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MGM.10 The Spectral Theorem for Symmetric Matrices and the Holy
Grail of Matrix Theory
GIVE IT A TRY!

G.1) Symmetric matrices and the SVD

0G.1.a.i) Setting the parameters

Here's a matrix with three cleared entries r, s, t, X, y and z
Clear[r, s, t, x, ¥, 2];

2.1 5. -2.3 0.0

r -4.2 1.7 0.9
A= ;

s t 4.2 -2.7

x b'd z -1.8

MatrixForm[A]

2.1 5. -2.3 0

r -4.2 1.7 0.9
s t 4.2 -2.7
X y z -1.8

Setr, s, t, X, y and z so that the resulting matrix is symmetric.

OG.1.a.ii) Hessians are symmetric

The hessian of a function of three variables f[x.y,z] is given by

£200[x,y, 2] 19, y, 2] £10D[x, y, 2]
Hilx, y, z] = | f0101x, y, 2] fO20[x,y, 2] fOLD[x,y, 7]
f000[x, y, 2] fO1D[x, y, z] FOOV[x,y, z]
You make the call.
Is this matrix symmetric?

0G.1.a.iii) Symmetric matrices are square matrices

Does a matrix A that hits on 4D and hangs in 3D have any chance of being symmetric?
‘Why or why not?

0OG.1.b.i) The transpose manipulation
Here is a random matrix A:
hitdim = Random[Integer, {2, 6}];
hangdim = Random[Integer, {2, 9}];
Clear[i, jl;
A = Table[Random[Real, {-4, 4}], {i, 1, hangdim}, {j, 1, hitdim}];
MatrixForm[A]

-1.19105 3.35461
3.82957 0.227172
-3.04369 -0.565715
0.447953 3.51817
1.43288 -0.877713)

Here's a random X in hitdimD:

] x = Table[Random[Real, {-4, 4}], {j, 1, hitdim}]
{-2.88637, 2.13237}
Here's a random Y in hangdimD:
I Y = Table[Random[Real, {-4, 4}], {i, 1, hangdim}]
{3.05618, -3.58059, 0.400993, 2.95193, 3.88463}
Here's a calculation of Ye (A.X).
] v.(a.x)
68.2432
And here's a calculation of (ALY ) *X.
] (Transpose([A].¥).X
68.2432
Say why you are not at all surprised with the outcome.

0G.1.c.i) Eigenvectors of non-symmetric matrices

Here's a non-symmetric 2D matrix A shown with a plot of the unit eigenvectors of A:
2.0 -1.2 .

( Random[Real, {-0.9, -0.1}] Random[Real, {-3, 3}] ) !

MatrixForm[A]

A=

Clear[eigenvector];
{eigenvector[1], eigenvector [2]} = Eigenvectors [A];

eigenplot = Table [Arrow[eigenvector [k],
Tail » {0, 0}, VectorColor - Indigo], {k, 1, 2}];

Show[eigenplot, Axes - True,
AxesLabel -» {"x", "y"}, PlotRange » {{-1, 1}, {-1, 1}},
PlotLabel -» "Unit eigenvectors of nonsymmetric matrix A"];

2. -1.2
-0.819183 -1.81104

:nvectors ofl}honsymmetric

Here is the dot product of the wo plotted eigenvectors:
I eigenvector[1l] .eigenvector[2]
0.0882971
Does the outcome surprise you?
Why or why not?
OG.1.c.ii) Eigenvectors of symmetric matrices

Now do the same thing for a random symmetric 2D matrix A:
B= (Random[Real, {-3, 3}] Random[Real, {-3, 3}] )
~ \ Random[Real, {-3, 3}] Random[Real, {-3, 3}]

i

1
A= ; (B + Transpose [B]) ;

MatrixForm[A]

Clear [eigenvector];
{eigenvector[1l], eigenvector[2]} = Eigenvectors [A];

eigenplot = Table [Arrow[eigenvector [k],
Tail » {0, 0}, VectorColor - Indigo], {k, 1, 2}];

Show[eigenplot, Axes - True,
AxesLabel -» {"x", "y"}, PlotRange -» {{-1, 1}, {-1, 1}},
PlotLabel » "Unit eigenvectors of random symmetric matrix B"];

2.3358 -0.452732
-0.452732 0.698261

rectors of rfihdom symmetr:

-0.25

Here is the dot product of the wo plotted eigenvectors:
| eigenvector[1l] .eigenvector[2]
0
Does the outcome surprise you?
Why or why not?
How is the Spectral Theorem for symmetric matrices related to your response?

O0G.1.d.i) SVD aligner frame from the eigenview

Here is random 2D matrix A:
_ ( Random[Real, {-3, 3}] Random[Real, {-3, 3}] )
Random[Real, {-3, 3}] Random[Real, {-3, 3}]
MatrixForm[A]

i

-1.88455 1.41846
( 2.0534 0.826086
Here is A"A:

I MatrixForm[Transpose [A] .A]

7.76801 70.976875)
<70.976875 2.69444

The matrix A'.A is automatically symmetric because

(ALA) = AL(AY' = ALA.
The Spectral theorem guarantees a perpendicular frame of eigenvectors of A'.A.
Here they are:

Clear[eigenvector];
{eigenvector[1l], eigenvector[2]} = Eigenvectors [Transpose[A].A];
eigenplot = Table[Arrow[eigenvector [k],

Tail -> {0, 0}, VectorColor -> Indigo], {k, 1, 2}];
Show[eigenplot, Axes -> True, AxesLabel -> {"x", "y"},
PlotRange -> {{-1, 1}, {-1, 1}},
PlotLabel -> "Unit eigenvectors of \!\(A\"t\).A"];



Unit eiqenvellitors of A®.A

How do you get an SVD aligner frame for A from these two vectors?
0G.1.d.ii) SVD stretch factors and hanger frame from the eigenview

Stay with the same matrix A and use the eigenvectors you found in part i) to generate the

SVD stretch factors and the corresponding SVD hanger frame for A. Plot the hangerframe.

OG.1.e) Aligner frame for A versus aligner frame for A'.A

Here's a new random 2D matrix A:
_ (Random[Real, {-3, 3}] Random[Real, {-3, 3}] )
" \Random[Real, {-3, 3}] Random[Real, {-3, 3}]/’
MatrixForm[A]

0.945066 0.701224
(70.52231 -2.50988
Here is A"A:

I MatrixForm[Transpose[A] .A]

(1.16596 1.97364
1.97364 6.79121
Let Mathematica come up with an SVD aligner frame for A:
I SingularValues [A][[3]]
{{0.301185, 0.953566}, {0.953566, -0.301185}}
Let Mathematica come up with an SVD aligner frame for A" A::
I SingularValues [Transpose[A] .A][[3]]
{{-0.301185, -0.953566}, {-0.953566, 0.301185}}
Speculate on why these two turned out the way they did.

G.2) The Spectral Theorem is the Holy Grail of Matrix Theory

0G.2.a) Using the Spectral Theorem to do SVD analysis
Here is a random matrix A

hitdim = Random[Integer, {3, 7}];
hangdim = Random[Integer, {3, 7}];

A =
Table [Random[Real, {-10, 10}], {i, 1, hangdim}, {j, 1, hitdim}];
MatrixForm[A]

4.35479 8.75522 -9.54675
8.84966 9.02385 -8.88522
9.40472 -2.15282 -8.35597
-8.59679 7.3843 -6.11601
-6.14196 9.65264 -7.84692
The Spectral theorem guarantees an orthonormal basis of hitdimD consisting of
eigenvectors of A'.A. Here is one such:
Clear [eigenvector];
eigenvector [k_] := Eigenvectors [Transpose[A].A][[k]];
Table[eigenvector [k],
{k, 1, Length[Eigenvectors [Transpose[A].A]]}]
{{0.182161, 0.655408, -0.732979},
{0.93316, -0.350169, -0.0812}, {0.309886, 0.669195, 0.675388}}
= Use these eigenvectors of A".A to come up with an SVD aligner frame for A.

Put answer here.

= Hit A on your aligner frame vectors to come up with the SVD stretch factors for A.
Put answer here.

= Hit A on your aligner frame vectors to come up with the SVD hangerframe
corresponding to the aligner frame you came up with earlier.

Put answer here.

0G.2.b) Rank, orthonormal bases of null space, column space and row space

Here is a random matrix A
hitdim = Random[Integer, {5, 8}];
hangdim = Random[Integer, {2, 4}];
A =
Table [Random[Real, {-10, 10}], {i, 1, hangdim}, {j, 1, hitdim}];
MatrixForm|[
a]

1.55645 -9.86011 -5.07556 -4.69159 8.80283 -3.01033

2.58703 7.04944 7.16909 2.63488 3.83181 6.59619

8.31944 3.61103 2.71703 7.19147 0.47226 1.96699
Here is a look at A" A:

I MatrixForm[Transpose [A].A]

78.3283 32.932 33.251 59.3432 27.5431 28.7434

32.932 159.956 110.395 90.8027 -58.0794 83.2846

33.251 110.395 84.5394 62.2416 -15.9255 67.9122

59.3432 90.8027 62.2416 80.6709 -27.8067 45.649

27.5431 -58.0794 -15.9255 -27.8067 92.3957 -0.295162

28.7434 83.2846 67.9122 45.649 -0.295162 56.4409

The Spectral theorem guarantees an orthonormal basis of hitdimD consisting of
eigenvectors of A'.A. Here is one such:

Clear [eigenvector];
eigenvector [k_] := Eigenvectors [Transpose[A].A][[k]];

Table [eigenvector [k],

{k, 1, Length[Eigenvectors [Transpose [A].A]]}]

{{-0.22616, -0.641392, -0.457035, -0.417066, 0.179495, -0.349891},
{-0.597849, 0.212747, -0.0637351, -0.134356, -0.744949, -0.142314},
{0.51084, -0.173419, -0.33973, 0.49495, -0.445732, -0.387169},
(-0.574865, -0.123024, -0.0558049, 0.743633, 0.308028, -0.0583927},
{-0.435267 - 0.00823909 1, -0.304208 +0.116666 i,

0.464264 - 0.135974 1, 0.56209, 0.186622 + 0.0523418 i,
-0.341705-0.00407327 1}, {-0.435267 + 0.00823909 i,
-0.304208-0.116666 i, 0.464264 +0.135974 i, 0.56209,
0.186622 - 0.0523418 1, -0.341705 + 0.00407327 i}}
Now hit each of these eigenvectors with A:
Table[A.eigenvector [k],
{k, 1, Length[Eigenvectors [Transpose [A].A]]}]
({12.882, -11.1021, -9.04217}, {-8.20364, -4.65108, -5.97666},
{-0.850947, -5.29417, 5.28798}, {0, 0, 0}, {0, 0, 0}, {0, O, 0}}
Use the information above to come up with quick calculations of:
= The rank of A.
Put answer here.
= An orthonormal basis the row space of A and the dimension of the row space of A.

Put answer here.

= An orthonormal basis of the null space of A and the dimension of the null space of A.

Put answer here.

= An orthonormal basis of the column space of A and the dimension of the column space
of A.

Put answer here.

= PseudoInverse[A].Y for any Y in hangdimD.

0G.2.c) Facts about dimensions

Given a matrix A hitting on hitdimD and hanging in hangdim D, you already know that
A'.A is a symmetric matrix which hits on hitdimD and hangs in hitdimD.

The Spectral theorem gives you an orthonormal basis {X;,X5,X3, X4,....,Xhitdim } Of
hitdimD consisting of unit eigenvectors of A'.A. Group and (if necessary relabel) these
vectors into two groups.

Group I = {X;,X3,X3,.....X, } for which A.X; = {0,0,...0} for all j = 1,2,...,p.

Group 1 gives an SVD aligner frame for A.
Group 2 = {Xp+1,Xp+2:Xp+3s+++-»Xnitdim } for which A.X; ={0,0,...} for all j = p+1,p+2,
...,hitdimD.

The facts of the matter are:

= The rank of A is p.
= To get an orthonormal basis of the column space R[A], you just go with
{ AX, AX, AX5 -p }
IAXE NAX0? [AXS] 2 JAX] 2

The upshot: SVD hangerframe for A is an orthonormal basis for R[A].
= To get an orthonormal basis of the row space R[A'], you just go with {X;,X, X350 Xp }e

The upshot: SVD alignerframe (corresponding to non-zero stretch factors) for A is an
orthonormal basis for R[A‘].

= To get an orthonormal basis of N[A], you just go with {X,1,X,+2,X3,.-Xhitdim }-

These are the eigenvectors of AUA that are hit into {0,0,...,0} by A.

Given this:

= What is the dimension of the column space R[A]?
Put answer here,

= What is the dimension of the row space R[A']?
Put answer here,

= What is the dimension of the null space N[A]?
Put answer here,

= When you add  (dimension of R[A]) + (dimension of N[A]) , what do you get?

Put answer here,

G.3) How SVD stretch factors of A are related to eigenvalues of A'.A

0G.3.a.i) How SVD stretch factors of A are related to eigenvalues of A'.A

Here's a random 2D matrix:
_ ( Random[Real, {-3, 3}] Random[Real, {-3, 3}] )
Random[Real, {-3, 3}] Random[Real, {-3, 3}]
MatrixForm[A]

i



0.394145 2.94215
( -1.02352 -0.567313
The SVD stretch factors of A are:
I stretches = SingularValues [A][[2]]
{3.05775, 0.911696}
Compare with the square roots of the eigenvalues of A".A
£x_]=Vx;
Map[f, Eigenvalues [Transpose [A].A]]
{3.05775, 0.911696}
Try the same thing for other random matrices:

hitdim = Random[Integer, {3, 7}];
hangdim = Random[Integer, {3, 7}];
A =
Table [Random[Real, {-10, 10}], {i, 1, hangdim}, {j, 1, hitdim}];
MatrixForm [
a]

1.66118 7.65409 5.03182 -2.03093
-3.26326 2.34568 6.22899 -9.0206
4.14971 5.29624 9.0599 -1.65548
The SVD stretch factors of A are:
| stretches = SingularValues [A][[2]]
{16.5255, 8.49759, 3.44979}
Compare with the square roots of the eigenvalues of A" A
£[x_] = Vx;
Map[f, Eigenvalues [Transpose [A] .A]]
{16.5255, 8.49759, 3.44979, 8.12808 x 10 %}
The strong suggestion is that the SVD stretch factors of any matrix A are the square roots
of the eigenvalues of A'.A. Explain why this is guaranteed for any matrix A.
Click on the right for a tip on how to get started.
For any matrix A, the Spectral theorem gives you an orthonormal basis
{X1.X2.X3, Xgoeoo- Xnitgim
of hitdimD consisting of unit eigenvectors of A".A.

Group and (if necessary relabel) these vectors into two groups:

Group I = {X,X2,X3,.....X}} for which A.Xj = {0,0,...0} for all j=1,2,...,p.
Group 2 = {X;,Xp42,Xp+35+--Xnitdim » for which A.X; ={0,0,...}
for all j = p+1,p+2, ...;hitdimD.

Facts of the matter:
= An SVD alignerframe for A,
{alignerframe[1],alignerframe[2],.alignerframe[3], . .,alignerframe[p]}
is
{X1.X2.X3,...%p 3
= The corresponding nonzero SVD stretch factors for A,
{stretch[1],stretch[2],stretch[3]....., stretch[p]},
are
{HAX L TAX L ITAXS (e ITAXG 13-

So stretch[k] = || A. Xy || = VA Xy. A Xy = VX AUA X,
O0G.3.a.ii) The stretch factors of A'.A are the eigenvalues of A'.A
Here's a random matrix A:
hitdim = Random[Integer, {3, 7}];
hangdim = Random[Integer, {2, 4}];

A = Table[Random[Real, {-4, 4}], {i, 1, hangdim}, {j, 1, hitdim}];
MatrixForm[A]

-3.87284 3.48002 -3.70382 1.8934 -0.959655 -3.39657
( 0.107281 -2.8934 2.51482 -3.31944 -2.52803 1.86302
Here is a look at A" A:

I MatrixForm[Transpose [A] .A]

15.0104 -13.788 14.6141 -7.68895 3.44538 13.3542
-13.788 20.4823 -20.1657 16.1935 3.97498 -17.2106
14.6141 -20.1657 20.0426 -15.3606 -2.80315 17.2654
-7.68895 16.1935 -15.3606 14.6036 6.57462 -12.6152
3.44538 3.97498 -2.80315 6.57462 7.31187 -1.45023
13.3542 -17.2106 17.2654 -12.6152 -1.45023 15.0075
Here are the non-zero SVD stretch factors of A A
| stretches = SingularValues [Transpose[A].A][[2]]
{78.0471, 14.4111}
Here are the eigenvalues of A'.A
| eigenvalues = Eigenvalues [Transpose[A].A]
(78.0471, 14.4111, 0, 0, 0, O}
Try it again for another random matrix A:
hitdim = Random[Integer, {3, 7}];
hangdim = Random[Integer, {2, 4}];
A = Table[Random[Real, {-4, 4}], {i, 1, hangdim}, {j, 1, hitdim}];
MatrixForm[A]

-2.14965 -2.38107 -0.540758 -1.32461 3.15565 0.680655 0.96764°%

-1.71637 -2.50423 2.56216 1.34369 2.94582 -2.63139 3.08214
1.0475 -2.94758 2.32827 2.47871 -3.05978 3.94582 3.81345
1.79814 3.46825 -1.9172 1.9631 0.179213 0.00900722 3.40741

Here are the non-zero SVD stretch factors of A" A
I stretches = SingularValues [Transpose[A].A][[2]]
{63.805, 54.8974, 31.8292, 11.1111}
Here are the eigenvalues of A'.A
I eigenvalues = Eigenvalues [Transpose [A].A]
{63.805, 54.8974, 31.8292, 11.1111, 0, O, O}
‘Why did that happen?

0G.3.a.iii) The condition number of A in terms of the condition number of A'.A

Given any matrix A, you can express the condition number of A in terms of the condition
number of A"A.

Do it.

If A is ill-conditioned, do you think that A".A even more ill-conditioned?

Why?

G.4) The guts of Spectral Theorem

O0G.4.a) Importance of Spectral Theorem

All through the basics, there was lots of raving about the importance of the Spectral
Theorem.
What does the Spectral Theorem say and why is it so important?

0G.4.b) Guts of the proof of the Spectral Theorem

Here's a random symmetric 2D matrix A:
Clear[i, j];
B = Table [Random[Real, {-4, 4}1, {i, 1, 2}, {j, 1, 2}];
1
A = — (B+ Transpose[B]);
2

MatrixForm[A]

2.80745 3.26996
3.26996 1.12378 )

Make this function:
Clear([g, x, y]i
[ {x, y}. (A.{x, v}) ]

g[x_, y_] = Expand
{x, y}.{x, v}

2.80745x?> 6.53992xy 1.12378y?
+ +
x2 +y2 X2 + y2 x2 +y2

Look at this graphic:

glevels = DensityPlot [Evaluate[g[x, y]], {x, -1, 1}, {y, -1, 1},
Axes - True, AxesLabel -» {"x", "y"}, PlotPoints - 50];

The lighter the square, the higher g[x,y] = Lyl AbyD is.
(x.yh{x.y)
Throw in the unit eigenvectors of A:

Clear [eigenvector];

{eigenvector[1], eigenvector[2]} = Eigenvectors [A];

eigenplot = Table [Arrow[eigenvector [k],

Tail » {0, 0}, VectorColor -» Red], {k, 1, 2}];
Show[glevels, eigenplot];

y

Here's another:
Clear[i, j];
B = Table [Random[Real, {-4, 4}], {i, 1, 2}, {3, 1, 2}];

1
A= ? (B + Transpose [B]) ;

MatrixForm[A]
Clear[g, x, y];

i

{x, y}. (A.{x, v}) ]
{x, ¥}-{x, ¥}
glevels = DensityPlot [Evaluate[g[x, y]],
{x, -1, 1}, {y, -1, 1}, Axes - True, AxesLabel - {"x", "y"},
PlotPoints - 50, DisplayFunction - Identity];

glx_,y_]-= Expand[




Clear[eigenvector];
{eigenvector[1], eigenvector [2]} = Eigenvectors [A];
eigenplot = Table [Arrow[eigenvector [k],
Tail » {0, 0}, VectorColor -» Red], {k, 1, 2}];
Show[glevels, eigenplot, PlotLabel ->
"Density plot with eigenvectors of A",
DisplayFunction - $DisplayFunction];

1.31168 -2.68296

-2.68296 2.17796
ty plot withYeigenvectors
1

0 0.5 1

{x.y LAY is

The lighter the square, the higher g[x,y] = oyl by

Rerun the last cell a couple of times.
How does the proof of the Spectral theorem tell you why all these graphics turned out the
way they did?

0G.4.c) The eigenvalues of symmetric matrices are all real

How does the proof of the spectral theorem reveal why the eigenvalues of a symmetric
matrix are all real?

G.5) Positive semidefinite and positive definite symmetric matrices

0G.5.a.i) The square root of a positive semidefinite matrix

If someone hands you a symmetric matrix A with all nonnegative eigenvalues, then it's
pretty easy to come up with another symmetric matrix B so that

BB =B'B =A
Explain in general terms how you can do this.

OG.5.a.ii) If A = BL.B, , then all the eigenvalues of A are non-negative

When someone hands you any matrix B and you put A = B'.B ,then the transpose
manipulation
yields
Xe(A.X) = X+ ((B".B).X)
= X (B'.(B.X))
=(B.X)*B.X) = |[|B.X]|>.
Because || B.X ||> cannot be negative, this tells you
Xe(AX) =0
no matter what X is.
At this point you take over and explain why all the eigenvalues of A = B'.B are non-
negative

0G.5.a.iii) FYI: Positive semi definite and positive definite matrices
No response from you is asked for here.
At this point you have enough to settle on this factoid:
Saying that all the eigenvalues of a symmetric matrix A are nonnegative the same as
saying
Xe(AX) =0
no matter what X is.
Most folks call these symmetric matrices by the name "positive semi-definite matrices"

It turns out that

Saying that all the eigenvalues of a symmetric matrix A are positive the same as saying
Xe(AX) >0

unless X = {0,0,...0}

Most folks call these symmetric matrices by the name "positive definite matrices."

O0G.5.a.iv) Positve definite Hessians

When you go with a function f[x,y,z] and find a point {a,b,c} at which gradf[a,b,c] = 0 and
you find that the Hessian Hg¢[a, b, c] is positive definite, how does f[a,b,c] compare to
f[x,y,z] when {x,y,z} is near {a,b,c}?

G.6) Hessians for function Max-Min

0G.6.a) Local maximizers and local minimizers of f[x,y] = ¢~18%~17¥" (x — y2 4 Sin[x y])
Here's a function f[x,y]:
Clear[f, x, y];
flx_,y_]-= e 1-8¥-1.7¢y (x-y? +8Sin[xy])
e 1-8%-1.7y? (x - yZ +8in[xy])
Here's a plot of f[x,y] in the region -2 <X =2and -2<y=<2:

{xlow, xhigh} = {-2, 2};
{ylow, yhigh} = {-2, 2};
Plot3D[f[x, y], {x, xlow, xhigh},
{y, ylow, yhigh}, AxesLabel -> {"x", "y", "£f[x,y]"},
Boxed -> False, PlotRange -> All, ViewPoint -> CMView] ;

You can see a that this function has a local maximizer and possibly a couple of local
minimizers in the plotted region.

Clear[gradf];

gradf[x_, y_]1 = {0 f[x, y], Oy £[x, ¥]}
{e’l'sxz’l'”’z (l+yCos[xy]) -3.6 e 18X LTy g (x y? +sin[xy]),

e 18X -1.7Y 5y .ixCos[xy]) -3.4e ¥ 17V v (x y2 isin[xy]) }
There is no chance of solving gradf[x,y] = {0,0} with the solve command.
xderivcontourplot = ContourPlot [gradf[x, y][1], {x, xlow, xhigh},

{y, ylow, yhigh}, Contours -» {0}, ContourStyle -» Thickness[0.01],

PlotPoints » 50, ContourSmoothing - Automatic,
ContourShading - False, DisplayFunction - Identity];

yderivcontourplot = ContourPlot [gradf[x, y][2], {x, xlow, xhigh},
{y, ylow, yhigh}, Contours -» {0}, ContourStyle -» Thickness[0.01],
PlotPoints » 50, ContourSmoothing - Automatic,
ContourShading - False, DisplayFunction - Identity];

zeroderiv = Show[xderivcontourplot,
yderivcontourplot, DisplayFunction -» $DisplayFunction];

[

The curves are plots of dx f[x, y] = 0 and dy f[x, y] = 0.
Let Mathematica come up with the points of intersection:

I {x1, y1} = {x, y} /. FindRoot [gradf[x, y] == {0, 0}, {x, 0}, {y, -0.5}]
{-0.184622, -0.667741}

{x2, y2} =

{x, y} /. FindRoot [gradf[x, y] == {0, 0}, {x, -0.5}, {y, 0.5}]
{-0.458731, 0.45765}
I {x3, y3} = {x, y} /. FindRoot [gradf [x, y] == {0, 0}, {x, 0.5}, {y, O}]
{0.5349, 0.133367}

See them:

pointplots = {Graphics[{Red, PointSize[0.03], Point[{x1l, y1}]}],
Graphics[{Red, PointSize[0.03], Point[{x2, y2}]1}],
Graphics[{Red, PointSize[0.03], Point[{x3, y3}1}1};

Show [zeroderiv, pointplots];

-

-2

2 -1 0 1 2
Move in with the Hessian to determine what's happening at these points.

O0G.6.b) Local maximizers and local minimizers and saddle points of
f[x,y] = 72X ~3Y’ (3Sin[0.5x]> - y?)
Here's a function f[x,y]:
Clear[f, x, y];
£lx_, y ] =e2¥3Y (35in[0.5x]? - y?)
e 2¥3Y (_y? . 35in[0.5%]?)
Here's a plot of f[x,y] in the region -1 sx sland-1sys=<1:
{xlow, xhigh} = {-1, 1};
{ylow, yhigh} = {-1, 1};
Plot3D[f[x, y], {x, xlow, xhigh},
{y, ylow, yhigh}, AxesLabel -> {"x", "y", "£f[x,y]"},
Boxed -> False, PlotRange -> All, ViewPoint -> CMView];



f[x,y] = constant = 5.
Parameterize and plot this curve.
Give the perpendicular frame on which it is hung and measure the length of the long axis
and the short axis.
How is the shape of the ellipse related to the ratio of the eigenvalues of the Hessian?

0G.7.b.i) Setting a quadratic form equal to a constant and getting a hyperbola

Here's another example of something folks call a quadratic form:

Clear[f, x, y];

You can see a that this function has a local maximizers, a local minimizer and maybe a flx_, y ]1=x"+5.4xy+y*+2.1x+1.7
saddle point in the plotted region: 1.7+0.2x+%? +5.4xy+y?
Locate the points and use the Hessian to determine which are local maximizers,which are And look at this plot:
local minimizers and which are saddle points. constant = 8;
0G.6.¢) Kicking up the dimension ranger = 30;
Here's a function of three variables: curveplot =
Clear[f, gradf, x, y, z]; ContourPlot [f[x, y], {x, -ranger, ranger}, {y, -ranger, ranger},
1.3 Contours - {constant}, Axes - True, AxesLabel -» {"x", "y"},

flx_,y_,2_1=5.1x+6.5y+8.1z+

ContourSmoothing -» Automatic, PlotPoints - 100,

Xyz
AspectRatio -» Automatic, ColorFunction - Automatic];

5.1x+6.5y+ ——175~3~+8.lz
xyz

¥
You can't plot this function, but you can calculate its gradient: 30
| gradf[x_, y_, z_] = {0xf[x,y, z], Oy f([x, vy, 2], 0. f[x, vy, 2]} jz
{5'1’xifz’ﬁ's’xly.fz’s‘l’xl},.zz} 0
The hessian -10
OOy, 7] 1Ok y, z] f00D[x,y, 7] -20
Hilx,y, 7] = | {100k, y, 2] f020[x, y, 7] fOID[x,y, 7] ~3056=35-10 0 10 20 30%
10Dk, y, z] fOID[x,y,z] fO0D[x,y, 7] The border of the black region is a plot of the curve consisting of all the points {x,y} for
is given by which
Ox,2y £[%, ¥, 2] O,y E[x, ¥, 2] Ox,z E[%, ¥, 2] f[x,y] = constant = 8.
He[x_, y_,2_] =| Oy,x£[x, ¥, 2] Oy,2y£[x, ¥, 2] Oy, £[x,y, 2] |; You decide to look at the Hessian of f[x,y]:
0z,xf[x, ¥, 2] Oz,yf[x, ¥, 2] O9¢z,2) £[x, ¥, 2] Clear [H];

Ox,2) £[x, y1 Ox,yf[x, ¥] ]
Ox,yE[x, Y] Ory,2) £[x, Y]
MatrixForm [He¢ [x, y]]

. He[x_, y_] = (
MatrixForm[He [x, ¥, 2]]

2.6 1.3 1.3
x’yz x’y’z x7yz?
1.3 2.6 1.3
xy’z Xy’ z xy? 27 ( 2 5.4)
1.3 1.3 2.6
¥yaZ Xy xye 5.4 2
Find the point {a,b,c} with a >0, b >0 and c >0 at which And you look at the eigenvalues of the Hessian:
gradffa,b,c] = {0,0,0}. | Eigenvalues [H¢[x, y]]
Use the Hessian to determine whether the point {a,b,c} is a local maximizer, local (7.4, -3.4}
minimizer or saddle point for f[x,y.z]. And now you say: "I can explain why the plot came out the way it did."
Here's a start: ‘What did you mean?
Solve[gradf [x z] == {0, 0,0 as . . . .
I ls [x, ¥, 2] {0, 0, 03] O0G.7.b.ii) Setting a quadratic form equal to a constant and getting an ellipse
{{x—>-0.847535, z—> -0.533633, y > -0.664989},
(x> -0.8475351, z > -0.533633 i, y > -0.664989 i}, Here's another example of something folks call a quadratic form:
{x—->0.8475351, z—->0.533633 1, y—> 0.6649891i}, Clear[f, x, yl;
(x> 0.847535, z > 0.533633, y > 0.664989}} £lx_,y 1=x*+2.5xy+3y?+2.1x+1.7
1.7+0.2x+%%+2.5xy +3y?
G.7) Quadratic forms And look at this plot:

flx,y] =ax’+bxy+cy’+dx+ey+g constant = 12;
ranger = 5;
set equal to a constant
curveplot =
0G.7.a) Setting a quadratic form equal to a constant and getting an ellipse ContourPlot [f[x, y], {x, -ranger, ranger}, {y, -ranger, ranger},
Contours - {constant}, Axes - True, AxesLabel » {"x", "y"},
ContourSmoothing - Automatic, PlotPoints - 100,
AspectRatio -» Automatic, ColorFunction - Automatic];

Here's an example of something folks call a quadratic form:
Clear[f, x, y];
flx_,y 1=2.3x2-1.9%xy+1.5y?+12.4%x+10.8y

y
12.4x+2.3%x%+10.8y-1.9xy+1.5y? .
And look at this plot:
constant = 5; 2
curveplot = ContourPlot [f[x, y], {x, -15, 5}, {y, -20, 6}, 0
Contours - {constant}, Axes - True, AxesLabel » {"x", "y"},
ContourSmoothing - Automatic, PlotPoints - 50, -2
AspectRatio - Automatic, ColorFunction - Automatic]; _a
y 4 -2 0 2 4 *
5 The border of the black region is a plot of the curve consisting of all the points {x,y} for
0 which
s f[x,y] = constant = 12.
You decide to look at the Hessian of f[x,y]:
-10
Clear [H];
15 Ox,2) £[%, Y] O,y £[x, ¥]
_20 He[x_, y_] = 8. £ 3 £
-15-10 -5 0 x x,y £[%, ¥] .2y £[%, ¥]

The border of the black region is a plot of the curve consisting of all the points {x,y} for MatrixForm[Hs [x, y]]

which
f[x,y] = constant = 5.
Parameterize and plot this curve. 2 2.5
Give the perpendicular frame on which it is hung and measure the length of the long axis ( 2.5 6 )
and the short axis. And you look at the eigenvalues of the Hessian:
The border of the black region is a plot of the curve consisting of all the points {x,y} for | Eigenvalues [H¢[x, y1]

which



{7.20156, 0.798438}
And now you say: "I can explain why the plot came out the way it did."
‘What did you mean?

0OG.7.b.iii) Setting a quadratic form equal to a constant and getting a line

Here's another example of something folks call a quadratic form:
Clear[f, x, yv];
flx_, v_] =x?-axy+4y’+1
1+x2 74xy+4y2
And look at this plot:

constant = 2;
ranger = 30;

curveplot =
ContourPlot [f[x, y], {x, -ranger, ranger}, {y, -ranger, ranger},
Contours - {constant}, Axes - True, AxesLabel » {"x", "y"},
ContourSmoothing - Automatic, PlotPoints - 100,

AspectRatio -» Automatic, ColorFunction - Automatic];

-20

-30

30-20-10 0 10 20 30%

This is a plot of the curve defined by setting f[x,y] = constant = 2.
This puzzles you so you look at the gradient f[x,y]:
Clear[gradf];
gradf[x_, y_] = {0xf[x, y], Oyf[x, ¥]}
{2x-4y, -4x+8y}

I Solve[gradf[x, y] == {0, 0}]
Solve::svars : Equations may not give solutions for all "solve" variables.
{{x>2y}}

And you look at the Hessian of f[x,y]:

Clear[H];
Ox,2) £[X, ¥1  Ox,yE[x, ¥]
Ox,y£[%, Y] Ory,2y£[x, v1)'
MatrixForm [H¢ [x, Y]]

He[x_, y_ 1=

2 -4
( -4 8 )
And you look at the eigenvalues of the Hessian:
I Eigenvalues [H¢ [x, ¥]]
{0, 10}
And now you exclaim: "I can explain why the plot came out the way it did!"
What did you mean?

0G.7.b.iv) Setting a quadratic form equal to a constant and getting a parabola
Here's another example of something folks call a quadratic form:
Clear[f, x, y];
flx_,y ]1=%x>-4.0xy+4.0y?+2.3x+1.3y
2.3x+x% +1.3y—4.xy-v-4.yZ
And look at this plot:

constant = 2;
ranger = 30;

curveplot =
ContourPlot [f[x, y], {x, -ranger, ranger}, {y, -ranger, ranger},
Contours » {constant}, Axes -» True, AxesLabel » {"x", "y"},
ContourSmoothing - Automatic, PlotPoints - 100,
AspectRatio - Automatic, ColorFunction - Automatic];

y
30

20
10

0
_10/
-20

=30t ... ... ...
-30-20-10 0 10 20 30

X

This is a plot of the curve defined by setting f[x,y] = constant = 2.
It's not totally clear whether this is a parabola or part of an ellipse.
You look at the gradient f[x,y]:

Clear[gradf];

gradf[x_, y_]1 = {0xf[x, y], Oy f[x, ¥]}
{2.3+2x-4.y,1.3-4.x+8.y}

I Solve[gradf[x, y] == {0, 0}]
{}

And you look at the Hessian of f[x,y]:

Clear [H];

i

Ox,2y £[%, ¥] Ox,yflx, ¥] )

He [x 1= (
£iEr ¥ Ou,y E[x, Y1 Ory,2) £%, ¥]

MatrixForm[H¢ [x, y]]

2 -4.
I
And you look at the eigenvalues of the Hessian:
I Eigenvalues [H¢ [x, ¥]]
{10., 0}
And now you exclaim: "I can explain why the plot came out the way it did! And I know
that this plot is a parabola!"
What did you mean? And how did you come up with your decision?

G.8) Quadratic forms defined by a symmetric matrix A via
fx, yI = {x, y}.(A.{x, y})

0G.8.a) Quadratic forms f[x,y]={x,y}.(A.{x,y}) don't give rise to parabolas

Here's a symmetric matrix A:

Clear([f, x, y, a, b, ¢, d];
A ={{a, b/2}, {b/2, c}};
MatrixForm[A]

b

2

;)

Use A to define this function f[x,y]={x,y}.(A.{x,y}):

| £0x_, y_] =Expand[{x, v}.(A.{x, Y})]

ax2+bxy+cy2

Njo @

This is a quadratic form.
Look at
| gradf(x_, y_]={ox£[x, y], oy£[x, y1}
{2ax+by,bx+2cy}
Notice that grad[0,0] = {0,0}:
| gradf[o, 0]
{0, 0}
Say why this gives away the fact that when you set f[x,y] = constant, you will not get a
parabola.

0G.8.a.ii) The Hessian

Stay with the same function f[x,y] and calculate the Hessian H¢[x, y].
How is H¢[x, y] related to A?
He[x_, y_ 1=
{{0¢x,2) £[%x, Y], Ox,y £[x, Y1}, {Ox,y£[%, Y], Oy,2y £[x, ¥1}};
MatrixForm[H¢ [x, y]]

2 b
( ba 2c )
0G.8.a.iii)

How do the eigenvalues and eigenvectors of a given symmetric matrix A tell you how
how curves defined by setting

fIx,y]l={x,y}.(A.{x,y}) = constant
plot out?

0G.8.a.iv)

Explain this:
What do you look for in symmetric matrix A do you to be sure that it is impossible for
II{x,y}Il to go to infinity while maintaining the equality {x,y}.(A.{x,y} )=20?

G.9) A'.A and the Grammian test for linear independence

0G.9.a.i) The rank of A'.A is the same as the rank of A

Explain this:
Given any matrix A, the rank of A".A is the same as the rank of A.

O0G.9.a.ii) If A is of full rank, then A'.A is invertible

Explain this:
If A is of full rank, then A'.A is invertible.

0G.9.b.i) The Grammian matrix

Given a set of vectors
{X[11, X[2], . .., X[n]}
in kD, the corresponding Grammian matrix is the matrix with the entry
X[i] « X[j]
in its ith horizontal row and jth vertical column. The resulting Grammian matrix is a nD
(square) symmetric matrix.

Clued in folks know that the Grammian matrix is the same as A".A for a certain matrix A.
What matrix A are they thinking about?



0G.9.b.ii) The Grammian test for linear independence

Given a set vectors
{X[1], X[2], . .., X[n]},
clued in folks know that saying that
{X[1], X[2], . .., X[n]} is a linearly independent set

is the same as saying that the determinant of the corresponding Grammian matrix is not 0.

How do they know this?
O0G.9.b.iii) A case in which the determinant of the Grammian matrix is 0

Here is a random set consisting of at least seven vectors in 6D:

number = Random[Integer, {7, 12}];

Clear([X, i, j];

Table[X[i_] = Table[Random[Real, {-10, 10}], {j, 1, 6}],
{i, 1, number}]

{{-0.142322, -5.36435, 1.62544, 2.81385, 4.03701, -1.56111},
{-0.725115, 2.9493, 4.5034, 3.94354, 0.604262, -2.2577},
{9.59564, -6.5045, -9.41826, -0.776227, -7.42298, -5.25089},
{-7.02166, 6.41432, -0.702186, -7.59189, 8.73415, -9.03057},
(9.44014, 7.77246, -2.89129, -1.84442, -4.59688, -0.666434},
{7.83383, 5.20629, 0.899724, 5.39003, -2.77044, -2.53601},
{1.30408, 1.89453, -3.35218, 8.24022, -1.27294, -2.85458},
{-6.33052, -8.17411, 9.42925, -5.26269, -5.06467, -9.14353}}

The determinant of the corresponding Grammian matrix is:
grammian = Table[X[i].X[j], {i, 1, number}, {j, 1, number}];
Det [grammian]
0

Explain how you could have known this in advance.

G.10) Another version of the Holy Grail: Working with A.A! instead of
ALA
0G.10.a) Working with A.A! instead of At.A

Given a matrix A, the matrix A.A' is guaranteed to be symmetric.

The Spectral theorem steps in to guarantee an orthonormal basis (perpendicular frame)
{Y1,Y2,Y3, Yy, Yiangdim ¥

of eigenvectors of A.A' spanning all of hangdimD.

How are these vectors related to the SVD of A?

How can you use these vectors to find the SVD stretch factors of A?

G.11) Trying to get SVD to spit out eigenvectors for symmetric matrices

O0G.11.a.i) Eigenvectors and SVD for symmetric matrices

Here's 2D symmetric matrix:
1.6 0.2
A = ( H
0.2 0.3
MatrixForm[A]

1.6 0.2
( 0.2 0.3 )
Compare Mathematica's calculation of eigenvectors of A with Mathematica's calculation
of an SVD alignerframe of A:
I Eigenvectors[A]
{{0.988883, 0.148696}, {-0.148696, 0.988883}}
| SingularValues [A][[3]]
{{-0.988883, -0.148696}, {-0.148696, 0.988883}}
For this matrix, the calculated SVD aligner frame consists of eigenvectors.

Here's another 2D symmetric matrix A:
s = 0.3Pi;
s s
perpframe = {(COS[S] , Sin[s]}, {Cos[s + ;] ’ Sin[s * ;] }}’
aligner = perpframe;

hanger = Transpose[aligner];
diagonal = DiagonalMatrix[{1.2, -0.6}];

A = hanger.diagonal .aligner;
MatrixForm[A]

0.0218847 0.855951
( 0.855951 0.578115
Compare Mathematica's calculation of eigenvectors of A with Mathematica's calculation
of an SVD alignerframe of A:
| Eigenvectors([a]
{{-0.587785, -0.809017}, {-0.809017, 0.587785}}
I SingularValues [A][[3]]
{{0.587785, 0.809017}, {-0.809017, 0.587785}}
Again for this matrix, the calculated SVD aligner frame consists of eigenvectors.
Here's another 2D symmetric matrix A:

s=0.4rm;

b b
aligner = {{Cos[s] , Sin[s]}, {Cos[s + ;] ’ Sin[s + ?] }},
hanger = Transpose [aligner];
diagonal = DiagonalMatrix[{2, -2}];

A = hanger.diagonal.aligner;
MatrixForm[A]

( -1.61803 1.17557
1.17557 1.61803
Compare Mathematica's calculation of eigenvectors of A with Mathematica's calculation
of an SVD alignerframe of A:
I Eigenvectors[A]
{{-0.951057, 0.309017}, {-0.309017, -0.951057}}
| singularvalues[A][[3]]
{{l., 0}, {0, 1.}}
Are the calculated alignerframe vectors also eigenvectors of A?
OG.11.a.ii) Sometimes any perpendicular frame works for an aligner frame
Stay with the same matrix A as in the very last of part i).
This the matrix A was made with this frame for both its aligner and hanger frames:
I aligner
{{0.309017, 0.951057}, {-0.951057, 0.309017}}
Yet Mathematica comes up with these aligner and hangerframes:
Clear[alignerframe, hangerframe];
{alignerframe[l], alignerframe[2]} = SingularValues [A][[3]]
{hangerframe[1], hangerframe[2]} = SingularValues[A][[1]]
{{1., 0}, {0, 1.}}
({-0.809017, 0.587785}, {0.587785, 0.809017}}
And these stretch factors:

Clear[stretch];
{stretch[1], stretch[2]} = SingularValues[A][[2]]

{2.,2.}
Check:
I A.alignerframe[l] == stretch[1l] hangerframe[1l]
True
I A.alignerframe[2] == stretch[2] hangerframe[2]
True

Mathematica's calculation checks out.
Now look at A'.A:

I MatrixForm|[Transpose [A] .A]

4. 0
-
Remembering that an SVD alignerframe is any perpendicular frame that consists of

eigenvectors of A'.A, say why any 2D perpendicular frame works as an SVD aligner frame
for A.

0G.11.a.iii) Key info about {stretch[1],stretch[2]} of a symmetric matrix

Take your best shot at this question:
Given a 2D symmetric matrix A, you look at the SVD stretch factors of A,
{stretch[1],stretch[2]}.
When you look at
{stretch[1],stretch[2]}
and extract the key information, it is possible to decide whether any computed SVD
alignerframe is guaranteed to consist of eigenvectors of A.
What is this key information?

OG.11.a.iv) Key info about {eigenvalue[1],eigenvalue[2]} of a symmetric matrix

Take your best shot at this question:
Given a 2D symmetric matrix A, you look at the eigenvalues of A,
{eigenvalue[1],eigenvalue[2]}.
When you look at
{eigenvalue[1],eigenvalue[2]}
and extract the key information, it is possible to decide whether any computed SVD
alignerframe is guaranteed to consist of eigenvectors of A.
What is this key information?

O0G.11.b.i) Moving to higher dimensions

Take your best shot at this question:

Given a kD symmetric matrix A, you look at the eigenvalues of A,
{eigenvalue[1],eigenvalue[2], . . ,eigenvalue[k]}

as guaranteed by the Spectral Theorem.

When you look at
{eigenvalue[1],eigenvalue[2], . . ,eigenvalue[k]}

and extract the key information, it is possible to decide whether any computed SVD

alignerframe is guaranteed to consist of eigenvectors of A.

What is this key information?



0G.11.b.ii) Moving to higher dimensions

Take your best shot at this question:

Given a kD symmetric matrix A, you look at the SVD stretch factors of A,
{stretch[1],stretch[2], . . ,stretch[k]} (including the zero stretch factors)

as guaranteed by the Spectral Theorem.

When you look at
{stretch[1],stretch[2], . . ,stretch[k]}

and extract the key information, it is possible to decide whether any computed SVD

alignerframe is guaranteed to consist of eigenvectors of A.

What is this key information?



