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 BASICS

B.1) Subspaces,  spanning sets.
The SpannerMatrix for a given spanning set {spanner[1],spanner[2], , , 
,spanner[n]} is                       

SpannerMatrix = i
k
jj

spanner@1D spanner@2D ... spanner@nD
¯ ¯ ... ¯

y
{
zz.

The subspace spanned by a given spanning set consists exactly of the 
vectors that are hits with the SpannerMatrix.
The dimension of a subspace spanned by a given spanning set is the rank of 
the  SpannerMatrix.

áB.1.a.i) Subspaces defined by spanning sets
To get a line through 80, 0, 0< in 3D, you  go with one direction vector such as:

In[60]:= Clear@s, spannerD;
spanner@1D = 81.43, -0.5, 1.2<

Out[61]= 81.43, -0.5, 1.2<
And then you make the line by taking all multiples of this vector.
Here's a piece of it:

In[62]:= Clear@s, spannerD;
spanner@1D = 81.43, -0.5, 1.2<;
h = 3;

Clear@sD;
lineplot = ParametricPlot3D@s  spanner@1D,

8s, -h, h<, PlotPoints ® 2, DisplayFunction ® IdentityD;

linepiece =

Show@lineplot, ThreeAxes@2D, ViewPoint ® CMView, PlotRange ® All,
Axes ® True, AxesLabel ® 8"x", "y", "z"<, Boxed ® False,
PlotLabel ® "Piece of line", DisplayFunction ® $DisplayFunctionD;
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Folks say that the specified vector spans the line because you can get to any point on the 
line by advancing on a multiple of the given vector:

In[68]:= s = Random@Real, 8-h, h<D;
linepoint = s spanner@1D;

pointplot = Graphics3D@8Blue, PointSize@0.025D, Point@linepointD<D;

pointspannerplot =
Arrow@s spanner@1D, Tail ® 80, 0, 0<, VectorColor ® CadmiumOrangeD;

Show@linepiece, pointplot, pointspannerplot,
ViewPoint ® CMView, PlotRange ® All, Axes ® True,
AxesLabel ® 8"x", "y", "z"<, Boxed ® False,
PlotLabel ® "Piece of line", DisplayFunction ® $DisplayFunctionD;
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Rerun several times.

To get a plane through {0,0,0} in 3D, you just go with two vectors such as:
In[73]:= Clear@s, spanner, iD;

spanner@1D = 81.43, -0.5, 1.2<;
spanner@2D = 8-0.9, 0.0, 1.5<;
spanners = Table@spanner@iD, 8i, 1, 2<D;

ColumnForm@spannersD

Out[77]= 81.43, -0.5, 1.2<
8-0.9, 0, 1.5<

And then you make the plane by taking all combinations  
       s spanner@1D + t spanner@2D 
of multiples of these two vectors:

In[78]:= h = 5;
k = 4;
Clear@s, tD;
planeplot = ParametricPlot3D@s  spanner@1D + t  spanner@2D, 8s, -h, h<,

8t, -k, k<, PlotPoints ® 82, 2<, DisplayFunction ® IdentityD;

spannerplot =
8Arrow@1.3 h spanner@1D, Tail ® 80, 0, 0<, VectorColor ® RedD,
Arrow@1.3 k spanner@2D, Tail ® 80, 0, 0<, VectorColor ® RedD<;

spannerlabels = 8Graphics3D@Text@"spanner@1D", 0.9 h spanner@1DDD,
Graphics3D@Text@"spanner@2D", 0.9 k spanner@2DDD<;

planepiece = Show@planeplot, spannerplot, spannerlabels,
ThreeAxes@10D, ViewPoint ® CMView, PlotRange ® All,
Axes ® True, AxesLabel ® 8"x", "y", "z"<, Boxed ® False,
PlotLabel ® "Piece of plane", DisplayFunction ® $DisplayFunctionD;
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Folks say that the two specified vectors span the plane because you can get to any point on 
the plane by advancing on a multiple of spanner[1] and then advancing on a multiple of 
spanner[2].
See it happen for some random points on this plane:

In[85]:= s = Random@Real, 8-h, h<D;
t = Random@Real, 8-k, k<D;
planepoint = s spanner@1D + t spanner@2D;

pointplot = Graphics3D@8Blue, PointSize@0.035D, Point@planepointD<D;

pointspannerplot =
8Arrow@s spanner@1D, Tail ® 80, 0, 0<, VectorColor ® RedD,
Arrow@t spanner@2D, Tail ® s spanner@1D, VectorColor ® RedD<;

Show@planepiece, pointplot, pointspannerplot,
ViewPoint ® CMView, PlotRange ® All, Axes ® True,
AxesLabel ® 8"x", "y", "z"<, Boxed ® False,
PlotLabel ® "Piece of plane", DisplayFunction ® $DisplayFunctionD;
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Rerun at least seven times.

Once you see how to make lines and planes with spanning vectors in 3D, you can make 
the jump to working with the analogs of planes and lines in higher dimensions. Most folks 
call these higher dimensional analogs by the name "subspaces."
Here are three vectors in 4D:

In[91]:= Clear@s, i, spannerD;
spanner@1D = 83.43, -0.57, 8.19, -0.94<;
spanner@2D = 80.97, 1.29, 0.83, 5.23<;
spanner@3D = 8-6.14, 3.08, -5.00, -1.97<;
spanners = Table@spanner@iD, 8i, 1, 3<D

Out[95]= 883.43, -0.57, 8.19, -0.94<,
80.97, 1.29, 0.83, 5.23<, 8-6.14, 3.08, -5., -1.97<<

When folks talk about the subspace of 4D spanned by these three vectors, they are talking 
about the whole collection of all vectors expressible as a combination
         x@1D  spanner@1D + x@2D spanner@2D + x@3D  spanner@3D
where 8x@1D, x@2D, x@3D< range over all real numbers:

In[96]:= Clear@x, kD;

â
k=1

Length@spannersD
 x@kD spanner@kD

Out[97]= 83.43 x@1D + 0.97 x@2D - 6.14 x@3D, -0.57 x@1D + 1.29 x@2D + 3.08 x@3D,
8.19 x@1D + 0.83 x@2D - 5. x@3D, -0.94 x@1D + 5.23 x@2D - 1.97 x@3D<

Here are some random members of this subspace:
In[98]:= a = 8;

Clear@xD;
x@i_D := Random@Real, 8-a, a<D;

â
k=1

Length@spannersD
 x@kD spanner@kD

Out[101]= 8-15.0145, 2.27767, -8.94446, -22.6734<



Rerun a couple of times.

What's a good way of describing the vectors in this subspace?
áAnswer:

The vectors in this subspace of 4D look like this
       x@1D spanner@1D + x@2D spanner@2D + x@3D spanner@3D.
These can be described as the 4D destinations of all three-stage trips made by
1) going at first on a straight line segment from 80, 0, 0, 0< in the direction of spanner@1D, 
2) then stopping and switching directions by going on a straight line segment in the 
direction of spanner@2D,
3) then stopping and switching directions by going on a straight line segment in the 
direction of spanner@3D.
The size of the coefficients x[i] indicate the length of the trip at the ith stage.  

áB.1.a.ii) The spanner matrix for a given spanning set {spanner[1],spanner[2],  , , 
,spanner[n]}

is i
k
jj

spanner@1D spanner@2D ... spanner@nD
¯ ¯ ... ¯

y
{
zz.

The subspace spanned by {spanner[1],spanner[2],  , , ,spanner[n]} consists exactly of 
the vectors that are hits with this matrix
Stay with the same subspace as in part i) immediately above spanned by the vectors: 

In[102]:= spanners = 8spanner@1D, spanner@2D, spanner@3D<
Out[102]= 883.43, -0.57, 8.19, -0.94<,

80.97, 1.29, 0.83, 5.23<, 8-6.14, 3.08, -5., -1.97<<
and look at this associated spanner matrix

             SpannerMatrix  = J spanner@1D spanner@2D spanner@3D
¯ ¯ ¯

N:

In[103]:= SpannerMatrix = Transpose@spannersD;
MatrixForm@SpannerMatrixD

Out[104]//MatrixForm=

i

k

jjjjjjjjjjjj

3.43 0.97 -6.14
-0.57 1.29 3.08
8.19 0.83 -5.
-0.94 5.23 -1.97

y

{

zzzzzzzzzzzz

spanner[1] is in the first vertical column of SpannerMatrix.
 spanner[2] is in the second vertical column of SpannerMatrix.
spanner[3] is in the third vertical column of SpannerMatrix.

How are the vectors in the subspace S of 4D spanned by
      spanner[1], spanner[2] and spanner[3] 
related to hits with the  associated spanner matrix?

áAnswer:

The subspace S of 4D spanned by
      spanner[1], spanner[2] and spanner[3] 
consists exactly of the vectors that are hits with the SpannerMatrix.

Reason:
Hits with SpannerMatrix look like this:
                  SpannerMatrix.{x[1],x[2],x[3]}  

                     =  J spanner@1D spanner@2D spanner@3D
¯ ¯ ¯

N.{x[1],x[2],x[3]}

                     =  x[1] spanner[1] + x[2] spanner[2] + x[3] spanner[3] 
                   
where x[1], x[2] and x[3] are real numbers.

The vectors in the subspace of 4D spanned by spanner[1], spanner[2] and spanner[3] look 
like this:  
                          x[1] spanner[1] + x[2] spanner[2] + x[3] spanner[3] 
                   
where x[1], x[2] and x[3] are real numbers.

This is a big break in your favor because the spanner matrix is the key to working with 
subspaces.

áB.1.b.i) The rank of the spanner matrix is the dimension of the corresponding subspace
Here are five vectors in 5D:

In[105]:= Clear@i, spannerD;
spanner@1D = 83.43, -0.57, 2.19, -0.94, 1.28<;
spanner@2D = 80.97, 1.29, 0.83, 5.23, 1.26<;
spanner@3D = 8-6.14, 3.08, -5.00, -1.97, -0.96<;
spanner@4D = 8-3.68, 1.22, -3.64, -8.14, -0.94<;
spanner@5D = 82.71, -2.51, 2.81, 2.91, -0.32<;
spanners = Table@spanner@iD, 8i, 1, 5<D

Out[111]= 883.43, -0.57, 2.19, -0.94, 1.28<,
80.97, 1.29, 0.83, 5.23, 1.26<, 8-6.14, 3.08, -5., -1.97, -0.96<,
8-3.68, 1.22, -3.64, -8.14, -0.94<, 82.71, -2.51, 2.81, 2.91, -0.32<<

This matrix hits on 5D and hangs in 5D.

These vectors span a subspace S of 5D. 
Make the associated spanner matrix for this subspace S:

In[112]:= SpannerMatrix = Transpose@spannersD;
MatrixForm@SpannerMatrixD

Out[113]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjj

3.43 0.97 -6.14 -3.68 2.71
-0.57 1.29 3.08 1.22 -2.51
2.19 0.83 -5. -3.64 2.81
-0.94 5.23 -1.97 -8.14 2.91
1.28 1.26 -0.96 -0.94 -0.32

y

{

zzzzzzzzzzzzzzzzz

The subspace S is the same as all possible hits with this spanner matrix.
Check the rank of this spanner matrix:

In[114]:= rank = Length@SingularValues@SpannerMatrixDP2TD
Out[114]= 3

Why do folks say that because the rank of the SpannerMatrix is 3, the dimension of the 
subspace S is 3? 

áAnswer:

The rank of the spanner matrix is 3. 
This means the Spanner Matrix needs a perpendicular frame
consisting of three 5D mutually perpendicular unit vectors to hang its hits.
Here is one such perpendicular frame:

In[115]:= Clear@k, hangerframeD;
hangerframe@k_D := SingularValues@SpannerMatrixD@@1, kDD;

Table@hangerframe@kD, 8k, 1, rank<D
Out[117]= 88-0.550517, 0.225396, -0.486973, -0.628875, -0.116196<,

8-0.458778, 0.348461, -0.301171, 0.759864, -0.000785019<,
80.334709, 0.705309, -0.0275415, -0.131643, 0.610263<<

And because the subspace S is the same as the collection of all possible hits with 
SpannerMatrix, this tells you that everything in S is framed up with the same three 5D 
mutually perpendicular unit vectors. 
That's why folks say that the dimension of S is 3.

áB.1.c.i) Calculating the dimension of a subspace of 6D
A subspace S of 6D is defined by the following given spanning set:

In[118]:= Clear@s, i, spannerD;
spanner@1D = 80.829, 1.202, 0.539, -0.925, 1.289, -0.397<;
spanner@2D = 80.073, 1.463, 0.312, 1.622, 1.841, 2.916<;
spanner@3D = 80.902, 2.665, 0.851, 0.697, 3.130, 2.519<;
spanner@4D = 82.335, -1.908, 0.925, -1.391, -1.820, -0.154<;
spanner@5D = 80.390, -4.513, 0.0, 1.316, -1.968, -0.037<;
spanners = Table@spanner@iD, 8i, 1, 5<D

Out[124]= 880.829, 1.202, 0.539, -0.925, 1.289, -0.397<,
80.073, 1.463, 0.312, 1.622, 1.841, 2.916<,
80.902, 2.665, 0.851, 0.697, 3.13, 2.519<,
82.335, -1.908, 0.925, -1.391, -1.82, -0.154<,
80.39, -4.513, 0, 1.316, -1.968, -0.037<<

Calculate the dimension of S.
áAnswer:

The spanner matrix is:
In[125]:= SpannerMatrix = Transpose@spannersD;

MatrixForm@SpannerMatrixD
Out[126]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjjjjjjj

0.829 0.073 0.902 2.335 0.39
1.202 1.463 2.665 -1.908 -4.513
0.539 0.312 0.851 0.925 0
-0.925 1.622 0.697 -1.391 1.316
1.289 1.841 3.13 -1.82 -1.968
-0.397 2.916 2.519 -0.154 -0.037

y

{

zzzzzzzzzzzzzzzzzzzzzz

This matrix hits on 5D and hangs in 6D.

The dimension of S is the same as the rank of the spanner matrix:
In[127]:= rank = Length@SingularValues@SpannerMatrixDP2TD
Out[127]= 4

The dimension of S is 4.

áB.1.c.ii) A perpendicular frame spanning S
Stay with the same four dimensional subspace  S of 6D as in part. i) immediately above. 
Exhibit a spanning set for S that consists of 4 mutually perpendicular 6D unit vectors.

áAnswer:

Just go with the SVD hangerframe for the spanner matrix.
In[128]:= hangerframe = SingularValues@SpannerMatrixD@@1DD
Out[128]= 880.0362149, -0.715869, -0.0551429, -0.089052, -0.591056, -0.354827<,

8-0.126229, 0.457445, -0.0907112, -0.571628, -0.0713706, -0.65934<,
8-0.795902, 0.0216159, -0.390903, 0.434967, -0.0111113, -0.15475<,
80.088828, -0.386841, 0.130041, 0.138401, 0.743399, -0.503743<<



Done.

B.2) Using the Ytest idea to determine whether a given vector is in a given 
subspace.
Using the Sprojection matrix to find the vector in a subspace that is closest 
to a given vector.
Using the fact that Sprojection.Y = Ytest to build Sprojection as the sum of 
rank one matrices or through SVD of the SpannerMatrix.
Using the Sprojection matrix to determine whether a given vector is in a 
subspace.
Using the Sprojection matrix to determine whether two given subspaces are 
the same or different

áB.2.a.i) Using Ytest to determine whether a given vector is in a given subspace
Here is a spanning set for a subspace S of 4D;

In[129]:= Clear@k, spannerD;
spanner@1D = 81.0, 0, 2.6, -4.1<;
spanner@2D = 80.3, 1.2, 0.5, 1.3<;
spanner@3D = 8-0.6, 1.8, -1.2, 0.2<;

spanners = Table@spanner@kD, 8k, 1, 3<D
Out[133]= 881., 0, 2.6, -4.1<, 80.3, 1.2, 0.5, 1.3<, 8-0.6, 1.8, -1.2, 0.2<<

Here are three 4D vectors:
            Y1 = {0.76,-0.96,2.2,-5.14}
            Y2 = {0.48,-2.13,0.66,1.66}
            Y3 = {-0.62,1.38,-0.92,-2.42}
Which of these vectors are in S?

áAnswer:

Make the spanner matrix

             SpannerMatrix  = J spanner@1D spanner@2D spanner@3D
¯ ¯ ¯

N:
In[134]:= SpannerMatrix = Transpose@spannersD;

MatrixForm@SpannerMatrixD

Out[135]//MatrixForm=

i

k

jjjjjjjjjjjj

1. 0.3 -0.6
0 1.2 1.8

2.6 0.5 -1.2
-4.1 1.3 0.2

y

{

zzzzzzzzzzzz

Calculate the dimension of S:
In[136]:= dim = Length@SingularValues@SpannerMatrixDP2TD
Out[136]= 3

The dimension of S is the same as the rank of the SpannerMatrix.

Calculate a hangerframe for SpannerMatrix:
In[137]:= Clear@hangerframeD;

hangerframe@k_D := SingularValues@SpannerMatrixD@@1, kDD ;
Table@hangerframe@kD, 8k, 1, dim<D

Out[139]= 88-0.20286, 0.11737, -0.521491, 0.820439<,
80.0580724, -0.978078, 0.0582512, 0.191307<,
8-0.383639, -0.171209, -0.73236, -0.535871<<

Because S consists exactly of all hits with the SpannerMatrix, saying that a 4D vector Y is 
in S is the same as saying that the linear system
              SpannerMatrix.X = Y 
has a solution for X.
Consequently, saying that Y is in S is the same as saying that Y is the same as

      Ytest = Ú
k=1

rank
 HY.hangerframe@kDL hangerframe@kD = 

Ú
k=1

dim
HY.hangerframe@kDL hangerframe@kD  

Try it out for Y1:
In[140]:= Y1 = 80.76, -0.96, 2.2, -5.14<
Out[140]= 80.76, -0.96, 2.2, -5.14<

In[141]:= Y1test = â
k=1

dim

HY1.hangerframe@kDL hangerframe@kD

Out[141]= 80.76, -0.96, 2.2, -5.14<

The call:
        Y1 is in S because Y1test = Y1.

Try it out for Y2:
In[142]:= Y2 = 80.48, -2.13, 0.66, 1.66<
Out[142]= 80.48, -2.13, 0.66, 1.66<

In[143]:= Y2test = â
k=1

dim

HY2.hangerframe@kDL hangerframe@kD

Out[143]= 80.464726, -2.13028, 0.667372, 1.66095<

The call:
        Y2 is not in S because Y2test ¹ Y2.

Try it out for Y3:
In[144]:= Y3 = 8-0.62, 1.38, -0.92, -2.42<
Out[144]= 8-0.62, 1.38, -0.92, -2.42<

In[145]:= Y3test = â
k=1

dim

HY3.hangerframe@kDL hangerframe@kD

Out[145]= 8-0.62, 1.38, -0.92, -2.42<

The call:
        Y3 is in S because Y3test = Y3.

áB.2.a.ii) Using a hit with Sprojection = SpannerMatrix . 
PseudoInverse[SpannerMatrix] to get as close as you can get 
Here's a spanning set for a random subspace S of 5D:

In[146]:=

Clear@k, spannerD;
spanner@1D = Table@Random@Real, 8-2, 2<D, 8k, 1, 5<D;
spanner@2D = Table@Random@Real, 8-2, 2<D, 8k, 1, 5<D;
spanner@3D = Table@Random@Real, 8-2, 2<D, 8k, 1, 5<D;
spanner@4D = Table@Random@Real, 8-2, 2<D, 8k, 1, 5<D;

spanners = Table@spanner@kD, 8k, 1, 4<D
Out[151]= 881.52787, 0.792859, -1.92951, -1.46637, -1.38905<,

80.630179, -1.6928, -1.2541, -1.75133, -0.878534<,
8-1.72373, -1.19392, 0.466473, 0.373048, -1.24189<,
81.39958, 1.68209, 0.711557, -1.36852, -0.120829<<

Here is a random 5D vector:
In[152]:= Y = Table@Random@Real, 8-7, 7<D, 8k, 1, 5<D
Out[152]= 8-2.65998, -5.06362, 5.15674, 4.59338, -1.00753<

Come up with a matrix Sprojection so that 
        Sprojection.Y is the member of S that is closest to Y.

áAnswer:

Just do this:

Make the spanner matrix

             SpannerMatrix  = J spanner@1D spanner@2D spanner@3D
¯ ¯ ¯

spanner@4D
¯

N:
In[153]:= SpannerMatrix = Transpose@spannersD;

MatrixForm@SpannerMatrixD
Out[154]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjj

1.52787 0.630179 -1.72373 1.39958
0.792859 -1.6928 -1.19392 1.68209
-1.92951 -1.2541 0.466473 0.711557
-1.46637 -1.75133 0.373048 -1.36852
-1.38905 -0.878534 -1.24189 -0.120829

y

{

zzzzzzzzzzzzzzzzz

Define the Sprojection matrix:
In[155]:= Sprojection = SpannerMatrix.PseudoInverse@SpannerMatrixD;

MatrixForm@SprojectionD
Out[156]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjj

0.562928 0.194149 -0.193421 -0.330821 0.247977
0.194149 0.913759 0.0859179 0.146952 -0.110152
-0.193421 0.0859179 0.914404 -0.1464 0.109739
-0.330821 0.146952 -0.1464 0.749601 0.187694
0.247977 -0.110152 0.109739 0.187694 0.859308

y

{

zzzzzzzzzzzzzzzzz

The member of S closest to Y is:
In[157]:= Sprojection.Y

Out[157]= 8-5.24732, -3.91431, 4.01174, 2.63502, 0.460417<

Reason: 
When you go with any matrix A, then
         A.HPseudoInverse@AD.YL
is as close as you can get to Y with a hit with A.
So when you have a spanning set for a subspace S of kD and make the corresponding 
SpannerMatrix, you know that for any Y in kD
         SpannerMatrix.HPseudoInverse@SpannerMatrixD.YL
is as close as you can get to Y with a hit with SpannerMatrix. 
And because S consists precisely of all possible hits with SpannerMatrix, it is guaranteed 
that for any kD Y, 
       Sprojection.Y =  SpannerMatrix.PseudoInverse@SpannerMatrixD.Y
is the member of S closest to Y.

áB.2.a.iii)   Sprojection.Y = Ytest,  so Ytest is as close as you can get to Y.
Here's a spanning set for a random subspace S of 6D:



In[158]:=

Clear@k, spannerD;
spanner@1D = Table@Random@Real, 8-2, 2<D, 8k, 1, 6<D;
spanner@2D = Table@Random@Real, 8-2, 2<D, 8k, 1, 6<D;
spanner@3D = Table@Random@Real, 8-2, 2<D, 8k, 1, 6<D;
spanner@4D = Table@Random@Real, 8-2, 2<D, 8k, 1, 6<D;

spanners = Table@spanner@kD, 8k, 1, 4<D
Out[163]= 88-0.239607, 1.40286, 0.77876, -0.898815, 1.13021, 1.09566<,

80.0328652, -1.14749, 0.00874763, 0.819392, -0.773217, 0.386038<,
81.6357, 0.0612834, -0.172799, 0.703949, -1.07586, -0.570195<,
81.94803, -0.536057, -1.62911, -0.043548, -1.36436, 1.75181<<

Here is a random 6D vector:
In[164]:= Clear@yD;

Y = Table@Random@Real, 8-8, 8<D, 8k, 1, 6<D
Out[165]= 82.44199, 2.21437, -0.572501, 2.60249, 5.92113, 5.83172<

The vector in S closest to Y is:
In[166]:= SpannerMatrix = Transpose@spannersD;

Sprojection = SpannerMatrix.PseudoInverse@SpannerMatrixD;
closest = Sprojection.Y

Out[168]= 81.13124, 2.39271, 1.47556, -1.41373, 1.18052, 5.45649<
Now look at this:

In[169]:= dim = Length@SingularValues@SpannerMatrixDP2TD;
Clear@hangerframeD;
hangerframe@k_D := SingularValues@SpannerMatrixD@@1, kDD ;

Ytest = â
k=1

dim

HY.hangerframe@kDL hangerframe@kD

Out[172]= 81.13124, 2.39271, 1.47556, -1.41373, 1.18052, 5.45649<
Ytest  came out to be equal to the vector in S closest to Y.
Is this some sort of accident? 
If not explain why it is not an accident.

áAnswer:

Criminee.
In mathematics, there are no accidents.

To explain why it is not an accident and will happen every time, remember

PseudoInverse@SpannerMatrixD.Y = Ú
k=1

dim
 I Y.hangerframe@kD�������������������������������������stretch@kD M alignerframe@kD

where stretch[k], hangerframe[k] and alignerframe[k] come from SVD analysis of 
SpannerMatrix so that

                 SpannerMatrix.alignerframe[k] = stretch[k] hangerframe[k].
Now rock on:
              Sprojection.Y 
                       = SpannerMatrix.PseudoInverse[SpannerMatrix].Y

                      =   SpannerMatrix. Ú
k=1

dim
 I Y.hangerframe@kD�������������������������������������stretch@kD M alignerframe@kD

                      =  . Ú
k=1

dim
 I Y.hangerframe@kD�������������������������������������stretch@kD M SpannerMatrix.alignerframe@kD

                      =  . Ú
k=1

dim
 I Y.hangerframe@kD�������������������������������������stretch@kD M stretch@kD  hangerframe@kD

                      =  . Ú
k=1

dim
HY.hangerframe@kDL hangerframe@kD

                      =  . Ytest.
That's it.

áB.2.a.iv) Using the fact that Sprojection.Y = Ytest to build Sprojection as the sum of 
rank one matrices
Here's a spanning set for a a subspace  S of 6D:

In[173]:=

Clear@k, spannerD;
spanner@1D = 8-0.36, -1.77, -1.55, 1.24, 0.26, -0.57<;
spanner@2D = 8-1.76, -1.34, 1.39, 0.73, 1.85, 0.87<;
spanner@3D = 81.41, 0.40, 1.94, -1.48, 1.52`, 1.57<;
spanner@4D = 83.16, 0.91, -4.33, -0.22, -3.44, -2.31<;
spanner@5D = 80.21, -1.32, -1.77, -1.39, 0.67, -0.29<;
spanner@6D = 8-3.73, -1.36, 4.55, 2.85, 3.03, 2.03<;
spanners = Table@spanner@kD, 8k, 1, 6<D

Out[180]= 88-0.36, -1.77, -1.55, 1.24, 0.26, -0.57<,
8-1.76, -1.34, 1.39, 0.73, 1.85, 0.87<,
81.41, 0.4, 1.94, -1.48, 1.52, 1.57<,
83.16, 0.91, -4.33, -0.22, -3.44, -2.31<,
80.21, -1.32, -1.77, -1.39, 0.67, -0.29<,
8-3.73, -1.36, 4.55, 2.85, 3.03, 2.03<<

The Sprojection matrix for this subspace is:
In[181]:= SpannerMatrix = Transpose@spannersD;

Sprojection = SpannerMatrix.PseudoInverse@SpannerMatrixD;
MatrixForm@SprojectionD

Out[183]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjjjjjjj

0.97499 0.0340183 -0.0702951 0.0179532 -0.0160007 0.133071
0.0340183 0.61284 0.268585 -0.143764 -0.376996 -0.0343272
-0.0702951 0.268585 0.714658 0.111017 0.157364 0.299591
0.0179532 -0.143764 0.111017 0.94533 -0.128119 -0.0441726
-0.0160007 -0.376996 0.157364 -0.128119 0.52331 0.256704
0.133071 -0.0343272 0.299591 -0.0441726 0.256704 0.228871

Build this matrix as the sum of well-chosen rank one matrices.
áAnswer:

In part iii) immediately above, you saw that

                  Sprojection.Y    =  . Ú
k=1

dim
HY.hangerframe@kDL hangerframe@kD.

This tells you how to make rank one matrices whose sum is Sprojection.
Just do this:

In[184]:= dim = Length@SingularValues@SpannerMatrixD@@2DDD;
Clear@hangerframe, rankOneD;
hangerframe@k_D := SingularValues@SpannerMatrixD@@1, kDD;
rankOne@k_D := Transpose@8hangerframe@kD<D.8hangerframe@kD<;

sum = â
k=1

dim

rankOne@kD;

MatrixForm@sumD
Out[189]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjjjjjjj

0.97499 0.0340183 -0.0702951 0.0179532 -0.0160007 0.133071
0.0340183 0.61284 0.268585 -0.143764 -0.376996 -0.0343272
-0.0702951 0.268585 0.714658 0.111017 0.157364 0.299591
0.0179532 -0.143764 0.111017 0.94533 -0.128119 -0.0441726
-0.0160007 -0.376996 0.157364 -0.128119 0.52331 0.256704
0.133071 -0.0343272 0.299591 -0.0441726 0.256704 0.228871

Compare:
In[190]:= MatrixForm@SprojectionD

Out[190]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjjjjjjj

0.97499 0.0340183 -0.0702951 0.0179532 -0.0160007 0.133071
0.0340183 0.61284 0.268585 -0.143764 -0.376996 -0.0343272
-0.0702951 0.268585 0.714658 0.111017 0.157364 0.299591
0.0179532 -0.143764 0.111017 0.94533 -0.128119 -0.0441726
-0.0160007 -0.376996 0.157364 -0.128119 0.52331 0.256704
0.133071 -0.0343272 0.299591 -0.0441726 0.256704 0.228871

Nailed it clean.
This will work every time because

                  Sprojection.Y    =  . Ú
k=1

dim
HY.hangerframe@kDL hangerframe@kD.

áB.2.a.v) Building Sprojection directly from the SVD hanger frames of the 
SpannerMatrix
Here's a spanning set for a a subspace  S of 6D:

In[191]:=

Clear@k, spannerD;
spanner@1D = 8-0.36, -1.77, -1.55, 1.24, 0.26, -0.57<;
spanner@2D = 8-1.76, -1.34, 1.39, 0.73, 1.85, 0.87<;
spanner@3D = 81.41, 0.40, 1.94, -1.48, 1.52, 1.57<;
spanner@4D = 83.16, 0.91, -4.33, -0.22, -3.44, -2.31<;
spanner@5D = 80.21, -1.32, -1.77, -1.39, 0.67, -0.29<;
spanner@6D = 8-3.73, -1.36, 4.55, 2.85, 3.03, 2.03<;
spanners = Table@spanner@kD, 8k, 1, 6<D

Out[198]= 88-0.36, -1.77, -1.55, 1.24, 0.26, -0.57<,
8-1.76, -1.34, 1.39, 0.73, 1.85, 0.87<,
81.41, 0.4, 1.94, -1.48, 1.52, 1.57<,
83.16, 0.91, -4.33, -0.22, -3.44, -2.31<,
80.21, -1.32, -1.77, -1.39, 0.67, -0.29<,
8-3.73, -1.36, 4.55, 2.85, 3.03, 2.03<<

The Sprojection matrix for this subspace is:
In[199]:= SpannerMatrix = Transpose@spannersD;

Sprojection = SpannerMatrix.PseudoInverse@SpannerMatrixD;
MatrixForm@SprojectionD

Out[201]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjjjjjjj

0.97499 0.0340183 -0.0702951 0.0179532 -0.0160007 0.133071
0.0340183 0.61284 0.268585 -0.143764 -0.376996 -0.0343272
-0.0702951 0.268585 0.714658 0.111017 0.157364 0.299591
0.0179532 -0.143764 0.111017 0.94533 -0.128119 -0.0441726
-0.0160007 -0.376996 0.157364 -0.128119 0.52331 0.256704
0.133071 -0.0343272 0.299591 -0.0441726 0.256704 0.228871

Build this matrix directly from the SVD of the SpannerMatrix.
áAnswer:

In part iii) immediately above, you saw that

                  Sprojection.Y    =  . Ú
k=1

dim
HY.hangerframe@kDL hangerframe@kD.

This tells you how to make Sprojection directly from the SVD hangerframe of the Spanner 
Matrix
You go with the SVD hangerframe for both the alignerframe and the hangerframe of 
Sprojection with all stretch factors equal to 1.



In[202]:= dim = Length@SingularValues@SpannerMatrixD@@2DDD;
Clear@hangerframe, rankOneD;
aligner = SingularValues@SpannerMatrixD@@1DD;
stretcher = IdentityMatrix@dimD;
hanger = Transpose@SingularValues@SpannerMatrixD@@1DDD;

Sprojection = hanger.stretcher.aligner;
MatrixForm@SprojectionD

Out[208]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjjjjjjj

0.97499 0.0340183 -0.0702951 0.0179532 -0.0160007 0.133071
0.0340183 0.61284 0.268585 -0.143764 -0.376996 -0.0343272
-0.0702951 0.268585 0.714658 0.111017 0.157364 0.299591
0.0179532 -0.143764 0.111017 0.94533 -0.128119 -0.0441726
-0.0160007 -0.376996 0.157364 -0.128119 0.52331 0.256704
0.133071 -0.0343272 0.299591 -0.0441726 0.256704 0.228871

Compare:
In[209]:= MatrixForm@SpannerMatrix.PseudoInverse@SpannerMatrixDD

Out[209]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjjjjjjj

0.97499 0.0340183 -0.0702951 0.0179532 -0.0160007 0.133071
0.0340183 0.61284 0.268585 -0.143764 -0.376996 -0.0343272
-0.0702951 0.268585 0.714658 0.111017 0.157364 0.299591
0.0179532 -0.143764 0.111017 0.94533 -0.128119 -0.0441726
-0.0160007 -0.376996 0.157364 -0.128119 0.52331 0.256704
0.133071 -0.0343272 0.299591 -0.0441726 0.256704 0.228871

Nailed it clean.
This will work every time because

                  Sprojection.Y    =  . Ú
k=1

dim
HY.hangerframe@kDL hangerframe@kD.

áB.2.b)  Using the Sprojection matrix to determine whether a given vector is in a given 
subspace
Here is a spanning set for a subspace S of 5D:

In[210]:= Clear@k, spannerD;
spanner@1D = 8-1.4, 1.5, 2.9, 0.6, -2.4<;
spanner@2D = 8-1.7, 0.0, 2.9, 0.0, -3.6<;
spanner@3D = 80.2, 1.0, 0.0, 0.4, 0.8<;
spanner@4D = 8-0.3, 1.7, -2.1, -0.7, 0.1<;

spanners = Table@spanner@kD, 8k, 1, 4<D;
Here are two 5D vectors:

In[216]:= X = 8-5.08, 4.15, 6.89, 0.28, -9.1<
Out[216]= 8-5.08, 4.15, 6.89, 0.28, -9.1<

In[217]:= Y = 8-5.57, 4.15, 6.89, 0.28, -9.1<
Out[217]= 8-5.57, 4.15, 6.89, 0.28, -9.1<

One of these vectors is in S. 
The other is not. 
Your job is to determine which one is in S and which one is not.

áAnswer:

Go directly to the spanner matrix for S:
In[218]:= SpannerMatrix = Transpose@spannersD;

MatrixForm@SpannerMatrixD
Out[219]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjj

-1.4 -1.7 0.2 -0.3
1.5 0 1. 1.7
2.9 2.9 0 -2.1
0.6 0 0.4 -0.7
-2.4 -3.6 0.8 0.1

y

{

zzzzzzzzzzzzzzzzz

Calculate Sprojection matrix
In[220]:= Sprojection = SpannerMatrix.PseudoInverse@SpannerMatrixD;

MatrixForm@SprojectionD
Out[221]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjj

0.200471 -0.160379 -0.0302252 0.0942973 0.353207
-0.160379 0.958022 -0.0440102 0.104572 0.0402819
-0.0302252 -0.0440102 0.852033 0.334983 -0.104922
0.0942973 0.104572 0.334983 0.240787 0.225318
0.353207 0.0402819 -0.104922 0.225318 0.748687

y

{

zzzzzzzzzzzzzzzzz

The  first given vector is:
In[222]:= X

Out[222]= 8-5.08, 4.15, 6.89, 0.28, -9.1<

The vector in S that is closest to X is:
In[223]:= Sprojection.X

Out[223]= 8-5.08, 4.15, 6.89, 0.28, -9.1<

The result:
           Sprojection.X = X
The vector in S that is closest to X is X itself.
This tells you that X is in S.

The  second given vector is:
In[224]:= Y

Out[224]= 8-5.57, 4.15, 6.89, 0.28, -9.1<

The vector in S that is closest to Y is:
In[225]:= Sprojection.Y

Out[225]= 8-5.17823, 4.22859, 6.90481, 0.233794, -9.27307<

Close, but no cigar.
           Sprojection.Y ¹ Y
The vector in S that is closest to Y is not the same as Y.
This tells you that Y is NOT in S.

áB.2.c.i)  Different spanning sets for the same subspace
Here's a set of spanning vectors which define a subspace S1 of 5D:

In[226]:= Clear@s, i, spanner1D;
spanner1@1D = 83.43, -0.57, 8.19, -0.94, 0.48<;
spanner1@2D = 80.97, 1.29, 0.83, 5.23, -2.31<;
spanner1@3D = 8-6.14, 3.08, -5.00, -1.97, 0.78<;
spanners1 = Table@spanner1@iD, 8i, 1, 3<D

Out[230]= 883.43, -0.57, 8.19, -0.94, 0.48<,
80.97, 1.29, 0.83, 5.23, -2.31<, 8-6.14, 3.08, -5., -1.97, 0.78<<

Here's a another set of spanning vectors which define a subspace S2 of 5D:
In[231]:= Clear@s, i, spanner2D;

spanner2@1D = 84.40, 0.72, 9.02, 4.29, -1.83<;
spanner2@2D = 8-5.17, 4.37, -4.17, 3.26, -1.53<;
spanner2@3D = 8-5.17, 4.37, -4.17, 3.26, -1.53<;
spanner2@4D = 81.94, 2.58, 1.66, 10.46, -4.62<;
spanners2 = Table@spanner2@iD, 8i, 1, 4<D

Out[236]= 884.4, 0.72, 9.02, 4.29, -1.83<, 8-5.17, 4.37, -4.17, 3.26, -1.53<,
8-5.17, 4.37, -4.17, 3.26, -1.53<, 81.94, 2.58, 1.66, 10.46, -4.62<<

At first glance, it would appear that S1 and S2 are in fact different subspaces of 5D.
Is this true?

áAnswer:

Go directly to the spanner matrices for each subspace.
In[237]:= SpannerMatrix1 = Transpose@spanners1D;

MatrixForm@SpannerMatrix1D

SpannerMatrix2 = Transpose@spanners2D;
MatrixForm@SpannerMatrix2D

Out[238]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjj

3.43 0.97 -6.14
-0.57 1.29 3.08
8.19 0.83 -5.
-0.94 5.23 -1.97
0.48 -2.31 0.78

y

{

zzzzzzzzzzzzzzzzz

Out[240]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjj

4.4 -5.17 -5.17 1.94
0.72 4.37 4.37 2.58
9.02 -4.17 -4.17 1.66
4.29 3.26 3.26 10.46
-1.83 -1.53 -1.53 -4.62

y

{

zzzzzzzzzzzzzzzzz

Calculate the  S1projection matrix and the S2projection matrix and look at them:
In[241]:= S1projection = SpannerMatrix1.PseudoInverse@SpannerMatrix1D;

MatrixForm@S1projectionD
S2projection = SpannerMatrix2.PseudoInverse@SpannerMatrix2D;
MatrixForm@S2projectionD

Out[242]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjj

0.603393 -0.441223 0.153928 0.135312 -0.0512741
-0.441223 0.50893 0.171339 0.144684 -0.070372
0.153928 0.171339 0.940216 -0.0498938 0.0258753
0.135312 0.144684 -0.0498938 0.792362 -0.350417

-0.0512741 -0.070372 0.0258753 -0.350417 0.155099

y

{

zzzzzzzzzzzzzzzzz

Out[244]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjj

0.603393 -0.441223 0.153928 0.135312 -0.0512741
-0.441223 0.50893 0.171339 0.144684 -0.070372
0.153928 0.171339 0.940216 -0.0498938 0.0258753
0.135312 0.144684 -0.0498938 0.792362 -0.350417

-0.0512741 -0.070372 0.0258753 -0.350417 0.155099

y

{

zzzzzzzzzzzzzzzzz

The result:
             S1projection = S2projection
The call::
The two subspaces are the same.
Reason: 
        Saying a vector Y is in S1 is the same as saying S1projection.Y = Y.
        Saying a vector Y is in S2 is the same as saying S2projection.Y = Y.
        And because 
                    S1projection = S2projection,
       saying that a vector Y is in S1 is the same as saying Y is in S2.



áB.2.c.ii)  Different spanning sets for different subspaces
Here's a set of spanning vectors which define a subspace S1 of 6D:

In[245]:= Clear@s, i, spanner1D;
spanner1@1D = 83.43, -0.57, 8.19, -0.94, 0.48, 0.78<;
spanner1@2D = 80.97, 1.29, 0.83, 5.23, -2.31, 7.80<;
spanner1@3D = 8-6.14, 3.08, -5.00, -1.97, 0.78, 0.85<;
spanner1@4D = 80.0, -1.00, 0.0, -2.97, 0.69, 1.75<;
spanners1 = Table@spanner1@iD, 8i, 1, 4<D

Out[250]= 883.43, -0.57, 8.19, -0.94, 0.48, 0.78<,
80.97, 1.29, 0.83, 5.23, -2.31, 7.8<,
8-6.14, 3.08, -5., -1.97, 0.78, 0.85<, 80, -1., 0, -2.97, 0.69, 1.75<<

Here's a another set of spanning vectors which define a subspace S2 of 6D:
In[251]:= Clear@s, i, spanner2D;

spanner2@1D = 81.39, -0.49, -2.96, -4.13, 0.74, 4.19<;
spanner2@2D = 8-0.68, 1.23, 0.62, 5.09, 2.06, -2.37<;
spanner2@3D = 81.16, 1.18, 1.20, -1.30, 2.42, 2.85<;
spanner2@4D = 80.48, 2.41, 1.82, 3.79, 4.48, 0.48<;
spanners2 = Table@spanner2@iD, 8i, 1, 4<D

Out[256]= 881.39, -0.49, -2.96, -4.13, 0.74, 4.19<,
8-0.68, 1.23, 0.62, 5.09, 2.06, -2.37<,
81.16, 1.18, 1.2, -1.3, 2.42, 2.85<,
80.48, 2.41, 1.82, 3.79, 4.48, 0.48<<

Are these two subspaces the same?

áAnswer:

Go directly to the spanner matrices for each subspace.
In[257]:= SpannerMatrix1 = Transpose@spanners1D;

MatrixForm@SpannerMatrix1D

SpannerMatrix2 = Transpose@spanners2D;
MatrixForm@SpannerMatrix2D

Out[258]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjjjjjjj

3.43 0.97 -6.14 0
-0.57 1.29 3.08 -1.
8.19 0.83 -5. 0
-0.94 5.23 -1.97 -2.97
0.48 -2.31 0.78 0.69
0.78 7.8 0.85 1.75

y

{

zzzzzzzzzzzzzzzzzzzzzz

Out[260]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjjjjjjj

1.39 -0.68 1.16 0.48
-0.49 1.23 1.18 2.41
-2.96 0.62 1.2 1.82
-4.13 5.09 -1.3 3.79
0.74 2.06 2.42 4.48
4.19 -2.37 2.85 0.48

y

{

zzzzzzzzzzzzzzzzzzzzzz

Calculate the  S1projection matrix and the S2projection matrix and look at them:
In[261]:= S1projection = SpannerMatrix1.PseudoInverse@SpannerMatrix1D;

MatrixForm@S1projectionD
S2projection = SpannerMatrix2.PseudoInverse@SpannerMatrix2D;
MatrixForm@S2projectionD

Out[262]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjjjjjjj

0.601023 -0.43777 0.156589 0.123484 -0.0914484 -0.0045266
-0.43777 0.504919 0.167416 0.173455 0.0134314 0.0061786
0.156589 0.167416 0.937231 -0.0371411 0.0698263 0.0051009
0.123484 0.173455 -0.0371411 0.864044 -0.2646 -0.027292

-0.0914484 0.0134314 0.0698263 -0.2646 0.101259 -0.087027
-0.00452663 0.00617861 0.00510096 -0.0272926 -0.0870274 0.991525

Out[264]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjjjjjjj

0.0737793 0.0522096 0.00451895 -0.102958 0.135945 0.191071
0.0522096 0.150556 0.181612 0.127324 0.260096 0.0912049
0.00451895 0.181612 0.954586 -0.0666378 -0.0152872 -0.0753269
-0.102958 0.127324 -0.0666378 0.704669 0.255263 -0.334214
0.135945 0.260096 -0.0152872 0.255263 0.604059 0.296054
0.191071 0.0912049 -0.0753269 -0.334214 0.296054 0.512351

y

{

zzzzzzzzzzzzzzzzzzzzzz

The result:
             S1projection ¹ S2projection
The call:
The two subspaces are the not same.
Reason: 
        Saying a vector Y is in S1 is the same as saying S1projection.Y = Y.
        Saying a vector Y is in S2 is the same as saying S2projection.Y = Y.
        And because 
                    S1projection ¹ S2projection,
       saying that a vector Y is in S1 is not the same as saying Y is in S2.

B.3)  Linear independence and dimension:
Saying that a  spanning set {spanner[1],spanner[2], . . .,spanner[k]} for a 

subspace S of nD is linearly independent is the same as saying the 
dimension of S is k.
Redundant spanning sets and linear dependence
Most folks like to say:
A given spanning set for a subspace S is linearly independent if the dimension of S is the 
same as the number of vectors in the given spanning set.

A given spanning set for a subspace S is linearly dependent if the dimension of S is less 
than the number of vectors in the given spanning set.
                                   

áB.3.a.i) A linearly independent set in 6D
Here is a spanning set for a subspace S of 6D:

In[265]:= Clear@spanner, iD;
spanner@1D = 81.0, -2.3, 5.0, 6.7, -4.9, -2.0<;
spanner@2D = 80.3, 2.3, -4.6, -1.7, 5.8, 0.0<;
spanner@3D = 81.0, 7.1, 5.0, 3.7, 0.9, -2.0<;
spanners = Table@spanner@iD, 8i, 1, 3<D

Out[269]= 881., -2.3, 5., 6.7, -4.9, -2.<,
80.3, 2.3, -4.6, -1.7, 5.8, 0<, 81., 7.1, 5., 3.7, 0.9, -2.<<

Determine whether this spanning set is linearly independent or linearly dependent.
áAnswer:

The spanner matrix for the subspace spanned by the given spanning set is:
In[270]:= SpannerMatrix = Transpose@spannersD;

MatrixForm@SpannerMatrixD
Out[271]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjjjjjjj

1. 0.3 1.
-2.3 2.3 7.1
5. -4.6 5.
6.7 -1.7 3.7
-4.9 5.8 0.9
-2. 0 -2.

y

{

zzzzzzzzzzzzzzzzzzzzzz

The dimension of the subspace spanned by these vectors is the rank of SpannerMatrix:
In[272]:= rank = Length@SingularValues@SpannerMatrixDP2TD
Out[272]= 3

The number of vectors in this given spanning set is:
In[273]:= Length@spannersD
Out[273]= 3

The result: The dimension of the subspace spanned by this spanning set is the same as the 
number of vectors in the given spanning set. 
The call:
This spanning set is LINEARLY INDEPENDENT .

áB.3.a.ii) A linearly dependent set in 7D
Here is a spanning set of made with four vectors in 7D:

In[274]:= Clear@spanner, iD;
spanner@1D = 81.0, -2.3, 5.0, 6.7, -4.9, -2.0, -2.3<;
spanner@2D = 80.3, 2.3, -4.6, -1.7, 5.8, 0.0, 3.5<;
spanner@3D = 81.0, 7.1, 5.0, 3.7, 0.9, -2.0, 4.9<;
spanner@4D = 81.6, 11.7, -4.2, 0.3, 12.5, -2.0, 11.9<;
spanners = Table@spanner@iD, 8i, 1, 4<D

Out[279]= 881., -2.3, 5., 6.7, -4.9, -2., -2.3<,
80.3, 2.3, -4.6, -1.7, 5.8, 0, 3.5<, 81., 7.1, 5., 3.7, 0.9, -2., 4.9<,
81.6, 11.7, -4.2, 0.3, 12.5, -2., 11.9<<

Determine whether this spanning set is linearly independent or linearly dependent.
áAnswer:

The spanner matrix for the subspace spanned by the given spanning set is:
In[280]:= SpannerMatrix = Transpose@spannersD;

MatrixForm@SpannerMatrixD
Out[281]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjj

1. 0.3 1. 1.6
-2.3 2.3 7.1 11.7
5. -4.6 5. -4.2
6.7 -1.7 3.7 0.3
-4.9 5.8 0.9 12.5
-2. 0 -2. -2.
-2.3 3.5 4.9 11.9

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzz

The dimension of the subspace spanned by these vectors is the rank of SpannerMatrix:
In[282]:= rank = Length@SingularValues@SpannerMatrixDP2TD
Out[282]= 3

The number of vectors in this given spanning set is:
In[283]:= Length@spannersD
Out[283]= 4

The result: The dimension of the subspace spanned by this spanning set is less than the 
number of vectors in the given spanning set. 



The call:
This spanning set is LINEARLY DEPENDENT .

áB.3.a.iii) A set of four 3D vectors cannot be linearly independent
You are given a set of four vectors in 3D. 
How do you know in advance that the given set of four given vectors is linearly dependent?

áAnswer:

If the four vectors are linearly independent, then they span an four dimensional subspace of 
3D.
But 3D can accommodate at most 3 dimensions and this rules out the possibility of any four 
dimensional subspace of 3D.  

áB.3.a.iv)  A set of twelve 8D vectors cannot be linearly independent
You are given a set of 12 vectors in 8D. 
How do you know in advance that the given set of 12 given vectors is linearly dependent?

áAnswer:

If the 12 vectors are linearly independent, then they span an 12  dimensional subspace of 
8D.
But 8D can accommodate at most 8 dimensions and this rules out the possibility of any 12 
dimensional subspace of 8D.  

áB.3.b.i) Finding redundant vectors  in linearly dependent sets
Here's a spanning set for a subspace S of 5D:

In[284]:= Clear@s, i, spannerD;
spanner@1D = 81.43, 2.57, 6.19, -3.94, 0.0<;
spanner@2D = 80.95, 1.50, 1.85, 1.20, 0.50<;
spanner@3D = 80.67, 1.37, 4.71, -4.9, -0.4<;
spanner@4D = 82.1, 3.94, 10.9, -8.84, -0.4<;
spanner@5D = 81.10, 2.00, -2.1, -1.90, 0.46<;
spanners = Table@spanner@iD, 8i, 1, 5<D

Out[290]= 881.43, 2.57, 6.19, -3.94, 0<,
80.95, 1.5, 1.85, 1.2, 0.5<, 80.67, 1.37, 4.71, -4.9, -0.4<,
82.1, 3.94, 10.9, -8.84, -0.4<, 81.1, 2., -2.1, -1.9, 0.46<<

When you look at:
In[291]:= SpannerMatrix = Transpose@spannersD;

MatrixForm@SpannerMatrixD;
Sdim = Length@SingularValues@SpannerMatrixDP2TD

Out[293]= 3

And:

In[294]:= Length@spannersD
Out[294]= 5

You see:
The original spanning set is linearly dependent.

And after a little more thought, you realize the 5 - 3 = 2 of the given spanners are 
redundant in the sense when you throw them out of the spanning set, the resulting 
spanning set still spans the same subspace S.
Find the redundant vectors in the given spanning set.

áAnswer:

To identify the redundant spanners, look at
In[295]:= spanners12 = 8spanner@1D, spanner@2D<;

SpannerMatrix12 = Transpose@spanners12D;
rank = Length@SingularValues@SpannerMatrix12D@@2DDD;
S12dim = rank

Out[298]= 2

This tells you that 8spanner@1D, spanner@2D< span a two dimensional subspace S12 of 5D.
The call:  Neither spanner[1] nor spanner[2] are redundant.
Now look at:

In[299]:= spanners123 = 8spanner@1D, spanner@2D, spanner@3D<;
SpannerMatrix123 = Transpose@spanners123D;
rank = Length@SingularValues@SpannerMatrix123D@@2DDD;
S123dim = rank

Out[302]= 2

The upshot: Including spanner[3] does not raise the dimension.

So spanner@3D belongs to the subspace S12 spanned by  8spanner@1D, spanner@2D<. 
The call:  spanner@3D is redundant.
This means it is possible express spanner[3] in terms of spanner[1] and spanner[2] 

  via
 spanner[3] = x[1] spanner[1] + x2[spanner[2] 

for some choice of numbers x[1] and x[2].

Now look at:
In[303]:= spanners1234 = 8spanner@1D, spanner@2D, spanner@3D, spanner@4D<;

SpannerMatrix1234 = Transpose@spanners1234D;
rank = Length@SingularValues@SpannerMatrix1234D@@2DDD;
S1234dim = rank

Out[306]= 2

The upshot: Including spanner[4] does not raise the dimension.
So spanner@3D belongs to the subspace S12 spanned by  8spanner@1D, spanner@2D<. 
The call:  spanner@4D is redundant.
Now look at:

In[307]:= spanners12345 =
8spanner@1D, spanner@2D, spanner@3D, spanner@4D, spanner@5D<;

SpannerMatrix12345 = Transpose@spanners12345D;
rank = Length@SingularValues@SpannerMatrix12345D@@2DDD;
S12345dim = rank

Out[310]= 3

The upshot: Including spanner[5] does raise the dimension.
 The call:  spanner@5D is  not redundant.
 
The original (linearly dependent) spanning set for S is:

In[311]:= originalspanners =
8spanner@1D, spanner@2D, spanner@3D, spanner@4D, spanner@5D<

Out[311]= 881.43, 2.57, 6.19, -3.94, 0<,
80.95, 1.5, 1.85, 1.2, 0.5<, 80.67, 1.37, 4.71, -4.9, -0.4<,
82.1, 3.94, 10.9, -8.84, -0.4<, 81.1, 2., -2.1, -1.9, 0.46<<

The redundant vectors are spanner[3] and spanner[4]. Throwing them out gives a linearly 
independent spanning set for S ( with no redundant vectors):

In[312]:= reducedspanners = 8spanner@1D, spanner@2D, spanner@5D<
Out[312]= 881.43, 2.57, 6.19, -3.94, 0<,

80.95, 1.5, 1.85, 1.2, 0.5<, 81.1, 2., -2.1, -1.9, 0.46<<

Confirm by looking at the Sprojection matrices coming from the original spanning set and 
the reduced spanning set:

In[313]:= SpannerMatrix1 = Transpose@originalspannersD;
SpannerMatrix2 = Transpose@reducedspannersD;

S1projection = SpannerMatrix1.PseudoInverse@SpannerMatrix1D;
MatrixForm@S1projectionD

S2projection = SpannerMatrix2.PseudoInverse@SpannerMatrix2D;
MatrixForm@S2projectionD

Out[316]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjj

0.245193 0.411998 0.0117952 0.0133179 0.122535
0.411998 0.696312 0.00594912 -0.0392122 0.200366
0.0117952 0.00594912 0.997869 0.00481288 -0.0439228
0.0133179 -0.0392122 0.00481288 0.986817 0.106163
0.122535 0.200366 -0.0439228 0.106163 0.0738089

y

{

zzzzzzzzzzzzzzzzz

Out[318]//MatrixForm=

i

k

jjjjjjjjjjjjjjjjj

0.245193 0.411998 0.0117952 0.0133179 0.122535
0.411998 0.696312 0.00594912 -0.0392122 0.200366
0.0117952 0.00594912 0.997869 0.00481288 -0.0439228
0.0133179 -0.0392122 0.00481288 0.986817 0.106163
0.122535 0.200366 -0.0439228 0.106163 0.0738089

y

{

zzzzzzzzzzzzzzzzz

Right on target.

áB.3.b.ii) Linearly independent sets have no redundant members
Given a spanning set, agree that one of the spanners is redundant if you remove it from the 
spanning set and the remaining spanners span the same subspace as the original spanning 
set. 
Explain why it is IMPOSSIBLE for a linearly independent spanning set to contain a 
redundant vector.

áAnswer:

If a given spanning set 
          8spanner@1D, spanner@2D, . . ., spanner@kD<
is linearly independent, then the dimension of the subspace S spanned by this set is k.

If you remove any one of the spanners from this set, then you are left with (k-1) vectors. 
These (k - 1) vectors can span at most a (k-1) dimensional subspace. This (k-1) dimensional 
subspace cannot be all of S (because S is k-dimensional).

B.4) A basis for S is any linearly independent spanning set for S.
Using calculations of dimension to help to pare a linearly dependent 
spanning set down to a basis
Most folks say that a basis for a subspace S is any linearly independent spanning set for 
S.



áB.4.a.i)  A basis for a subspace S is any spanning set for S not containing a redundant 
vector
Is it true that  a basis for a subspace S is any spanning set for S not containing a redundant 
vector? 

áAnswer:

In one word:

Yes!

áB.4.a.ii) Saying that a spanning set is a basis is the same as saying that the associated 
spanner matrix is of full rank
Is it true that saying that a spanning set is a basis is the same as saying that the associated 
spanner matrix is of full rank?

áAnswer:

In one word:

Yes!

áB.4.b) Basis expansion
Given a basis 8spanner@1D, spanner@2D, . . ., spanner@kD< of a subspace S, 
explain why X in S determines unique coefficients x@1D, x@2D, . . ., x@kD so that

             X = Ú
i=1

k
x@iD spanner@iD

áAnswer:

You are given that
          8spanner@1D, spanner@2D, . .., spanner@kD< 
 is linearly independent.
This tells you that the associated spanner matrix is of full rank.
Now saying

        X = Ú
i=1

k
x@iD spanner@iD

is the same as saying
         X = SpannerMatrix.8x@1D, x@2D, . . ., x@kD<
This is the same as saying

         XX = 8x@1D, x@2D, ..., x@kD< 
is a solution of
        SpannerMatrix.XX = X.
And because SpannerMatrix is of full rank,
the solution
         XX = 8x@1D, x@2D, ..., x@kD<
is the only solution. 
So the coefficients 8x@1D, x@2D, . . , x@kD< 
that make

           X = Ú
i=1

k
x@iD spanner@iD

are uniquely determined. 

áB.4.c.i) Is it a basis?
Here's a spanning set for a subspace S of 4D:

In[319]:= Clear@s, i, spannerD;
spanner@1D = 83.43, -0.57, 8.19, -0.94<;
spanner@2D = 80.97, 1.29, 0.83, 5.23<;
spanner@3D = 8-6.14, 3.08, -5.00, -1.97<;
spanners = Table@spanner@iD, 8i, 1, 3<D;

ColumnForm@spannersD
Out[324]= 83.43, -0.57, 8.19, -0.94<

80.97, 1.29, 0.83, 5.23<
8-6.14, 3.08, -5., -1.97<

Determine whether this spanning set is a basis for S.
áAnswer:

This is the same as checking whether this spanning set is linearly independent.
To do this, check the rank of the associated spanner matrix:

In[325]:= SpannerMatrix = Transpose@spannersD;
rank = Length@SingularValues@SpannerMatrixDP2TD;
Sdim = rank

Out[327]= 3

This tells you that these 3 spanning vectors span a 3-dimensional subspace of S of 4D, so
the given spanner set is linearly independent.  
This confirms that the given spanning set is a basis of S.

áB.4.c.ii) Calculating a basis expansion
Stay with the same spanning set and subspace S as in part i) and look at
the projection of a random 4D vector onto S:

In[328]:=
random4D = 8Random@Real, 8-4, 4<D, Random@Real, 8-4, 4<D,

Random@Real, 8-4, 4<D, Random@Real, 8-4, 4<D<;

Sprojection = SpannerMatrix.PseudoInverse@SpannerMatrixD;

Svector = Sprojection.random4D

Out[330]= 81.80159, -2.45412, -0.34201, -1.9882<
This vector is guaranteed to be in S. 
Your job is to come up the basis expansion of Svector by coming up with the unique 
numbers
           x@1D, x@2D and x@3D
that make

        Svector = Ú
i=1

3
 x@iD  spanner@iD.

áAnswer:

The unique  x@1D, x@2D and x@3D that make

         Svector = Ú
i=1

3
 x@iD spanner@iD

 solve the linear system
        SpannerMatrix.8x@1D, x@2D, x@3D< = Svector.
The solution is:

In[331]:= 8x@1D, x@2D, x@3D< = PseudoInverse@SpannerMatrixD.Svector
Out[331]= 8-0.330321, -0.658753, -0.582017<

Check:

In[332]:= â
i=1

3

 x@iD spanner@iD

Svector

Out[332]= 81.80159, -2.45412, -0.34201, -1.9882<
Out[333]= 81.80159, -2.45412, -0.34201, -1.9882<

Nailed it.

áB.4.d.i) Is it a basis?
Here's a spanning set for a subspace S of 5D:

In[334]:= Clear@s, i, spannerD;
spanner@1D = 81.43, 2.57, 6.19, -3.94, 0.0<;
spanner@2D = 80.95, 1.50, 1.85, 1.20, 0.50<;
spanner@3D = 80.67, 1.37, 4.71, -4.9, -0.4<;
spanner@4D = 82.1, 3.94, 10.9, -8.84, -0.4<;
spanner@5D = 81.10, 2.00, -2.1, -1.90, 0.46<;
spanners = Table@spanner@iD, 8i, 1, 5<D;

ColumnForm@spannersD
Out[341]= 81.43, 2.57, 6.19, -3.94, 0<

80.95, 1.5, 1.85, 1.2, 0.5<
80.67, 1.37, 4.71, -4.9, -0.4<
82.1, 3.94, 10.9, -8.84, -0.4<
81.1, 2., -2.1, -1.9, 0.46<

Determine whether this spanning set is a basis for S.
áAnswer:

This is the same as checking whether this spanning set is linearly independent.
To do this, check the rank of the associated spanner matrix:

In[342]:= SpannerMatrix = Transpose@spannersD;
rank = Length@SingularValues@SpannerMatrixDP2TD;
Sdim = rank

Out[344]= 3

This tells you that these 5 spanning vectors span a 3-dimensional subspace of S of 5D, so
the given spanner set is linearly dependent.  
This confirms that the given spanning set is NOT a basis of S.

áB.4.d.ii) Paring a linearly dependent spanning set down to a basis
Stay with the same spanning set for a subspace S of 5D as in part i).

In[345]:= Clear@s, i, spannerD;
spanner@1D = 81.43, 2.57, 6.19, -3.94, 0.0<;
spanner@2D = 80.95, 1.50, 1.85, 1.20, 0.50<;
spanner@3D = 80.67, 1.37, 4.71, -4.9, -0.4<;
spanner@4D = 82.1, 3.94, 10.9, -8.84, -0.4<;
spanner@5D = 81.10, 2.00, -2.1, -1.90, 0.46<;
spanners = Table@spanner@iD, 8i, 1, 5<D;

ColumnForm@spannersD



Out[352]= 81.43, 2.57, 6.19, -3.94, 0<
80.95, 1.5, 1.85, 1.2, 0.5<
80.67, 1.37, 4.71, -4.9, -0.4<
82.1, 3.94, 10.9, -8.84, -0.4<
81.1, 2., -2.1, -1.9, 0.46<

Sitting in this spanning set is a basis for S. 
Come up with this basis for S by identifying and throwing out the redundant spanning 
vectors.

áAnswer:

In part i), You saw that the dimension of subspace S spanned by the original spanning set is 
3. Because there are 5 vectors in the spanning set you are sure that the original spanning set 
has two redundant vectors.
To identify them, look at

In[353]:= spanners12 = 8spanner@1D, spanner@2D<;
SpannerMatrix12 = Transpose@spanners12D;
rank = Length@SingularValues@SpannerMatrix12D@@2DDD;
S12dim = rank

Out[356]= 2

This tells you that 8spanner@1D, spanner@2D< span a two dimensional subspace S12 of 5D.
The call:  Neither spanner[1] nor spanner[2] are redundant.
Now look at:

In[357]:= spanners123 = 8spanner@1D, spanner@2D, spanner@3D<;
SpannerMatrix123 = Transpose@spanners123D;
rank = Length@SingularValues@SpannerMatrix123D@@2DDD;
S123dim = rank

Out[360]= 2

The upshot: Including spanner[3] does not raise the dimension.
So spanner@3D belongs to the subspace S12 spanned by  8spanner@1D, spanner@2D<. 
The call:  spanner@3D is redundant.
Now look at:

In[361]:= spanners1234 = 8spanner@1D, spanner@2D, spanner@3D, spanner@4D<;
SpannerMatrix1234 = Transpose@spanners1234D;
rank = Length@SingularValues@SpannerMatrix1234D@@2DDD;
S1234dim = rank

Out[364]= 2

The upshot: Including spanner[4] does not raise the dimension.
So spanner@3D belongs to the subspace S12 spanned by  8spanner@1D, spanner@2D<. 

The call:  spanner@4D is redundant.
Now look at:

In[365]:= spanners12345 =
8spanner@1D, spanner@2D, spanner@3D, spanner@4D, spanner@5D<;

SpannerMatrix12345 = Transpose@spanners12345D;
rank = Length@SingularValues@SpannerMatrix12345D@@2DDD;
S12345dim = rank

Out[368]= 3

The upshot: Including spanner[5] does raise the dimension.
 The call:  spanner@5D is  not redundant.
 
The original (linearly dependent) spanning set for S is:

In[369]:= 8spanner@1D, spanner@2D, spanner@3D, spanner@4D, spanner@5D<
Out[369]= 881.43, 2.57, 6.19, -3.94, 0<,

80.95, 1.5, 1.85, 1.2, 0.5<, 80.67, 1.37, 4.71, -4.9, -0.4<,
82.1, 3.94, 10.9, -8.84, -0.4<, 81.1, 2., -2.1, -1.9, 0.46<<

The redundant vectors are spanner[3] and spanner[4]. Throwing them out gives a (linearly 
independent) basis for S:

In[370]:= 8spanner@1D, spanner@2D, spanner@5D<
Out[370]= 881.43, 2.57, 6.19, -3.94, 0<,

80.95, 1.5, 1.85, 1.2, 0.5<, 81.1, 2., -2.1, -1.9, 0.46<<

B.5) Traditional book definitions of linear independence and linear 
dependence

áB.5.a.i) Saying a spanning set is linearly independent is the same as saying the 
SpannerMatrix is of full rank
Explain this:
Saying that a given spanning set
         8spanner@1D, spanner@2D, . . ., spanner@kD<
 is linearly independent is the same as saying that the associated spanner matrix is of full 
rank.

áAnswer:

Call S the subspace of nD spanned by the given spanning set
      8spanner@1D, spanner@2D, . . ., spanner@kD<.
The associated spanner matrix (whose ith column is spanner[i]) hits on kD.

Saying that the spanner matrix is of full rank is the same as saying that the rank of the 
spanner matrix is k.

Saying that 8spanner@1D, spanner@2D, . . ., spanner@kD<is linearly independent is the same as 
saying that the rank of the spanner matrix is k.

So saying that a given spanning set
         8spanner@1D, spanner@2D, . . ., spanner@kD<
 is linearly independent is the same as saying that the associated spanner matrix is of full 
rank.

áB.5.a.ii) Traditional book definition of linear independence
What you see below is the definition of linear independence that

you will see in most traditional linear algebra or matrix theory texts.
Many students have struggled with this definition.

Explain this arcane statement:
 Saying that a given spanning set
          8spanner@1D, spanner@2D, . . ., spanner@kD< 
 is linearly independent the same as saying that it is IMPOSSIBLE to come up with 
numbers 
           8x@1D, x@2D, . . ., x@kD<
not all of which are zero, so that

           Ú
i=1

k
x@iD spanner@iD = 80, 0, . . ., 0<.

áAnswer:

Saying that a given spanning set
         8spanner@1D, spanner@2D, . . ., spanner@kD<
 is linearly independent is the same as saying that the associated spanner matrix is of full 
rank.
 
 This is the same as saying that all the SVD stretch factors for the spanner matrix are 
positive.
 
 This is the same as saying that the only solution of
         SpannerMatrix.8x@1D, x@2D, . . , x@kD< = 80, 0, . . ., 0< 
  is

         8x@1D, x@2D, . . , x@kD< = 80, 0, . . ., 0<.
         
 Because

  SpannerMatrix.8x@1D, x@2D, . . , x@kD< = Ú
i=1

k
x@iD spanner@iD,

 this is the same as saying that the only solution of

                Ú
i=1

k
x@iD spanner@iD = 80, 0, . . ., 0<

is 
         8x@1D, x@2D, . . , x@kD< = 80, 0, . . ., 0<.
         
And this is the same as saying it is impossible to come up with numbers 
           8x@1D, x@2D, . . ., x@kD<
not all of which are zero, so that

           Ú
i=1

k
x@iD spanner@iD = 80, 0, . . ., 0<.

áB.5.b.i) Saying a spanning set is linearly dependent is the same as saying the 
SpannerMatrix is not of full rank
Explain this:
Saying that a given spanning set
         8spanner@1D, spanner@2D, . . ., spanner@kD<
is linearly dependent is the same as saying that the associated spanner matrix is not of full 
rank.

áAnswer:

Call S the subspace spanned by the given spanning set
      8spanner@1D, spanner@2D, . . ., spanner@kD<.
The associated spanner matrix (whose ith column is spanner[i]) hits on kD.

Saying that the spanner matrix is of not of full rank is the same as saying that the rank of the 
spanner matrix is less than k.

Saying that 8spanner@1D, spanner@2D, . . ., spanner@kD<is linearly dependent is the also same as 
saying that the rank of the spanner matrix is less than k.



So saying that a given spanning set
         8spanner@1D, spanner@2D, . . ., spanner@kD<
 is linearly dependent is the same as saying that the associated spanner matrix is of not of 
full rank.

áB.5.b.ii) Traditional book definition of linear dependence
What you see below is the definition of linear dependence that

you will see in most traditional linear algebra or matrix theory texts.
Many students have also struggled with this definition.

Explain this arcane statement:
 Saying that a given spanning set
          8spanner@1D, spanner@2D, . . ., spanner@kD< 
is linearly dependent the same as saying that it is POSSIBLE to come up with numbers 
           8x@1D, x@2D, . . ., x@kD<
not all of which are zero, so that

           Ú
i=1

k
x@iD spanner@iD = 80, 0, . . ., 0<.

áAnswer:

Saying that a given spanning set
         8spanner@1D, spanner@2D, . . ., spanner@kD<
 is linearly dependent is the same as saying that the associated spanner matrix is of not of 
full rank.
 
 This is the same as saying that at least one SVD stretch factors for the spanner matrix is 0.
 
 This is the same as saying there is at least one vector
        8x@1D, x@2D, . . , x@kD< ¹ 80, 0, . . ., 0< 
 so that
        SpannerMatrix.8x@1D, x@2D, . . , x@kD< = 80, 0, . . ., 0<.
         
 Because

        SpannerMatrix.8x@1D, x@2D, . . , x@kD< = Ú
i=1

k
x@iD spanner@iD,

this is the same as saying there is at least one vector
        8x@1D, x@2D, . . , x@kD< ¹ 80, 0, . . ., 0< 
 so that

        Ú
i=1

k
x@iD spanner@iD = 80, 0, . . ., 0<.

And this is the same as saying it is possible to come up with numbers 
           8x@1D, x@2D, . . ., x@kD<
not all of which are zero, so that

           Ú
i=1

k
x@iD spanner@iD = 80, 0, . . ., 0<.

B.6) All bases for a given subspace of nD have the same number of vectors
Implicit in the definition of dimension as the rank of the Spanner Matrix is the fact that if a 
subspace S of nD is spanned by a perpendicular frame   {B1,B2,. . ., Bk}, then any basis of 
S also consists of exactly k vectors.
The purpose of this problem is to explain this in detail.
Mathematics majors should fully engage. Others might want to as well. 
If so, then continue on for a dose of some advanced mathematical reasoning.

áB.6.a.i)  If a subspace S of nD is spanned by perpendicular frame (orthonormal basis) 
consisting of exactly k vectors, then all other bases of S also consist of exactly k vectors

This problem was adapted from the classic book by
 Nicolaas H. Kuiper, Linear Algebra and Geometry, North Holland, Amsterdam,1965.

Explain this statement:
If a subspace S of nD is spanned by perpendicular frame (orthonormal basis)
                      {B1,B2,. . ., Bk}
 then all other bases (linearly independent spanning sets)  of S consist of exactly k vectors.

áAnswer:
This is what mathematicians call a proof by induction.

The statement is true for k =1.
To prove this by induction, you take a positive integer k. 
You get to assume that  for any positive integer m < k that
if a subspace S of nD is spanned by perpendicular frame (orthonormal basis)
                      {B1,B2,. . ., Bm}

 then all other bases  of S consist of exactly m vectors.

The goal is to use this assumption to argue why the statement is true when you replace m 
with k.

To this end, go with a subspace S of nD spanned by a perpendicular frame

                     {B1,B2,. . ., Bk}

Put
      SS = the subspace spanned by 

                       {B1,B2,. . ., Bk-1}

Legal Assumption:
Because k - 1 < k, you get to assume that every basis for SS consists of exactly k-1 
vectors.

Notice that SS = everything is S that is perpendicular to Bk.

Now take another basis

                           {A1,A2,. . ., Ar}

 of S.  
The goal is to explain why r = k.
First note that it must be true that Bk¥Aj ¹ 0 for some j. 
If r > j, swap the labels so that the old Aj becomes the new Ar.

This guarantees that Bk  ¥Ar ¹ 0.
Now look at the vectors 

              Ci = Ai -  I Bk  ¥Ai���������������Bk  ¥Ar
M Ar    for i =1,2,. . ., r - 1.

Fact 1: The set {C1,C2,. . ., Cr-1} is linearly independent.
To see a reason, click on the right.

Reason: Because 
                  {A1,A2,. . ., Ar}

is linearly independent,

and

              Ci = Ai -  I Bk  ¥Ai���������������Bk  ¥Ar
M Ar    for i =1,2,. . ., r-1.

you know that

         Ú
i=1

r-1
li  Ci = Ú

i=1

r-1
li  Ai + (messy constant) Ar

cannot be {0,0,. . .,0}  unless l1= l2 = .... = lr - 1 = 0.

This explains (via the traditional definition of linear independence) why the set {C1,C2,. . ., 
Cr-1} is linearly independent.

Fact 2: The set {C1,C2,. . ., Cr-1}  spans SS and is therefore a basis of SS.
To see a reason, click on the right.

Because S consists of all sums 

                 Ú
i=1

r
li  Ai 

and because SS is everything in S perpendicular  to Bk, you know that SS is all sums

              A =  Ú
i=1

r
li  Ai   with  Ú

i=1

r
li  AiäBk = 0.

Remember that

              Ci = Ai -  I Bk  ¥Ai���������������Bk  ¥Ar
M Ar    for i =1,2,...,r-1.

So SS is all sums   

              A =  Ú
i=1

r-1
li  ICi + I Bk  ¥Ai���������������Bk  ¥Ar

M ArM + lr  Ar   with  Ú
i=1

r
li  AiäBk = 0

                   = Ú
i=1

r-1
li  Ci  + Ú

i=1

r-1
li  I Bk  ¥Ai���������������Bk  ¥Ar

M Ar + lr  Ar  with  Ú
i=1

r
li  AiäBk = 0.

                   = Ú
i=1

r-1
li  Ci  + Ú

i=1

r-1
li  I Bk  ¥Ai���������������Bk  ¥Ar

M Ar + lr  I Bk  ¥Ar���������������Bk  ¥Ar
M Ar  with  Ú

i=1

r
li  AiäBk = 0.

                   = Ú
i=1

r-1
li  Ci  + Ú

i=1

r
li  I Bk  ¥Ai���������������Bk  ¥Ar

M Ar  with  Ú
i=1

r
li  AiäBk = 0.

                   = Ú
i=1

r-1
li  Ci  + 1���������������Bk  ¥Ar

Ar Ú
i=1

r
li  HBk  ¥AiL  with  Ú

i=1

r
li  AiäBk = 0.

                   = Ú
i=1

r-1
li  Ci  + 0  with  Ú

i=1

r
li  AiäBk = 0.

                   = Ú
i=1

r-1
li  Ci  



This shows that the set {C1,C2,. . ., Cr-1}  spans SS. 
And because the set {C1,C2,. . ., Cr-1} is also linearly independent, the set {C1,C2,. . ., 
Cr-1} is a basis of SS.

Fact 3:  r  =  k.
To see a reason, click on the right.

{C1,C2,. . ., Cr-1} is a basis of SS.
The legal assumption is that  every basis for SS consists of exactly k-1 vectors.
So r - 1 = k - 1. This yields the equality r = k.

Summary:
You started with a subspace S of nD spanned by a perpendicular frame

                     {B1,B2,. . ., Bk}

And then you took any old basis

                           {A1,A2,. . ., Ar}

of S and argued why r = k. 
This shows that all other bases (linearly independent spanning sets)  of S consist of exactly 
k vectors.

áB.6.a.ii) If a subspace S of nD is spanned by basis (linearly independent spanning set) 
consisting of exactly k vectors, then all other bases of S also consist of exactly k vectors
Explain this statement:
If a subspace S of nD is spanned by a basis (linearly independent spanning set but not 
necessarily orthonormal)
                      {X1,X2,. . ., Xk}
 then all other bases (linearly independent spanning sets)  of S consist of exactly k vectors.

áAnswer:

Apply the Gram-Schmidt (See Tutorials) process to 

                     {X1,X2,. . ., Xk}
 to get an orthonormal basis  
                      {G1,G2,. . ., Gk}

of S. According to the problem immediately above, all other bases of S consist of exactly k 
vectors.


