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B.1) uv-paper andxy-paper

Here's a part of the usual xy-paper grid:

Clear [X,y ]
{xlow, xhigh
{ylow, yhigh
xygrid = Show[
Table [Graphics [Line [{{xlow,y 1}, {xhigh,y 1}}11, {y, ylow, yhigh
Table [Graphics [Line [{{X, ylow 1}, {x, yhigh 1}}11, {Xx, xlow, xhigh
Axes - True, AxeslLabel - XYL

}={0,6}
}={0,5}

X

As you well know, y is constant on the horizontal lines, and x is

constant on the vertical lines.

If you want to locate a point liki8, 2}, you can do it by going to the

point at which the grid lines
x=3andy=2
cross each other:

point = {3,2};

Show([xygrid, Graphics [{Red, PointSize  [0.03 ], Point [point 1}11;

X

This isn't the only way to locate the poit 2}.
You can go with:
Clear [u, Vv, X,y ]
DY 1V XL Y- 13 = P -y2 xy )
2 -y?, xy }

And you can say that the poif®, 2} is the point at which the level

curves
Ux, yl = ul3, 2] and \x, y] = V[3, 2]
cross each other:
= ContourPlot  [Evaluate [u[X,y 1],
{x, xlow, xhigh }. {y, ylow, yhigh }, Contours - {u[3,2 ]},
ContourShading - False, DisplayFunction - Identity 1;
vlevelcurve = ContourPlot  [Evaluate [V[X, y 11,
{x, xlow, xhigh }, {y, ylow, yhigh }, Contours - {Vv[3,2 1},
ContourShading - False, DisplayFunction - Identity ];
uvlevelcurves = Show [ulevelcurve, vlevelcurve, Frame - False 1;

ulevelcurve

Show [uvlevelcurves, Graphics

Axes - True, AxesLabel - {"x","y" 1}, PlotRange - All,
DisplayFunction

- $DisplayFunction 1;

34 5 6%
You can plot a whole grid of level curves ¢kuy] and \[x, yI:

ulevelcurves = ContourPlot [Evaluate [u[X,y 1], {x, xlow, xhigh },
{y, ylow, yhigh }, Contours - {-15, -10, -5, 0, 5, 10, 15, 20, 25, 30

1N
1N

[ {Red, PointSize [0.03 ], Point [{3,2 }]}1,
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- True, AxesLabel - {"x","y" 1},
- $DisplayFunction 1;

Show[uvGridonxyPaper, Axes
DisplayFunction

X

Totally cool.

ContourShading - False, DisplayFunction - Identity 1;
vlevelcurves = ContourPlot  [Evaluate [v[X,y 11, {X, xlow, xhigh },

{y, ylow, yhigh }, Contours - {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

ContourShading - False, DisplayFunction - Identity 1;
uvGridonxyPaper = Show[ulevelcurves, vlevelcurves, Frame

- False 1;

iz

As above, you can locate the poj8f 2} on xy-paper as the point

where the level curves
Ux, y] = u[3, 2], and
VX, yI=V[3, 2|
cross each other:

Show[uvGridonxyPaper,
Graphics [{Red, PointSize  [0.03 ], Point [{3,2 }1}1, Axes - True,
AxesLabel - {"x","y" 1}, DisplayFunction - $DisplayFunction 1;

X

T & 6
Or you can locate the poif4, 4 on xy-paper as the point where the

level curves
Ux, y] = u[4, 4], and
VX, yl =Vv([4, 4

cross each other:

Show[uvGridonxyPaper,
Graphics [{Red, PointSize  [0.03 1, Point [{4,4 }]1}], Axes - True,
AxesLabel - {"x","y" 1}, DisplayFunction - $DisplayFunction 1;

OB.1.a.i)
Continue to go with the[y, y] and \{x, y] above.

What do folks mean when they talk about the uv-coordinates of a

point with xy-coordinate$x, y}?
OAnswer:
That's easy.
Theuv-coordinates of a point wilxy-coordinateqx, y} are:

| (uixy 1.vixy 1}
x2 -y, xy }

For instance, thuv-coordinates of the point wixy-coordinates{3, 1}

are:

| uis. 11,v (3,11}
(8.3

In other words, the level curves
ulx, y] = 8 andv[x, y] = 3
cross at the poir{x, y} = {3, 1}.
Not a whole lot to it.
oOB.1.a.ii)
How do you make uv-paper?
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OAnswer:

With a little imagination and a good graphics system like
Mathematica.
To see how little is involved, look at tluv-grid onxy-paper and

imagine the plot to be made on a rubber sheet:

Show[uvGridonxyPaper, Axes - True, AxesLabel - {"X","y" 1},
DisplayFunction - $DisplayFunction 1;

What you see on the rubber sheet are the level curves

ulx, yl =k
fork = -15,-10,-5,0,5, 10,15, 20, 25, anc30, and
V[X,y]=¢

forc=0,2,4,6,8,10,12,14,16,18, anc20.

To makeuv-paper, stretch and compress the rubber sheet so that all
the curvew[x, y] = k andv[x, y] = ¢ become straight lines crossing
perpendicularly.

Then apply new axes corresponding to the cuv[x, y] = 0 and

ulx, y] =0.

Here's what you get:

{ulow, uhigh, ujump }={-
{vlow, vhigh, vjump } = {0,
uvgrid = Show[Table [

Graphics [Line [{{ulow, v }, {uhigh,v }}11, {v, vlow, vhigh, vjump 1,
Table [Graphics [Line [{{u, vlow 1}, {u, vhigh }}11, {u, ulow, uhigh }1,
Axes - True, AxesLabel - {"u", "v" }1;

i

u

-10 10 20 0
This shows off the advantage of plottinguvipaper; the

hard-to-handle curveuv-grid onxy-paper becomes an easily dealt
with grid of straight lines ouv-paper.
A little imagination and Mathematica will take you a long way.

oB.1.a.iii)

Continue to use
ux, yl =x?-y?, and
X, y] = xy.
How does the hyperbola=y 2 plot out on uv-paper?
How does the hyperbol& x y? = 4 plot out on uv-paper?
How does the circléx — 1)2 + y2 = 1 plot out on uv-paper?
OAnswer:
Clear [u,Vv, Xy 1
UL y_ 1=x%-y?
X2 - y2
| vixiy_ 1=xy
Xy
- uv-paper plot oy = 2:
A parametric equation of the hyperby = 2 is:
Clear [x,y,t 1

2
Ly e ={t =}
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Here's part of this hyperbola xy-paper:

. 2
ParametricPlot [txrtny t1y {t T 5},

PlotStyle - {{Thickness [0.01 ], Red }}, AxesLabel - {"X","y" 1},
Epilog - Text ["xy -paper plot", {3, 3 }]];

3 xy-paper pl ot

123 4 5%

Thexy-paper point
{x[tl, ylt}}

plots out oruv-paper at thuv-paper point
{ulx[t], yItl, vIX[t], ylti}.

Here's theuv-paper plot of the same part of the hyperbola
y=2%

plotted above oxy-paper:

ParametricPlot [{u[x[t 1,y [t11,v [X[t],y [t11},

{t % 5 }, PlotStyle - {{Thickness [0.01 1, Red }},

PlotRange - {1, 3 }, AxesLabel - {"u","v" 1}, AspectRatio -1,
Epilog - Text ["uv -paper plot", {10,25 11];

2ubtpaper pl ot

Gee whiz.

The hyperboliy = 2 plots out as the linv = 2.

This is no accident because the hyperbola
y=2%

is the level curve

Xy=2
and this is the same as the level curve
V[X, y] =xy=2.

When you stretched thxy-paper intcuv-paper, this level curve
became the linv = 2.
- uv-paper plot ox? — y? = 4:
You don't need the machine to say how this lookuvapaper.
When you remember that

ulx, yl=x* - y?,
you see that the hyperbola

X2 _ y2 =4
plots out oruv-paper on the line
u=4.

- uv-paper plot o(x — 1)? + y2 = 1:
A parametric equation of the circqx — 1)° + y2 =1 is:
| Clear [x ¥, t 1
XI T,y [ 1} ={1,0}+{Cos[t], Sin [t]}
{1+Cos[t],Sin [t]}
Here's this circle oxy-paper in true scale:

ParametricPlot [{x[t],y [t]}, {t0,2 =},
PlotStyle - {{Thickness [0.01 ], Red }}, AxesLabel - {"x","y" }

AspectRatio - Automatic, Epilog - Text ["xy -paper plot", {0.7,0.7 1}11;
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y
1

y /paper pl ot
0.5

-0.5
-1

Thexy-paper point

{xtl, yltl}
plots out oruv-paper at thuv-paper point

{ulx(t], y[tll, vIx[t], ylti}.
Here's the true scauv-paper plot of the circle
X-172%+y?=1:
ParametricPlot  [{u[x[t],y [t]]. v [X[t],y [t]]}, {t, 0,2 =},
PlotStyle - {{Thickness [0.01 ], Red }}, AxesLabel - {"u","v" 1}

AspectRatio - Automatic, Epilog - Text ["uv -paper plot", {15,05 1}11;
\'

d uv-paper pl ot
H |

Buns.

When you stretched and compressed the original rixyapaper to
make theuv-paper, the circle got squashed.

The cusp (corner) {0, G} is hard to ignore; you'll find why it
happened in one of the GiveltaTry problems.

0B.1.b.J)

Often you'll want to start with uv-paper and go to xy-paper. Here's an
example involving polar parameterization:
Go with the uv-paper rectangle<lu<5and O v < 7:
uvpaperplot =
Show[Graphics [{Thickness [0.01 ], Line [{{1,0}, {5 0 }}1}1.
Graphics [ {Blue, Thickness [0.01 ], Line [{{5, 03}, {5 =x}}1}1,

Graphics [{Thickness [0.01 1, Line [{{5, =x}, {1, =w}}1}1,
Graphics [{Red, Thickness [0.01 1, Line [{{1, m}, {1, 0 }}1}1,

I
Graphics [Text ["uv -paper plot", {3 ?}]] AspectRatio - Automatic,

Axes - True, AxesLabel - {"u","v"  }];

uv-paper pl ot

L
g BN O W

0.

z 3 7 u
Go to xy-paper with the polar functions
Xu, v] = uCogv] and yu, v] = u Sinv]
and plot this rectangle on xy-paper.
OAnswer:

Clear [X,y,u,v ]
{X[u_,v_ 1,y [u,Vv_1}={uCos[v],uSin [V]}
{uCos[v],uSin [v]}

The bottom side of the rectangle runs with
l<u=<b5andv=0:

xybottom = ParametricPlot [{X[u,01,y [u, 071}, {ul5 3},
PlotStyle - {{Thickness [0.01 ]1}}, AxesLabel - {"x","y" }1;
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-1
The right side of the rectangle runs with

u=5and0<v=<n:

xyright = ParametricPlot
PlotStyle

[{X[5Vv1yI[5VvI} {v,0, =},
- {{Blue, Thickness [0.01 ]1}}, AxesLabel - {"x","y" }1;

X

- - 2 4
The top side of the rectangle runs with

l<u=<b5andv=nm:
There is no need for a counterclockwise parameterization here.
xytop = ParametricPlot [{x[u, =],y [u, =1}, {u,1,5 },
PlotStyle - {{Thickness [0.01 ]}}, AxesLabel - {"Xx","y" }1;

y
1

0.5

-0.5
-1
The left side of the rectangle runs with

u=landO=<v=nm:
There is no need for a counterclockwise parameterization here.

[{x[Lv1yI[LVvI} {v.0, =},
- {{Red, Thickness [0.01 ]}}, AxesLabel - {"X","y" }];

xyleft = ParametricPlot
PlotStyle

-1 -0.5 0.5 1

Here they are all assembled:

xypaperplot = Show[xybottom, xyright,
xytop, xyleft, Graphics [Text ["xy -paper plot", {15,3 }11,
AspectRatio - Automatic, AxesLabel - YL
y
4
Xy -paper pl ot
2
2 2 2 7 x
Half a donut.
OB.1.b.ii)
How does this bear on the topic of double integrals?

OAnswer:
It's sometimes handier than a can opener. You'll see why later, but jus
to whet your appetite, ask yourself this:
If you are setting up a double integral over a reRowould you

preferR to look like this:
] Show([xypaperplot 1;
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Xy -paper pl ot

/T

-4 -2 2 4
Or this:
] Show[uvpaperplot 1;

v

uv-paper pl ot

g BN O W

7 3 7 5
This lesson is all about the art of replacing ornery regions by
rectangles.

Go on and enjoy.

B.2) Linearizing the grids

OB.2.a.i)

Here is a microscopic plot of part of the xy-grid coming from
X{u, v =u?-v? and yu, v = uv
in the vicinity of the uv-paper point
{a,B=1{2.1,19
plotted on uv-paper:
{a,b}={21,15 };
jump =0.02;
Clear [u,v,h, x,y 1]
XTU_,v_ 1,y [u_,v_ 1} ={u?>-v2 uv};
xlevelcurves = ContourPlot  [Evaluate [x[u,V 1],

{u,a -jump,a +jump}, {v,b -2jump,b +2jump},
Contours - Table [x[a, b ]+h, {h, -5jump, 5jump, jump }1,
ContourShading - False, DisplayFunction - Identity 1;
ylevelcurves = ContourPlot [Evaluate [y[u,V 1],
{u,a -jump,a +jump}, {v,b -2jump,b +2jump},
Contours - Table [y[a, b ] +h, {h, -5jump, 5jump, jump }1,
ContourShading - False, DisplayFunction - Identity 1;
xyGridonuvPaper = Show[xlevelcurves, ylevelcurves, Frame - False 1;

Show [ xyGridonuvPaper,
Graphics [{Red, PointSize  [0.03 ], Point [{a, b }]}1, Axes - True,
AxesLabel - {"u", "v" 1}, DisplayFunction - $DisplayFunction 1;

Here's the same thing for the linearizations|[of x| and yu, v] at the
same pomta, b}

Clear [linearx, lineary, gradx, grady 1

gradx [u_,v_ 1 ={D[x[u,v],ul,D[x[uVv]Vv]i}

grady [u_,v_ ]={D[y[u,v ], ul,D[y[uVv],VvI}

linearx [u_,v_ ] =Expand [x[a,b ] +gradx [a,b]. {u-a v -b}]
-2.16 +42u -3.v
| lineary [u_,v_ ] =Expand[y[a,b]+grady [a,b]. {u-a v -b}]
-3.15 +15u +21v
linearxlevelcurves = ContourPlot  [Evaluate [linearx [u,Vv 1],

{u,a -jump,a +jump}, {v,b -2jump,b +2jump},

Contours - Table [linearx [a, b ]+h, {h, -5jump, 5jump, jump }1,

ContourShading - False, DisplayFunction - Identity 1;
linearylevelcurves = ContourPlot  [Evaluate [lineary [u,V 1],

{u,a -jump,a +jump}, {v,b -2jump,b +2jump},

Contours - Table [lineary [a, b ]+h, {h, -5jump, 5jump, jump }1,

ContourShading - False, DisplayFunction - Identity 1;
linearxyGridonuvPaper =

Show[linearxlevelcurves, linearylevelcurves, Frame - False ];

Show[linearxyGridonuvPaper,
Graphics [{Red, PointSize  [0.03 ], Point [{a, b }]}], Axes - True,
AxesLabel - {"u","v" '}, DisplayFunction - $DisplayFunction 1;
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Compare:
Show[xyGridonuvPaper, linearxyGridonuvPaper,
Graphics [{Red, PointSize  [0.03 1, Point [{a, b }1}], Axes - True,
AxesLabel - {"u", "v" 1}, DisplayFunction - $DisplayFunction 1,

In this microscopic plot of the vicinity &, b, the xy-grid on
uv-paper is almost the same as the grid coming from the linearized
versions of xu, v] and yu, v] at{a, b.

Explain why:

You will see similar results no matter what the functions x| and
y[u, v] are, and no matter what potiiat b you go with (unles¢a, b

is a singularity for fu, v] or y{u, Vv]).

OAnswer:

Way back, you remember learning that the linearized version of any
functionx[u, v] (respectivelyy[u, Vv]) at{a, i is a superb
approximation ox[u, v] (respectivelyy[u, v]) in the vicinity of{a, b.
That's why the grid coming from the linearized versionx[u, v] and
ylu, v] at{a, b has to mimic thixy-grid so well near the poiia, b.

In fact, the closer you get {a, b, the better the approximation.

Watch it happen for new functions
x[u, v] = u Cogv], and
ylu, v] = 2u Sinv],

and a new poir{a, b = {2.5,-0.7}:

{a,b}={25 -071};
jump = 0.02;
Clear [u,v,h,x,y 1
{X[u_,v_ 1,y [u,v_1}={uCos[v],2uSin [V]};
xlevelcurves = ContourPlot  [Evaluate [x[u,V ]],
{u,a -jump,a +jump}, {v,b -2jump,b +2jump},
Contours - Table [x[a, b ]+h, {h, -5jump,5jump, jump }1,
ContourShading - False, DisplayFunction - Identity  1;
ylevelcurves = ContourPlot  [Evaluate [y[u,V 1],
{u,a -jump,a +jump}, {v,b -2jump,b +2jump},
Contours - Table [y[a, b ]+h, {h, -5jump,5jump, jump }1,

ContourShading - False, DisplayFunction - Identity 1;
xyGridonuvPaper = Show[xlevelcurves, ylevelcurves, Frame - False 1;
Clear [linearx, lineary, gradx, grady 1

gradx [u_,v_ ] ={D[x[u,v]1,ul,DI[Xx[u,Vv],VvI1}
grady [u_,v_ ]1={D[y[uVv],ul,Dy[uvVv]1VvI]l}
linearx [u_,v_ ] =Expand [x[a,b ] +gradx [a,b]. {u-a, v -b}];
lineary [u_,v_ ] =Expand [y[a, b ]+grady [a,b]. {u-a, v -b}];
linearxlevelcurves = ContourPlot  [Evaluate [linearx [u,V 1],
{u,a -jump,a +jump}, {v,b -2jump,b +2jump},
Contours - Table [linearx [a, b ]+h, {h, -5jump, 5jump, jump }1,
ContourShading - False, DisplayFunction - Identity  1;
linearylevelcurves = ContourPlot  [Evaluate [lineary [u,V 1],
{u,a -jump,a +jump}, {v,b -2jump,b +2jump},
Contours - Table [lineary [a, b ]1+h, {h, -5jump, 5jump, jump }],
ContourShading - False, DisplayFunction - Identity 1;
linearxyGridonuvPaper =
Showf[linearxlevelcurves, linearylevelcurves, Frame - False 1;

Show [xyGridonuvPaper, linearxyGridonuvPaper,
Graphics [{Red, PointSize  [0.03 1, Point [{a, b }]1}], Axes - True,

AxesLabel - {"u","v" 1}, DisplayFunction - $DisplayFunction 1;
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Lookin' good; especially good nefa, .
Play with other functionx[u, v] andy[u, v], and other point{a, b.

OB.2.b)
Summarize.

oAnswer:
The gist:
— Near suv-paper poin{a, b}, xy-paper plots look the same as plots
onlinearxlineary-paper. The closer you gefa, I, the better the
linear grid approximates the curved grid.
— Thelinearxlineary-grid oruv-paper is always a bunch of
parallelograms in much the same way thaixywgrid onxy-paper is a
bunch of rectangles.

B.3) Transforming 2D integrals: How you do it and why
you do it

This assumes familarity with B.1) and B.2)

OB.3.a) The instantanteous area conversion facty[u, v]
Knowing that
b b
fx)g]]f[x] dx = [ f[x[u]] X'[u] du
is a mark of calculus literacy.

But without the fudge function
fudgéu] = x’[u],
the transformation fails.
In the two-variable case, when you use functidis % and and
y[u, v] to go from integrating on xy-paper to integrating on uv-paper,
you've got to come up with the fudge function, fudge], that makes

ffoyf[x, yldxdy

= ffR f[x[u, v, y[u, V] fudgdu, vl dudv
where Ry is the uv-paper plot of the region,Forginally plotted on
Xy-paper.
What is the physical meaning of this function

fudgéu, v]?

oAnswer:
The functionfudgdu, v] has to satisfy
ffoyf[x, yldxdy
= ffRWf[x[u, vl, y[u, V]l fudgdu, v]dudv.
No matter whaf[x, y] you have.
You get a pregnant clue to the physical meanirfudgdu, v] by
taking
flx,y]l=1.
For this particulaf[x, y], you get
ffoyalxdy = fwafudge[u, vldudv.
PutAredR,y] equal to the area Ry, measured orxy-paper and
realize that this equation means that

VC.07.B2-B3

AregRy] = ffRXyclx dy = fwafudge[u, vldudv.

If you make the measurementsuvipaper, then
AredRy] = | wadudv.

Sofudgdu, v] must be the instantanteous area conversion factor that
you integrate to conveuv-paper area measurements ixyepaper
area measurements.
You could say that thfudgdu, V] is the derivative oxy-paper area
with repect tcuv-paper area.
To dignify thefudgdu, v], give it a fancy look by writing

Ayylu, v] = fudgdu, v].
Name it by callincA,y[u, v] the area conversion factor because it
convertsuv-paper area measurements ixyepaper area
measurements.

0B.3.b) The formula for the area conversion factolAyy[u, v]

Now go for the throat.

The formula for the area conversion factqgA, v] that you integrate
to convert uv-paper area measurements to xy-paper area
measurements is:

Clear [x,Y, u, v, gradx, grady, Axy 1

gradx [u_,v_ ] ={D[x[u,v]1,ul,DI[Xx[u V] VvI1}
grady [u_,v_ 1={D[ly[uVv ], ul,D[y[uVv], V1)

Axy [u_, v_ ] = Abs[Det [{gradx [u,Vv ], grady [u,V ]}]]

Abs [y @) [u, v 1 x 0 U v ] -x OB u v 1y 0 U, v )
Some of the fancy folks call this the Jacobian determinant.
Where does this beauty come from?
OAnswer:
Ultimately, it comes from the cross product.
Start with

X = X[u, v], and

y =ylu, vl.
At a fixeduv-paper poin{a, b, the linearized versions x[u, v] and
y[u, v] are calculated as follows:

Clear [x, Y, u, v, a,b, gradx, grady, linearx, lineary 1
gradx [u_,v_ ] ={D[x[u,v ], ul,D[x[uVvi1vVvi}

grady [u_,v_ ]={D[y[u,v ], ul,D[y[uVv],VvI}h

linearx [u_,v_ ]=x[a b]+gradx [a,b]. {u-a Vv -b}

x[a,b ]+ (-b+v)x®a b+ (-a+u)yx®)(ab]
| lineary [u_,v_]=y[abl+grady [a,b]. {u-avVv -b}
yiab ]+ (-b+v)y©®ia b+ (-a+u)y®®)(a b

Remember from B.2:
Onuv-paper, the closer you are{a, 3, the more spectacularly the
xy-grid is approximated by ttlinearxlineary-grid. As a result, at the
point{a, b, the two area conversion factors are the same; in other
words
Axy[ay bl = Alinearxlineray[af b.
Now calculateAinearxiineray [, bI:
To do this, remember that the linear grid is a bunch of parallelograms.
For this reason, thuv-paper square with corners at
{a, B, {a+ h, b}, {a+ h, b+ h}and{a, b+ h}

plots out orlinearxlineary-paper as the parallelogram with corners at:

Activate the next cell.
Clear [h]
basepoint = {linearx [a, b ], lineary [a,b1};
cornerl = {linearx [a+h,b ],lineary T[a+h,b]};
corner2 = {linearx [a+h,b +h],lineary [a+h,b +h]};
corner3 = {linearx [a, b +h], lineary [a,b +h]1};

The area of this parallelogram is given by the absolute value of:

If you want to refresh yourself about where the ingredients of this
calculation come from, double click the box.
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The area of the parallelogram determined by any veX.arsdY with
their tails at a common base point is

[IXI1IY ]l |Sin[angle betweekh
which is the same as the length of the base times the perpendicular
height. To understand the calculation, put everything in three

dimensions as follows:
Clear [X, X, Y,y 1]
X= {x[1], X [2]}
{(x[1],x [2]}
] X3D= {x[1],x [2],0}
{X[1],x [2],0}
I Y=1(yi11.y 121}
(y[1l,y [2]}
| Y3D=(y[11,y [21,0}
{y[1l,y [2],0}

Note:
| VXX == vX3D.x3D
True
| vv¥ -- vvaD . vaD
True

This confirms tha||X|| = ||X3D|| and||Y|| = |[Y3D]|. So
area= ||X|| Y]l |Sinfangle betweekh
= ||X3D]| ||Y3D]| |Sin[angle betweelh

Now look at:

| X3DcrossY3D = Cross [X3D, Y3D]

0,0, -x[2]y[1]+x[1]y[2]}

I Expand [ (X3D.Y3D)? + X3DcrossY3D . X3DcrossY3D |
X112y (112 +x[2]%y[1]2 +x[1)2y[2]% +x[2]2y[2)?
] Expand [X3D.X3D Y3D.Y3D]

X112y (112 +x[2]%y[1]2 +x[1)2y[2]% +x[2]2y[2])?

Remembering that
(X3D.Y3D)? = ||IX3DJ]? |lY3D||? Cogangle betweeRs,
you can see from the calculations immediately above that
IX3D|I?|IY3DJ|? Codangle betweels + ||X3DxY3D||?
= [IX3DIIY3DI>.
So
IX3D xY3DJ? = [IX3D||? |[Y3D||? (1 - Cogangle betweel)
= |IX3D|? ||Y3D||? Sinfangle betweeld
Consequently,
IX3D xY3D|| = [IX3D|| ||Y3D|| |Sinfangle betweel
= area of parallelogram determined by X and Y.
End of explanation.

X =cornerl - basepoint;

Y = corner3 - basepoint;

X3D = Append [X, 0 1;

Y3D = Append [Y, 0 1;
X3DcrossY3D = Cross [X3D, Y3D];

= \/Collect [Expand [X3DcrossY3D . X3DcrossY3D ], h 4]
J (h" (yto,l‘, {a, b ]2 x(10) [a b JZ _
2x ) [a,b 1y ® ) a,b 1 x* ) a b1y [ab]«

xO1) (a, b 12 y™0) (a b ]2))

AreaofParallelogram

The originaluv-paper square with corners at
{a, b, {a+ h, b}, {a+ h, b+ h}, {a, b+ h}
has area measuring outh?
So the area conversion factor
Axy[ax b] = Alinearxlinear)[av kﬂ
is given by the absolute value of:

AreaofParallelogram

Simplify [ = ]

VC.07.B3

h (y©1)[a b 1x 10 [ab]-x©)ab ]yt [ab])?
h2

Not so bad because this is the same as the absolute value of:

| Det [{gradx [u,Vv ],grady [u,Vv 1}]1/. {u->a,v -b}
y(o'“[a,b]xfl‘or\[a,b]—X(O*l’[a,b]y‘l*o‘[a,b]

The h's cancel out.
And now you see why the area conversion factor
Axylu, V]

is nothing more than the absolute value of:

| Det [{gradx [u,V ], grady [u,V 1}]
y @

oB.3.c.i)

Now you get a chance to use this good stuff:
The region R, is everything inside and on the ellipse
2 2
($)°+y?=1
on Xy-paper:
Clear [x,y,t 1]
{X[t_ 1,y [t_1}={3Cos[t], Sin [t]};
ParametricPlot [
{X[t1,y [t1}, {t 0,2 =}, PlotStyle - {{Thickness [0.01 ], Red }},
AspectRatio - Automatic, AxesLabel - Yy,
Epilog - Text [StyleForm ["\ 1\ (R\_xy\ )", FontSize -» 161, {1,05 3}11;

u v I x @0t v 1o x @) u, v 1y 0ty v g

Calculate
[ [a 6+ y?)dxdy
Xy
by transforming the integral to new variables u and v.
OAnswer:
You can describe the ellipse and everything inside it by writing
{3uCogv], uSinv]}

withO<su=<landO<v=<2nx.
Put
X[u, v] = 3u Cogv], and
y[u, v] = u Sinv]:

Clear [x,y,u,v ]

{X[u_,v_1,y[u,v_1}={3uCos[v],uSin [v]}
{3uCos[v],uSin [v]}

Clear [gradx, grady, Axy 1

gradx [u_,v_ ] ={D[x[u,v ], ul,D[x[uVvi1Vvi}

grady [u_,v_1={Dly[u Vv ], ul,D[y[uVv],Vv]1}

Axy [u_, v_ ] = TrigExpand [Det [{gradx [u,Vv ], grady [u,Vv ]}]]
3u

Because0 < u< 1 and0 < v < 2z, theuv-paper plotR,y, of Ry is the
rectangle with corners at

{0, O}, {1, O}, {1, 2x}, and{0, 27},
and everything inside it:

Show[Graphics [ {Red, Thickness [0.01 ],
Line [{{0,01}, {1,0}, {1,2 7}, {0,2 x}, {0,0}}1}1,
Graphics [Text ["\ !\ (R\_uw )", {0.9,1 }]1, Axes - True,

1
AxesLabel - {"u","v" 1}, AspectRatio - E];

v

BN W A OO

Ry

0.2 0.4 0.6 0.8

This gives
[ Jo 02+ y?) dxdy
= [ fro, X1U, VI2 + YIU, VI2) Ay [u, VIdudy
= fohfol(x[u, VIZ+ y[u, V) Ay [u, Vidudv:
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2n A1
|J J(X[U,v]2+y[u,v]Z)Axy[u,v]dludlv
0 0

15
2

So:

g, 02+ y?) dxdy = 5%,
and you're out of here without sweating and without a lot of miserable
irritating algebra.

0B.3.c.ii)

Look at the region f inside the boundary described by the curves
y=0.8x,y=0.8x+ 0.5,
xy=0.2, and xy= 0.6:
0.2 0.6

Plot [{0.8 x, 0.8x +0.5, vt —}

{x, 0.25, 0.9 }, PlotStyle - {{Red, Thickness [0.01 1}},

PlotRange - {0.37, 1.0 }, AxesLabel - {"x","y" 1},

Epilog - Text [StyleForm ["\ !\ (R\_xy\ )", FontSize - 161, {0.6,0.9 }]];

you see above and everything inside it. Don't worry about the stray
ends.
Calculate

[ [ xy?dxdy
Xy
without a lot of weeping, wailing, and gnashing of teeth by
transforming the integral to new variables u and v.
OAnswer:

This is a real bastard to calculate without leaxygpaper because this
integral will have to be broken into three integrals with lots of weeping
wailing, and gnashing of teeth.
But this is a great set-up for transforming to an integral easily set up c
uv-paper.
TheR,y region has its boundary formed by the curves

y=0.8x,y=0.8x+ 0.5,

xy =0.2, ancxy = 0.6.
Use

u[x, y] =y - 0.8x, andv[x, y] = xy.

Clear [X,y,u,v ]
uix,y_ 1L, v IX,y_ 1} ={y-08xxy }
{-0.8x +y,xy }

Note

y=08xe—>ux,y]=0

y=0.8x+ 0.5+ u[x,y]=0.5

xy=0.2«—>vV[x,y]=0.2

Xy = 0.6+ Vv[X, y] =0.6.
After you stretch everything out so that the level curveu[x, y] and
V[X, y] become perpendicular straight linesuvapaper, you see that
theuv-paper plotR,y, of Ryy is the region inside truv-paper
rectangle with corners at

{0, 0.3,{0.5, 0.3, {0.5, 0.6, and{0, 0.6.

uvboundary = Show[Graphics [
{Red, Line [{{0,0.2 }, {0502 1}, {0506 1}, {0,06 }, {0,02 }}1}1,
Graphics [Text ["\ '\ (R\_uw )", {0.4,05 }1], Axes - Automatic,
Axes - Automatic 1;

VC.07.B3-T1

0.6

0.3

0.1 0.2 0.3 0.4 0.5

Now
ffpxyxy2 dxdy
fwax[u, vlylu, vI2 Ay lu, vidudv
092'6 Oo'sx[u, vlylu, vI? Ay lu, viduav.
You can let Mathematica mop this up as soon as you find out what
X[u, vl], ylu, v], andAXy[u, v] are:

| solve [{u==ulxy 1,V ==vixy 1}, {XxY}]
{{er.ZS (-25u -05 V25.u2+80.v ),y 01 (5.u -1. V25.u?+80.v )}
{x»0.25 (-25u +05 V25.u2+80.v ),y 501 (5.u +V25.u2+80.v )}}

The original regiorR,y consists o{x, y}'s with positive coordinates, so

you use:

Clear [Axy, gradx, grady 1
X[u_, v_1=025 (—2.5u +0.5 V25u2 +80v );

yIu_ v_1=01 (5u+V25u2+80v);

gradx [u_,v_ ] ={D[Xx[u,v],ul,DI[X[uVv],VvI1}

grady [u_,v_1={Dly[uVv ], ul,D[y[uv],VvI1}

Axy [u_,v_ ] =Det [{gradx [u,Vv ],grady [u,Vv ]}]
5.

V25u2 + 80V

This is negative; so throw in an extra minus sign to arrive at
ffo xy?dxdy

36 0.
= fo.26 Oosx[u, v1y[u, VI2 (-Axypuw) dudv

integral =
Nintegrate  [X[u, Vv 1y [u, Vv 1% (-Axy[u,Vv 1), {v,0.2,0.6 }, {u, 0,05 }]
0.048339

There wasn't all that much to it.

Once you decided on a gouv-paper, then Mathematica ground it out
without much trouble. The choice uv-paper was more or less
dictated by the set-up of the problem.

It saved a lot of miserable, irritating algebra.

OB.3.c.iii)

In calculating the last two integrals, what was the decisive advantage
in switching from xy-paper to uv-paper?

OAnswer:

Setting up the integrals «y-paper would have been frustrating.
Setting up the integrals by transforming theruvepaper was a breeze;
it's the modern, up-to-date way of doing it.

VC.07 Transforming 2D Integrals
Tutorials

T.1) Transforming [ [, fIx, yldxdy when the boundary of
Xy

Ryy IS given by parametric formulas

When the boundary of a regiog,Rs plotted with parametric
formulas, you often have a good shot at using the parametric formulas
to come up with uv-paper on which,Rs a rectangle. This is
especially good because calculating 2D integrals over rectangles is
usually very easy.
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OT.1l.a.0)

The region R, is everything inside and on the circle
X— 1%+ (y+ 2?2 =5:
Clear [x,y,t 1
(X[ 1,y [ 1} = {1, -2} ++/5 {Cos[t], Sin [t1}
Rxyplot = ParametricPlot [{x[t]l,y [t1},
{t, 0, 2 s}, PlotStyle - {{Thickness [0.01 ], Red }},
AspectRatio - Automatic, AxesLabel - {"X","y" }, Epilog -~
Text [StyleForm ["\ '\ (R\_\ ( x y\ )\)", FontSize - 161, {1, -051311;

Calculate
ffR (3X? + 5yH dxdy
Xy
OAnswer:
Look at the functions used to plot the boundarR,yf:

| xitnyitn
{1++/5Cos[t], -2++/5Sin [t]}

Put

Clear [x,y,ut ]
{X[u_t_ 1,y [u_,t 1}={1, -2}+u{Cos[t],Sin [t]}
{l+uCos[t], -2+uSin [t]}

Realize this:
When you ruru from0 tovV5 , and you rut from O to 2z, then
{x[u, 1], y[u, t]} runs through all oRyy:

| {{uow =0, uhigh =B} (tow =0, thigh =2m)}

{{o. v8}. (0.2 m}

The upshot:
Ryy is the rectangle
ulow < u =< uhigh anctlow < t < thigh
on ut-paper.
This, and the fact that
ffoy f[x, yldxdy

= [ Jg, fIXIu. 1, ylu, 1] Axylu,  dudt

= fa (N [x[u, 1, ylu, t] Awylu, t dudt,

— Jtlow Julow
tell you that you can turn everything over to the machine,

right now:

Clear [gradx, grady, Axy 1

gradx [u_,t_ ] ={D[x[u,t J,ul,D[x[ut I, t 1},

grady [u_,t_ ]={Dly[ut ],ul,Dly[ut ]t 1}

Axy [u_,t_ ] =TrigExpand [Det [{gradx [u,t 1,grady [u,t ]}1]
u

Here comes the calculation [ [ (3x?+ 5y*)dxdy:
Xy

calculation =
thigh uhigh
Simplify [J (Bx[ut 12+5y[ut 1*) Axy[u, t Jdudt]
tlow ulow
10095 7
8
Nasty answer, but it wasn't hard to get.
aT.1.a.ii)

Could you have used the Gauss-Green formula to calculate the
integral in part i)?
OAnswer:

VC.07.T1

Yes.
Here is how it goes:
You want to calculat‘ffR Bx%2+ 5y dxdy,
Xy

and you have a counterclockwise parameterization of the boundary of
Ryy:

Clear [x,vy,f,t 1

fIx,y_ 1=3x24+5y%

XIL 1,y [t 1} = {1, -2} ++/5 {Cos[t], Sin [t1};

{a,b}=1{0,2 n}
{0,2 i}

Witha<t=<bh.
The Gauss-Green formula says
J Jg,, ©Inix, y1, X1 = DImix, 1, y}) dx dy
= fab mx[t], y[tI X'[t] + n[x[t], y[tITy'[t] 41,
wherea= 0 andb = 2.
To calculate
ffoy f[x, yldxdy,
You just say
m[x, y] =0, and
nix, yl = [ f[s, ylds:

Clear [n, m,s,y ]
mx_,y_ 1=0;

nix.y_ 1= fo [s,y 1ds
x3+5xy?
This gives youf[x, y] = D[n[x, y], X] = D[m[x, y], yI:

] (DInix,y 1, x1-Dimix,y 1,y 1, f [x,y 1}
(3x2+5y% 3x2+5y%)

Now you know that
ffoy f[x, yldxdy
J Jg,, ©OInix, y1, X1 = DImIx, 1, y}) dx dy
= fab mix[t], y[t]] X'[t] + n[x[t], y[t]] y'[t] dt:
The reason you re-enter {X[t], Y[t]}isthat ~ Xand Y were cleared

when you calculated m[X, yland N[X, y].
(X[ 1,y [t_1} = (1, -2} ++5 (Cos[t], Sin [t]};

b
GGcalculation =j (MIX[t],y [tI1X [t]+n[x[t],y [t1]Yy [t])dt
a

10095 7t
8

As expected, this is the same nasty answer you got in part i).

oT.1.a.i)

How do you decide whether to go with transformations as in part i), or
with the Gauss-Green approach as in part ii)?

OAnswer:
From the scientific point of view, it's a toss-up. Both methods work, so
the decision is really a matter of personal choice.
Most folks prefer the approach using transformations in part i). But
when you're putting on the ritz, you might want to go with the
Gauss-Green approach.
Because you're already familiar with the Gauss-Green formula, this
lesson will concentrate on the approach using transformations. You
should do that too, because the approach using transformations has a
clear extension to three dimensions. Versions of Gauss-Green in three
dimensions are complicated.
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aT.1.b.i)

Here's a plot of the part of the surface
Z=Xy+ 5
above the ellipse
2 2
P+ )F=1
in the xy-plane:
Clear [Xx,y,r1,t 1
{X[r,t 1,y [r_,t_ 1}={2rCos [t],3rSin [t]};
{{rlow, rhigh }, {tlow, thigh 3} ={{0,1}, {0,2 n}};
top = ParametricPlot3D  [{x[r,t ],y [t 1,x [r,t 1y[rt ]+5},
{r, rlow, rhigh }, {t tlow, thigh }, DisplayFunction - |dentity 1;
base = ParametricPlot3D [
{x[r,t 1,y [r,t 1,013, {r, rlow, rhigh }, {t, tlow, thigh },
PlotPoints - {2, Automatic  }, DisplayFunction - Identity 1

- All, AxesLabel - "Xy
- $DisplayFunction 1

Show[top, base, PlotRange
ViewPoint - CMView, DisplayFunction

Measure the volume under the plotted surface and above its base in
the xy-plane.

OAnswer:
It's duck soup.
The volume is measured by
ffoy(xy+ 5 dxdy,
whereR,y is everything inside and on the ellipse
3P+ ($?=1

plotted in thexy-plane.
Go withrt-paper coming from:

| xint 1yInt 1}
{2rCos [t],3rSin [t]}

As you runr fromrlow torhigh, and as you rutifrom tlow to thigh,
{x[r, t], y[r, t]} sweeps out everything inside andR,y.
SoR is the rectanglrlow < r < rhigh andtlow < t < thigh, and

volume= ffoy(xy+ 5)dxdy

= [ [ (XIr, tlylr, t+ 5) Aylr, tidrdt

thigh (rhigh )

= Jiow Jriow X[ TYIE 1+ 3 Aylr, tldrdt:

Clear [gradx, grady, Axy 1

gradx [r_,t_ ] ={D[x[r,t 1,r 1,D[X[rt I,t 1};

grady [r_,t_ 1={(D[y[rt ]J,r 1,D[y[rt ],t 1}
Axy [r_,t_ ] =TrigExpand [Det [{gradx [r,t 1,grady [r,t 1}1]

6r
Measure the volume:

thigh rhigh
|j j (x[rt 1y[rt 1+5)Axy[r,t ]dr dt
1l

tlow low

30
Nice answer.
But if you hadn't gone trt-paper to calculate the integral, getting this
nice answer wouldn't have been so simple.
aT.1.b.ii)

Could you have measured the same volume using the Gauss-Green
formula?

OAnswer:

Yes.

OT.1.c.i)
Here's a plot of a regionRon xy-paper:

VC.07.T1

Clear [x,y,r,t 1
{X[r_,t_ 1,y [r,t 1}={3rCos [t], rSin [t]};
{rlow, rhigh }={1,3};

{tlow, thigh ):{%, 7_471};

twosides = ParametricPlot [{{x[rlow,t 1,y [rlow,t 1},
{x[rhigh, t 1,y [rhigh,t 1}}, {t, tlow, thigh },
PlotStyle - {{Thickness [0.01 ], Red }}, DisplayFunction
twomoresides = ParametricPlot [{{x[r tlow 1,y [r tlow 1},
{x[r, thigh 1,y [r, thigh 1}}, {r, rlow, rhigh },
PlotStyle - {{Thickness [0.01 ], Red }}, DisplayFunction
nametag =
Graphics [Text [StyleForm ["\ 1\ (R\_xy\ )", FontSize - 161, {-6,113}11;

- Identity 1;

- Identity 1;

Show[twosides, twomoresides, nametag, AspectRatio - Automatic,
AxesLabel - {"x","y" 1}, DisplayFunction - $DisplayFunction 1;

VY

Ryy is everything inside and on this boundary.
Calculate

[ [ xdxdy
Xy
with little thought, and with Mathematica doing the work.
OAnswer:
Look at:

| xirnt 1L,yInt 1}
{3rCos [t],rSin [t]}

When you look at the plotting instructions above, then you see that
when you rurr from rlow to rhigh, and you rum from tlow to thigh,
then{x[r, t], y[r, t]} describeRy,. This tells you that ort-paperRy; is
the rectangle

rlow < r < rhigh andtlow <t < thigh.
And your thinking is almost done.

Remembering that
ffoyxalxdyszRnx[r, t] Agylr, tldr dt,

turn Mathematica loose:

Clear [gradx, grady, Axy 1

gradx [r_,t_ ] ={D[x[r,t 1,r 1,DI[x[r,t 1,t 1};

grady [r_,t_ 1={D[y[rt ],r 1,D[y[rt 1,t 1}

Axy [r_,t_ ] =Factor [TrigExpand [Det [{gradx [r,t ],grady [r,t 1}111
3r

You can see thiAy[r, t] is never negative becaurseever goes
negative. Now your thinking is done.
Now calculate
ffRnydxdy:fer‘x[r, t] Ay lr, tldr dt
= [N Ny ] Ay T, tdr dit:

~ Jilow Jrlow
thigh rhigh
|J X[t 1AXy[r,t ]dr dt

tiow rlow
-78 /2
And you're out of here.
oT.1.c.ii)

Could you have calculated the same integral using the Gauss-Green
formula?

OAnswer:
In theory, yes.
In practice, it would have been a very tedious job, because you would
have to do a lot of bureaucratic work to come up with the required
counterclockwise parameterization of the boundary. This would
involve separate parameterizations for each of the four boundary
segments.
Ugh.
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OT.1.d.i) A constant-width ribbon.

Here's a curve on xy-paper:

Clear [Xx,y,r1,t 1
{X[t_]1,y [t 1}={4Cos[t],3Sin [t]};
{tlow, thigh }={1,51};

curveplot = ParametricPlot [{X[t].,y [t]1}, {t tlow, thigh },
PlotStyle - {{Thickness [0.01 ], Red }}, AspectRatio - Automatic,
AxesLabel - {"x","y" }1;
y

The outer normal to the curve{aft], y[t]} is:
Clear [unitnormal ]
{y'It1, -x[t1} ]

X It12 ey )2
{73\/§COS[I]\/2577C05[2t1 4+/2 /25 -7 Cos[2t] Sin [t] }

-25 +7Cos[t]2-7Sin [t]? -25+7Cos[t]2-7Sin [t]?
Here's the boundary of a ribbon of constant width 1 centered on this
curve:

Clear [r, outeribbon, innerribbon, oneend, otherend 1
outerribbon [t_]1={x[t],y [t]} +0.5unitnormal [ti;
innerribbon [t 1={x[t],y [t]} -0.5unitnormal [t1;
oneend [r_] = {Xx[tlow ],y [tlow ]} +runitnormal [tlow 1;
otherend [r_ 1 = {x[thigh ],y [thigh ]} +runithormal [thigh 1;
{rlow = -0.5, rhigh =05 };
twosides =
ParametricPlot [ {outerribbon [t 1, innerribbon [t1}, {t tlow, thigh }
PlotStyle - {{Thickness [0.01 ], Blue }}, DisplayFunction - |dentity  1;
twomoresides =
ParametricPlot [{oneend [r ], otherend [r1}, {r, rlow, rhigh }
PlotStyle - {{Thickness [0.01 ], Blue }}, DisplayFunction - Identity 1;

unitnormal  [t_ ] = TrigExpand [

Show[ curveplot, twosides, twomoresides, AspectRatio - Automatic,
AxesLabel - {"x","y" '}, DisplayFunction - $DisplayFunction 1;

Measure the area of this ribbon.

OAnswer:

Call inside of the ribboRyy. The integral

ffoy dxdy
measures the area of the ribbon.

Go tort-paper with:

{rlow, rhigh } = {-0.5,05 };
Clear [X,y, 1, t 1
{x[r_,t_ 1,y [r_,t 1}={4Cos[t],3Sin [t]}+runitnormal [t]

3+/2rCos [t]+/25-7Cos[2t ]

4Cos[t] - ,
{4Cosit) -25 +7Cos[t]2-7Sin [t]?
3sin[t] - 4+/2r /25 -7Cos[2t] Sin [t] }

~25+7Cos[t]2-7Sin [t]?
When you look at the plotting instructions above, then you see that
when you rurr from rlow to rhigh, and you ruit from tlow to thigh,
then{x[r, t], y[r, t]} describes the whole ribbR,y. This tells you that
onrt-paperRy is the rectangle

rlow < r < rhigh andtlow <t < thigh.
Remembering that

area of ribbon= ffoy dxdy = ffR“ Aylr, tidrdt,
turn Mathematica loose:

VC.07.T1

Clear [gradx, grady, Axy 1

gradx [r_,t_ ] ={D[x[r,t ],r ],D[x[rt 1,t 1}

grady [r_,t_ 1={Dly[rt 1,r ,DIy[rt 1,t 1}

Axy [r_,t_ 1 =TrigExpand [Det [{gradx [r,t ],grady [r,t 1}1]

- 24r - 25 /25 ~7Cos [21 ] .
25 +7Cos[t]2-7Sin [t]2 /2 (-25+7Cos[t]2-7Sin [t]?)
7Cos[t]2+/25-7Cos[2t ] B 7+/25-7Cos[2t] Sin [1]2
A2 (-25+7Cos[t]2-7Sin [t]%2) /2 (-25+7Cos[t]2-7Sin [t]?)

Analyzing this,it's hard to see whether this mess can ever go negative.

Take the easy way out and integrate its absolute value Nintegrate.

Nintegrate  [Evaluate [Abs[Axy[r,t 111, {t, tlow, thigh 1,
{r, rlow, rhigh }, AccuracyGoal - 2]
14.4267

About 14.4 square units.

OT.1.d.ii) A variable width ribbon

Go with the same base curve as in part i):

Clear [x,y,rt ]
{X[t_1,y [t_1}={4Cos[t], 3Sin [t]};
{tlow, thigh }={1,5}
curveplot = ParametricPlot [{x[t1,y [t1}, {t tlow, thigh },
PlotStyle - {{Thickness [0.01 ], Red }}, AspectRatio - Automatic,
AxesLabel - {"Xx","y" }1;
y

But this time make the width of the ribbon
0.4t at{x[t], y[t]}.

Here's what you get:
Clear [unitnormal ]

{yIt], -x'[t1} ]

Nx [t12 +y t]2

unitnormal  [t_ ] = TrigExpand [

Clear [r, outeribbon, innerribbon, oneend, otherend, halfwidth ]
halfwidth  [t_] =02t
outerribbon [t_1={x[t],y [t]}+halfwidth [t] unithormal [t];
innerribbon [t_1={x[t],y [t]}-halfwidth [t] unithormal [t];
tlowend [r_] = {x[tlow ],y [tlow ]} +runitnormal [tlow 1;
thighend [r_1 = {x[thigh 1,y [thigh 1} +runitnormal [thigh 71;
twosides =
ParametricPlot [ {outerribbon [t 1, innerribbon [t1}, {t tlow, thigh },
PlotStyle - {{Thickness [0.01 ], Blue }}, DisplayFunction - Identity 1;
onemoreside =
ParametricPlot [tlowend [r]1, {r, -halfwidth [tlow 1], halfwidth [tlow 1},
PlotStyle - {{Thickness [0.01 ], Blue }}, DisplayFunction - Identity 1;
andonemoreside = ParametricPlot [
thighend [r], {r, -halfwidth [thigh ], halfwidth [thigh 13},
PlotStyle - {{Thickness [0.01 ], Blue }}, DisplayFunction - Identity 1;

Show[curveplot, twosides, onemoreside,
andonemoreside, AspectRatio
DisplayFunction

- Automatic, AxesLabel -S> Y'Y,
- $DisplayFunction 1;

Measure fe area of this ribbon.

OAnswer:

Call the plot of the ribbon abo\Ryy. The integral

ffoy dxdy
measures the area of the ribbon.

Go tort-paper with:

Clear [Xx, vy, 1, t 1
{xr_t lLyf[_t 1}=
{4Cos[t],3Sin [t]1} +rhalfwidth [t ] unithormal [t ]
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 0.848528rtCos [t ] /25 -7 Cos[2t |
-25+7Cos[t]2-7Sin [t]?

1.13137rt /25 -7Cos (2t ] Sin [t] )
-25+7Cos[t]2-7Sin [t]?

When you look at the plotting instructions above, then you see that

{4Cost]

3Sin [t] -

when you rurr from-1to1, and you ruit from tlow to thigh, then
{x[r, t], y[r, t]} describeR,y. This tells you that ort-paper,Ry is the
rectangle
—1=<r=<1andtlow <t < thigh,
SO
J g, @xdy = [ [o Axlr tldrdt
= [N L Ay lr, tldr dt.

~ Jtlow
Clear [gradx, grady, Axy 1
gradx [r_,t_ 1 ={D[x[r,t ],r 1,D[x[rt 1,t 1}
grady [r_,t_ 1={(Dly[rt 1,r I,DLy[rt 1,t 1}
Axy[r_,t_ ] =Det[{gradx [r,t 1,grady [r,t 1}]

24.rt 2Cos[t]? ~_6.72rt 2Cos[t]2 Cos[2t ]
(-25+7Cos[t]2-7Sin [t]2)2 (-25+7Cos[t]2-7Sin [t]2)°
24.rt 2Sin [t]? 6.72rt 2Cos[2t ] Sin [t ]2
(-25+7Cos[t]2-7Sin [t]2)° (-25+7Cos[t]2-7Sin [t]2)°
2.54558 1 Cos [t]2+/25 -7Cos[2t] 452548t /25 -7Cos[2t ] Sin [t]?
25 +7Cos[t]2-7Sin [t]? 25 +7Cos[t]2-7Sin [t]?

Analyzing this mess see whether it can ever go negative is a scary

+

prospect. Take the easy way out and integrate its absolute value,usin

Nintegrate to calculate

[ g, @xdy = [ [g Axlr tidrdt
= [P [ Ayylr, t1dr dt.

~ Jtlow
Nintegrate  [Evaluate [Abs[Axy[r,t 111, {t, tlow, thigh }, {r, -1,11%,
AccuracyGoal - 2]
17.2594

About 17.3 square units.

Pity those poor souls in the traditional calculus course. Most of them

couldn't even dream of making this measurement.
And it's so easy becauserbfpaper.

T.2) Transforming [ [ f[x, yldxdy when the boundary of

R,y is not given with parametric formulas

When the boundary of a region,Rs plotted with nonparametric
formulas, things are not always as simple as they were in T.1).

But even in this case, there are situations that allow you to inspect the

boundary curves to help come up with favorable uv-paper.
Here's one such:

oT.2.a.i)

R,y is the region plotted below which is bounded by the curves
y=0.5x?+ 1,y=0.5x>- 1,
y=3x+ 2,and y=3x - 2:
Clear [x]
Rxyplot =Plot [{05x ?+1,05x 2-1,3x +2,3x -2},
{x, -1, 1.4 1}, PlotStyle - {{Red, Thickness [0.01 1}},
AxesLabel - {"x","y" 1}, PlotRange - {-1,1.8 1},
Epilog - Text [StyleForm ["\ !\ (R\_xy\ )", FontSize - 16], {0.5,0.7 }11;

The région Ry under scrutiny is the four sided figure you see above
and everything inside it.
Transform Ry into a rectangle on uv-paper to help come up with a
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quick, easy calculation of
[ [a 02+ yHdxady.
Xy
OAnswer:
Enterf[x, y] = X% + y%

| Clear [f, X,y 2] ,
fIx,y_ 1=x"+y
x2 +y?

Look at the formulas for the functions whose plots make up the
boundary oR,y. They are:

y=05x>+1,y=05x>- 1,

y=3x+ 2,andy =3x— 2:
Put

ulx, yl =y — 0.5x% andv[x, y] =y - 3x:

Clear [u,Vv, X,y ]

{uIx_y_ 1, v IX,y_ 1} ={y-05x
(-05x 2+y, -3x+y}

The original boundary curves are level curveu(x, y] andv[x, y]. In
fact,

2y -3x}

-y =05x2+ 1is the level curvu[x, y] = 1,

-y =0.5x%- 1is the level curvu[x, y] = -1,

-y =3x- 2isthe level curvv[x, y] = 2, and

-y =3x+ 2isthe level curvv[x, y] = -2.

This is very good news because this tells youRfis the rectangle
-l<u=<land-2=<v=<2.

The upshot:
ffoy 2+ y3)dxdy
fwa (X[u, VI? + y[u, V]?) Ay [u, vdudv

f;fl (X[u, VI? + y[u, VI%) Axy[u, VIdudv.
First, you gotta to come up with formulas x[u, v] andy[u, v]:

| solutions  =Solve [{u==u[x,y ],V ==VI[X, Yy 1}, {XY }]

[{y>1 (9. +v-424264 45 ~Lu +1v ),

{y-1 (9. +v+424264 /45 —Lu +1v ),
x 05 (6. +2.82843 V45 ~Lu +Lv |}}

This gives two choices:

Clear [x1,yl,x2,y2 ]
{XL[u_v_1,y1l [u_v_1}=

{05 (6-V36-4(2u-2v)), 9 +v-15 V36-8u+8v}

{X2[u_,v_1,y2 [u_Vv_1}=
{05 (6++V36-4(2u-2v)),9 +v+15 V36-8u+8v}
{05 (6++/36-4 (2u-2v)),9 +v+15 /36-8u+8v}

You know thaiR, is the rectangle
-l<u=<land-2=<v=<2.
Theuv-point{0.5, 1 is in this rectangle.
See which solution makes tuv-point{0.5, 1} plot out insideR,y on
Xy-paper by seeing whe{x1[0.5, 1, y1[0.5, 1]} and
{x2[0.5, 1, y2[0.5, 1} land onxy-paper:

Show[Rxyplot,
Graphics [ {Blue, PointSize [0.1 ], Point [{x1[05,1 1,yl [05,1 1}1}1,
PlotRange - All 1;
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Good; this lands insidRyy. Just for the heck of it, try out the other pair

of solutions:

Show[Rxyplot,
Graphics [ {Blue, PointSize
PlotRange - All 1;

[0.1 ], Point [{x2[0.5,1 1,y2 [0.5 1 1}1}1,

Way outsideR,,. This means you definitely want to go with:
I oxqu_ v 7oy [us v 13 = {xL[u,v 1, y1 [u, v ]}
{05 (6-+36-4(2u-2v)),9 +v-15 /36 -8u+8V}

Calculate the area conversion facAyy[u, v]:

Clear [Axy, gradx, grady 1

gradx [u_,v_ 1={D[x[u,v],ul,D[x[uVviVv]i}
grady [u_,v_1={Dly[uvVv],ul,D[y[uv], v}
Axy [u_, v_ ] =Det [{gradx [u,v ], grady [u,V ]}]

2. /36 -4 (2u-2v)
36-8u+8v

Calculate
ffoy 2+ yd)dxdy
[ Jo, &Xlu, vI? + ylu, VI?) Ayy[u, vidudv
f;ﬁl (X[u, VI2 + y[u, VI?) Ay [u, VIdudv.

Nintegrate [ (X[u, v ]2 +y[u, v 1?) Axy[u, v ], {V, -2,2}, {u, -1,1},
AccuracyGoal - 2]
1.74016

Finished.

OT.2.a.ii) The Achilles heel
When you have a set-up like the problem in part i), what can go
wrong?
OAnswer:
In theory, nothing much can go wrong.
In practice, this technique can grind to a quick halt. The hitch is that
you specifyu[x, y] andv[x, y], and then you have to solve the
simultaneous equations
u = u[x, y] andv = v[x, y]
for x andy to get the formulas for
X[u, V] andy[u, v].
Solvingu = u[x, y] andv = Vv[x, y] for x andy is possible only in
simple special situations.
Samples:

Clear [X,y,u,v ]

uix,y_ 1, v IX,y_ 1} ={y-Sin [X],y -X};
Solve [{u==U[X,y ],V ==V[X Y 1}, {XY }]
Solve [{u==y-Sin [X],V ==-X+Y}, {X Y }]

No dice. That transcendental functSin[x] screws up the algebra.

Clear [X,y,u,v ]

uix,y_ 1, v IxX,y_ 1} ={y-E™y -x}

Solve [{u==U[X,y ],V ==V[X Y 1}, {XY }]

{{X > u-vVv+Producttog [E“*V],y -u+Producttog [E“*V]}}

No dice. That transcendental functe™® screws up the algebra.

Clear [X,y,u,v ]
UIXL, y_ 1,V IXLy_ 1} ={y-2Xy +x}
ExpandAll  [Solve [{u==u[Xy 1,V ==V[X,y 1}, {X Yy }1]

u v u 2v
{{X%7§+§,y S gt }}

No sweat. This gives you

x[u, v] = =2 andy[u, V] = 4£2¥,
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aT.2.a.iii)
What is a transcendental function?

OAnswer:

This answer comes from Phillip Gillett's book
Calculus and Analytic Geometry (2nd edition),
D.C. Heath, Lexington, Massachusetts,1984, p.335.

Transcendental functions are those that transcend the ordinary
processes of algebra.

The basic calculus functioiSin[x], Cogx], ande* are all
transcendental.

That's why you are guaranteed to fail when you try simple things like:
| Clear [x]
Solve [x == Sin [Xx], X ]
Solve [x == Sin [x], X ]
| Clear [x]
Solve [x == Cos[x], X ]
Solve [x == Cos[x], X ]
| Clear [x]
Solve [x == EX, x ]
{{x » -Productlog [-1]}}

Line functions likef[x] = 3x + 2 are not transcendental:

Clear [x]
Solve [X ==3X +2,X ]
{{x->-1}}

Determining whether a given function is transcendental is part of the
stuff of advanced mathematics.

T.3) The area conversion factolAy[u, v]

OT.3.a) Expansion and compression
Polar coordinategu, v} are related to xy-coordinates via
x=uCogv],
y=u Sinv].

Here is a plot of a random bunch of poifutsv} on uv-paper with
Osu=<10and Gsv<=2nm:

Clear [k]
uvpoints = Table [
{Random[Real, {0, 10 }], Random [Real, {0, N[2=x]}]}, {k 1,150 }1;
uvpaperplot = ListPlot  [uvpoints, PlotStyle - {Blue, PointSize [0.02 1},
AspectRatio - Automatic, AxesLabel - {ut Vvt
v
6 ce e e .=
50 . oS, e . v
4 -.' .n :.,':..’0'. ..' s
3l e e e %o %
. ® o .
20 0% e 0 T S o
e S W . ...’: .'.. “.
PR e T T

Should be fairly well scattered. If not, then rerun.
Now look at the xy-paper plot of these uv-paper points:

Clear [x,y,u, v ]

X[u_,v_]1=uCos[Vv];

y[u_, v_1=uSin [v];

Clear [uvtoxy ]

uvtoxy [{u_, v_ }1={x[u,v 1,y [uV]}
Xypoints = uvtoxy /e@uvpoints;

xypaperplot = ListPlot  [xypoints, PlotStyle - {Blue, PointSize [0.03 1},
AspectRatio - Automatic, AxesLabel - YL

On the xy-paper, why are the points so bunched up near the origin and
sparsely scattered far from the origin?

OAnswer:

Look at the area conversion factor:
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Clear [gradx, grady, Axy 1

gradx [u_,v_ 1 ={D[x[u,v],ul,D[x[uVv]VvIi}

grady [u_,v_ 1={Dly[u Vv ], ul,Dly[uVv],Vv]1}

Axy [u_, v_ ] = TrigExpand [Det [{gradx [u,Vv 1, grady [u,Vv ]}1]
u

At a point withuv-paper coordinate{u, v},

Xy — paper area measurements .

= utimes uv- paper area measurements
In this set-up,

Look at:

I xtuviyuviy
{uCos[v],uSin [v]}

Theuv-paper coordinatw, of thexy-paper point{x[u, V], y[u, v},

UV-paper coordinates are polar coordinates.

measures the distance frd0, 0} to {x[u, V], y[u, V]} onxy-paper.

- WhenA,y[u, v|] = u is big, therxy-paper area measurements are a
lot bigger than the correspondiuv-area measurements, uvxpaper
points withu big are flung apart when they are plottedxyapaper.

- WhenA,y[u, v] = u is wee little uv-paper point{u, v} with u small
are compressed together when they are plottexy-goaper.

Sinceu is small for points near the origin, you see a pile-up near the

origin on thexy-paper plot.
Take another look:

- "uv -paper plot" 1;

] Show[uvpaperplot, PlotLabel
v uv-paper pl ot

PN W A oo

| Show [ xypaperplot, PlotLabel - "xy -paper plot" 71;

xy-pager pl ot
e

OT.3.b.i) The sizer

Take 3u, v] = u? — v2 and yu, v] = 2uv and calculate the area
conversion factor 4[u, vl:

Clear [x,Y, u,v, gradx, grady, Axy 1

X[u_, v_ 1=u?-v?

ylu,v_1=2uy

gradx [u_,v_ ] ={D[Xx[u,v ],ul,DI[x[u V], VvI1}

grady [u_,v_ ]={Dly[u Vv ], ul,D[y[uVv],Vv]}

Axy [u_, v_ ] =Det [{gradx [u, Vv 1,grady [u,V ]}]

4u? 1 4v?
Here's a table of random points inside the uv-paper square with
—2=<u=2and-2=<v =2 plotted as dots on uv-paper:

Clear [k]
pointcount = 150;
uvpoints = Table [

{Random[Real, {-2,2 }], Random [Real, {-2,2 }]}, {k, 1, pointcount 1

uvpointplot =
Show[Table [Graphics [{Blue, PointSize [0.02 ], Point [uvpoints [KI]]}1,
{k, 1, pointcount }1, AspectRatio - Automatic,
Axes - Automatic, AxesLabel -tV

VC.07.T3

Should be fairly well scattered. If not, then rerun.
Here is the same plot with the size of each plotted pojnt adjusted

by a factor proportional tq/ Ayylu, V.

Clear [sizer ]

sizer [u_,v_ ]=0.015 VAxy[u, Vv ];
sizeduvpointplot =
Show[Graphics [Table [{Blue, PointSize [sizer @euvpoints [k]1,
Point [uvpoints [k11}, {k, 1, pointcount 311,
AspectRatio - Automatic, Axes - Automatic,
AxesLabel - {"u","v' }1;

Grab both plots and animate them.

A humdinger.
See the plots side-by-side:
| Show[GraphicsArray [ {uvpointplot, sizeduvpointplot 31

e .
What information is conveyed by these plots?

OAnswer:

The area conversion factor in going fr{u, v} to {x[u, V], y[u, v]} is
Ayylu, V1.

The points are sized in proportiony/ A,y[u, v].
Consequently, this second plot shows what the relative sizes of the

plotteduv-points will be after they have been plottecxymaper.
Evidently as{u, v} gets farther and farther fro{0, 0},

Ayylu, V]
gets bigger and bigger. This fact is suggested by the plot, and is

confirmed by the formula fcA,y[u, v]:
| Axyfu v
4u2 4 4v2

If you wonder why the points are sized proportionally to
Axylu, V]
instead of proportionally to
Ayylu, V],
then click the little box.
In Mathematica, thPointSize instruction governs the radius of the
plotted point. To make the area of the plotted point proportional to

Ayylu, v, you have to make the radius of the plotted point proportional

to

\ Axylu, VI,

because the area of a circle of raciisproportional ta?.
OT.3.b.ii)

This is a continuation of part i) above.
Make sure all the active cells in part i) are executed.

Here is a plot of the same uv points as above in part i) but plotted on
Xy-paper with

X{u, vl = U2 — vZ and yu, v| = 2uv:

Clear [uvtoxy ]

uvtoxy [{u_, v_ }]={x[u,v 1,y [uV ]}
Xypoints = uvtoxy /@uvpoints;

Xypointplot = Show[Graphics [ {Blue, PointSize [0.02 1,
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Table [Point [xypoints [kI1, {k, 1, pointcount 3131,
AspectRatio - Automatic, Axes - Automatic,
AxesLabel - {"x","y" }1;

And look at:

sizedxypointplot = Show[Table [Graphics [
{Blue, PointSize [sizer @exypoints [k]1, Point [xypoints [k]]}1,
{k, 1, pointcount }1, AspectRatio - Automatic,

Axes - Automatic, AxesLabel - XYL

Grab both plots and animate
What information do these plots convey?
OAnswer:
Take a look at the originiuv-points and thxy-points side-by-side:
| Show[GraphicsArray [ {uvpointplot, xypointplot 1

On the left you see the original pointsuvipaper; on the right you see
the same points plotted xy-paper.

Now take a look at the originuv-points and the sizexy-points
side-by-side:

| Show [ GraphicsArray [ {uvpointplot, sizedxypointplot 311

This is the final product.

On the left you see the original pointsuvipaper; on the right you see
the same points plotted xy-paper sized according to their relative
sizes oruv-paper.

T.4) Measurements of volume, mass, and density

OT.4.a)

You make an object by distributing a substance over a certain region
R on xy-paper. What does it mean to say that the density of the
resulting object measures out &t,py] 222 at location{x, y}?

OAnswer:
It means that the mass of the object is given by
[ Jxpix, yIdxdy
whereR is the same region that you distibuted the substance over to
begin with.
It also means that R; is a region insidR, then the total mass of the
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substance that was spread cRylis

[ fx, Plx, yldxdy.
As a resulp[Xo, Yol is the conversion factor that converts area at
{Xo0, Yo} On xy-paper to mass of the object{xq, Yo}

oT.4.b.i)

An object is made by forming a uniform substance that weigf#&;2
in the shape of the paraboloid

fix, yl=9- x*—y?
over the region inside and on the circlerxy? = 9 on xy-paper.
Here's a look at it:

Clear [Xx, VY ]
Plot3D [9-x%-y2, {x, -3,3}, {y, -3, 3}, PlotRange - {0, 9 },
ViewPoint - CMView, AxesLabel - {"x", "y", "z" 11

Measure the total mass of this object.
Measure the total volume of this object.

OAnswer:
The density of the objep[x, y1, at{x, y} is 2f[x, y].
The total mass is given by
[ [ 2fIx, yldxdy
whereR is the region inside and on the cirx? + y? = 9 onxy-paper.
No one likes to integrate over circular regions, so calculate this by
moving touv-paper with

x[u, v] = u Cogv], and
y[u, v] = u Sinv] (polar coordinates).

Onuv-paperR plots out as the rectangle with corners at
{0, O}, {3, 0}, {3, 2x} and({0, 27}
O=<u=<3and0o=<v=2n).

The total weight is

[ 2fIx, yldxdy
= J77 [ 2f[x{u, V], ylu, VI Aylu, Vi dudv:

Clear [f, u, v, x,y, gradx, grady, Axy 1

Dy 1=9-x2-y%

x[u_,v_]=uCos[v];

y[u_, v_1=uSin [V];

gradx [u_,v_ ] ={D[x[u,v],ul,D[x[uVv]1 Vi)

grady [u_,v_1={Dly[uVv 1, ul,Dly[uv],VvI}

Axy [u_, v_ ] = TrigExpand [Det [{gradx [u, Vv ], grady [u,Vv ]}]1]
u

The total mass is:

2r ~3

mass:J JZf[x[u,v],y[u,v]]Axy[u,v]dludlv
o Jo

81 i

The total volume of this object is:

2x 3

|vo|ume=J Jf[x[u,v],y[u,v]]Axy[u,v]dludlv
o Jo

81

2
Routine stuff.
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oT.4.b.ii) Measure the volume of the solid whose top skin is the surface plotted
b d wh b i hi -pl directly below thi
When you rubberized the xy-paper and stretched it out to make the 2&;‘;:” whose base Is everything on xy-plane directly below this
uv-paper, you also deformed the original shape of the object in part i).
The deformation affected measurements on the base, but had no effe 0G.1.b)

on the height measurements.
What does the resulting deformed object look like when it is plotted
on uv-paper for the functions

x= X[u, v] and y=y[u, V]
you used above in part i)?
What is the density of this deformed object at a piint} inside the
uv-paper rectangleQu =<3 and O<v < 27?

OAnswer:

This is a continuation of the last part.
Please make sure that all instructions in the last part are alive on
your machine.

Here is how it looks ouv-paper:

Plot3D [f [x[u,Vv ],y [u, V1], {v,0,2 =}, {u, 0,3 }, PlotRange - {0,9},
ViewPoint - CMView, AxesLabel - {"x", "y", "z" 12N

Quite a change of shape.
You can figure out what the deformed object's density is at a point
{u, v} within theuv-paper rectangl0 <su<3 and0<v < 2x. Itis just

what you integrate to calculate its mass:

| TrigExpand [2f [x[u,v ],y [u, v 11 Axy[u, Vv 1]
18u-2u®

You've got to multiply by the area conversion factor because
2f[x[u, V1, ylu, VI] Axlu, v]
is what you integrate to calculate mass.

VC.07 Transforming 2D Integrals
Give ita Try!

Experience with the starred problems will be useful for understanding
developments later in the course.

G.1) Transforming 2D integrals*

G.l.a)

Here's a plot of the part of the surface
7= e*(xzjL 4y?)
above the ellipse
2 2 _
(3P yR=1
in the xy-plane:
Clear [x,y,r,t 1
{X[r_,t_ 1,y [r_,t_ 1}={2rCos [t],rSin [t]};
{{rlow, rhigh }, {tlow, thigh }} ={{0,13}, {0,2 n}};
ParametricPlot3D [
{xrnt 1oy [t 1, E-®OC 140D g viow, thigh 3,
{t, tlow, thigh }, ViewPoint - CMView];

}, AxesLabel = X", "y", "z"
)

Here's a plot of a regionRon xy-paper:
Clear [x,y,rt ]
{x[r_,t_ 1,y [r_,t 1}y={5rCos [t],3rSin [t]};
{rlow, rhigh y=1{1,21%;
{tlow, thigh }=(-2,21},;
twosides = ParametricPlot [{{x[rlow,t 1,y [rlow,t 1},
{x[rhigh, t 1,y [rhigh,t 1}}, {t, tlow, thigh },
PlotStyle - {{Thickness [0.01 ], Red }}, DisplayFunction - Identity 1;
twomoresides = ParametricPlot [{{x[r, tlow 1,y [r tlow 1},
{x[r, thigh 1,y [r, thigh 1}3}, {r, rlow, rhigh },
PlotStyle - {{Thickness [0.01 ], Red }}, DisplayFunction - Identity 1;
nametag =
Graphics [Text [StyleForm ["\ !\ (R\_xy\ )", FontSize - 161, {6,3 }11;

Show[twosides, twomoresides, nametag, AspectRatio
AxesLabel - {"x","y" 1}, DisplayFunction

- Automatic,
- $DisplayFunction 1;

R.y is everything inside and on this boundary.

Use a transformation to favorable uv-paper to measure the arga of R

with little thought and with Mathematica doing the work.
0G.1.c.i)

Here's a parallelogram plotted on xy-paper

Plot [{05x -1,05x +2, -02%, -02x +4}, {x, -35,75 1},
PlotStyle - {{Magenta, Thickness [0.01 ]}}, PlotRange - {-0.5,35 1},
AspectRatio - Automatic, AxesLabel - YL

<

3.5
3
2.5
2 g5l o 4 6 X

Call R everything inside and on this parallelogram, and use a
favorable transformation to help calculate

[[.& *dxay.
oG.1.c.ii)

If a+ b, c<d, and r< s, then you are guaranteed that the lines
y=ax+ c,y=ax+ d,
y=bx+r, andy=bx+ s

define a parallelogram on xy-paper.

Reason:

Non-parallel lines cross each other.

Assume k< a, c< d, and r< s, and come up with a formula that

measures the area of this parallelogram in ternasiofc, d, r, and s.

oTip:

After you have your formula, make it look pretty by applying the
Mathematica instructioFactofTogethef]].

After you do that, then you should get

d-0(s-n
b-a .

0G.1.d)

Use a transformation to favorable uv-paper to calculate
ffRXy(x+ y)dxdy
where Ry is the region with % 0 and y= 0 bounded by the curves

X-y=1,
X - y? =4,
X+ y? =4, and
X+y?=9
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0G.l.e)
Calculate
[ Jo, € axdy
where Ry is the region on xy-paper consisting of everything within
and on the circle3«+ y? = 2.

G.2) Ribbons*

0G.2.a)

Here's a curve on xy-paper:

Clear [Xx,y,r1,t 1
{X[t_1,y [t 1}={2tCos [t],2tSin [t]};
{tlow, thigh } = {m 3 n};
curveplot = ParametricPlot [{xX[t],y [t]}, {t tlow, thigh },
PlotStyle - {{Thickness [0.01 1, Red }}, AspectRatio - Automatic,
PlotRange - All, AxesLabel - XYL
y

-1

Here's the boundary of a ribbon of constant width 1 centered on this
curve:

Clear [unitnormal ]

WL XD .

Vo [t12 4y 12

Clear [r, outerribbon, innerribbon, oneend, otherend 1

outerribbon [t_1={x[t],y [t]} +0.5unitnormal [ti1;

innerribbon [t 1={x[t],y [t]} -0.5unitnormal [t1;

oneend [r_] = {Xx[tlow ],y [tlow ]} +runitnormal [tlow 1;

otherend [r_1 = {x[thigh 1,y [thigh ]} +runitnormal [thigh 1;

{rlow =-0.5, rhigh =05 };

twosides =
ParametricPlot

unitnormal  [t_ ] = TrigExpand [

[ {outerribbon [t 1, innerribbon [t1}, {t tlow, thigh 1,

PlotStyle - {{Thickness [0.01 1, Blue }}, DisplayFunction - |dentity 1;
twomoresides =
ParametricPlot [{oneend [r ], otherend [r1}, {r, rlow, rhigh }
PlotStyle - {{Thickness [0.01 ], Blue }}, DisplayFunction - Identity 1;

Show[ curveplot, twosides, twomoresides, AspectRatio
AxesLabel - {"x","y" '}, DisplayFunction

- Automatic,
- $DisplayFunction 1;

y

Change thié ribbon to a new ribbon with constant width 2 centered on

the given curve, and measure the area of the new ribbon.
0G.2.b) A variable width ribbon

Go with the same base curve as in part i).

Clear [x,y,rt 1]
{X[t_1,y [t_1}={2tCos [t],2tSin [t]1};
{tlow, thigh } = {m, 3 n};
curveplot = ParametricPlot [{x[t], y [t]}, {t tlow, thigh }.
PlotStyle - {{Thickness [0.01 ], Red }}, AspectRatio - Automatic,
PlotRange - All, AxesLabel - {"x","y" }1;
y

-1
But this time make the width of the ribbon
2+ 4Sin2t]? at{x[t], y[t]}.
Plot the resulting ribbon, and measure its area.
aTip:

VC.07.GEG3

This ribbon is wider than the ribbon in parti). As a result, your area
measurement of this ribbon should be bigger than your area
measurment of the ribbon in part i).

0G.2.c)

Do something artistic with ribbons.
How about a real eye-catcher coming from your own mind?

G.3) Flow measurements*

0G.3.a)

To calculate the net flow of a vector field
Fieldx, y] = {m[x, y], n[x, yI}
across the boundary C of a region R, you have your choice:
— You can go to the labor of parameterizing C, and then calculate
$e —NIX, yldx + mix, yldy.
— Or if the field has no singularities inside R, you can put
divFieldx, y] = D[m[x, y], x] + D[n[x, yI, Y]
and calculate the 2D integral
[ [, divFieldix, yldx dy.
Here's a vector field:
Clear [x,y, m, n, Field ]
| (M y_ 1,0 Gy 13 = 03 4y x +y?)
x3 4y, x +y?)
R is everything inside the parallelogram you see below:

Plot [{0.6x -2,06x +5, -03x, -03x +4}, {x, -5.6,6.8 1},
PlotStyle - {{Coral, Thickness [0.01 ]}}, PlotRange - {-0.8,4.5 1},
AspectRatio - Automatic, AxesLabel - %YL

y

N oW B

Transform the 2D integral

[ [ divFieldx, yldxdy
to favorable uv-paper to measure the net flow of this vector field
across the parallelogram. Is the net flow of this vector field across
this parallelogram from outside to inside or inside to outside?

0G.3.b)

To calculate the net flow of a vector field
Fieldx, yl = {m[x, yl, n[x, y1}

along the boundary C of a region R, you have your choice:

— You can go to the labor of parameterizing C, and then calculate
$emIx, yldx + n[x, yldy.

— Or if the field has no singularities inside R, you can put
rotFieldx, y] = D[N[x, y], X] — D[M[X, y1, Y]

and calculate the 2D integral
[ [ rotFieldx, yldx dy.

Here's a vector field:

Clear [x,y, m,n, Field ]
M, y_ 1,0 [XL Y- 13 ={28in [yl +X X +Y};

R is everything inside the parallelogram plotted in part a).
Transform the 2D integral

ffR rotFieldx, y] dx dy
to favorable uv-paper to measure the net flow of this vector field
along the parallelogram. Is the net flow of this vector field along the
parallelogram clockwise or counterclockwise?
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G.4) Interpret the plots

0G.4.a)

All the plots below give information concerning the same
phenomenon about what happens when you plot the region within the
uv-paper square with corners at

{$,-2,,{2,-2},{2, 2 and{%, 2}
on xy-paper coming from

Xu, v] = Log[u] and yu, v] = ArcTanv].
Interpret the information conveyed by each plot.

Clear [X, Y, u, v, gradx, grady, Axy 1

x[u_, v_ ] =Logl[ul;

y[u_, v_ 1 =ArcTan [v];

gradx [u_,v_ 1= {D[x[u,v ], ul,D[x[uVviVvIi}

grady [u_,v_1={Dly[uvVv],ul,D[y[uv], v}

Axy [u_, v_ ] =Det [{gradx [u,v ],grady [u,V ]}]
1

u (1+v2)

1
Plot3D [Axy [u, Vv 1, {u, ?,2 botv, -2,23,

AxesLabel - {"u", "v", "Axy [uv 1"}, ViewPoint - CMView];

Clear [gradAxy ]

gradAxy [u_,v_ ] = {D[Axy[u,v ],ul,D[AXy[u,Vv 1,V 1};

scalefactor =0.3;

Show[TabIe [Arrow [gradAxy [u, Vv 1, Tail - {u,v }, VectorColor - Red,

1

ScaleFactor - scalefactor 1, {u, ?,2, %} {v. -2,2, %}]

Axes - Automatic ];

Clear [sizer 1]

scalefactor = 0.08;

sizer [u_, v_ ] = scalefactor VAXy [u, Vv ];
Clear [k]

uvpoints =

Table [{Random[Real, {-;— 2 }], Random [Real, {-2,21}1}, {k 1,150 }];

Show[Table [Graphics [{PointSize [sizer @euvpoints [kI],
Red, Point [uvpoints [k11}1, {k, 1,150 }],

AspectRatio - 1, Axes - Automatic,

AxesLabel - {"u","v" }1;

0.60.8 1 1.21.41.61.8 2

The lighter the shading, the biggegfu, V] is.

VC.07.G4-G5

G.5) Semi-log paper and log-log paper

Semi-log and log paper are friends of every scientist because they
make analysis of exponential and power functions very easy. Back at
the beginning of Calculus&Mathematica, you used semi-log paper to
some advantage.
Here are the lines
y=e?,y=el y=€e’, y=el, y=¢€? and y= €
plotted on xy-paper for5 < x < 15:
Clear [t]
xylines =
ParametricPlot  [{{t, Elz—}' {t %}, (tE°} (tE'}, (LE?Z?}, (tE %}
{t, -5, 15 }, PlotStyle - {{Blue }}, AxesLabel - {"x","y" 1},
AspectRatio - Automatic ];
y

—26
15
10
5
5 5 10 15%
Semi-log paper is uv-paper for
Ux, y] = x, and

vx, y] = Log[y].
Here are the same lines plotted on semi-log paper:

Clear [u,Vv, X,y ]
U[x_,y_ 1=x
VX, y_1=Lloglyl;
1

' ! 1
uvlines = ParametricPlot  [{{u[t, =V [t E_Z]}
{u[t. le-],v[t, le-]}, {ult, E °1, v [t E °1}, {ult E *1,v [t E 1},

{ult,E 2], v [t E %1}, {ult E ®],v [t E ®1}}, {1 -5,15},

PlotStyle - {Blue }, AxesLabel - {"u", "v" 1}, AspectRatio - Automatic ];
v
. ] 5 10 15 Y
0G.5.a)

Plot the xy-curves ¥ 3e 975 and y= 2 e-°* on semilog paper.
Describe what you see, and try to explain why you see it.

Why is it a good idea to plot xy-data on semi-log paper to reveal
exponential relationships between the x-coordinate and the
y-coordinate?

O0G.5.b) Log-log paper

Log-log paper is uv-paper for

Ux, y] = Log[x] and

vX, yl = Log[yl.
Plot the power curves ¥ 4x-9 and y= 5x14 on xy-paper, and then
plot them on log-log paper.
Why is the result not terribly surprising?
Why is it a good idea to plot xy-data on log-log paper to reveal power
relationships between the x-coordinate and the y-coordinate?
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G.6) What can happen wherA,y[u, v] is0:
What does the sign oDet[{gradx[u, v], grady[u, v]}] tell you?

0G.6.a)

Ever wonder what can happen wheg[A, v] = 0?
The truth is that a uv-paper pofui, Vo} with
Ayluo, Vo] =0
suffers the ultimate insult when it is plotted on xy-paper.
Here's why:
If Ayyluo, Vol = 0, then the uv-paper poiftp, Vo} effectively
disappears when it is plotted on xy-paper.
This sets up a situation in which crazy things can happen, because th
xy-paper plot in the vicinity of one of these unlucky points is
compressed so much.
Here's a sample:
Clear [u, Vv, X,y ]
X[u_, v_ 1=u?-v?
u? - v?
] yluL,v_1=uv+10
10 +uv

Clear [gradx, grady, Axy 1
gradx [u_,v_ 1 ={D[x[u,v],ul,D[x[uVv]Vv]i}

grady [u_,v_1={(D[ly[uVv],ul,D[y[uv], V1)
Axy [u_,v_ ] =Det [{gradx [u,Vv 1,grady [u,Vv ]1}]
2u?+2v?
At {ug, vo} = {0, 0}, the uv-paper to xy-paper area conversion factor
Aylu, vl

is 0, so{0, O} is rubbed out on xy-paper. On xy-paper strange things
should happen near the plot of the uv-paper d6in®}.
The uv-paper circle
(U=3)2+ (v—4)2=52
goes right througko, 0}:

Clear [u,v,t 1]
{uft_1,v [t 1}={3,41}+5{Cos[t],Sin [t]};

ParametricPlot [

{utl, v [t1}, {t 0,2 =}, PlotStyle
AspectRatio - Automatic, AxesLabel
\

- {{Thickness [0.01 ], Red }},
BRSO N

2

Now look at the plot of this circle on xy-paper:

ParametricPlot [{x[u[t], v [t]1],y [uft]l,v [t]]}, {t, 0,2 =},
PlotStyle - {{Thickness [0.01 ], Red }}, AspectRatio - Automatic,
AxesLabel - {"x","y" }1;

10
-60 -40 20/ 20 40
Sure enough; a dimple right &, 10, which is the xy-plot of the
uv-point{0, O} because:
I x(001,y[001}
{0, 10 }

Now you try one.

0G.6.a.i)

Here's a parametric plot of the parabolaw’ — 2u on uv-paper:

Clear [t]

ParametricPlot [
{tt 2-2t}, {t, -1,2 1}, PlotStyle
AspectRatio - Automatic, AxesLabel

X

- {{Thickness [0.01 ], Red }},
R AN O

VC.07.G6

-1
Go with:
Clear [u,Vv, X,y ]
{X[u_,v_ 1,y [u,Vv_1}={u?-v2 uv}
(w2 -v2 uv}
Here is a plot of the same parabola on xy-paper:
ParametricPlot  [{x[tt 2-2t],y [tt 2-2t1}, {t -1,2},
PlotStyle - {{Thickness [0.01 ], Red }}, AspectRatio - Automatic,
PlotRange - All, AxesLabel - {"x","y" }1;

X

0G.6.a.ii)

Here is a parametric plot of the ellipse
2 _2,2
(P + (527 =1
on uv-paper:
Clear [t]
ParametricPlot [{4Cos[t],2 +2Sin [t]}, {t,0,2 =},
PlotStyle - {{Thickness [0.01 ], Red }}, AspectRatio

AxesLabel - {"u", "v" }, AxesOrigin - {0,0 }1;
v

- Automatic,

Go with polar paper:
Clear [u,v, X,y 1
{X[u_,v_ 1,y [u,Vv_1}={uCos[v],uSin [V]}

{uCos[v],uSin [v]}

Here's a plot of the same ellipse on xy-paper:
Clear [t]
ParametricPlot

{t, 0,2 =}, PlotStyle
AspectRatio - Automatic, AxesLabel

[{x[4Cos[t],2 +2Sin [t]],y [4Cos[t],2 +2Sin [t]]},
- {{Thickness [0.01 ], Red }},
SRS A I Y

Try to éxplain why you see what you see.

O0G.6.b.i) The sign ofDet[{gradx[u, v], grady[u, V]}]

Here is a rather small circle on uv-paper parameterized in the

counterclockwise direction:

Clear [u, v, t, uvpaperplotter 1

r =0.2;

uvpaperplotter

uvpaperplot
{t, 0,2 o}, PlotStyle
AxesLabel - {"u", "v*

[t ]={rCos[t],rSin [t]};
= ParametricPlot [uvpaperplotter [t1,
- {{Thickness [0.01 ], Red }},
}, DisplayFunction - Identity 1;
e
Jump = T
uvtangentvectors =
Table [Arrow [uvpaperplotter ‘[t], Tail - uvpaperplotter [t1,
VectorColor - Blue ], {t,0,2 s -jump, jump }1;
Show[uvpaperplot, uvtangentvectors, AspectRatio
AxesLabel - {"u", "v" 1}, DisplayFunction

- Automatic,
- $DisplayFunction 1;
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Now go to xy-paper with:
Clear [X,y,u,v ]
{X[u_,v_1,y[u,v_1}={3u-v+3,u-2v+3}
{3+3u-v,3 +u-2v}
Here's the xy-paper plot of the same circle with tangent vectors
coming from its resulting xy-parameterization:

Clear [xypaperplotter 1
xypaperplotter [t_ 1 = {xeeuvpaperplotter [t ],y @@uvpaperplotter [t1y};
xypaperplot = ParametricPlot [xypaperplotter [t1,

{t, 0,2 =}, PlotStyle - {{Thickness [0.01 ], Red }},

AxesLabel - {"u","v" }, DisplayFunction - Identity  1;

. 7
Jump = T
xytangentvectors =
Table [Arrow [xypaperplotter “[t], Tail - xypaperplotter [ti1,
VectorColor - Blue ], {t, 0,2 s -jump, jump }];
Show [ xypaperplot, xytangentvectors, AspectRatio - Automatic,
AxesLabel - {"x","y" '}, DisplayFunction - $DisplayFunction 1;

2.4
Even though the curve was parameterized in the counterclockwise
direction on the original uv-paper, it is parameterized in the clockwise
direction on xy-paper.
Now look at Ay[u, v] with the absolute value dropped:

Clear [gradx, grady, Axy 1
gradx [u_,v_ 1 ={D[x[u,v],ul,D[x[uVv]Vv]i}
grady [u_,v_ 1={Dly[uVv ], ul,Dly[uVv],Vv]}
Axy [u_, v_ ] = Det [{gradx [u, Vv ], grady [u,V ]}]
-5
Negative.
Do you think this is an accident?

0G.6.b.ii)

Here's what happens on xy-paper to the same uv-circle when you go
with
Xu,v]=3u- v+ 3,and
Mu, vVl=u+ 2v:
Clear [X, Y, u, Vv, xypaperplotter 1
{X[u_,v_ 1,y [u,v_1}={3u-v+3,u +2v};
xypaperplotter [t_ ] = {xeeuvpaperplotter [t 1,y @@uvpaperplotter [t1y;
xypaperplot = ParametricPlot [xypaperplotter [ti1,
{t, 0,2 =}, PlotStyle - {{Thickness [0.01 ], Red }},

AxesLabel - {"u","v" }, DisplayFunction - Identity  1;

jump = Z;
=
xytangentvectors =

Table [Arrow [xypaperplotter “[t], Taill - xypaperplotter [ti1,
VectorColor - Blue ], {t, 0,2 s -jump, jump }];

Show [ xypaperplot, xytangentvectors, AspectRatio - Automatic,
AxesLabel - {"x","y" '}, DisplayFunction - $DisplayFunction 1;

-0.6
Counterclockwise on xy-paper.
Now look at Ay[u, v] with the absolute value dropped:
Clear [gradx, grady, Axy 1
gradx [u_,v_ 1={D[x[u,v],ul,D[x[uVv]Vv]i}
grady [u_,v_ 1={Dly[u Vv ], ul,Dly[uVv],Vv]1}
Axy [u_, v_ ] =Det [{gradx [u,Vv 1, grady [u,V ]}]

VC.07.G6

7
Are you surprised?
Why or why not?

0G.6.b.iii)

Fill in numbers

a,b,cd e andf
of your own choice. Go with

A{u,vl=au+ bv+ ¢, and

Mu,vl=du+ ev+ f,
and investigate, as above, what happens to the same uv-circle on
xy-paper, and how what happens is related to the sign of
Det{{gradXu, v], gradyfu, v]}].

0G.6.b.iv)

Here are two small circles on uv-paper parameterized in the
counterclockwise direction:

Clear [u, v, t, uvpaperplotterl, uvpaperplotter2 1

r =0.5;

uvpaperplotterl [t_1={(-1,0}+{rCos[t], rSin [t1};

uvpaperplotter2 [t 1={1,03}+{rCos[t],rSin [t1};

uvpaperplot =

ParametricPlot [ {uvpaperplotterl [t 1, uvpaperplotter2 [t1y,
{t, 0, 2 s}, PlotStyle - {{Thickness [0.01 ], Red }},
AxesLabel - {"u","v" '}, DisplayFunction - Identity  1;
e
Jump = e
uvtangentvectors =
Table [{Arrow [uvpaperplotterl “[t]1, Tail - uvpaperplotterl [ti,
VectorColor - Blue ], Arrow [uvpaperplotter2 [t
Tail - uvpaperplotter2 [t 1, VectorColor - Blue 1},

{t,0,2 -jump, jump }1;

Show[uvpaperplot, uvtangentvectors, AspectRatio - Automatic,
AxesLabel - {"u", "v* 1}, DisplayFunction - $DisplayFunction 1;

<

°ooo
N Ao

‘i l u
-5 -1 - 015 1 1

-0.2

-0.4

-0.6

Here are the xy-paper plot of the same circles with tangent vectors
coming from its own xy-parameterization when you go with
Xu, v] = uCogv], and
Mu, v] = u Sinvl:
Clear [x,y,u, v ]
{X[u_,v_ 1,y [u,v_1}={uCos[v],uSin [V]};
Clear [xypaperplotterl, xypaperplotter2 1
xypaperplotterl [t1=
{x eeuvpaperplotterl [t 1,y eeuvpaperplotterl [t1};
xypaperplotter2 [t1=
{x @@uvpaperplotter2 [t 1,y e@uvpaperplotter2 [t1y;

xypaperplot =
ParametricPlot [ {xypaperplotterl [t 1, xypaperplotter2 [t1y,
{t, 0, 2 s}, PlotStyle - {{Thickness [0.01 ], Red }},
AxesLabel - {"u", "v" 1}, DisplayFunction - Identity 1;
e
Jump = g
xytangentvectors =
Table [{Arrow [xypaperplotterl “[t1, Tail - xypaperplotterl [t1,
VectorColor - Blue ], Arrow [xypaperplotter2 ‘[,

Tail - xypaperplotter2 [t 1, VectorColor - Blue 1},
{t, 0,2 s -jump, jump 1}I;

Show[xypaperplot, xytangentvectors, AspectRatio - Automatic,
AxesLabel - {"x","y" 1}, DisplayFunction - $DisplayFunction 1;
y
0.8
0.6
0.4
0.2
X

15 -1 5 0.2 8] 1 1f5
-0.
-0.6

Now look at:
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Clear [gradx, grady, Axy 1

gradx [u_,v_ 1 ={D[x[u,v],ul,D[x[uVv]VvIi}
grady [u_,v_ 1={Dly[u Vv ], ul,Dly[uVv],Vv]1}
Axy [u_, v_ ] = TrigExpand [Det [{gradx [u,Vv 1, grady [u,Vv ]}1]

u
Say why you think one of xy-parameterizations was reversed from
counterclockwise to clockwise, but the other remained
counterclockwise.
aTip:
Look hard at the plots of the original circlesuvipaper:

- Automatic,

Show [uvpaperplot, uvtangentvectors, AspectRatio
- $DisplayFunction 1;

AxesLabel - {"u","v" '}, DisplayFunction

And look hard at:

I Axylu v
u

G.7) Volume, mass, and density

0G.7.a.i)
An object is made by forming a uniform substance that has density

1.71 9552 in the shape of of the surface
X, y1= %%
over the region inside and on the circfesxy? = 8 on xy-paper.
Use polar coordinate paper with
Xu, v] =uCogv], and
Ju, V] = u Sinv]
to measure the total mass and volume of this object.

0G.7.a.ii)

When you rubberized the xy-paper and stretched it out to make the
uv-paper, you also deformed the original shape of the object in part i).
What does the resulting deformed object look like when it is plotted
on uv-paper for the functions

Xu, v] =uCogv], and

Ju, V] = u Sinv]
used above in part i)?
What is the density of this deformed object at a pint} inside the
uv-paper rectangle 8 u < Sgr{8] and O< v < 27?

G.8) Two recreational plots

If you want to find out why these plots turn out the way they do,
take a complex variables course, and pay special attention to the part
on conformal mapping.

0G.8.a) Flow out of an open pipe

Here is a uv-paper plot of the line segments
v=-mv=-2 v=-Z% v=-Z
v=0,v=2Z,v=Z% v=2L andv=r

with -6 <u=<2:
Clear [t]

uvplot = ParametricPlot  [{{t, -}, {t -23—"} {t, -%] {t -%}

b b 2n
t,o 3} {t, =1} {t =} {t —1} {t , {t, -6,21,
wor o Zh i Zhop My a m) oo 62y

PlotStyle - {{Thickness [0.01 ], Blue }}, AxesLabel - {"u","v" 1}];

v

3

VC.07.G6-G9

Plot these curves on xy-paper for

XU, vl =u+ e Cogv], and

Mu, vl = v+ €' Sinv].
If your xy-paper plot is correct, then it will depict streamlines of water
flow out of an open pipe.

O0G.8.b) Airfoils

Ever wonder how to plot some airfoils (airplane wings)?
If so, then wait no longer.

Take
Nu, v] = Bruv?+u  qnq
] - 3u2_'iv2 ’
— V'+uv=-v
u, vl = =57,

and plot on xy-paper some uv-paper circles
(u-a2+vi=(1+ a?
for several choices of a withda< 1.

G.9) What went wrong?*

0G.9.a)

Let R,y be the region on xy-paper consisting of everything inside and
on the circle
X+ y?=4.
Polar cordinate paper is handy for calculating
ffoy(x2 + yd)dxdy:
Go to polar coordinates via:

Clear [x, Y, u, v, gradx, grady, Axy 1
X[u_,v_1=uCos[v];

y[u_, v_ 1=uSin [V];

gradx [u_,v_ ] ={D[x[u,v ], ul,D[x[uVvi1,vVvi}
grady [u_,v_1={Dly[u Vv ], ul,D[y[uVv],Vv]1}

Axy [u_, v_ ] = TrigExpand [Det [{gradx [u,Vv ],grady [u,Vv ]}1]
u

Clear [f]

fIxy 1=x+y?
x? +y?

Here are four attempts at calculations of
[ [o %+ y?) dxdy.
Xy
Identify the correct calculations, and determine what went wrong in
the incorrect calculations.
There is always a possibility that a calculation produces a correct
answer, but the method is wrong. Identify these as well.
oOCalculation 1:

The uv-paper rectangleOu < 4 and O< v < 2 plots out on
xy-paper as the circle’x y? = 4 and everything inside it.
So [ [, 02+ y*dxdyis given by:

Xy

27 ~4
|j Jf[x[u,v],y[u,v]]Axy[u,v]dludlv
0 0
128 n
OCalculation 2:

The uv-paper rectanglefu < 4 and O< v < 2 plots out on
xy-paper as the circle?x y? = 4 and everything inside it.
So [ [, (X + y*)dxdy is given by:

Xy

27 ~2

|J jf[x[u,v],y[u,v]]Axy[u,v]dludlv
0 0

8

OCalculation 3:

The uv-paper rectanglesOu < 4 and O< v < 2 plots out on
xy-paper as the circlex y? = 4 and everything inside it.
So [ [, 02+ y*dxdyis given by:

Xy

47 ~2
|J Jf[X[U,V],y[u,v]]Axy[u,v]dludlv
0 0

16
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OCalculation 4:

The uv-paper rectanglefu < 4 and O< v < 2 plots out on
xy-paper as the circle’x y? = 4 and everything inside it.
So [ [ &+ y?)dxdyis given by:

5%

0 (27
| J J. fIx[u v, y[uv]]AXxy[uv]dvdu
-2J0
-8
OCalculation 5:

The uv-paper rectanglesOu < 4 and O< v < 27 plots out on
xy-paper as the circle’x y? = 4 and everything inside it.
So [ [ 02+ y?)dxdy s given by:

Xy

| J'Zjnf [X[u Vv 1,y I[uvVvI]Axy[u v ]dvdu
8770 7
OCalculation 6:
The uv-paper rectanglesfu < 4 and O< v < 27 plots out on

xy-paper as the circle?x y2 = 4 and everything inside it.
So [ [ (2 + y?)dxdy is given by:
Xy

2 27
|JJ fIx[u,v i1,y I[uvVv]]AXy[u Vv ]dvdu

0 Jion
8

G.10) Linear equations and area conversion factors

When you go from xy-paper to uv-paper through formulas

Ux, yl=ax+ by, and

X, yl=cx+ dy,
for fixed numbers a, b, ¢, and d, things get pictorial. For one thing,
the uv-grid on xy-paper comes from straight lines:

{a,b,c,d }={2,5 -1,31};

Clear [u,V, X,y 1]

u[x_,y_ l=ax+by;

VIX,Yy_1=cx+dy;

{{xlow, xhigh '}, {ylow, yhigh }}={{-5,5}, {-5,51};

ulevelcurves =
ContourPlot  [Evaluate [u[X,y 11, {Xx, xlow, xhigh }, {y, ylow, yhigh }

Contours - {-30, -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30 },
ContourShading - False, DisplayFunction - Identity 1;

vlevelcurves = ContourPlot [Evaluate [v[X,y 1], {x, xlow, xhigh },
{y, ylow, yhigh }, Contours - {-15, -10, -5, 0,5, 10, 15, 20, 25, 30 },
ContourShading - False, DisplayFunction - Identity 1;

uvGridonxyPaper = Show[ulevelcurves, vlevelcurves, Frame - False 1;

Show[uvGridonxyPaper, Axes - True, AxesLabel - Yy,
DisplayFunction - $DisplayFunction 1;

This is one reason that lots of folks call the transformation from
Xy-paper to uv-paper coming from

Ux, y]=ax+ by, and

X, y]=cx+ dy
by the name linear transformation. When you take a course called
linear algebra, you will hear a lot about linear transformations. In this
problem, you get to see some stuff about linear transformations that
you won't see in a standard linear algebra course.

0G.10.a.i) Tripping
Go with:

Clear [X,y,u,v ]

{a,b,c,d }=1{2 -1,3,2 };

{ulx_,y_ 1,vI[x,y_ 1}={ax+by,cx +dy}
(2x-y,3x +2y}

Make two vectors:

] directionx ={ac}
(2,3}

| directiony ={bd}
{-1,23

VC.07.G%-G10

Look at these uv-paper plots of
x directionx with its tail af0, 0} and
y directiony with its tail at the tip of x directionx
and the point
{ul[x, yI, V[X, y]} for x= 0.4 and y= —0.3:

{X,y }={04, -031};
uvpoint = Graphics [{Red, PointSize  [0.05 ], Point [{u[X,y 1,V [X, Y 1}1}1;

trip = {Arrow [x directionx, Tail - {0,0}1,
Arrow [y directiony, Tail - x directionx 1}
x directionx
labels = {Graphics [Text ["x directionx", T]]

y directiony
s 7

).

Graphics [Text ["{u[xy 1.v [xy 1" {ulx,y 1,v [X,y 1}, {0, 4 )]]};

Graphics [Text ["y directiony”, x directionx

Show [uvpoint, labels, trip, PlotRange - All, Axes - True,
AxesLabel - {"u","v" }1;

Go again with the saméxj y] and \x, y] but this time take x -2
and y= 4:

{xylr={(-24}
uvpoint = Graphics [{Red, PointSize  [0.05 ], Point [{u[X,y 1,V [X,y 1}1}1;

trip = {Arrow [x directionx, Tail - {0,0}1,
Arrow [y directiony, Tail - x directionx 1%
X X X x directionx
labels = {Graphics [Text ["x directionx”, ———2——-]]

y directiony
g7

LB

Graphics [Text ["{u[xy 1. [xy 1" {ulx,y 1,V [xy 1}, {0,4}11}

Graphics [Text [y directiony”, x directionx

Show [uvpoint, labels, trip, PlotRange - All, Axes - True,
AxesLabel - {"u","v" 1}1;

Read the code, edit it and and run a few more if you like. Once you
are certain what's happening, explain the physical process of going
with an xy-paper pointx, y} and the vectors directionx and directiony
to take a trip starting 40, 0} and ending at the uv-paper plot

{ulx, yl, V[x, yl} of the original xy-paper poirk, y}.

oTip:

What you saw was the geometry of the trip.
Here's the algebra:

Clear [x,y,u,v,a b, cd 1;
{U[X_,y_ 1,V IX,y_1}={ax+by cx +dy}
{ax+by,cx +dy}

] directionx ={ac}

{a,c}

| directiony ={b,d}

{b,d}

| tulx,y 1, v [x,y 1} == x directionx +y directiony
True

O0G.10.a.ii) Tripping when directionx and directiony are either

parallel or point in opposite directions
Go with:

Clear [x,y,u,v ]
{a,b,c,d }={4,6,23 };
{UIX_,,y_ 1,V IX,Yy_l}y={ax+by cx +dy}
{4x +6y,2x +3y}
Make two the vectors:
] directionx ={a,c}
4,2}
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| directiony ={b,d} Clear [x,y,u, Vv ]
(6,3} {a,b,c,d }={4,6,23 };
. . . . s s s = by, d
Note that the vectors directionx and directiony are parallel: {4{: [fgyy*“] Vs[;*} - 13 = axaby ex s dy)
vectors = {Arrow [directionx, Tail - {0, 0 }, VectorColor - Blue ], ' .
Arrow [directiony, Tail - {0, 1 }, VectorColor - Blue 1}; Make two the vectors:
irecti directi = {a
labels = {Graphics [Text ["directionx”, Mzn—x——]], |{4'|rzec}|0nx fa.c}
Graphics [Text ["directiony”, {0,113+ directony 11% | directiony = {b,d}
2 (6,3}
sh Remember that:
ow [
vectors, labels, PlotRange - All, Axes - True, AxesLabel - {"u","v" }1; | {(uix,y 1,v [x,y 1} == x directionx +y directiony
v True
Look at the following attempt to solve:
| Solve [{0==ax+by, 2 ==cx+dy}, {X,y }]
0
Use the fact that
{ulx, yl, VI, yl}
={ax+ by, cx+ dy}
17 3 4 5 6! = x directionx+ y directiony
Look at these uv-paper plots of to explain why there was never any hope of solving the simultaneous
x directionx with its tail a0, O}, and equations
y directiony with its tail at the tip of x directionx, 0=ax+ by
and the point 2=cx+ dy
fulx, y1, vix, yl} for x= 1 and y= 2: for x and y. Then look at:
xy}s= {1,2 g o ) | directionx
uvpoint = Graphics [{Red, PointSize  [0.05 ], Point [{u[X,y 1,V [X,y 1}1}1;
trip = {Arrow [x directionx, Tail - {0, 0 }, VectorColor - Blue ], {4'_2 )_
Arrow [y directiony, Tail - x directionx, VectorColor - Blue 1}; | directiony
labels = {Graphics [Text ["x directionx" X directionx 1] 6.3
) ' 2 Say how the numbers u and v must be related to guarantee that the
Graphics [Text [y directiony”, x directionx + y—dwy——]], simultaneous equations
. . . 2 A u=ax+ by
Graphics [Text ["{ulxy 1,V [xy 1" {ulx,y 1,V [xy 1}, {0,411}
v=cx+ dy
Show [uvpoint, labels, trip, PlotRange - All, Axes - True, can be solved for x and y.
AxesLabel - {"u", "v" }1;
0G.10.a.iv)
Byl vixyl Continue to go with parallel vectors directionx and directiony as
above.
Clear [x,y,u,v ]
{a,b,c,d }={4,6,23 };
{urx_, y_ 1,vIx,y_1}={ax+bycx +dy}
- S - S TV WS - {4x+6y,2x +3y}
Go again with the samdx y] and \[x, y], but this time take x —1 This time, look at the xy-to-uv-area conversion factor:
and y= -2: Clear [gradu, gradv, Auv ]
Y }={-1, -2} gradu [x_,y_ 1={D[ulxy 1,X1, DUy 1,y 1}
uvpoint = Graphics [ {Red, PointSize  [0.05 ], Point [{u[x,y 1,V [X Yy 1}1}1; gradv [x_,v_ 1 ={DIVIxy 1.x1.DIVIxy 1.y 1}
trip = {Arrow [x directionx, Tail - {0, 0 }, VectorColor - Blue ], Awvx_,y_ 1 =Det[{gradu [x,y ], gradv [x,y 1}]
Arrow [y directiony, Tail - x directionx, VectorColor - Blue 1}; 0
labels = {Graphics [Text [ direction”, xdiectionx What happens to the xy-paper when it is stretched and compressed to
2 drect make uv-paper?
Graphics [Text [y directiony”, x directionx R How does this explain why when you go with

a=4,b=6,c=2,and = 3

Graphics [Text [" {u[xy 1.v [Xy 1", {ulx,y 1,V X,y 1}, {0,4}11}; . . L
J as above, then for all but very special choices of u and v, it will be

Show [uvpoint, labels, trip, PlotRange - All, Axes - True, impossible to solve
AxesLabel - {"u","v" }1; u=ax+ b y
\
- v=Ccx+ dy

-15 -12.5 -10 -7.5 -5
X X for x and y?

0G.10.b)
This time go with cleared values &fb, ¢, and d:
Clear [X,y,u,Vv,ab,cd 1

{U[X_,y_ 1,V IX,Y_l}={ax+by cx +dy}

fubo vl vyl {ax+by,cx +dy}

Edit and run a few more if you like.

: directi = {a
Once you smell the truth, explain where the pojats, y], VI, Y]} I{a ”:C}'W el
must plot out as x and y vary. | diectiony = (b, d }
0G.10.a.iii) {b.d} .

. . L L Look at the xy-to-uv-area conversion factor:

Continue to go with parallel vectors directionx and directiony as
Clear [gradu, gradv, Auv 1

above. gradu [x_,y_ 1 ={Dlulxy 1,x1,Dulxy 1,y 1}

gradv [x_,y_ 1={DIVIX Yy 1,.x1,DIVIXYy 1,y 1}
Auv[x_,y_ 1 =Det[{gradu [Xx,y 1,gradv [X,y ]}]
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-bc +ad
Explain:
Saying that the vectors directionx and directiony are either parallel or
point in opposite directions is the same as saying that the area
conversion factor §[x, y] = 0.

And explain:
If you go with numbers, b, ¢, and d that make
Awlx, yI1 =0,

then for all but very special choices of numbers u and v, it will be
impossible to solve

u=ax+ by

v=Ccx+ dy
forx and y.

0G.10.h.ii)
Look at this:

Clear [X,y,u,v,a b, cdt 1
{U[X_, y_ 1,V IxX,Yy_ 1}={ax+by,cx +dy}
{ax +by,cx +dy}
Clear [gradu, gradv, Auv ]
gradu [x_,y_ 1={D[UlX,y 1.Xx1,D[ulxy 1,y 1}
gradv [x_,y_ 1={(DIVIX,y I.Xx1,D[VIX Yy 1,y 1}
Auv([x_,y_ ] =Det[{gradu [X,y 1,gradv [X,y 1}]
-bc +ad
Now look at what most folks call the coefficient matrix:
coefficientmatrix ={{a,b}, {c,d}}
MatrixForm  [coefficientmatrix 1
(a b
cd )
And its determinant:
] Det [coefficientmatrix 1
-bc +ad
Compare the xy-to-uv-area conversion factor to the determinant of the
coefficient matrix:
] Det [coefficientmatrix
True

T==AwIxy 1

Explain:
When you go with numbers a, b, ¢, and d that make
determinant of the coefficient mateix0,
then for all but very special choices of u and v, it will be impossible to
solve
u=ax+ by
v=cx+ dy
forx and y.
And explain:
When you go with numbers a, b, ¢, and d that make
determinant of the coefficient matex0,
then, no matter what choice of u and v you make, it will be possible to
solve
u=ax+ by
v=CcXx+ dy
forx and y.

G.11) Eigenvalues and eigenvectors

One good way to extend your mathematical horizons is to look up
some unfamiliar Mathematica instructions and try them out. This is
what you will do here with a little coaching from your friends at
Calculus&Mathematica.
Take four numbers a, b, ¢, and d witk b like this:

{(a,b,d } =35 10,42 };

{{fab}, {cdiy={{ab} {bd}}

matrix = {{a, b}, {c,d}};

MatrixForm  [matrix ]

35 1.

( 1. 42 )

Go from xy-paper to uv-paper with

Clear [u,Vv, X,y 1
Ulx,y_ 1,V Ix,y_ 1} ={ax+by cx +dy}
{35x +1y 1lx +42y}

VC.07.G16-G11

Here is the xy-paper circle
X+y?=1
plotted on xy-paper:

xyplot = ParametricPlot [{Cos[t],Sin [t]}, {t, 0,2 =},
AspectRatio - Automatic, PlotStyle - {{Blue, Thickness [0.01 1}},
AxesLabel - {"x","y" 1}, PlotLabel - "xy paper plot" 1;

xy pap¥r plot

- ‘iEIIv X

Here is how this circle plots out on uv-paper in true scale:

uvplot =
ParametricPlot
AspectRatio - Automatic, PlotStyle
AxesLabel - {"u", "v*
uv pap¥r plot

[{u[Cos[t],Sin [t]],v [Cos[t],Sin [t]]}, {t. 0,2 =},
- {{Blue, Thickness [0.01 1}3},
}, PlotLabel - "uv paper plot" 1;

Grab and animate these two plots and run slowly.
You guessed right!
This is a tilted ellipse centered{@t 0}.
Here comes the unfamiliar Mathematica instruction:
| eigens = Eigensystem [matrix ]
{{4.90948, 2.79052 }, {{-0.57864, -0.815583 }, {-0.815583, 0.57864 }}}
The eigenvalues of the matrix are:
| {eigenvaluel, eigenvalue2 } = eigens [1]
{4.90948, 2.79052 }
The eigenvectors of the matrix are:

| {eigenvectorl, eigenvector2 } = eigens [2]

{{-0.57864, -0.815583 }, {-0.815583, 0.57864 }}
The unit eigenvectors of the matrix are:

{uniteigenl, uniteigen2 } =

eigenvectorl eigenvector2

+/eigenvectorl . eigenvectorl +/eigenvector2 . eigenvector2
{{-0.57864, -0.815583 }, {-0.815583,0.57864 }}
Here are the unit eigenvectors of this matrix together with a plot of the
circle ¥ + y? = 1:
| Show[xyplot, Arrow [uniteigenl, Tail - {0, 0 }, VectorColor - Red],
Arrow [uniteigen2, Tail - {0, 0 }, VectorColor - Red]];
Xy pap¥r plot

S
e

Now put:
| {amazingl, amazing2 } = {eigenvaluel uniteigenl, eigenvalue2 uniteigen2 }
({-2.84082, -4.00409 }, {-2.2759, 1.61471 })

And look at this plot:

Show [uvplot, Arrow [amazingl, Tail - {0, 0 }, VectorColor - Red],
Arrow [amazing2, Tail - {0, 0 }, VectorColor - Red],
AspectRatio - Automatic 1;

uv pap¥r plot

<D
%

Grab and animate these plots, running slowly.

Bingo.
Just for good measure, look at:
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Clear [gradu, gradv, Auv ] Clear [u,v,x,y ]
gradu [x_,y_ 1={D[ulx,y 1,x1,Du[xy 1,y 1} {uix_ y_ 1, v X, y_ 1}={ax+by cx +dy};
gradv [x_,y_ 1={DIVIx,y I,xI,DIVIXy 1,y 1} uvplot =
Auw[x_,y_ ] =Det[{gradu [x,y ], gradv [X,y 1}I; ParametricPlot [{u[Cos[t], Sin [t]],v [Cos[t],Sin [t]]}, {t 0,2 =},
{eigenvaluel eigenvalue2, Auv X,y 1} AspectRatio - Automatic, PlotStyle - {{Blue, Thickness [0.01 1}},
(137,137 } AxesLabel - {"u", "v" 1}, DisplayFunction - Identity  1;
eigens = Eigensystem [matrix 1;
Cowabunga- {eigenvaluel, eigenvalue2 } = eigens [11;
The xy-to-uv-area conversion factor is the same as the product of the {eigenvectorl, eigenvector2 } = eigens [2];
two eigenvalues. {uniteigenl, uniteigen2 } =
eigenvectorl eigenvector2 } .
DG-ll-a) +/eigenvectorl . eigenvectorl +eigenvector2 . eigenvector2
Remembering that the ellipse above is the uv-paper plot of the {amazingl, amazing2 3 = - _
. 2 K {eigenvaluel uniteigenl, eigenvalue2 uniteigen2 }
Xxy-paper circle X+ y? = 1, write down the uv-paper measurement of Show[uvplot, DisplayFunction - $DisplayFunction  1;
the area enclosed by the ellipse plotted above.

0G.11.b)

Do the it again for another choice of
a, b, c, and d with=b:

{a,b,d }={27, -5307 1};
{{ab} {cd}}={{ab}, {bd}}
matrix = {{a, b}, {c,d}};
Clear [u,V,X,y 1 h | i il I d
uvplot = r . : {0 1 : d ,
ParametricPlot  [{u[Cos[t], Sin [t]],v [Cos[t],Sin [t]]}, {1 0,2 =}, DisplayFunction - $DisplayFunction 1
AspectRatio - Automatic, PlotStyle - {{Blue, Thickness [0.01 1}},
AxesLabel - {"u", "v" '}, DisplayFunction - ldentity 1;
eigens = Eigensystem [matrix ];
{eigenvaluel, eigenvalue2 } = eigens [11;
{eigenvectorl, eigenvector2 } = eigens [21;
{uniteigenl, uniteigen2 } =
eigenvectorl eigenvector2 }
+/eigenvectorl . eigenvectorl ’ +/eigenvector2 . eigenvector2 '
{amazingl, amazing2 } =
{eigenvaluel uniteigenl, eigenvalue2 uniteigen2 }: | {eigenvaluel, eigenvalue2 }
0,4}
Show [uvplot, Arrow [amazingl, Tail - {0, 0 }, VectorColor - Red], Clear [gradu, gradv, Auv ]
Py pay ' gradv [x_,y_ 1={DIVIXy 1,x 1,DIVIXy I,y 1}
Auv[x_,y_]=Det[{gradu [x,y 1,gradv [X,y 1}1;
{eigenvaluel eigenvalue2, Auv X,y 1}
v {0,0}
" What do you think happened to the ellipse?
2 0G.11.d)
5 u If what you've seen so far hasn't blown your mind, look at these:
{a,b,d }=1{9, -4,21};
{{ab} {cd}}r={{ab}, {bd}}
matrix = {{a, b}, {c,d}};
. H Clear [u,Vv,X, y 1
Bingo again. (UIX_y_ 1LV X,y 1} ={ax+by cx +dy}
Again just for good measure, look at: eigens = Eigensystem [matrix 1;
Clear [gradu, gradv, Auv ] {eigenvaluel, eigenvalue2 } = eigens [11;
gradu [x_,y 1= {DlUxy 1,.x1,.DMUIxy1,y1} {eig_er'_nvectorl, _eigenvectorz } = eigens [21;
gradv [x_,y_ 1={PIVIXy I,x1,DIVIxy 1,y 1} {uniteigent, uniteigen2 }= _
Auv([x_,y_ ] =Det[{gradu [X,y 1,gradv [X,y 1}1; eigenvectorl eigenvector2 }
{eigenvaluel eigenvalue2, Auv [y 1} +eigenvectorl . eigenvectorl +/eigenvector2 . eigenvector2
{-26.2, -26.2} {amazingl, amazing2 } =
Tota”y cool. {eigenvaluel uniteigenl, eigenvalue2 uniteigen2 )
i i i i {UIX, Y 1,V [Xy 1} == ExpandAll [
Play with Som_e more choices @fb’ c and d with b= ¢ until you get Together [{x, y }.uniteigenl amazingl + {X, ¥ }.uniteigen2 amazing2 11
enough experience to form your own opinions about the anwers to the True
questions: ) o It works for any a, b, ¢, and d you feed in as long asb
— What do you think unit eigenvectors are?
. . {a, b,d } = {Random[Real, {-10, 10 }],
— What do you think eigenvalues are? Random[Real, {-10, 10 }], Random [Real, {-10, 10 }1};
- Why are lots of folks delighted with eigenvectors and eigenvalues? ({ab}, (cd}r={({ab}, {bd}y
aTip matrix = {{a, b}, {c,d }};
: Clear [u,Vv, X,y ]
' i i i uix_,y_ 1,vIx,y_1}={ax+bycx +dy}
Don't look up the answer in a linear algebra book because most linea cigens = Eigensystem [matrix 1.
algebra books don't look at eigenvector and eigenvalues from this {eigenvaluel, eigenvalue2 1} = eigens [1I:
{eigenvectorl, eigenvector2 } = eigens [2];
visual perspective. Instead, they make eigenvector and eigenvalues tl {uniteigen1, uniteigen2 )=
inal | eigenvectorl eigenvector2 } .
fina products of some dreary a gebra. +/eigenvectorl . eigenvectorl ' +/eigenvector2 . eigenvector2 ’
How sad. {amazingl, amazing2 } =
{eigenvaluel uniteigenl, eigenvalue2 uniteigen2 Y
DG.ll.C) {U[X, y 1,V [X, ¥ 1} == ExpandAll [
Together [{X, y }.uniteigenl amazingl + {X, y }.uniteigen2 amazing2 11
Look at this one: True
{abd}={222} In other words when you go with any numbers a, b, ¢, and d with
{({ab}, {cd}r={{ab}, {bd}} b = c, and you put

matrix = {{a,b }, {c,d}}; L[X y] —ax+ by and
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X, yl=cx+ dy,
then you can count on having

{u[x, yl, vIx, y1}

= ({x, y} . uniteigen}amazingX ({x, y}. uniteigen2amazing?2.
This resolvesu[x, y], v[X, y]} into two perpendicular components in
the directions of the two eigenvectors.
Fancy folks call this the "spectral theorem™ and make this the
centerpiece of a good linear algebra course. If you did the problem
G.10) above, then some interesting plots might come to your mind.
But you are not asked to write anything about what all this means; so
sit back and enjoy.
On the other hand, if you've got something to say, then go ahead and
indulge yourself.

VC.07.G11
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