Matrices, Geometry\&Mathematica
Authors:
Bruce Carpenter, Bill Davis and Jerry Uhl ©2001
Producer: Bruce Carpenter
Publisher: Math Everywhere, Inc.
MGM. 08 Subspaces, Spans, Dimension, Linear Independence, Basis,
Orthonormal Bases
LITERACY

Fire from the hip:

Agree, disagree or fill the blank
-L.1)
You are given a spanning set for a subspace S1 of kD and you are given a spanning set for a subspace S 2 of kD .
Saying that $\mathrm{S} 1=\mathrm{S} 2$ is the same as saying that the two spanning sets are identical.
Agree.
Disagree. \qquad
$\square \mathrm{L} .2)$
Given a subspace S of 5D, it is automatic that if X and Y are in S then $\mathrm{X}+\mathrm{Y}$ is also in S .
Agree. \qquad
-L.3)
Given a subspace S of 5D, it is automatic that if X is in S and t is any real number, then t
X is also in S .
Agree...............Disagree...........
-L.4)
The vector $\{0,0,0,0,0\}$ is in every subspace of 5 D .
Agree...............Disagree...........

-L.5)

A subspace S of 5D is defined by:
Clear[i, spanner];
spanner $[1]=\{2.5,-1.8,-0.7,-3.8,0.7\}$;
spanner $[2]=\{0.5,-0.4,2.8,3.4,1.7\}$;
spanner [3] $=\{-5.1,-2 ., 0.2,-2.1,0.0\}$;
spanner $[4]=\{-3.1,-3.4,-3.3,-9.3,-1.0\}$;
spanners = Table[spanner[i], $\{i, 1,4\}]$

$$
\begin{aligned}
& \{\{2.5,-1.8,-0.7,-3.8,0.7\},\{0.5,-0.4,2.8,3.4,1.7\}, \\
& \{-5.1,-2 ., 0.2,-2.1,0\},\{-3.1,-3.4,-3.3,-9.3,-1 .\}\}
\end{aligned}
$$

The corresponding SpannerMatrix is:
SpannerMatrix = Transpose[spanners];
MatrixForm [SpannerMatrix]
$\left(\begin{array}{cccc}2.5 & 0.5 & -5.1 & -3.1 \\ -1.8 & -0.4 & -2 . & -3.4 \\ -0.7 & 2.8 & 0.2 & -3.3 \\ -3.8 & 3.4 & -2.1 & -9.3 \\ 0.7 & 1.7 & 0 & -1 .\end{array}\right)$

The vertical columns of SpannerMatrix form a spanning set for S.
Agree \qquad Disagree..

-L.6)

Stay with the same subspace S of 5D as defined in L.5) immediately above. The Sprojection matrix for S is:

```
rank = Length[SingularValues[SpannerMatrix][[2]]];
Sdim = rank;
Clear[Sperpframe, k];
Sperpframe[k_] := SingularValues[SpannerMatrix][[1]][[k]]
aligner = Table[Sperpframe[k], {k, 1, Sdim}];
hanger = Transpose[aligner];
Sprojection = hanger.aligner;
MatrixForm[Sprojection]
```

$\left(\begin{array}{ccccc}0.978623 & 0.0756924 & -0.0289241 & -0.0229279 & 0.117593 \\ 0.0756924 & 0.473718 & -0.262411 & 0.292405 & -0.298697 \\ -0.0289241 & -0.262411 & 0.4455 & 0.26735 & 0.325357 \\ -0.0229279 & 0.292405 & 0.26735 & 0.802663 & 0.029877 \\ 0.117593 & -0.298697 & 0.325357 & 0.029877 & 0.299495\end{array}\right)$

The vertical columns of the Sprojection matrix also form a spanning set for S .
Agree................Disagree \qquad
$\square \mathbf{L . 7)}$
Stay with the same subspace S of 5 D as defined in part i) immediately above. The hanger frame for SpannerMatrix is
rank = Length[SingularValues [SpannerMatrix][[2]]];
Sdim = rank;
Clear[Sperpframe, k];
Sperpframe [k_] := SingularValues [SpannerMatrix] [[1]] [[k]]
ColumnForm[Table[Sperpframe[k], \{k, 1, Sdim\}]]
$\{-0.297777,-0.306839,-0.303636,-0.846001,-0.0962604\}$
$\{0.93212,0.078418,-0.214429,-0.280875,0.0114624\}$
$\{-0.145271,0.61108,-0.554369,0.0897498,-0.538607\}$
These three vectors (which are guaranteed to form a perpendicular frame) matrix form an orthonormal basis for S .
Agree................Disagree
\square L.8)
Stay with the same subspace S of 5D as defined in part i) immediately above. Take another look at the hanger frame for the SpannerMatrix:
rank = Length[SingularValues [SpannerMatrix][[2]]];
Sdim = rank;
Clear[Sperpframe, k];
Sperpframe[k] := SingularValues [SpannerMatrix][[1]][[k]]
ColumnForm[Table[Sperpframe[k], \{k, 1, Sdim\}]]

```
{-0.297777, -0.306839,-0.303636, -0.846001, -0.0962604}
{0.93212, 0.078418, -0.214429, -0.280875, 0.0114624}
\(\{-0.145271,0.61108,-0.554369,0.0897498,-0.538607\}\)
```

The fact that the hanger frame for the SpannerMatrix consists of three vectors signals that the dimension of S is 3 .
Agree................Disagree............
-L.9)
You are given a set of three 2D vectors $\mathrm{X} 1, \mathrm{X} 2$ and X 3 .
It is possible that
$\{\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3\}$
turns out to be a linearly independent set.
Agree...
Disagree.
.........
-L.10)
You are dealing with a subspace S of 9D and find that the dimension of S is 9 .
This allows for the possibility that S is not all of 9D.
Agree... \qquad .Disagree. \qquad
$\square \mathbf{L . 1 1)}$
Given a matrix A that hits on 3D and hangs in 5D,
The column space of A, R[A], consists of all possible hits with A.
The set of horizontal row vectors of A gives you a spanning set for R[A].
Agree.. \qquad .Disagree. \qquad
$\square \mathbf{L . 1 2)}$
Given a matrix A that hits on 4 D and hangs in 2D,
The row space of $A, R\left[A^{t}\right]$, consists of all possible hits with A^{t}.
The set of horizontal row vectors of A gives you a spanning set for $R\left[A^{t}\right]$
Agree. \qquad .Disagree \qquad
$\square \mathbf{L . 1 3)}$
Given any matrix A, the dimension of the row space of A is the same as the dimension of the column space of A.
Agree................Disagree............
\square L.14)
Given any matrix A, then the columns of A form a basis of the column space of A Agree \qquad .Disagree.

ㅁL.15)
Here's a spanning set for a subspace S of 5D:

Clear[s, i, spanner];
spanner $[1]=\{3.43,-2.57,0.19,-3.94,-2.78\}$;
spanner [2] $=\{0.97,1.29,0.83,5.23,0.0\}$;
spanner [3] $=\{-0.14,1.08,0.0,0.0,-1.45\}$;
spanner $[4]=\{0.0,1.0,-1.10,0.89,1.51\}$;
spanners $=$ Table[spanner[i], $\{i, 1,4\}]$
$\{\{3.43,-2.57,0.19,-3.94,-2.78\},\{0.97,1.29,0.83,5.23,0\}$,
$\{-0.14,1.08,0,0,-1.45\},\{0,1 .,-1.1,0.89,1.51\}\}$
The dimension of S is:

SpannerMatrix = Transpose[spanners];

rank = Length[SingularValues [SpannerMatrix] [2】]

4

This is enough information for you to be sure that the set \{spanner[1], spanner[2], spanner[3], spanner[4]\}
is linearly independent.
Agree.
Disagree
.................
-L.16)
You have a spanning set \{spanner[1], spanner[2], spanner[3], spanner[4]\} for a subspace S of 6 D .

The dimension of the subspace S 12 of 6D spanned by $\{$ spanner[1], spanner[2]\} turns out to be 2 .

The dimension of the subspace S 123 of 6D spanned by
\{spanner[1], spanner[2], spanner[3]\} turns out to be 2 .
The dimension of the subspace S1234 of 6D spanned by
\{spanner[1], spanner[2], spanner[3], spanner[4]\} turns out to be 3 .
This is enough to tell you that $\{$ spanner[1], spanner[2], spanner[3], spanner[4]\} is not a basis for S .

\square L.17)

You have a spanning set \{spanner[1], spanner[2], spanner[3], spanner[4]\} for a subpsace S of 6 D .

The dimension of the subspace S 12 of 6D spanned by $\{\operatorname{spanner[1],~spanner[2]\} ~turns~out~to~}$ be 2 .

The dimension of the subspace S123 of 6D spanned by
\{spanner[1], spanner[2], spanner[3]\} turns out to be 3 .
The dimension of the subspace S1234 of 6D spanned by \{spanner[1], spanner[2], spanner[3], spanner[4]\} turns out to be 4.

This is enough to tell you that $\{$ spanner[1], spanner[2], spanner[4]\} is a basis for S

-L.18)

You have a spanning set \{spanner[1], spanner[2], spanner[3], spanner[4]\} for a subpsace S of 6 D .

The dimension of the subspace S12 of 6D spanned by \{spanner[1], spanner[2]\} turns out to be 2 .

The dimension of the subspace S123 of 6D spanned by
\{spanner[1], spanner[2], spanner[3]\} turns out to be 3 .
The dimension of the subspace S 1234 of 6D spanned by \{spanner[1], spanner[2], spanner[3], spanner[4]\} turns out to be 4.

This is enough to tell you that \{spanner[1], spanner[2], spanner[3], spanner[4]\} is an orthonormal basis for S .

\square L.19)

You have a spanning set \{spanner[1], spanner[2], spanner[3], spanner[4]\} for a subpsace S of 6 D .

The dimension of the subspace S12 of 6D spanned by \{spanner[1], spanner[2]\} turns out to be 2 .

The dimension of the subspace S123 of 6D spanned by $\{$ spanner[1], spanner[2], spanner[3]\} turns out to be 2 .

The dimension of the subspace S 1234 of 6D spanned by \{spanner[1], spanner[2], spanner[3], spanner[4]\} turns out to be 3 .

This is enough to tell you that spanner[3] can be written in the form
spanner[3] $=x[1]$ spanner[1] $+x[2]$ spanner[2]
for the right choice of numbers $\mathrm{x}[1]$ and $\mathrm{x}[2]$.

\square L.20)

A basis of a subspace S of $k D$ is a linearly independent spanning set for S
Agree.
Disagree
\qquad
\square L.21)
Any perpendicular frame is an orthonormal basis of the subspace it spans.
Agree...
Disagree \qquad

\square L.22)

Inside every spanning set for a subspace S of kD is a basis of S
Agree..
Disagree............
\square L.23)
You are given spanning set for a subspace S of 6D. If this spanning set consists of 6 linearly independent vectors, then it is automatic that S is all of 6 D and that the given spanning set is a basis for 6D
Agree...
Disagree...........
\square L.24)
Given a matrix A, you can be sure that the dimension of the column space of A is the same as the rank of A.
Agree....
Disagree. \qquad
-L.25)
Agree or disagree:
You take the spanning set and make the Spanner Matrix and you calculate Null[SpannerMatrix].

If Null[SpannerMatrix] consists of nothing other than the vector of all zeroes, then the given spanning set is guaranteed to be linearly independent.

If Null[SpannerMatrix] contains vectors other than the vector of all zeroes, then the given spanning set is guaranteed not to be linearly independent.
Agree... \qquad
Disagree. \qquad
\square L.26)
If $\{\mathrm{X}[1], \mathrm{X}[2], \mathrm{X}[3], . ., \mathrm{X}[\mathrm{k}]\}$ is an orthonormal basis of a k dimensional subspace S of nD then given any Y in nD the vector in S closest to Y is

$$
\sum_{\mathrm{j}=1}^{\mathrm{k}}(\mathrm{Y} . \mathrm{X}[\mathrm{j}]) \mathrm{X}[\mathrm{j}] .
$$

Agree.
Disagree

You are given a subspace S of 13D and a vector X in 13D.
If $\|$ Sprojection $\cdot \mathrm{X}\|=\| \mathrm{X} \|$, then Sprojection. $\mathrm{X}=\mathrm{X}$ and so X is in S .
Agree.
Disagree

