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1 I n t r o d u c t i o n  

I recently taught a course on complex analysis. That forced me to think more 
carefully about branches. Being interested in computer algebra, it was only 
natural that I wanted to see how such programs dealt with these problems. 
I was also inspired by a paper by Stoutemyer ([3]). 

While programs like Derive, Maple, Mathematica and Reduce are very 
powerful, they also have their fair share of problems. In particular, branches 
are somewhat of an Achilles' heel for them. As is well-known, the complex 
logarithm function is properly defined as a multiple-valued function. And 
since the general power and exponential functions are defined in terms of 
the logarithm function, they are also multiple valued. But for actual com- 
putations, we need to make them single valued, which we do by choosing a 
branch. In Section 2, we will consider some transformation rules for branches 
of multiple-valued complex functions in painstaking detail. 

The purpose of this short article is not to do a comprehensive comparative 
study of different computer algebra system. (For an attempt at that, see [4].) 
My goal is simply to make the readers aware of some of the problems, and 
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to encourage the readers to sit down and experiment  with their  favourite 
programs. 

I would like to thank  Will i-Hans Steeb and Michael Wester for helpful 
comments. 

2 Basic propert ies  of branches  mult iple-valued 
complex  funct ions 

I will s tar t  with the  following paradox due to the Danish mathemat ic ian  
Thomas Clausen ([1, 2]). It  was published as an exercise in Crelle's journal  
in 1827. 

Let n be an integer. Then  

If we write 

and 

el+2n~i-=e. (1) 

l+2nlri)  T M  -~- e T M  = e~ (2) 

~ - 1  1 (6) 
1 i 

i2_-1. 

and 

1 -I 

-I 1 

it follows tha t  

e -4"~2 = 1. (4) 

There are also a number  of paradoxes involving square roots. Let me jus t  
give two. 

i = rE= ~/(-i)(-i) = ~-i~-i = ii = -i, (5) 

(el+2n=i) l+2n~i _-- e1+4~,~i-4,2~ 2 _ ee-4,2~ 2, (3) 
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In order to clarify such problems, we will take a fairly detailed look at some 
properties of elementary transcendental functions. 

For z = x +. iy, the complex exponential function is defined by 

e z = e ~ (cos y + i sin y). 

It satisfies the property e (z+~) = e~e ~, but does it satisfy the property 
(e~) ~ = e(~)? In order to answer this, we must look at the complex log- 
arithm function. 

We define the principal argument by z = ]zie iArg(z) and Arg(z) E (-77, 77]. 
We do not define the principal argument of 0, and we will from now on assume 
that  z is different from 0. Notice that  we have defined the principal argument 
on the negative axis, too, but it is of course not continuous there. Extending 
the definition of the principal argument to the negative numbers gives us as 
a ready supply of counter examples. 

We then define the principal logarithm Log(z) by Log(z) = log Izl + 
i Arg(z), where log [z[ denotes the usual real logarithm of Iz[. We clearly 
have e L°g(z) = z, but do we have Log(e ~) = z? 

In order to study this, we will introduce the following terminology. 

D e f i n i t i o n  1 Define the imaginary remainder Imr(z) and the imaginary 
quotient Imq(z) by 

Im(z) = Imr(z) + 27r Imq(z), 

where Imr(z) E (-77, 77] and Imq(z) E Z. 

Notice that  Imq(z) = [(Im(z) + 77)/277)1 , where [ 1 is the ceiling function. 
We can now prove the following. 

T h e o r e m  2 We have 

Log(e z) = Re(z) + i Imr(z). 

In particular, 

Log(e z) = z i f  and only i f  Im(z) E (-77, 7r]. 
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Proof: We have 

Log(e z) = log ]eZl + i Arg(e z) = x + i Arg(e/Im(~)) = 

x + iArg(e/(Imr(z)+2~Imq(~))) = x + iArg(e iImr(z)) == x + iImr(z).  [] 

We will next study whether the complex logarithm satisfies the property 
Log(zw) = Log(z) + Log(w). To this end, we must first study Arg(uv). It is 
easy to see that 

Arg(zw) = Arg(z) + Arg(w) + d27r,  where d is 0 or 5=1. 

We now make the following definitions. 

Def in i t i on  3 Define the principal product excess ppe(u, v) of two complex 
numbers by 

ppe(z, w) -- (Arg (zw) -  A r g ( z ) -  Arg(w))/(21r). 

Def in i t i on  4 Define the complex sign csgn(z) of a complex number by 

1, if  Re(z) > 0 or (Re(z) = 0 and Im(z) > 0) 
csgn(z)=  0, / f z = 0  

-1 ,  i fRe(z )  < 0 or ( R e ( z ) = 0  andIm(z)  < 0). 

We can now define the right (left) half-plane as the set of points where csgn(z) 
is positive (negative). 

The next lemma is immediate. 

L e m m a  5 

1. ppe(z, w) is always 0 or ~1. 

2. I f  either z or w is positive, then ppe(z, w) = 0. 

3. I f  both z and w lie in the right half-plane, then ppe(z, w) = 0. 

4. I f  both z and w lie in the left half-plane, then ppe(z, w) ¢ 0. 

5. ppe(z, z) = 0 if  and only i f  z lies in the right half-plane. 
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We can now prove the following. 

T h e o r e m  6 liVe have 

Log(zw) = Log(z) + Log(w)+  2~'i ppe(z, w). 

In particular Log(z 2) = 2 Log(z) if and only if z lies in the right half-plane. 

Proof: 

Log(zw) = log Izwl + i Arg(zw) 

= log Izl + log Iwl + i(Arg(z) + Arg(w) + 27r ppe(z, w)) 

= Log(z) + Log(w) + 2zri ppe(z, w). [] 

We have the following result for quotients. 

T h e o r e m  7 We have 

Hence 

Arg(1/z) -- ~ ~ Arg(z), if z is not negative 

( Arg(z) + 27r, if z is negative. 

Log(l /z)  = ~-_ Log(z), if z is not negative 

( Log(z) + 27ri, if z is negative. 

Proof: We have 1/z  = ~/]z[ 2, but Arg(~) -- - A r g z  unless z is negative, in 
which case both Arg(z) and Arg(1/z) are equal to 7r. [] 

We are now ready to define the complex power and exponential functions. 

Def in i t ion  8 We define the complex power and exponential functions by 

Z a = e L°g(z)a, and a z = e L°g(a)z f o r  a ~ e .  

We are now ready to consider whether (eZ) w equals e ~w. The key issue is 
that  (e~) ~° involves the exponential function with base e" and not just e. So 
while e ~° is a genuine single-valued function, we need to choose a branch in 
order to make (eZ) w single valued. 

T h e o r e m  9 We have 

( e z )  w ~ eZW e-W27ri Imq(z) .  
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Proof:  

(e:) w = eLog(eZ) w = e(Re(z)+ilmr(z))  w = e(Z-i2~rlmq(z)) w = eZW e-Wi2~rlmq(z) [] 

Using Theorem 9, we can easily resolve Clausen's paradox. In equation (3) 
we said that  

( e l  + 2n~ri ) T M  = e l+  4nlri-4n2~r2 . 

This should be replaced by 

( e l  + 2n~ri ) l+2n~r i  = e l +4n~'i-4n2zr 2 e--( l + 2nrri)27ri Imq( l+2n~r i ) .  = 

el--4n21r2e--(1+2nTri)21rin = el--4n21r2e--2n~ri+4n2~r2 = e~ 

which agrees with equation (2). 
We can also prove the following corollary. 

C o r o l l a r y  10 We have 

(eZ)l/2 = (--1)Imq(z)eZ/2" 

In particular, 

(eZ)l/2 = eZ/2 

We also have the following immediate generalization. 

T h e o r e m  11 We have 

( a z ) w = a~,O e-~,2~i Imq(~ Log(a)). 

We can now ask similar questions about the power function. 

T h e o r e m  12 We have 

i f  and only i f I m ( z )  • ( ( 4 n -  1)~r, (4n + 1)~-], n • Z. 

= e a  Log(zw)  = ea(Log(z)+Log(w)+21ri ppe(z ,w))  = zawaea2~rippe(z,w).  [ ]  

We will derive some consequences of Theorem 12. 

Proof: 

( zw)  ° 

( z w ) a  : zawaea21rippe(z,w).  



18 

T h e o r e m  13 

In particular, 

8,0 

We have 

Vf~=:  (-- 11 ppe(z'w) ~,~/~V/W. 

v z  ~2 = csgn(z)z, 

~ z  2 = z if and only i / z  lies in the right half-plane. 

We will finish this section with the following theorem. 

T h e o r e m  14 We have 

L-livE, 
In particular, if  z is real, then 

if z is not negative 

if z is negative. 

~/U;=sgn(z)/~, 
Proof: If z is not negative, we have 

1~ = e L°gcl/z)/2 = e -L°g(z)/2 = 1 /v /~ ,  

while if z is negative, we have 

1 ~  = cLog(I/z)/2 = e(-  Log(z)+2~i)/2 : - - e -  Log(z)/2 ~_ _ l / V f ~ "  

The last two results resolve the two square root paradoxes given at the 
beginning of this section. 

3 C o m p u t e r  t e s t s  

Computer algebra systems are in general much better at reducing the differ- 
ence between two equivalent expressions to 0, than simplifying an expression 
to a specific form. I therefore suggest that  the readers experiments with 
the following eight tests (adapted from [3]) using their favourite computer 
algebra system. 
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Notice that some programs simplify expressions automatically, while oth- 
ers only do so when you use an explicit s i m p l i f y  command. Sometimes 
you can control the behaviour by using a special option to the s i m p l i f y  
command, or a different command such as PowerExpaad. In some programs 
you can explicitly restrict the domain of a variable, use statements like on 
expandlogs or program your own transformation rules to change the be- 
haviour. 

Test  1 

(a) x / ~ -  v f zx /w should not simplify when z and w are complex. 

(b) ~ / ~ -  ~ / ~ / w  should simplify to 0 when z and w are both positive. 

Test  2 

(a) ~ / ~  should not simplify, or simplify to csgn(z)z when z is complex. 

(b) ~ / ~  should not simplify, or simplify to sgn(z)z = [z[ when z is real. 

(c) x / ~  should simplify to z when z is positive. 

T e s t  3 

(a) 1/ should not simplify when z is complex 

(b) 1 ~ -  1/x/~ should not simplify, or simplify to ( s g n ( z ) -  1)/vfz 
when z is real. 

(c) 1 ~ -  1/x/~ should simplify to 0 when z is positive. 

Test  4 

(a) ~ -  e ~/2 should not simplify when z is complex. 

(b) ~ /~  - e z/2 should simplify to 0 when z is real. 

T e s t  5 

(a) Log(zw) - Log(z) - Log(w) should not simplify when z and w are 
complex. 
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(b) log(zw) - log(z) - log(w) should simplify to 0 when z and w are both 
positive. 

Test  6 

(a) Log(z 2) - 2 Log(z) should not simplify when z is complex. 

(b) log(z 2) - 2 log(z) should simplify to 0 when z is positive. 

Test  7 

(a) Log(l/z) -4- Log(z) should not simplify when z is complex. 

(b) log(l/z) + log(z) should simplify to 0 when z is positive. 

Test  8 

(a) Log(e ~) should not simplify when z is complex. 

(b) log(e ~) should simplify to z when z is real. 
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