1,n[xy]l}

Give a sample plot of some of the sources in this vector field.
0G.1.d.ii)

Go with the same vector field as in part i) immediately above and look

at this plot:

Clear [Field, m, n, X,y

{mix_, y_ 1,n [x_,y_ 1} = {Cos[x] Cos[2y], Cos [y] Cos[2x]};

Field [x_,y_1={mXxy1l,nixyl}
Clear [divField ]
divField [x_,y_ 1=DImlx,y 1, x 1+D[n[x,y 1,y 1;
divplot = Plot3D [divField [x,y 1, {X, -5,51},

{y, -5, 5}, PlotPoints - {25, 25 }, DisplayFunction - Identity  1;

xyplane =

Graphics3D [Polygon [{{-5, -5,0}, {-5,5,0 }, {5050 }, {5 -501}}11;

Show[divplot, xyplane, AxesLabel - XY, 1,
ViewPoint - CMView, DisplayFunction - $DisplayFunction 1;

2.
y 5
How is this plot related to the plot you did in part d.i) immediately
above?

0G.1.e.)

Here's another vector field:
Clear [Field, m, n, x, y 1
{Mx_, y_ 1,n [X,, y_ 1} ={Sin [2y],x };
Field [x_,y_1={mXxy1l,n[xy 1}
{Sin [2y],x }
Give a sample plot of some of the points at which this vector field
swirls in the counterclockwise direction.

VC.06.G1:G2

0G.1.e.ii)

Go with the same vector field as in part e.i) immediately above and
look at this plot:
Clear [Field, m, n, x, y 1

{mix_, y_ 1,n [x,,y_ 1} ={Sin [2y],x };
Field [x_,y_ 1={mXxy 1.n[xy 1}
Clear [rotField ]
rotField [x_,y_ 1=D[n[Xx,y 1,Xx]-D[mx,y 1,y 1;

rotplot = Plot3D [rotField [x,y 1, {X, -5,51},

{y, -5, 5 }, PlotPoints - {10, 30 }, DisplayFunction - |dentity 1;

xyplane =

Graphics3D [Polygon [{{-5, -5,0}, {-5,5,0 }, {550 }, {5 -501}}11;

Show[rotplot, xyplane, AxesLabel - X"y 1
ViewPoint - CMView, DisplayFunction - $DisplayFunction 1,

2.
y 5
How is this plot related to the plot you did in part e.i) immediately
above?

G.2) Singularity sources, sinks and swirls*

O0G.2.a) Singularity sources and sinks

Given a vector field

Fieldx, y] = {m[x, y], n[x, yl},
you can calculate

divFieldx, y] = D[m[x, yI, X] + D[n[x, yI, Y]
to look for sources and sinks.
If you locate a source &t, y} and{x, y} is not a singularity, you can
expect new fluid to be slowly oozing into the flow{atys}.
If you locate a sink &k, y} and{x, y} is not a singularity, you can
expect old fluid to be slowly soaking out of the flowpaty}.
The vivid sources and sinks are often found at singularities; in fact if
you envision a sink at a singularity to be a black hole, you are thinking
correctly.
To detect a source or a sink at a singularity, you center a small circle
CIr] of radius r at the singularity and calculate

$eg ~NX YIdX + mix, yldy.
- If

rILn(} 56(:“] -n[x, yldx + m[x, yldy > 0,
you have located a singularity source (a gusher) at the singularity.
- If

ran(} §C[r] —n[x, yldx + m[x, y]dy <0,
you have located a singularity sink (a black hole) at the singularity.
- If

rILn(} §Cm —-n[x, yldx + m[x, y]dy =0,
you have located a singularity that is neither a source nor a sink.
Try it out:
The point{a, b is a singularity of the 2D electric field coming from a
point charge of strength 2 placed atb}:
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Clear [ElectricField, a, b, m, n, g, x, y 1
g{x-ay -b}
x-a)2+ (y-b)?2’
ElectricField [X,Yy_ 1={mXxylnixyl}
{ q(z’a+x) - q(z’bJ'Y) 2}
(-a+Xx)%+ (-b+y) (—a+x)°+ (-b+y)
Center a circle @] of radius r ata, j and calculate
§C[r] -n[x, yldx + m[x, yldy:
singularity ={a, b},
Clear [xr, yr, 1, t 1
{xr [t_1,yr [t_1} = singularity +r {Cos[t],Sin [t1};

{mix_, y_ 1,n[X,y_ 1}=

27
J (-n[xr [t],yr [E1]xr [t]+m[xr[t],yr [t]]yr [t])dt
0

2rq
This tells you that the singularity &, b} is a source of new juice if
g > 0 (positive charge g8, b) and is a sink for old juice if g 0
(negative charge &4, B}).

0G.2.a.i)
Does the electric field above have sources or sinks other than at the
singularity?
aTip:
Look at:
] Together [D[m[x,y 1,x]+D[n[x,y 1.y 1]
0
0G.2.a.ii)
Here's a vector field related to the electric field:
Clear [Field, a, b, m, n, X,y 1

5{x-a vy -b}

NV (x-a)?+ (y-b)?

Field [x_,y_1={mXxy1l,n[xy]1}

{ 5 (-a+X) 5 (-b+y) }
(ca+x)2+ (-b+y)2 " V(-a+x)2+ (-b+y)2

{mix_, y_ I,n[X,y_1}=

Note the singularity &, b.
Now look at the following information:

singularity ={ab};
Clear [xr, yr, 1t 1
{xr [t_1,yr [t_1} = singularity +r {Cos[t],Sin [t]};

27
J; (=nxr [t],yr [t1]xr [t]+mixr [t],yr [t1]yr [t])dt

10 7+/r2
How does this help to tell you that the singularityaatt is neither a
singularity source nor a singularity sink?

0G.2.a.iii)

Stay with the same vector field as in part ii) above and look at
divField[x, y] together with
x—a?+ (y- b*
Clear [Field, a, b, m, n, X, y 1
5{x-ay -b}

V(x-a)2+ (y-b)2

Field [x_,y_ 1={mXxy1,n[xy1l}
{Together [D[m[x,y 1,x ] +D[n[x,y 1,y 11, Expand [(x -a)% + (y -b)?]}
5
How does this help to tell you that all poifits y} other than the
singularity at{a, b are sources?
How does this tell you that the big-time sources of new fluid for this
field are packed near the singularity?

{mix_, y_ I,n[X,y_1}=

,a?+b®-2ax +x?-2by +y?)}

0G.2.a.iv)
Here's another vector field related to the electric field:
Clear [Field, a, b, g, m, n, x,y 1
7{x-ay -b}
(MIX_ Y 1,0 XL Y2 1) = e

((x-a)2+(y-b)?)
Field [x_,y_1={mXxyl.,n[xy 1}
{ 7 (-a+X) 7 (-b+y)
27 ((cavx)?+ (-bry)?)

((ca+x)2+ (-b+y)?) )

VC.06.G2G3

Determine whethefa, b is a singularity source, a singularity sink, or
neither.

Also determine whether there are sources or sinks other than at the
singularity.

0G.2.b.i) Singularity swirls

When you pull the plug in a bathtub, you see a good example of a
singularity swirl (and a singularity sink).

To detect a singularity swirl, you center a small cirdlg Gf radius r

at the singularity and calculate a limit of a certain path integral. If this
limit is positive, then you have located a counterclockwise singularity
swirl. If this limit is negative, then you have located a clockwise
singularity swirl.

If this limit is O, then you have located singularity that has no swirling
effect at all.

What limit do you look at?

0G.2.b.ii)

Here's a vector field with a singularity{&t 0}:
Clear [Field, m, n, x,y ]
y, -x} .
X2 + yZ '
Field [x_,y_ 1={mx,y 1,n Xy 1}
Here is rotFielfk, y]:
| rotField [x,y ] = Together [D[n[x,y ],Xx1-D[m[x,y 1,y 11
0
This field has no swirl around any point other than possibly the
singularity at{0, 0}.
Look at a plot of this vector field.
scalefactor =2;
fieldplot =
Table [Arrow [Field [x,y ], Tail - {x,y }, ScaleFactor - scalefactor 1,

{mix_, y_ I,n[x,y_1}=

{x -45, 45, %}, {v. -45 45, g}]?

Show[fieldplot, Axes - True, AxesLabel - {"x","y" }1;

Big-time clockwise singularity swirl around the singularity{@t0}.
Test your answer to part b.i) immediately above to see whether your
limit agrees with reality.

G.3) Agree or disagree*

Indicate your agreement or disagreement with each of the following
statements and paragraphs. When you disagree, say why you disagre
When you agree, feel free to say why you agree, but you are under no
obligation to do so.

0G.3.a)
If Field[x, y] = {m[X, y], n[x, y]} has no sinks, sources, or singularities
within a closed curve C, then the net flow of Fig|d/] across C must
be 0.

0G.3.b)
If Field[x, y] = {m[X, y], n[x, Y]} has no singularities within a closed
curve C, and rotFie[d, y] = 0 at all points within C, then the net flow
of Fieldx, y] along C is 0.

0G.3.c)

If Field[x, y] = {m[X, y], n[x, y]} has no singularities and has the
property that rotFielk, y] = 0 at all pointgx, y}, then Fieldl, y] is
guaranteed to be a gradient field.

oTip:

Go back one lesson and look up the two parts of the gradient test.
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0G.3.d)

Here is a vector field:
Clear [m, n, X,y 1]
(MDD, y_ 1,0 G y_ 1= 03,y 3y
Field [x_,y_1={mxyl1l,n[xy 1}

3y %
No singularities anywhere. d
Look at divFieldx, y]: And here's a vector field:

I DImix,y 1,x 1+DINX Yy 1,y ] Clear [m,n,xy 1

3x2+3y? Ve (E-D
This is always positive except wheq y) = {0, 0}. Moy 1o oy 1y = {—— s gk
As a result, everyx, y} other thar(0, 0} is a source for Fie[d, y]. Field [x_,y_ 1={mx.y1,n[xy1}
Consequently, if C is any closed curve (like a deformed circle), then { *t; %y;y - x o)

the net flow of Fielgk, y] across C is from inside to outside.
After all, it cannot be from outside to inside because there are no sink
inside C to absorb the excess fluid.

Note the singularity &0, 0}.
This tells you that you can calculate the flow of Hiel¢/] across C
by calculating

0G.3.e) fc —n[x, yldx + m[x, yldy
1
Here are two curves: where G is a small circle centered @&, 0}.
Clear [x1, Y1, x2,y2,t 1 -
(XLIt_],yl [t 1} =07 {2Cos[t],Sin [t]}; oTip:
) 1. .

(20 1,y2 [L1} =12 {2Cos[t], Sin [t]+—Sin [4t]}: Before you leap on this one, check to see whether there are sources ol
curveplots = : H :

ParametricPlot [{{x1[t],yl [t1}, {x2[t1,y2 [t1}}, {1, 0,2 =}, sinks between the smgularlty aCd

PlotStyle - {{Thickness [0.01 1, Red }}, DisplayFunction - |dentity 1; | Together [D[m[x,y 1,Xx 1+D[n[x,y 1,y 11

label = 8x - x2+y?

{Graphics [Text ["C1", {1,0.4 1}]], Graphics [Text ["C2", {2,0.75 }11}; W

R

Show[curveplots, label, PlotRange - All,

Axes - True, AxesLabel - {"x","y" }, AspectRatio - Automatic,

DisplayFunction - $DisplayFunction 1;

] G.4) Flow calculations in the presence of singularities*
: %4\ O0G.4.a)

_j 2 How can you tell without evaluating any path integral that the flow of
: the vector field

Fieldx, y] = {327, sz}

The inner curve is Cy. across the circle®+ y? = r? is the same as its flow across any ellipse
Suppose Fiel, y] = {m[X, y], n[X, y]} has the properties that (22 + (%)2 =17
- all the singularities of Fie[d, y] are inside ¢, |:|Ti;:
- §c1 —n[x, y]dx + m[x, yldy > 0, and Clear [, 0%y ]
- divFieldx, y] = D[m[x, y], x] + D[n[X, y], y] > 0 by 1o by, 1y = {=2 2y
at all points{x, y} between g and G. x2+y2’ x24y2
This tells you that aI_I points<_, y} between € and G are sources for {Xf%yz, %}
the flow corresponding to Figd y]. As a result, | Together [DIMIx,y 1,x1+DIN[xy 1.y 11
§Cl —n[x, yldx + m[x, yldy < 0
§c2 —n[x, yldx + m[x, yldy 0G.4.b.i)
so that the flow of Fiel, y] across @ must be greater than the flow Look at the following curve C:
of Fieldx, y] across . Cplot = Graphics [
{Thickness [0.01 ], Red, Line [{{2,0}, {1,313}, {4,3}, {551}, {-1,61},
0G.3.f) 0,4}, {-1,0}, {-3, -3}, {-3, -1}, {2, -3}, {2,0 }}]}];

label = Graphics [Text ["C", {3.5,5 }11;

Suppose Fiel, y] = {m[X, y], n[x, y]} has exactly two singularities

in the region R enclosed by a closed curve C. Also supposejtigt C Show[Cplot, label, Axes - True, AxesLabel - {"X","y"  }1I;
y

a closed curve running totally within R. If Figtdy] has no sinks,
sources, or singularities between C andt@en the net flow of
Field[x, y] across C equals the net flow of Fieldy] across &.

0G.3.9)

Here's a closed curve C:

Cplot = Graphics [{Thickness [0.01 ], Red, Line [{{6,03}, {1,113}, {0,6},
{-1,1} {-6,0}, {-1, -1}, {0, -6}, {1, -1}, {6,0}}1}];

label = Graphics [Text ['C", {0.8,35 3}11; Why would only a dweeb measure the net flow of
; _[_ 4% __4y-2
Show [ Cplot, label, Axes - True, AxesLabel - {"x","y" 1}, Flequ’ y] - { X2+ (y — 22’ X2+ (y - 2)° }

AspectRatio -~ Automatic J; across C by parameterizing C and calculating the path integral?
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Remove yourself from the dweeb class by measuring the net flow of
this vector field across C by measuring the net flow of this vector field
across a convenient substitute curve.

Is the net flow of this vector field across C from inside to outside, or is
it from outside to inside?

0G.4.b.ii)

Go with the same curve C as above:
] Show[Cplot, label, Axes
y

- True, AxesLabel - {"x","y" }1;

You are asked to measure the net flow of

. 4(x+2 4y-2)
Fieldx, y] = { (><+2)§+(y)—2)2 To(x+ 2)2y+ (y-2)? }
across C.
You weren't born yesterday; so you look at:
Clear [Xx,y, m, n, Field, divField 1

4 (X +2) 4 (y-2)
(x+2)2+ (y-2)2" (x+2)2+ (y-2)2

{mx,y 1,n [xy 1}
1 = Together [D[m[x,y 1,x 1+D[n[x,y 1,y 11

b

M, y_ 1,n XL y_ 11 ={
Field [x_,y_ 1=
divField [x_,y_
0
And then you announce that the net flow of this vector field across C
is 0. You are right.
Why are you right?

G.5) 2D electric fields, dipole fields, and Gauss's law in
physics*
0G.5.a)

When you put a charge proportional to a number q at a {@ib,
the resulting two-dimensional electrical field is:

Clear [Xx,Y, a, b, q, Electfield 1

Elecfield  [x,y.a,b,q ]=—3-Y-b}
(x-a)%+(y-b)?

{ q (-a+x) q(-b+y) }
(-a+x)?+ (-b+y)?" (-a+x)?+ (-b+y)?
Here's a plot in the casa, b = {1.25, 0.2% and g= 2:

a = 1.25;

b = 0.25;

q=2

hotpoint = Graphics [{PointSize [0.06 ], Red, Point [{a, b }1}];

scalefactor = 0.4

fieldplot = Table [Arrow [Electfield [X,y,a b, q 1, Taill - {x,y },

ScaleFactor - scalefactor 1, {x, -2,4,05 1}, {y, -8,3,05 11,

Show [ hotpoint, fieldplot, Axes - True, AxesLabel - {"x","y" }1;

0G.5.b)

Here are the divergence and the rotation of the electric field resulting
from a point charge of strength g placedaath}:
Clear [X,Y, a, b, q, Electfield, m, n, divElectfield, rotElectfield 1
g{x-ay -b}

Electfield B
(x-a)2+(y-b)?

[x_,y_.,a,b_,q 1=

VC.06.G4-G5

{ q(-a+x) q(-b+y) I
(-a+x)2+ (-b+y)2" (-a+x)2+ (-b+y)?
{m[x_,y_ 1,n [x_, y_ 1} = Electfield [x,y,a,b,q 1;
divElectfield [x_,y_ 1=Simplify [D[m[x,y 1,x]1+D[n[x,y 1,y 1]
0
| rotElectfield [x_,y_ 1=Simplify [D[n[x,y 1,x]-D[mxy1,y]1]
0
Does this electric field have sources or sinks at points other than
{a, B?

How do you know?
What is the net flow of this electric field across any closed curve
without loops that does not wrap around the singularitg,dt?

0G.5.c)

Here is the measurement of the flow of the electric field in across any
circle of radius r centered &, b.

Electrical folks call the net flow measurement of an electric field

across a curve C by the name " flux acrossC:-

Clear [x,Y, a, b, q, Electfield, m, n ]

Electfield X,y .,a,b_,q_ 1= M,
(x-a)2+ (y-b)?

{m[X_,y_ 1,n [X_,y_ 1} = Electfield [X,y,a, b,qg 1;

X[ 1,y [t_1}={a b}+r {Cos[t],Sin [t]};

27
L (-nIX[t1,y [tIIX[t]+mx[t],y [t]]y"[t])dt

2nq
Usually when the divergence of a vector field is 0, then its flow across
any closed curve is 0. But this is not true here for closed curves
wrapping arounda, b because of the singularity (blow up) of the
electric field at{a, b.
What is the flow of the electric field across any closed curve without
loops that wraps around the singularityatig?

0G.5.d) Dipoles

A dipole can be approximated by two charges of the same magnitude
but opposite sign separated by a small distance.

Dipoles are especially important in atomic theory. The great scientist
Richard Feynman explained it this way:

"Although an atom or molecule remains neutral in an external
electronic field, there is a tiny separation of its
positive and negative charges and it becomes a microscopic dipole.”
..................... The Feynman Lectures

Here is a plot of the dipole electrical field resulting from a positive
charge af0.25, § and the opposite charge of the same magnitude at

{-0.25, Q.
Clear [x,Y, a, b, q, Electfield, m, n 1;
-ay -b
Electfield [x,y ,a,b_,q_ 1= M.
(x-a)?+ (y-b)?
{aplus, bplus } = {0.25,0 };
{aminus, bminus } = {-0.25,0 };
q=2;

singularitysource =
Graphics [{PointSize [0.04 ], Red, Point [{aplus, bplus  }1}1;
singularitysink =

Graphics [ {PointSize [0.04 ], CadmiumOrange, Point [ {aminus, bminus }1}];

dipoleplot = Table [Arrow [ (Electfield [X, y, aplus, bplus, q 1+
Electfield [X, y, aminus, bminus, -q1),
Tail - {X,y }, ScaleFactor - Normalize, HeadSize ->031,
{x, -3.1,29,05 }, {y, -3.1,29,05 }];
Show[singularitysource, singularitysink, dipoleplot, Axes - True,
AxesLabel - {"x","y" 1}, PlotLabel -> "Dipole electric field" 1;

Di pol e e|4¥ctric field

\\\/\ b

The dipole electric field pictured above is given by the sum of the
individual electric fields:
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Clear [X,Y, a, b, q, Electfield, m, n 1

Electfield [x.,y_,a_,b_q_ 1= M,
(x-a)2+ (y-b)?
{aplus, bplus } = {0.25,0 };

{aminus, bminus } = {-0.25,0 };

Clear [Dipole ]

Dipole [x_,y_ 1=

Electfield [, y, aplus, bplus, q 1 + Electfield [X, y, aminus, bminus, -q]
{ q(-025 +x) g (0.25 +Xx) qy _ qy }
(-025 +x)2+y2 (025 +x)2+y2’  (-025 +x)2+y2 (025 +x)%+y?

Report on:

- divDipole[x, y]

- rotDipolgx, y]

- The flow of Dipoléx, y] across the square with cornerg-at, —1},
{1, -1} {1, 1 and{-1, 1.

— The flow of Dipoléx, y] across any closed curve without loops
enclosing both of the singularites{aplus, bplusand

{aminus, bminus

0G.5.e.i) Lots of point charges

You can build intricate electric fields by taking n different points

{alv b]_}, {a21 bz}l ey {a‘lr bn}
and placing point charges of strength

q at{a, by},

@ at{ap, by},

...,and

Gh at{an, bn}.
The strengths g @, ... , and g can be positive (singularity sources)
or negative (singularity sinks).
The combined electric field resulting from this placement of point
charges is the sum of the individual electric fields resulting from the
point charges of strength gt{a, b;}.
As you can imagine, the formula for the resulting vector field can be
complicated as all get-out. Nevertheless you can explain why this
complicated electric field has no sources or sinks other than at the
singularities at

{a].! bl}l {a21 b2}l sy {ah bn}
Give your explanation.

0G.5.e.ii) Gauss's law in physics

Gauss's law in physics says that if you take n different points
{a, bi}, {2, bo}, ..., {@n, bn}
inside a closed curve C and you place electrical charges of strength
q at{ag, by},
¢ at{ap, by},
...,and
G at{an, bn},
then the flux (= flow) of the resulting electric field across C is simply
27 (Qu+ Qo+ G+ ... + On).
Explain where Gauss's law comes from.
aTip:

Look at this:

VC.06.G5-G6

Clear [ElectricField, a, b, k, m, n, g, X, ¥ 1
Ok {X-ak, y -bx} |

(McDx_, v 1onlxs y_ 1) = 5 o
(X —ak)® + (y - bk)

ElectricField kXL y_ IT={mx,y l,nk[xy 1}
{ (X - ak) gk (y - by) gk ]
(x-ak)2+ (y-b)2' (x-ak)?+ (y -bx)?

and look at the flow-across measurement
e, —nIx, yldx + m[x, yldy

whereC; is a small circle centered {a, b;}:

Clear [r,t ]
{X[t_ 1,y [t 1} = {ak, bk} +ri {Cos[t], Sin [t1};

27
L (=N [X[E] Yy [E1TX [t +meIx[t],y [t11y [t]) dt

2 gk

H 93F[x, 9?f[x,
G.6) The Laplacian =24 + =24 and steady-state heat*

Here is a cleared function and its gradient field :
Clear [x,VY, z, f, gradf, m, n, Field, divField, rotField 1
gradf [x_,y_ 1={DIf[xy 1. x1,D[f[xy 1 yIl}

{mix_, y_ 1,n [x_,y_ 1}=gradf [xy I;
Field [x_,y_ 1={mxy1,ni[xyl}
(FE0 oy 1, f OV xy 1y
Here is the rotation of this gradient field:
| rotField [x_,y_1=D[n[x,y 1,x]-DImMxy1,y]
0

O0G.6.a.i)
Is it true that all gradient fields are irrotational (have no swirls)?

0G.6.a.ii)

Here is the divergence of this gradient field:
| divField [x_, y_ 1=DImx,y 1, Xx]1+DIn[xy 1, V]
fO2 0y 14820 %y ]

Folks like to call
Pyl | Plxy]

Ox2 ay?

= DIf[x, yl, {x, 2] + DIf[x, y], {y, 2}]
= divField[x, y]
by the name Laplacian of¥;, y].

How do you use the sign of
8PHx,y] + JPExy]

ox2 ay?
to determine whether a poif¥, y} is a source or a sink of the gradient
field of f[x, y]?
How do you check the Laplacian
PPyl Pxy]

X2 oz
to learn whether a given gradient field
Fieldx, y] = gradfix, y]
is free of sources and sinks at points other than singularities?

O0G.6.b.i)
Here's a concrete slab:

Clear [Xx,y,t, 1, 2 1
{X[t_1,y [t_1}={Cos[t], 3Sin [t]};
tlow =0;
thigh =2
zlow = 0;
zhigh =0.5;
bottom =
ParametricPlot3D [{rx[tl,ry [t],0}, {r,0,1 1}, ({t, tlow, thigh },
PlotPoints - {2, Automatic  }, DisplayFunction - Identity  1;
top =
ParametricPlot3D [{rx[t]l,ry [t]1,05 1}, {r,0,1 1}, ({t tlow, thigh 1,
PlotPoints - {2, Automatic  }, DisplayFunction - Identity  1;
side =
ParametricPlot3D [{x[t]1,y [t],Z}, {z zlow, zhigh }, {t, tlow, thigh },
PlotPoints - {2, Automatic  }, DisplayFunction - Identity  1;
Show[top, bottom, side, AxesLabel - "X,y }
ViewPoint - CMView, BoxRatios - Automatic, Boxed - False,
DisplayFunction - $DisplayFunction 1;
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You heat this slab any way you like, and then you apply perfect
insulation to the top and bottom. At the same time, you apply heating
pads to the side to keep the temperature along each vertical segment
through points

{x[t], y[t], (0 < 2 < 0.5)
at the same temperature, but your heating pad allows for the
temperature to vary as t varies.
In other words, different vertical line segments on the sides are kept €
possibly different temperatures, but the temperature doesn't vary alor
any one vertical line segment on the side.
You leave for a long time and wait for the temperature inside the slab
to settle into its steady state condition. After you come back, the
temperature at a poifK, y, z} inside the slab will not vary as z varies
but the temperature at a poirt y, z} probably will vary as x and y
vary.
Put

tempx, y] = steady state temperaturgaty, z}.
In the steady state, no point inside the slab and not on the side or the
top or the bottom can be a source of new heat flow or a sink for old
heat.
Why does this tell you that

aztemnx,y] + Z)%ernqx,y] -0

ox2 ay?

at each pointx, y} with {X, y, z} inside but not on the outer surface of
the slab?

0G.6.b.ii) Hot spots

Assume{Xo, Yo} is a hot spot inside the slab in the sense that
temxo, Yol > temfx, y] for nearby(x, y}.

— Why do you think that the net flow of the gradient field of

temgx, y] across small circles centered>a, yo} must be from

outside to inside?

— What does the fact that
JPtemgx,y] + Premx,yl _ 0
ox2 ay? -

tell you the flow of the gradient field of tering y] across these same
small circles actually is?

Say how your responses to the last two questions give you an
explanation of why no such hot spot can exist.

aTip:
Remembegradtemjpx, y] points in the direction of greatest
instantaneous increasetempx, y].

0G.6.b.iii) Cold spots

Can there béXo, Yo}, a cold spot, inside the slab in the sense that
tempxo, Yol < temfx, y] for nearby(x, y}?

0G.6.b.iv)

How do you know that both the hottest and coldest spots of the slab
will be found on the sides?

G.7) Calculating §C m[x, yldx + n[x, y]dy in the presence of
singularities

0G.7.a)

Here are two curves;Gnd G:

Clear [x1, Y1, x2,y2,t 1
tlow =0;
thigh =2,

{X1[t_1,y1 [t_])=2{Cos[t]—%Cos[Zt],O.GSin [t]+02Sin [2t]};
{X2[t_1,y2 [t_1}={02,05 }+05 {Cos[t],Sin [t] (1-07Sin [t])};

curves =
ParametricPlot [{{x1[t],yl [t]}, {X2[t],y2 [t]}}, {t tlow, thigh },
PlotStyle - {{Red, Thickness [0.01 ]}, {Red, Thickness [0.01 ]1}},
AxesLabel - {"x","y" }, PlotRange - All,
Epilog - {Text ["C1", {-1,0.7 }], Text ["C2", {0.5,0.6 }]}I;

VC.06.G6-G7

[
: /

You can be sure that the flow of a vector field

Fieldx, yl = {m[x, y], n[x, yI}
across ¢ is the same as the flow of Figld y] across @ if there are
no singularities between;@nd G, and

divFieldx, y] = D[m[x, y], x] + D[n[x, y], y]=0
at all points(x, y} between ¢ and G, because this condition
guarantees that no extra fluid comes into the flow and no old fluid
goes out of the flow between @nd G.
How is this fact related to the fact that, given functioifis,m] and
n[x, y], you can be sure that

e, MIx, yldx + nix, yldy

= §o, mIx, yldx + nx, yldy
if neither nix, y] nor r(x, y] has singularities between @nd G, and
DInlx, y1, x] = DIm[x, y], yI =0
at all points(x, y} between ¢and G?
0G.7.b.i)

Here's a curve:
Cplot = Graphics [{Thickness [0.01 ], Red, Line [{{6,0}, {2,2}, {0,6},
{-2,2}, {-6,0}, {-2, -2}, {0, -6}, {2, -2}, {6,0 }}1}];
label = Graphics [Text ['C", {1.2,4.3 1}11;

Show[Cplot, label, Axes
AspectRatio

- True, AxesLabel - Yy,
- Automatic ];

-6
Go with:
Clear [m,n, X,y 1]

X
mix_,y_ 1,nIx,y_ 1} ={-

y
Way? Xy )
Note the singualarity 40, 0} and look at:
] Together [D[n[x,y 1,x1-D[mxy 1,y1]
0
Go with the curve C plotted above.
Does the fact that
DIn[x, y1, x] - DIm[x, y], y] =0
tell you that you can calculate
$e mix, yldx + nix, yldy
by calculating
fcl m(x, y] dx + n[x, yldy
for a well-chosen substitute closed curvw@ C

0G.7.b.ii)

Continue to go with the C, the[m y], and the fx, y] as set above.
If you take G to be the circle of radius 0.7 centered2at0} like this:

Clear [x1,yl,t 1]
{X1[t_1,yl [t_]1}={201}+0.7 {Cos[t],Sin [t1};
littlecircle = ParametricPlot [{x1[t],yl [t]}, {t, 0,2 =},
PlotStyle - {{Thickness [0.01 ], Red }}, DisplayFunction - Identity 1;
extralabel = Graphics [Text ["C1", {2,1 }11];

Show [ Cplot, littlecircle, label, extralabel, PlotRange - All,

Axes - True, AxesLabel - {"X","y" }, AspectRatio - Automatic,
DisplayFunction - $DisplayFunction 1;
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<

and if yoil say that

$eMIx, yldx + nx, yldy

= ¢, mIx, yldx + nix, yldy,
then you would be wrong.
Why would you be wrong?

0G.7.b.jii)

Continue to go with the C, the[r) y], and the [x, y] as set above.
Only a dweeb would calculate

$eMIx, yldx + nx, yldy
by parameterizing C. Take a good choice of a little cirglea@d
calculate

$e MIX, yldx + n[x, yldy
correctly by calculating
9501 m[x, yldx + n[x, yldy.
0G.7.c.i)
Here's a new curve C:
Cplot = Graphics [{Thickness [0.01 ], Red, Line [{{2 Cos[os—"], Sin [OET"]}
5 {cos[ 2], sin []}, {zcos[ 2] s [2X]},
3 . 3n 4 7 . 47
5 {COS[T], Sin [—8—]} {ZCOS[—S—], Sin [—8—]}
5n . 5 6 . 6
5 {COS[T], Sin [T]} {ZCOS[T], Sin [T]}

5 {cos[ =] sin [ZX]). {2cos[ 2] sin [2X]},

b 10w 10 7

5 {Cos[ 2] sin [2X]). {2Cos[ 2] sin [ 7]},
11 . 11w 12 x . 12 n

5 {Cos [ 3 ], sin [—8——]} {2Cos| 3 ], sin [—8—]}

13 7 13 7w 14 n 14 x

—, Si —1} {2C —1, Si — |5

Z].sin [=2]) {20s[ =0 sin [}

15w . 15 n 16 n . 16 n

5 {Cos[ =" sin [=X]}. {2Cos[ =] sin [=Z]}}]};

label = Graphics [Text ["C", {2,3 }11;

Show[Cplot, label, Axes - True, AxesLabel S Yy,

AspectRatio - Automatic ];

5 {Cos[

-4
This time go with:

Clear [m,n, X,y 1

3 +4 X 3x
(mbey_ 1o n Dy ]}={_x2iy2 ¥ x2+(i’y+:)2' X2 +y? ><2+(y+4)2}
{’X2y2*23(4+),)2' zxz’g 3x 2}
+ty X2+ (4+y) X +y X2+ (4+y)
Check:
] Together [D[n[x,y 1,x1-D[mx,y 1,y 1]
0

Go with the curve C plotted above and calculate
$eMIx, yldx + nx, yldy
by integrating over a substitute curve.
aTip:

You might want to calculate
b MIx, Yldx + nix, yldy
by calculating

VC.06.G7

$e Malx, yIdx + nylx, yldy +
b MalX, YIdx + nglx, yldy

where:
X
| {mixoy_ Ionalx,y_ ]}={_;7+—y2-1 ;Z—H,—Z'}
X
oy )
and
3(4+y) 3x
nmp[X_, y_ , n X_,Y_ = , -
|{ X y_ 1.n20x,y_ 1} {x2+(4+y)2 X2+(4+y)2}
{ 3(4+y) B 3x }
X2+ (4+y)2 X2+ (4+y)?
Check:
| tmDy 1,06y 1} =={Mmxy 1,nalxy 1} +{MmXy 1,na20xy I}
True

OG.7.d ) Path dependence in the presence of singularities

Here are two functions x, y] and rix, yI:
Clear [m,n, X,y 1]

X
(MIx_,y_ 1,nIx_y_ 1) ={

}

TX2ay2 X2a4y2
el wye)

Here are four curves all parameterized to start &f 0} and end at

{1, O:

Clear [x1,yl, X2, y2, X3, y3, x4, y4, t 1
tlow =0;
thigh =
Sin[t] t
XLIt_1,y1 [t 1} ={-1,0}+{2Cos[r+t], +—}

T
{x2[t_1,y2 [t_])={-l,0}+{2COS[7r+t],Sin [t] +%Sin [51]+t_};
T
X3t 1,y3 [t_1}={-1,0}+{2Cos[x+t], 1L.5Sin [t] +l—};
e

{X4[t_1,y4 [t_1}={-1,0}+{2Cos[rx+t], -Sin [t]+t—];
T

curveplots = ParametricPlot [{{x1[t],yl [t]1}, {x2[t],y2 [t1},
{x3[t],y3 [t1}, {x4[t1,y4 [t]1}}, {t tlow, thigh },

PlotStyle - {{Thickness [0.01 ], Red }, {Thickness [0.01 ], Brown },
{Thickness [0.01 ], Purple }, {Thickness [0.01 1, Blue }},

Epilog - {{PointSize [0.03 ], Point [{-3,0 }1},
{PointSize [0.03 ], Point [{1,1 }1},

Text ["start", {-3, -1}, {-2, -1}1, Text ["end", {1,113}, {2, -1}1}1;
0.5

-2 -1 L7 1
0.5

Look at these calculations of
e, MIx, yldx + n[x, yldy,
e, MIx, yIdx + nix, yldy,
fca m[x, yldx + n[x, yldy, and
$c, MIx, yldx + nix, yldy:

| Clpathintegral = Nintegrate [
mix1[t],yl [t]1x1'[t]+n[x1[t],yl [t]1]yl [t], {t tlow, thigh }1
-2.35619
| C2pathintegral = Nintegrate [
mx2 [t],y2 [t1]1Xx2'[t]+n[x2[t],y2 [t]1]1y2'[t], {t tlow, thigh }1
-2.35619
| C3pathintegral = Nintegrate [
mx3[t],y3 [t11x3"[t]+n[x3[t],y3 [t1]1y3'[t], {t tlow, thigh }1
-2.35619
| C4pathintegral = Nintegrate [
mix4[t],y4 [t]1 x4’ [t]+n[x4[t],y4 [t]1]yd [t], {t tlow, thigh }1
3.92699
Compare them:
| {C1lpathintegral, C2pathintegral, C3pathintegral, C4pathintegral }

{-2.35619, -2.35619, -2.35619, 3.92699 }
Was this an accident?
If not, try to explain why

§C1 mx, yldx + n[x, yldy
= 56C2 m[x, yldx + n[x, yldy
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= §, mx, yldx + nix, yldy,
but there was no reason to expect
5ﬁc4 mix, yldx + nx, yldy
to agree with the others.
aTip:
You might begin your answer by looking at:

] Together [D[n[x,y 1,x1-D[mx,y 1,y 1]
0

By the way, the vector fiel{m[x, y], n[x, y]} shows what can happen
when a vector field passes the second part of the gradient test withou
passing the first part.

In fact, if {m[x, y], n[x, y]} were a genuine gradient field, then all four
integrals would have calculated out to the same value.

G.8) Water and electricity*

0G.8.a) Electricity

As you probably know, vector fields

Fieldx, yl = {m[x, yl, n[x, 1}
have an important interpretation in the realm of electricity.
In the electrical interpretation, the instantaneous voltage drop as you
leave{x, y} in the direction of a unit vector U is given by
U.Fieldx, y].
This quantity can be positive or negative.
As a result, the integral

. unittan . FieldZs = §_mi[x, yldx + n[x, yl dy
is a measure of acculumated voltage drop in the circuit given by one
trip around a closed curve C that does not pass through a singularity.
But the voltage at your starting point on C is the same as the voltage .
your ending point (because the ending point is the starting point).
So for this electrical interpretation,

5ﬁc unittan . Fieldd's = §C mix, yldx + n[x, yldy = 0
for any closed curve C not passing through a singularity.
In other words, the net flow of

Fieldx, yl = {m[x, yl, n[x, yI}
along any closed curve not passing through a singularity must be 0.
Vector fields that are suitable for this electrical interpretation are often
called irrotational fields.

0G.8.a.i)

If Field[x, y] = {m[x, y], n[x, y]} has no singularities, then what
condition on rotFielfk, y] signals that Fielc, y] is suitable for the
electrical interpretation?

0G.8.a.ii)

If Field[x, y] is the gradient field of some functiofxf y], then is
there anything to disqualify Fidil, y] from being suitable for the
electric interpretation?

VC.06.G~G8

0G.8.a.iii)

Here is a vector field:

Clear [Fieldl, m1, n1, x,y 1
{y, -x}
X2 +y2 '
Fieldl [x_, y_ 1={mix,y ]I.nl [x,y ]}

{mifx_,y_ 1.nl [x_,y_1}=

X
Ity xoayr )

Here is rotField[x, yI:

| rotField1 [X,y ] =Together [D[n1[x,y 1,x]-D[mi[x,y 1,y 11
0
Look at a plot of this vector field.
scalefactor =2;
field1plot = Table [Arrow [Fieldl [x,y 1, Taill - {x,y},

VectorColor - Blue, ScaleFactor - scalefactor, HeadSize -»041],

[ 45,45 2} { -45.45  Z}]

Show([field1plot, Axes - True, AxesLabel - {"X","y" }I;

In spite of the fact that

rotField1x, y] =0
at all points{x, y} other than the singularity &, 0}, this vector field
cannot be an electric field. Why?

oTip:
Look at
9€C mi[x, yldx + ni[x, yldy
whereC is the circle of radiul centered &0, 0}.

0G.8.a.iv)

Here's another vector field:

Clear [Field2, m2, n2, x, y ]
Xy}
Field2 [x_, y_ 1={m2[x,y ]1.n2 [X,y 1}

{m2[x_, y_ 1.n2 [x_,y_ 1} =

X
{W' ﬁ}

Here is rotFieldi, yI:

| rotField2  [x, y ] = Together [D[n2[x,y 1,x ]-D[m2[x,y 1,y 1]
0
Look at a plot of this vector field.
scalefactor =2;
field1plot = Table [Arrow [Field2 [x,y 1, Taill - {x vy},

VectorColor - Blue, ScaleFactor - scalefactor, HeadSize -041,

{x -4s.45 2} {n -45.45  2;

Show([field1plot, Axes

- True, AxesLabel - {"X","y" }I;

In spite of the singularity 40, 0}, how do you know that this vector
field qualifies as a model of electricity?
oTip:
Because
rotFieldZx, y] = D[n2[X, y], X] - D[m2[x, y], y] =0
except at the singularity {0, 0}, you know that i'C is a closed curve
with {0, 0} not insideC, then
§C m2[x, yldx + n2[x, yldy = 0.
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What is the value of
fc m2[x, yldx + n2[x, yldy
for a closed curvC with {0, O} insideC?

0G.8.b.i) Water

For an incompressible fluid flow, like water flow, the net flow across
any closed curve C without loops must be 0 unless there are sources
(spigots) or sinks (drains) inside C.
The upshot:
If the flow of Fieldx, y] is to model sinkless and sourceless water
flow, then Fieldx, y] must have no singularities and

divFieldx, y] = 0 at all pointgX, y}.
Also for water flow, the net flow of Field, y] along any closed curve
C has to be 0, because when you go around a closed curve one time,
you have the same amount of water at the end of the trip as you had i
the beginning. This means that if the flow of Fj&ldy] is to model
sinkless and sourceless water flow, then

divFieldx, y] = 0 and rotFielfk, y] =0
at all points(x, y}.
For these reasons, fluid dynamics professionals agree that any vectol
field Fieldx, y] with no singularities and with

divFieldx, y] = rotFieldx, y] =0
at all points{x, y} is a model for sinkless and sourceless water flow.
Look at a plot of the vector field

Fieldx, y] = {0.07x, —0.14y}:

Clear [Field, m, n, x, y 1;

{m[x_,y_1,n[x_,y_1}={007x, -014y };

Field [x_,y_ 1={mxyl.n[xy]l}

fieldplot = Table [Arrow [Field [x,y ], Tail - {x,y }, VectorColor
{x,0,4,05 1} {y,0,405 }I;

- Blue 1,

Show[fieldplot, AxesLabel
DisplayFunction

- "X,y }, Axes - True,

- $DisplayFunction 1;
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This looks like water flowing around a corner.
Check whether this flow can be sourceless and sinkless water flow
around a corner by looking at
divFieldx, y] and rotFieldx, y]:
Clear [divField, rotField 1
divField [x_,y_ ]1=D[m[x,y ], X]1+D[N[x,y 1,y 1
-0.07
| rotField
0
Drats.
Every point{x, y} is a sink for this vector field.
Consequently this vector field is not a model for water flow around a
corner without sources and sinks.
Your job is to set a constant k so that
Fieldx, y] = {0.07x, —ky}
is a model for water flow around a corner.
Once you have your k, plot your vector field as above.

0G.8.b.ii)

Look at this vector field:
Clear [Field, m, n, X,y N
{m[x_,y_ 1.n[x_,y_1}=1{02Cos [x] Cosh[y], 0.4Sin [x] Sinh [y]};
Field [x_,y_ 1={mxy1,n[xy]l}
fieldplot = Table [Arrow [Field [x,y 1, Taill - {x,y }, VectorColor

7T s 7T
s c= = =} .0,205 }];
b33 gh o )]

[x_,y_ 1=DIn[xy 1, x1-DImMx y 1,y ]

- Blue 1,

Show[fieldplot, AxesLabel
DisplayFunction

Xy
- $DisplayFunction 1;

}, Axes - True,

VC.06.G8G9

ST T0570511.5%
This looks like water flowing down on the left toward the x-axis, and
then flowing up on the right.
Check whether this flow can be a model for sourceless and sinkless
water flow down and up by looking at
divFieldx, y] and rotFieldix, y].
If it checks out, do nothing more; otherwise come up with a constant k
so that
Fieldx, y] = {0.2Co9x] CosHy], k Sin[x] SinHy1}
is a model for sourceless and sinkless water flow down and up.
Plot your model as above.

0G.8.b.iii) Gradient fields

When you have a vector field
Fieldx, y] = {m[x, yl, n[x, y1}
with no singularities, and
rotFieldx, y] = D[n[x, y], X] - D[m[x, y], y] =0
at all points{x, y}, then Fieldlx, y] passes the gradient test.
The upshot:
All vector fields without singularities that model sinkless and
sourceless water flow must be gradient fields.
But not all gradient fields can model sourceless and sinkless water
flow.
Here is a cleared gradient field:
Clear [x,y, m, n,f, Field, gradf 1
gradf [x_,y_ 1={DIf[xy 1. x1,DIf[xy 1 y1}
{MIx_, y_ 1,0 [x_, y_ 1} =gradf [xy 1;
Field [x_,y_ 1={mXVy1l,n[Xy]l}
FEO oy f Oy 1)

As predicted, rotFiel, y] = 0 at all pointgx, y}:
| Dinixy 1,x 1-DImx,y 1,y 1
0
What condition on
EIf[Xf.ly]J, {x, 2}f][ +JD[f[X, yl, ty, 2]
— 72 X 2 TIX,
=G+ o
| DIf Iy 1, X 231+DIf [,y 1, {¥,2}]
FO2 iy 1+ @0 %y )
guarantees that divFidkl y] = 0 at each poinfx, y}?
The Laplacian pops up again.

0G.8.b.iv)

Run the following cells and use the result of each to determine which
of the following functions has a gradient field suitable for modeling
sourceless and sinkless water flow:
Clear [x,y,f ]
f[x_,y_1=Sin [x] Sinh [y];
DIf [x,y 1, {x 2 }]1+DIf [x,y 1. {¥,2}]
0
Clear [x,y,f 1
f[x_,y_1=Cos[x]Sin [y];
DIf [,y 1, {x,23}1+DIf[x,y 1, {y.21}]
-2Cos [x] Sin [y]
Clear [x,y,f 1
fIx,y_ 1=x2+y?
DIf [x,y 1, {x 2 }1+DIf [x,y 1, {¥, 2 }]

4
Clear [x,y,f 1
fIxLy_ 1=x2-y%
DIf (X, y 1, {X,23}1+DIf[xy 1, {y,2}]

0

G.9) Is parallel flow always irrotational?
Some of the ideas for this problem came from Gilbert Strang's book

Calculus, Wellesley-Cambridge Press, 1991.
For a book printed on paper, this one is not bad at all.
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Clear [Field, m, n, g, X,y 1
0G.9.2) glx_1 = Sin [x1%
Here is a 2D vector field consisting of equal parallel vectors: é_mll;_v[y_ 1 n][X_(v y[_ 1} ]=9[x[ -y1] ){-L 1n
] ie XL ¥Y_ 1={mx,y 1,n [X,y 1};
Clear [Field1l, m1, n1, X,y 1 . - . i
(M, y. 10l .y 1} =05 (1,11} fieldplot = Ta4b|e [Arrow [Fleld4 [x,y ], Tail - {x,y }, VectorColor - Blue ],
Fieldl [x_,y_]1={ml[x,y 1,nl X,y 1} {x, -2, 2, __}' {y, -2, 2, __}];
(-05,05 } 5 5
Take a look: Showffieldplot, Axes - True, AxesLabel - {"x","y" }I;
field1plot = Table [Arrow [Fieldl [x,y ], Tall - {xy},

VectorColor - Blue ], {x, -2,2, %} {y. -2,2, %}]

Show [field1plot, Axes - True, AxesLabel - {"x","y" }1;

NN, N

This flow is guaranteed to be free of rotation at all points because
rotFieldx, y] = 0 at all pointgXx, vy},

and because there are no singularities.

Here's what you get when you go with

i — 22X
A calming, steady flow. dx] = 0.4e02x;
Check its rotation: Clear [Field, rr(]),zrl, g, %y ]
g[x_1=04E"%;
D[nl[x, , - D[m1[X, ,
IO (nipey o= Dimibey 3, v ] (MDX_,y_ 1,n X,y 1}=glx-y] {-1,1}

L . Field [x_,y_ 1={mxy 1,n[xy I}
Just as the plot suggests, this field has no swirls at all. fieldplot = Table [Arrow [Field [x,y ], Tall - {xy }, VectorColor - Blue 1,

Here's another vector field flowing in the same direction. x -22 2} v 22 3

Clear [Field2, m2, n2, x, y 1 5 5
{M2[x_, y_ 1,n2 [xy_ 1} =02 (Vx2+y2 +1) {-1, 1}
Field2 [x_,y_ 1={m2[x,y 1,n2 [X,y 1}

(-02 (1+VxZ+y?),02 (1+VxZ+yZ)}

Take a look:

field2plot = Table [Arrow [Field2 [x,y ], Tal - {x Yy},

Show([fieldplot, Axes - True, AxeslLabel - YO

VectorColor - Blue 1, {x, -2,2, %} {y. -2,2, %}]

Show [field2plot, Axes - True, AxesLabel - {"X","y" }1;

This flow is guaranteed to be free of rotation at all points because
rotFieldx, y] = O at all pointgX, vy},

and there are no singularities.
Given a and b with & 0, your job is to say how to set ¢ in termsof
and b so that when you go with a nonconstant nonnegative function
glx], then the vector field

~ Fieldx, y] = {m[x, y], n[x, yl} = g[x + cyl{a, b o
Another calming, steady parallel flow. gives you rotation-free, nonconstant, parallel flow on the direction of

H 1 {a! u'
The fartherx, y} is from{0, 0}, the faster the flow of Fieldg, y]. .
Both FieldIx, y] and Field2x, y] represent parallel flows. Show off your work with a plot or wo.
Field1[x, y] represents flow at a steady speed, but the flow 0G.9.b.ii)
represented by Fiel@®, y] is of variable speed.
Is this Field2x, y] also rotation-free?
If not, plot some sample points at which Figkd2/] is swirling in the
counterclockwise way.

Given a and b with & 0 and b 0, is it possible to set c in terms of b
so that when you go with a nonconstant, nonnegative fundtidn g
the vector field
Fieldx, yl = {m[x, y], n[x, yI}
0G.9.b.i) =gIx+ cyl{a, b
One way to make a non-constant parallel flow in the direction of = dix+ cy]{0, b}

. o - . gives you rotation-free, nonconstant, parallel flow on the direction of
{—1, 1} that is free of all rotation is to take any nonnegative function (a, b?

glx] and put: Why not?
Clear [Field, m, n, g, X, y ] ip:
{mix_,y_ 1,n[x,y_1}=9g[x-yl {-1,1}; o

( Fie['d [X]—' y—[ 1= §’}"”' y1.nbey D Sayingg[x] is nonconstant tells you that there are points at which
-g[x-yl,g [X-Yy

Check rotFielf, y]: g'x] # 0.

] DIn[x,y 1,x1-DImix, y 1,y ]
0

Here's what you get when you go with
dx] = Sin[x]?:
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0G.9.c)

Given definite numbers a, b, c, and d wih g + {0, 0}, agree or

disagree with the following statement and explain why:

No matter what nonconstant functiopxpyyou go with, when you

make a nonconstant, parallel flow in the directiofieoty} by setting
Fieldx, yl = {m[x, y], n[x, yI} = gldx+ cyl{a, b},

then either

- Fieldx, y] is not free of sources or sinks,

or

- Fieldx, y] is not rotation free.

G.10) Spin fields

If you did the problem on spin fields in the last lesson, you can skip
the first part of this problem.

Start with a vector field

Fieldx, y] = {m[x, y], n[x, y]} o
and make what some folks call the spin field

spinFielgx, y] = {-n[x, yl, m[x, y]}.
Here's a vector field:

Clear [X,y, m, n, Field, spinField 1

(MO y_ 10 DGy 1) = {%, EVY;

Field [x_,y_ 1={mxy 1,nixyl}

spinField [X,y_ 1={-n[x,y 1, m[xy1l};

fieldplot = Table [Arrow [Field [x,y ],
Tail - {x,y }, VectorColor - Blue ], {x, -3,31}, {y, -3,311;

Show[fleldplot Axes - True 1;

- —3}—

- . - 2
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Here's the same vector field plotted together with its spin field:

spinfieldplot = Table [Arrow [spinField [X,y 1,
Tail - {x,y }, VectorColor - Red], {x, -3,31}, {y, -3,31}1;
Showf[fieldplot, spinfieldplot, Axes - True 1;
4
cu L
Lol L
LR
-7 2 4
7 > 1 v\
2 L
— 9 -
-4
Again:
Clear [X,y, m, n, Field, spinField 1
{mMix_,y_ 1,n [x,y_ 1} ={03x +02,02x (1- %)}
Field [x_,y_ 1={mxy 1, n[xy]l}
spinField  [x_, y_ 1={-n[xy 1. mxy 1}
fieldplot = Table [Arrow [Field [x,y ], Tail - {x,y }, VectorColor - Blue 1,

{X, -3,3,1 3}, {y, -3,3,1 11,

Show[fleldplot Axes - True ];
— - 2 = ==
A
2 /4
P /
/ ; o2k - /7'
7 / /737 :

Here's the same vector field plotted together with its spin field:

spinfieldplot = Table [Arrow [spinField [x,y 1,
Tail - {x,y }, VectorColor - Red], {x, -3,3,1 1}, {y, -3,3,1 11,

Show[fieldplot, spinfieldplot, Axes - True 1;

VC.06.G3-G10

Run some more of these to get a feeling for the relationship between a

vector field and its spin field.
0G.10.a)

Try to describe the geometric relationship between a vector field and

its spin field.
aTip:

Think rotation.

0G.10.b)
Here's a cleared vector field and its spin field:
Clear [Xx,y, m, mm, n, nn, Field, spinField 1

Field [x_,y_1={mxy1l.nixy]l}

{mnix_, y_ 1, nn [x_,y_ 1} ={-n[Xy ], m[Xy ]}
spinField [x_,y_ 1 ={mnx,y I,nn [X,y 1};
{Field [x,y ], spinField X,y 1}

{mix,y J,n (xy ]} {-n{xy J,m[xy ]}}
Here is divFieldix, y]:
| Clear [divField ]
divField [x_,y_ ] =D[m[X,y ], X 1+D[n[x,y 1,y 1
N xy 1 emtO xy ]
Here is rotSpinFielk, yI:
| Clear [rotSpinField 1
rotSpinField [X,y_1=D[nn[x,y 1,x]1-D[mnix,y 1,V ]
n@ gy 1m0 xy )
Here is rotFielfx, yI:

Clear [rotField ]
rotField  [x_,y_ 1=D[n[x,y 1,x]1-D[mx,y1,vy]

“mO1) [y y ] +n@0) [xy ]

Here is divSpinFielgk, y]:
Clear [divSpinField 1
divSpinField [X,y_ 1=D[mnix,y 1,x 1+D[nn[x,y 1,y 1]
m® )y =@ Xy )
Here they are together:
{{divField [x,y 1, rotSpinField [x.y 1},
{rotField  [x,y ], divSpinField X,y 1}}
(O ey 1m0y o O gy 1m0 1y 7y,
{-m% (x,y ]+ n‘”][x,y 1mO %y 1 -n®0) [xy 11}

10)
( [

Examine what you see above, and then answer the questions below:

- If {X, y} is a source of spinFidld, y], then which way (clockwise
or counterclockwise) is Field, y] swirling at{x, y}?

- If {x, y} is a sink of spinFiel, y], then which way (clockwise or
counterclockwise) is Field, y] swirling at{x, y}?

- If {x, y} is a source ofFieldx, y]), then which way (clockwise or
counterclockwise) is spinFidl, y] swirling at{x, y}?

- If {x, y} is a sink of Fielgk, y], then which way (clockwise or
counterclockwise) is spinFigld, y] swirling at{x, y}

- If Field[x, y] is a gradient field, then how do you know that
spinFieldx, y] has no sources or sinks?

- If spinFieldx, y] is a gradient field, then how do you know that
Field[x, y] has no sources or sinks?

0G.10.c.i)
Here's a cleared vector field and its spin field:
Clear [Xx,y, m, mm, n, nn, Field, spinField ]

Field [x_,y_ I={mxy 1.n[xy I}
{mnix_, y_ 1,nn [x_,y_ 1} ={-n[xy ], m[xy 1}
spinField [x_,y_ 1={mnix,y 1,nn [X,y 1};
{Field [x,y ], spinField X,y 1}
(mix,y 1L,n Xy 13, {-n(x,y ], m[xy ]}}
Here is divFieldix, y]:

Clear [divField ]
divField [x_,y_1=D[m[x,y 1,x1+D[n[x,y 1,y1

N xy 1 emtO 1y ]

Here is rotSpinFielk, y]:
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Clear [rotSpinField 1
rotSpinField [X,y_1=D[[x,y 1,x]1-D[mnix,y 1,y ]

n(D‘l ) Xy 1+ m\’l,D) Xy ]

Suppose you know that

Fieldx, y] = gradflx, y]
for a function fx, y], and

spinFielg, y] = graddx, y]
for another function [, y].
Also suppose you know that neither Figldy] nor spinFieldl, y] has
any singularities.
Why is it totally impossible to have a pointb, yo} such that

f[XOx yO] > f[X, Y] for {x y} * {Xo, YOP

aTip:

First explain why the fact thispinFieldx, y] is a gradient field
guarantees that

divField[x, y] = 0 at all points{x, y},
so that the netflow cField[x, y] across any given closed curve must be
0.
Then rule out the possibility of finding a po{xq, Yo} such that

f[Xo, Yol > f[x, y] for {x, y} # {Xo, Yo}
by centering a small circlC at{xo, Yo}, and asking yourself what the
net flow of thegradfix, y] acrossC must be.
Remembegradfx, y] points in the direction of greatest initial increase
at{x, y}.

0G.10.c.ii)

Suppose you know that
Fieldx, y] = gradflx, y]

for a function fx, y] and
spinFielflx, y] = graddx, y]

for another function [, y].

Try to explain why it must be that
PPEIxyl + Prxyl =0

Ox2 gyz
and
92 92
Faxyl 4 Foxyl _

Ox2 gyz
at all points{x, y} other than singularities.
aTip:
Clear [x,y, m, mm, n, nn, f, g, gradf, gradg, Field, spinField 1
Field [x_,y_ 1={DIf[xy 1,x1,DIf[xy 1l y1}
{m[x_,y_ 1.n [Xx_,y_ 1}=Field [xy ]
(A0 [y 1, F O xy ]y

spinField  [x_,y_ 1={Dlglx,y 1. x1,DIg[X Yy 1,y 1}
{mnix_, y_ 1,nn [x_, y_ 1} =spinField [x,y ]

@y 1,9 % xy 1)
Saying thaspinFieldx, y] is a gradient field tells you that

rotSpinFieldx, y] =0
at all points{x, y} other than singularities. If you did the part above,
you'll be able to explain why this means tdivField[x, y] = 0 at all
points{x, y} other than singularities:
Now check oudivField[x, y] = D[m[X, y], X] + D[n[X, y], yI:

] DImix, y 1,x1+DIn[xy 1,y 1
FO2 1y 1+f @0 xy ]

Now you take over.

VC.06.G10
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