Matrices, Geometry\&Mathematica
 Authors: Bruce Carpenter, Bill Davis and Jerry Uhl ©2001
 Producer: Bruce Carpenter
 Publisher: Math Everywhere, Inc.

MGM. 09 Eigensense: Diagonalizable Matrices, Matrix Exponential, Matrix Powers and Dynamical Systems LITERACY

-L.e)

If A is a diagonalizable 2 D matrix and the eigenvalues of A are $-0.52+\mathrm{I} 3.84$ and $-0.52-\mathrm{I} 3.84$,
then you are guaranteed that as t gets large
$\mathrm{E}^{\mathrm{At}} . \mathrm{X} \rightarrow\{0,0\}$.
Agree:....... Disagree:....
\square L.f)
If A is a diagonalizable 2 D matrix and the eigenvalues of A are $0.52+\mathrm{I} 3.84$ and $0.52-\mathrm{I} 3.84$,
then you are guaranteed that as t gets large
$E^{A t} . X \rightarrow\{0,0\}$.
Agree:....... Disagree:....
\square L.g)
If A is a diagonalizable 3 D matrix and the eigenvalues of A are $-0.34,-0.52+\mathrm{I} 0.67$ and $-0.52-\mathrm{I} 0.67$,
then you are guaranteed that as t gets large
$\mathrm{E}^{\mathrm{At}} \cdot \mathrm{X} \rightarrow\{0,0,0\}$.
Agree:....... Disagree:....

$\square \mathbf{L} . h)$

If A is a diagonalizable 3 D matrix and the eigenvalues of A are
0.83 , I 2.5 and - I 2.5 ,
then you are guaranteed that as t advances,
$E^{A t} \cdot X$ spirals away from $\{0,0,0\}$ (provided $\left.X \neq\{0,0,0\}\right)$.
Agree:....... Disagree:....
$\square \mathbf{L . i)}$
If A is a diagonalizable matrix then the eigenvectors of A are the same as the eigenvectors of $E^{A t}$ provided $t \neq 0$.
Agree:....... Disagree:....

$\square \mathrm{L} . \mathrm{j})$

A diagonalizable 2D matrix A calculates out to have eigenvalue[1] $=1.5$ with corresponding eigenvector $[1]=\{0.25,1.0\}$ and
eigenvalue[2] $=-2.0$ with corresponding eigenvector $[2]=\{0.5,1.0\}$.
so that
A.eigenvector $[1]=1.5$ eigenvector $[1]$
and
A.eigenvector[2] $=-2.0$ eigenvector[2]

Put
$\{x[t], y[t]\}=E^{A t}$.starter
so that $\{\mathrm{x}[0], \mathrm{y}[0]\}=$ starter.
If starter is not a multiple of either eigenvector[1] or eigenvector[2], then as t gets large

$$
\frac{\mathrm{y}[t]}{\mathrm{x}[t]} \rightarrow 4.0 .
$$

Agree:....... Disagree:....
\square L.k)
A diagonalizable 2D matrix A calculates out to have
eigenvalue $[1]=1.5$ with corresponding eigenvector $[1]=\{0.25,1.0\}$
and
eigenvalue[2] $=-2.0$ with corresponding eigenvector $[2]=\{0.5,1.0\}$.
so that
A.eigenvector $[1]=1.5$ eigenvector $[1]$
and
A.eigenvector[2] $=-2.0$ eigenvector[2]

Put
$\{x[k], y[k]\}=A^{k}$.starter
so that $\{\mathrm{x}[0], \mathrm{y}[0]\}=$ starter.
If starter is not a multiple of either eigenvector[1] or eigenvector[2], then as t gets large

$$
\frac{\mathrm{y}[\mathrm{t}}{\mathrm{x}[\mathrm{t}]} \rightarrow 4.0 .
$$

Agree:....... Disagree:....
\square L.I)
Here's a random 2D matrix A:
Clear[i, j, t];

A $=\operatorname{Table}[\operatorname{Random}[R e a l$,
MatrixForm $[A]$

$\left.\left(\begin{array}{cc}-2.04185 & 0.925096 \\
0.276589 & 2.25256\end{array}\right),\{\mathbf{i}, \mathbf{1}, \mathbf{2}\},\{\mathbf{j}, \mathbf{1}, \mathbf{2}\}\right] ;$

Here are two calculations - one of which is a correct calculation of E^{At} :

```
| calculation1 = MatrixForm[Simplify[ComplexExpand[E^(At)]]]
```

$$
\left(\begin{array}{ll}
\mathbb{e}^{-2.04185 t} & e^{0.925096 t} \\
\mathbb{e}^{0.276589 t} & \mathbb{e}^{2.25256 t}
\end{array}\right)
$$

| calculation 2 = MatrixForm[Simplify[ComplexExpand[MatrixExp[At]]]]

$$
\left(\begin{array}{ccc}
0.986678 \mathbb{e}^{-2.10063 t}+0.0133223 \mathbb{e}^{2.31134 t} & -0.209679 e^{-2.10063 t}+0.209679 \mathbb{e}^{2} \\
-0.0626905 \mathbb{e}^{-2.10063 t}+0.0626905 \mathbb{e}^{2.31134 t} & 0.0133223 e^{-2.10063 t}+0.986678 \mathbb{e}^{2}
\end{array}\right.
$$

The first calculation of E^{At} is correct and the second is wrong.
Agree:....... Disagree:....

- L.m)

Here's a 3D matrix A:
Clear[i, j];
$A=\{\{1.0,2.0,3.0\},\{4.0,5.0,6.0\},\{7.0,8.0,9.0\}\} ;$
MatrixForm [A]
(1. 2. 3 .
4. 5. 6.
7. 8. 9.

Here are two calculations - one of which is correct::
calculation1 = \mathbf{A}^{2};
MatrixForm [calculation1]
$\left(\begin{array}{ccc}1 . & 4 . & 9 . \\ 16 . & 25 . & 36 . \\ 49 . & 64 . & 81 .\end{array}\right)$
calculation2 = MatrixPower [A, 2];
MatrixForm [calculation2]
30. 36. 42 .
66. 81. 96.
102. 126. 150.)

The second calculation is a correct calculation of A.A.
Agree:....... Disagree:....
$\square \mathbf{L} . \mathbf{n})$
Although the theory of diagonalizable matrices was developed in the Basics in the setting of 2D matrices, the same theory works in the higher dimensions.
Agree:....... Disagree:....
\square L.o)
If A is a diagonalizable 3 D matrix, then your are guaranteed that the eigenvectors of A span all of 3D.
Agree:....... Disagree:....
\square L.p)
If A is a $4 D$ matrix, and the eigenvectors of A do not span all of $4 D$, then your are guaranteed that A is not diagonalizable.
Agree:....... Disagree:....
\square L.q)
If A is a diagonalizable matrix and none of the eigenvalues of A is zero, then A is invertible.
Agree:....... Disagree:......

