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1 I n t r o d u c t i o n  

From the Oxford English Dictionary we find that  to un- 
wind can mean "to become free from a convoluted state".  
Further down we find the quotation "The solution of all 
knots, and unwinding of all intricacies", from H. Brooke 
(The Fool of Quality, 1809). While we do not promise 
that  the unwinding number, defined below, will solve a/1 
intricacies, we do show that  it may help for quite a few 
problems. 

Our original interest in this area came from a problem 
in which an early version of DERIVE was computing the 
wrong answer when simplifying sin(sin-1 z), which should 
always be just  z. For z > 1, DERIVE was getting --z as 
the answer. This bug has of course long since been fixed. 

What  was happening was that  in order to improve in- 
ternal efficiency, all the inverse trig functions were repre- 
sented as arctangents. Consulting an elementary book of 
tables, one finds the identity 

In the same vein, one finds that  

sin(tan -1 w) -- w (2) 
~/1 + w 2 

Substituting equations (1) and (2) into sin(sin -1 z) and 
simplifying, we get 

z 1 
(31 

which DERIVE quite properly refused to simplify to z, 
because this is not always equal to z (see [2]). 

The  fix in this case was to replace equation (2) with 

1 (4) sin(tan - l w ) = w  l + w  2" 

which differs from the original only on the branch cut. 
See [7] for more discussion. This change allows the simpli- 
fication of sin(sin -1 z) to z. Verifying tha t  this approach 
worked, and indeed trying to understand the problem 

to begin with, led us to a t tempt  various definitions of 
a 'branch function'.  This introductory problem turned 
out to be the tip of an iceberg of problems connected 
with using the principal branch of multivalued elemen- 
tary functions. 

1 .1  L o g s  a n d  B r a n c h e s  

In what follows, the principal branch of the logarithm 
fimction is denoted by In z = In [z[ + iO with -~r < 0 = 
a rgz  _< ~r, the now-conventional closure on the top of 
the branch cut (known as Counter-Clockwise Continuity 
or CCC [6]). Any other branch choice would lead to a 
similar discussion. In section 2 we discuss the option of 
not choosing branches at all by using Riemann surfaces. 

The very idea of choosing the principal branch of the 
logarithm, or indeed choosing a consistent single-valued 
branch of the logarithm at all, has some unpleasant con- 
sequences for computer  algebra, in that  we lose several 
algebraic identities tha t  we would like to use automati-  
cally. These consequences are unpleasant for humans as 
well, because it is hard to unlearn algebraic rules tha t  we 
use so nearly automatically ourselves. 

Some identities remain true, of course, and here are 
some representatives. 

1. exp(lnz)  -- z 

2. exp(zl + z2) = exp(zl)  exp(z2) 

3. exp(27rik) = 1. 

The algebraic rules we lose include 

1. ln(zlz2) # ln(Zl) + In(z2) 

2. (ZlZ2) a # z~'z~ 

3. ln(z w) # w l n z  

. (z~) a # z ~a, and in particular (z~) a # (za) a, which 
takes quite a bit of getting used to. We adopt  the 
convention tha t  z ~a means exp(al5 In z), while the 
parenthesized symbols have the meanings implied by 
the precedence of the operations. 



T h e  U n w i n d i n g  N u m b e r  29 

The purpose of this column is to see exactly how these 
identities have to be modified, once we choose the princi- 
pal branch of the logarithm. Introducing the unwinding 
number/C(z)  turns out to be sufficient for this purpose. 

1 . 2  U n w i n d i n g  n u m b e r  

We define the u n w i n d i n g  number/C(z)  by 

ln(e z) = z + 2~'i/C(z). (5) 

See [4], where this function is used to derive new identities 
for the Lambert  W function. 

Functions similar to/C have been defined several times 
in the literature. In 1974, Apostol [1] briefly considered 
a cognate of/C. Charles Pa t ton  has defined several func- 
tions including UNLN(z) = In exp z -  z (see [8] for a brief 
discussion of UNLN) which is 21ri/C(z) in our notation. 
Aslaksen [2] defines several functions including Imq(z),  
which turns out to be - /C(z) in our notation. It would 
be interesting to see the results of a thorough historical 
investigation. 

One can define/C(z) without logarithms by using the 
floor function. If ~(z)  is the imaginary part  of z, then 

2~- j . (6) 

It is easy to See that  /C(z) = 0 if - r  < ~(z)  < ~r, 
and in general that  /C(z) = - n  if (2n - 1)~" < ~(z)  < 
(2n + 1)~-. T h u s  the unwinding number is constant on 
horizontal strips. Note the closure on the top of the strips. 

The function was called the 'unwinding number '  be- 
cause we thought of exp z as winding z around the branch 
point of log; in order to get z back one has to 'unwind'. 

2 Connec t ion  wi th  the  R i e m a n n  
surface for logarithm 

Is it necessary introduce a new function at all? Surely the 
properties of the logarithm function are well understood 
by now? This is of course perfectly true, but  some appar- 
ently minor things have changed since the theory of the 
complex-valued logarithm function was first elucidated. 
These are 

1. the rise of computers and the concomitant increased 
need for the single-valued (numerical) complex loga- 
rithm, 

2. the establishment of a consensus (articulated for ex- 
ample in [6]) on where to close the branch cut for the 
principal branch of the logarithm (-~r < a rgz  _< ~-), 
and 

3. the creation of symbolic manipulation languages that  
manipulate formulas algebraically, leaving numerical 
evaluation as late as possible. 

Choosing a branch of logarithm may introduce instances 
of the so-called spec ia l i za t ion  p r o b l e m ,  wherein a formula 
that  is right most of the t ime can be wrong for special 
values of the input. Introducing/C fixes this. 

But perhaps we should not invent a new function if 
there is an existing theory designed to deal with the mul- 
tivalued nature of the logarithm, which is the ultimate 
source of the difficulty here. 

Let us consider the possibilities offered by a R/emarm 
sur face .  Consult practically any complex analysis text- 
book for a discussion of this idea. Basically, we deal with 
the multiple covering of £ by exp z by considering a new 
set 7~ which is to be the range for the exponential func- 
tion. We denote this slightly different exponential func- 
tion by expz ¢ z, as its range is different and would require 
a different data  structure in an implementation. Clas- 
sically 7~ is a helix consisting of a countable infinity of 
copies of the complex plane, each cut along the negative 
real axis and joined to the sheets immediately above and 
immediately below. Once t h e  joins are made 'invisible' 
one can show that  the function expn z is one-to-one and 
analytic on this surface, and thus has a unique analytic 
inverse. We will denote this inverse function by logn(z ) 
to distinguish it from the principal branch logarithm In z. 

One can use polar coordinates (r, 8) on 7~, where now 
we do not take O modulo 27r. This provides a natural  
way of defining multiplication, as z l z 2  = ( r l r2 ,Ol  + 02). 
If p = expvez takes values on 7~, then p = (exp(x),y)  
if z = x + iy ,  whilst l ogs ( r ,0 )  = l n r  + i8. Represent- 
ing (r, 8) in Cartesian coordinates requires three items, 
( x , y , k )  where x = r cos8, y = r s inS ,  and 8 = 2~-k + 80 
with -~" < 80 _< r chosen for compatibility with the 
conventional principal branch cut. The integer k can be 
thought of as the index of the Riemann sheet on which 
(r, 8) lies. Thus we see that  computat ion with elements 
of a Riemann surface still seems to require a choice of 
representation of the fundamental  angle. 

Note that  there is a relation between logn and ln. If 
p = x + i y  and (p, k) denotes the Cartesian representation 
of (r, 8) then with the obvious meanings 

log~(p, k) = Inp + 2~rik.  (7) 

Suppose now ( p , k )  -- exp , ( z0  + 21rik), so p -- exp(z0), 
with - I t  < ~(z0) < lr. Then 

logn(p,k)  = z = zo + 2 r i k  

= ln(expzo) + 27rik.  

Rearranging this we have, since exp z = exp z0, 

lnexp z = z - 27rik = z + 2~'i/C(z), (8) 
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where k is the index of the Riemann sheet. Tha t  is, we 
may interpret the unwinding number/C(z) as the negative 
of the index of the Riemann sheet. 

R e m a r k  We are not really proposing this here, but  
we would like to see an implementation of functions of 
a Riemann-surface variable, to see if it offers any advan- 
tages, once the initial effort of constructing the various 
function representations has been made. There are in- 
creased costs for arithmetic on Riemann surfaces, and it 
is not clear what to do with addition, for example, or 
i terated functions (we would like l n l n e x p e x p z  to be z, 
for example, but  this seems to require a "second order" 
Riemann surface). However, note tha t  all the usual iden- 
tities of logarithms and powers are preserved if we work on 
this Riemann surface: logn(exp z ) = z, (zlz2) a = z l~z 2 ~, 
etcetera. This would make the symbolic algebra very sim- 
ple indeed. 

While this is interesting, and might be practicable, we 
think that  learning how to do symbolic algebra in the ex- 
isting domain with a principal-branch logarithm is still 
worthwhile, and it is for this reason that  we have intro- 
duced JC(z), which as we have seen has some connection 
with the theory of Riemann surfaces anyway. 

3 The  clearcut  region 

Given a function / ( z ) ,  the region where /C( / (z ) )  = 0 is 
often of particular importance. Define 

c learcut( / )  := {z I K:(/(z)) = 0} (9) 

as the clearcut region 1 o f / .  The association of 'clearcut '  
with logs may make this somewhat mnemonic, and we 
will find that  in this region the algebra is dramatically 
simpler (i.e. more 'clear cut ')  than otherwise. 

The region is very simple to compute, given a func- 
tion f .  One simply finds the values of z that  give 
- r  < ~ ( f ( z ) )  < r ,  if any, and this is the clearcut re- 
gion for f .  For example, i f / ( z )  = In z, then clearcut(f)  
is the set where 9( ln  z) = arg z is in - r  < arg z <_ lr. 
But this is in fact the entire complex plane. We have 
thus shown that  for all z, 

/C(ln z) = 0 .  (10) 

We will use this process on several elementary functions 
in section (6). 

Note that if f is real for x E D C T~ real then D C 
clearcut(f). 

4 Useful  T h e o r e m s  

Introducing a new function is all very well, but  we need 
to be able to do things with it. The  following theorems 

IThanks to Sumaya Corless for this name. 

provide some algebraic rules for the manipulation of/C. 

1. T h e o r e m  

IC(z + 27tin) = 1C(z) - n 

for integer n. The proof is obvious from the definition 
or graph of/C(z). 

2. T h e o r e m  
/C(ln z) = 0.  

We proved this in the example in section (3). 

3. T h e o r e m  

ln(zlz2) = lnz l  + lnz2 + 21riK: ( lnzl  + lnz2) . 

To prove this, s tar t  with zlz2 = exp( lnzl  + lnz2 ), 
and take logarithms to get 

ln(zlz2) = ln(e t"~l+tnz2) 

= l n z l + l n z 2  

+ 2~riK:(lnzl + lnz2) 

by the definition of/C. 

4. T h e o r e m  (generalization of Theorem 3) 

l n ~ z k  = ~ l n z k  
k = l  k = l  

To prove this we use induction. The case n = I is just  
Theorem 2, whilst the case n = 2 is just  Theorem 3. 
Assuming the t ru th  of the theorem for n = m, we 
have by Theorem 3 that  

ln(z~+l  zk) = In zm+l + In H zk 
k = l  k = l  

and using the inductive assumption to write 

ln ~X zk = ~ ln zk 
k = l  k = l  

+ 2riIC n Zk , 
\ k = l  / 

both  inside the unwinding number and out,  and fur- 
ther  using Theorem 1 to cancel the inner unwinding 
number with the outer, we get the desired result. 
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. T h e o r e m  These all follow on writing a b as its defi- 
nition exp(bln(a)):  

(a) ln(z ~) = w l n z  + 2~riK:(wlnz) 

(b) (ZlZ2) ~° = z~z~ ° exp(2~-iwIC(ln zl + In z2)) (the 
generalization to n te rms in the product  is im- 
mediate) 

(c) (z~') ~' = z vw exp(2~r iw~(v  In z)) (notice tha t  
the order is important ,  and we ascribe our con- 
ventional meaning to z '~ ' ) .  

5 Applications 

In this section we give some sample applications, to show 
tha t  this is not just an empty  definition. 

5 . 1  F a t e m a n ' s  z w p r o b l e m  

Consider 

y : z ~° ( i i )  

as an equation for z, given y and w in ( ,  as discussed 
in [5]. We divide this into two problems: we first t ry  to 
decide when ~ = yl/~o solves equation (11). This will give 
sufficient conditions for the classical formula to be true. 
We then t ry  to discover all roots of (11), which turns out 
to be harder. 

5.1.1 Sufficient condi t ions  

Let ~ = y l /=.  Then ~o = exp(w In ~) or 

~ '  = e x p ( w l n e x p ( ~  lny))  

= e x p ( w ( ~  lny  + 2 ~ ' i ~ ( ~ l a y ) )  

= y e x p ( 2 ~ ' i w K : ( ~  l n y ) ) .  

This is equal to y if and only if w E ( 0 n  y ) / w )  is an integer, 
say n. If  w (which is given for the problem) is irrational, 
then n and hence ~ must be zero. I f  w is rational, then 
one can show by pigeonhole arguments  tha t  E must  still 
be zero. 

So ~ is a root of z ~° = y if and only if K:( ( lny ) /w)  = O, 
or y is in the clearcut region for (ln y ) / w .  This can happen 
if and only if ( l n y ) / w  = t + ip where -~- < p _< ~-. 
This implies tha t  lny  = w( t  + ip) = (a + ib)(t  + ip) = 
(at - bp) + i(bt + ap) or, with lny  = ln.s + i0 giving the 
polar  coordinates of y, s = exp(at  - bp) and 8 = bt + ap. 
If  b ¢ 0 we can eliminate the pa ramete r  t to get 

8 • e a O / b - ( a 2 + b 2 ) p / b  . 

Remember ing that  -~- < p _< ~-, then, if ab ~ 0, this is 
a domain bounded by logarithmic spirals. For Fa teman ' s  

example a = b = 1 we have s = exp(0 - 2p), which agrees 
with his plots ( remember also tha t  -~" < 0 < ~-). 

Thus the obvious formula ¢ = y l / ~  for a root of y = z ~ 
is valid if and only if K((ln y ) / w )  = 0, which is a spiral 
(if ab = 9 ( w )  ~ 0; it is a sector if b = 0 and an annulus 
if a = 0) in the complex y-plane. 

This t rea tment  is shorter than  Fa teman ' s  first- 
principles t rea tment ,  but  remember  tha t  we have spent 
some t ime with a new function K(z).  This t ime ought to 
pay off in practice, or else it isn't  worthwhile. 

5 .1.2 N e c e s s a r y  condi t ions  

Start ing from equation (11), and assuming tha t  a solution 
exists, we take logs. We find 

ln(y) = ln(z TM) = ln (exp(wlnz) )  

= w In z + 21riM(w In z) 

and so, rearranging, we find 

lnz  = _1 0n(y ) _ 2~r iK(wlnz ) )  (12) 
w 

which is an implicit equation for z. Exponent iat ing both  
sides we get 

Z = y 1 / ~ ° e - 2 7 r i ~ ( w l n  z ) / w  (13) 

We have thus shown tha t  any solution must  be of the 
form 

z = y l l w e - 2 ~ k / w  (14) 

for some integer k. I t  will be a solution if and only if 
K(w In z) = k. We can, with some more work, show using 

tha t  no solutions exist for some equations of this type,  
for example z 2/13 = i. (The solution on the Riemann 
surface is z = (1, 13~-/4), but there is no ordinary complex 
z which solves this equation). We can show tha t  for still 
other examples more than  one solution may  exist, even 
infinitely many  (as in z - i  = i, for example),  and ~ can 
help us with the algebra in this case also. 

One can show in part icular  tha t  if 

K~((ln y) / w  - 2~rik / w )  = 0 (15) 

then z from equation (14) solves equation (11), and tha t  
if w is irrational then this condition is also necessary. If  
w = p / q  is rat ional  then things get more complicated. 

However, it is not clear to us tha t  when a user asks 
for the solution of z ~° = y tha t  she really means 'find all 
the values of z for which this equation is true where z TM 
is defined to be exp (wlnz ) ' ;  tha t  is, a user who realizes 
the difference between this and z ~ on a Riemann surface 
is very sophisticated indeed. Finally, the formula y l / ~  on 
the Riemann surface is the unique answer to the problem 
there; in some sense what  might make this formula fail 
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here is the verification step. That  is, yl/w may very well 
be the 'correct answer' even though (yl/~)w may not be 
equal to y, i.e. it doesn't  satisfy the original equation 
when we use the principal branch to take the powers. 

So for us the use of the unwinding number in this ex- 
ample is really just finding the clearcut region where we 
can use the classical formula and at the same time verify 
that  the answer is correct by substituting it back in to 
the original equation. 

5 . 2  T h e  A s l a k s e n  t e s t s  

Let us consider now how a computer algebra system 
that  knew about  the unwinding number might do on the 
Aslaksen tests [2]. We will presume the following model. 

1. logarithms are expanded using ]C. 

2. powers are defined with In and expanded using K. 

3. unwinding numbers are simplified using signum, cs- 
gn, and assumed information, and left alone if noth- 
ing can be inferred. 

We now consider evaluation of expressions defined in 
some of the Aslaksen tests. We will consider in each case 
the consequences of natural  assumptions on each variable. 

1. z ~ .  By Theorem (5c) we would expect this to ex- 
pand to 

and this would not simplify further unless the assume 
system knew that  -~r < arg z + arg(w) _< ~-, in which 
case ~ would simplify to 0. This would happen if 
both z and w were assumed positive, for instance. 

2. ~ /~ .  This case is similar to above, except the un- 
winding number that  arises is ~(2  in z) and if a rgz  
was known to be in the interval (-~r/2,  ~'/2] then the 
unwinding number could be replaced with zero. 

3. 1 ~  - 1/~/~. We would expect tha t  1 ~  would 
simplify according to the same rule as above, giving 
exp(TriK:(- In z))/vfz.  The clearcut region for - In z 
is the entire cut plane, except the negative real axis. 
So if z was known not to be real and negative, this 
would simplify to zero. 

4. x / ~ -  e z/2. Using our rules again, v f 6 ~ z  = 
exp( ln(expz) /2)  = exp(z /2  + lri~(z)). This would 
simplify to exp(z/2)  if for example z was known to 
be real. 

We leave the remaining tests as food for the reader 's  
thought. 

5 . 3  K: a n d  t h e  L a m b e r t  W f u n c t i o n  

The unwinding number is not just useful for explaining 
how to modify identities so they work over the complex 
plane, but it has also been used to prove a new identity for 
the Lambert  W function. This identity is that  Wk (z) + 
In Wk (z) is equal to 

lnz  i f k = - l a n d  - 1 / e < z < 0 ,  
In z + 2~'ik otherwise.  

(16) 

For the proof, see [4]. For a review article about  W, 
see [3]. Briefly, Wk(z) is the kth branch of the function 
satisfying W(z) exp(W(z))  = z. 

Incidentally, the clearcut region for Wo(z) is the en- 
tire complex plane, because the range of Wo(z) is wholly 
contained in the strip - r  < ~(Wo(z)) < 7r. The on- 
ly other branches that  have any nontrivial clearcut re- 
gion are W±l(Z), but  for [k[ > 1 there is no z such tha t  
~(Wk(z)) = O. This means that  it is never true that  
lnexpWk(z) = Wk(z) for Ik[ > 1. 

6 Bestiary 

In this section we present graphs of the clearcut regions 
for some of the simplest elementary functions. The graphs 
may be useful in and of themselves (for example we will 
learn that  we may nearly always replace ln exp tan -1  z 
by tan -1 z, but  for z very near to the branch points at 
± i  this is incorrect), but  the main intention of this sec- 
tion is to give examples of how to find the clearcut region 
for the problem you run into. We hope that  these hand 
procedures will be formalized and implemented in a com- 
puter algebra system, of course. We have already seen 
the clearcut regions for z, In z, - In z, and w In z. 

6 . 1  c l e a r c u t ( z  n) 

When is lnexp(z  ~) = z ~, n an integer? This requires z 
to be in the clearcut region for z ~. Now K:(z ~) = 0 pre- 
cisely when -~- < ~(z  n) _< ~-. When n = 2 for example, 
~(z 2) = 2xy and this becomes -~- /2  < xy < ~/2.  These 
are right hyperbolae containing both the real and imagi- 
nary axes. When n = 3 we have - r  < 3x2y - y3 _< ~r and 
this is a 6-pointed starlike region with thinning branch- 
es going off to infinity along the real axis and the lines 
y = ~vf3x. See Figure 1. Investigating a few more con- 
vinces us that  these starlike regions are general, with 
the degree n case having 2n branches going off to in- 
finity, and always containing the real axis. By moving 
to polar coordinates we can prove that  this starlike re- 
gion always contains the unit circle, as well, because 
.~(z ~) = .~(exp(nlnz))  = r~sin(n0)  which will be less 
than 1 and hence less than ~- ff r < 1. We have shown 
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~o 

- 2  

- 3  
- 3  - 2  - 1  0 1 2 Re(z) 

Figure 1: The clearcut region for z 3. Within this star 
(which contains the unit circle and the rays sin 30 = 0) 
we have In exp z 3 = z 3. 

that  /C(z ~) = 0 if Ix] < 1, for any n, and also that  the 
clearcut region for z n contains the rays 0 = kTr/n. 

6 . 2  c l e a r c u t ( e x p  z)  

To find the clearcut region for exp z note that  z = x + 
iy and so expz = exp(x)cosx  + iexp(x)sin(y)  and so 
-~- < exp(x) siny < ~r. Note that  if we change y to 
y + 2~-m for any integer m this makes no difference; thus 
the clearcut region will be periodic with period 2~-. Hence 
the boundary curves will be x = ln(~r/ sin y) and x = 
ln(-~r /s in  y) and 0 < y < ~" works in the first and -Tr < 
y < 0 in the second completes a period. The minimum 
x-value of these curves occurs at y = :t:7r/2 when we have 
x = In ~r. The curves are drawn, with closure information, 
in Figure 2. The clearcut region of exp z is the region to 
the left of the 'fingers'. 

6 . 3  c l e a r c u t  (sin z)  

The clearcut region for sin z is determined by -~r < 
~(sin z) < ~r as before. This gives -~r < cos(x)sinh(y) < 
lr, and this region is plotted in Figure 3. We see that  if we 
know that  -~7 < Y < ~7 where ~7 = sinh -1 (~r) ,~ 1.862.. . ,  
then/C(sin z) = 0. 

6 . 4  c l e a r c u t ( t a n  z)  

To find the clearcut region for tan z we proceed as before. 
The imaginary part  of tan(x + iy) is sinh(2y)/(cos(2x) + 
cosh(2y)), and for a large percentage of x-values this is 
not larger than 1, in magnitude, and hence/C(tanz)  = 0 
most of the time. However, for some values of x, for which 
cos 2x is negative and nearly - 1 ,  then some values of y 
will give nonzero K:. 

f 
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i • - 4  i 
-1 -0.5 0 0,5 1 1.5 2 2,5 

Re(z) 

Figure 2: The clearcut region for exp z. Everywhere to 
the left of the 'fingers' we have In exp exp z = exp z. The 
region is closed on the solid lines, open on the dashed 
lines. 

J i t J t 

/ ~, I ~,, I ~, 

,-4 

,-6 

i J i i I i i i i i J "  
- 3  -2  - I  0 1 2 : Re(z~ 

Figure 3: The clearcut region for sin z, with closure as 
indicated. /C(sin z) = 0 for real z, and also near ~(z)  = 
(2m + lfir/2. The clearcut region for cos z is similar but 
phase-shifted. 
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Figure 4: The  clearcut region for tan  z is everywhere out- 
side the small isolas which occur near  the singularities of 
tan  z. The  isolas are periodic in x with period 7r. 

To be precise, if x is between ~ r / 2 -  ( 1 / 2 ) s i n - l ( 1 / ~  ") 
and Ir/2 + ( 1 / 2 ) s i n - l ( 1 / r )  then there are two values of 
y, namely y± where 2ye = 

cos(2 ± (cos(2 + 1 - 
In ~ Z i ) 

where ~ ( t a n ( x + i y ) )  = r .  For y_ _< y < y+ we have 
]C( tan (x+ iy ) )  ~t 0 (note y_ > 0 for x ~ r / 2 ) .  This gives 
a small island or isola near x = ~r/2 in which we cannot 
simplify In exp tan z to tan z. There  is a symmetr ic  isola 
below the x-axis, open instead of closed because of our 
choice of closure for In z, for which the same is true. These 
isolas are periodic in x with period ~r. See Figure 4. 

6 . 5  c l e a r c u t ( s i n  -1  z)  

The  clearcut region for sin-1 z is best  found by writing 
down parametr ic  equations for the boundary,  namely 

sin -1 z = t + ip 

where p = =t=lr. This gives z = sin(t + ip) = 
sin(t) cosh(p) + i sinh(p) cos(t) and so the equations of the 
boundary  region are 

x = cosh(~r)sint 

y = ±sinh(Tr) cost  

which describes an ellipse in C. Since sinh lr and cosh ~r 
are bo th  approximately  11.5, this elliptical region looks 
nearly circular. In the interior of this elliptical region, we 
have ]C(sin -1 z) -- 0. I t  is interesting to note tha t  the 
branch cuts for sin-1 z penet ra te  the ellipse to (±1 ,0) ,  
but  tha t  along the branch cuts /C(sin -1 z) is still zero iff 
z is inside the ellipse. 

The clearcut region for cos -1 z is bounded by exactly 
the same ellipse; all tha t  changes is the parameter izat ion 
of the boundary  in the above process. This means tha t  
In exp sin -1 z and In exp cos -1 z can bo th  be simplified in 
the interior of the same z-region. We find, however, t ha t  
the top of the ellipsoidal disk is closed for ]C(sin -1 z) while 
the bo t t om is open, and this is reversed for/C(cos -1 z), 
so care must  be taken on the boundary.  

6 . 6  c l e a r c u t ( t a n  -1  z)  

Both approaches (direct and parametr ic)  work in this 
case. By Maple, the imaginary par t  of tan -1 (x + iy)  is 
l n ( ( x 2 + ( y + l ) 2 ) / ( x 2 + ( y - 1 ) 2 ) ) / 4 ,  which can be interpret-  
ed as half the logari thm of the rat io of the distance from 
z to the branch point at - i  to the distance to the branch 
point at  i. This  rat io will be exp(2r)  when the imaginary  
par t  of tan  -1 z is ~r and e x p ( - 2 r )  when the imaginary 
par t  is -~r. This  occurs on circular loci, centred just  above 
i and below - i  (in fact at ± coth(2~r)i ~ ±1.000006975i), 
and of radius r = 1/sinh(2~') ,~ 0.0037. 

The  clearcut region for tan  -1 z is everywhere outside 
these extremely t iny circles 2. This conclusion is so sur- 
prising tha t  it is worthwhile drawing the clearcut region 
another  way. We set tan  -1 z = t + ip where - r  < p < r .  
Then z -- t an( t  + ip) and we have parametr ical ly  

sin 2t 
X = 

cosh 2p -Jr cos 2t 
sinh 2p 

y = 
cosh 2p + cos 2t 

which when plot ted with p = lr gives us the upper  circle 
described above, and with p = -Tr gives us the lower 
circle. 

Thus it is nearly always t rue tha t  l n e x p t a n - l z  = 
tan  -1 z. One would make an error in doing this simplifi- 
cation only if later  z was specialized to be within roughly 
0.0037 of the branch points at  ± i .  

7 C o n c l u d i n g  R e m a r k s  

We have introduced a new mathemat ica l  function, the un- 
winding number,  to make computer  algebra in C simpler. 
This function allows us to give correct rules for manip-  
ulating formulas which contain variables taking complex 
values. Of  the many  definitions possible, we believe tha t  
the definition of ]C(z) is the simplest. 

The principal benefits of ]C include 

1. tha t  it allows encapsulation of geometric information 
for use by ' assume '  systems or for human interven- 
tion, and 

2 R M C  bel ieves  he  r e m e m b e r s  W .  K a h a n  m e n t i o n i n g  t h i s  f ac t  in 

c o n v e r s a t i o n  s o m e  y e a r s  ago.  
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2. that it gives a precise definition for 'simpli- [2] 
fy/symbolic' in Maple or other CAS, that can be 
used for provisos: one rewrites an expression using 
/C, one uses whatever assumptions one has to evalu- [3] 
ate as many instances of/C as possible, and than one 
sets to zero whatever unwinding numbers are left. 
The proviso for the result is then just the unwinding 
numbers that had been set to zero. [4] 

The principal disadvantages in using /C in a computer 
algebra system include 

1. that rewrite rules using K: essentially double the size [5] 
of the printed output (though not the DAG), giving 
answers of the form Y + 2~'i~(Y), and 

[6] 
2. that the rules for removal of ~ are essentially geo- 

metric and need decisions to be taken on the basis of 
where its arguments are in C. 

Automatic geometric reasoning with elementary func- 
tions is not well understood yet, and indeed this may 
prove to be a "grand challenge" to symbolic computation 
systems, with many other possible applications. Perhaps [7] 
we may turn this disadvantage of/C into a stimulant for 
development in this area. [8] 

More work needs to be done before this function can be 
properly implemented. We invite discussion of this func- 
tion, and in particular we invite discussions containing 
trial implementations in real computer algebra systems. 
The primary purpose of this present article is to help to 
get people used to the idea of the unwinding number; of 
course such a psychological adjustment--to learn to think 
of/C as an answer, not a question--is a necessary prelimi- 
nary to its being used in practice. We invite you to check 
the results in this paper, and to draw some clearcut re- 
gions for yourselves (e.g. for x/1 - z 2 or the hyperbolic 
functions) to help make that adjustment. 

Mathematicians make progress by turning analysis into 
algebra. We hope that ~(z) will help to turn complex 
analysis into computer algebra. 
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