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DE.01 Transition from Calculus to DiffEq:
The Exponential Differential Equation

Basics

B.1) The unforced exponential differential equation, the 

most important differential equation of all: 

                   y¢@tD + r y @tD = 0.

This is the boss diffeq.

                   y@tD = E-r t starter

solves the unforced exponential diffeq

          y¢@tD + r y @tD = 0with y@0D = starter. 

áB.1.a)    y@tD = a E-r t solves  y¢@tD + r y @tD = 0

Given a number r, to solve the exponential differential equation 
       y'@tD + r y@tD = 0, 
you want a function y@tD with the property that 
       y'@tD + r y@tD = 0  for all t's.
How do you get it?

áAnswer:

You do educated guesswork.

The diffeq  is

       y¢@tD + r y@tD = 0 for all t's.

 

You go with numbers K and z and put 

       guessy@tD = K Ez t

Because the diffeq is

       y'@tD + r y@tD = 0, 

you want to select z so that 

       guessy¢@tD + r guessy@tD = 0.

This is the same as

       K z Ez t + r K Ez t = 0.

 This is the same as

       z = -r

So 

       guessy@tD = K E-r t.

Check it out:
Clear @guessy, K, t, r D;

guessy @t_ D = K E-r t

E-r t K

Check whether

       guessy¢@tD + r guessy@tD = 0:
guessy ¢@t D + r guessy @t D

0

Good.

This tells you and everyone else that

       y@tD = a E-r t

solves the exponential diffeq

       y¢@tD + r y@tD = 0.

 

You can get Mathematica to spit this out directly:
Clear @y, t, r D
DSolve @y' @t D + r y @t D == 0, y @t D, t D

88y@t D ® E-r t C@1D<<

This means C@1D can be any constant. You can reconcile the solution 

        y@tD = K E -r t 

above with the Mathematica solution 

        y@tD = C@1DE-r t

by taking K = C@1D.
áB.1.b) 

Solve the diffeq
             y¢@tD + 0.6 y@tD = 0 with y@0D = 12.8 .
Give a nice plot of the solution.

áAnswer:

You already know

          y@tD = K E -0.6 t 

 solves

         y¢@tD + 0.6 y@tD = 0.

         

But when you look at y@0D, you get:

         y@0D = K E0 = K.

This tells you that to solve

          y¢@tD + 0.6 y@tD = 0 with y@0D = 12.8, 

all you have to do is to write down

           y@tD = 12.8 E-0.6 t.
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 Check it out:

r = 0.6; starter = 12.8; Clear @y, t D
y@t_ D = starter E -r t

12.8 E -0.6 t

See this solution:
endtime = 20;

Plot Ay@t D, 8t, 0, endtime <,

PlotStyle ® 88Blue, Thickness @0.01 D<<, PlotRange ® All,

AspectRatio ®
1

�����������������������������������
GoldenRatio

, AxesLabel ® 8"t", "y @t D" <E;
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It falls off to 0 mighty fast. 

That's what lots of folks like to call "exponential decay."

áB.1.c.i) 

Given the diffeq
             y¢@tD + r y@tD = 0 with y@0D = 7.6, 
 how does the sign of r tell you whether the plot of the solution goes 
up or goes down to 0?

áAnswer:

 If r < 0, solutions go up. If r > 0, solutions go down.

Reasons:

If r < 0, then you get 

       y¢@0D + r y@0D = 0
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or      

       y¢@0D = -r y@0D
       y¢@0D = -7.6 r 

Because r < 0 tells you that y@tD goes up as t advances from 0.

Then when you look at

       y¢@tD = -r y@tD,
you see that as y@tD, goes up so does y¢@tD.
The upshot:

       y@tD grows at an increasingly rapid rate.

This increasingly rapid growth is called exponential growth.

See the solution of y¢@tD + r y@tD = 0 with y@0D = 7.6

with r = -0.8:
starter = 7.6; r = -0.8; Clear @y, t D
y@t_ D = starter E -r t

endtime = 20;

Plot Ay@t D, 8t, 0, endtime <,

PlotStyle ® 88Blue, Thickness @0.01 D<<, PlotRange ® All,

AspectRatio ®
1

�����������������������������������
GoldenRatio

, AxesLabel ® 8"t", "y @t D" <E;
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Look at that bastard grow. That's big time exponential growth.

On the other hand, if r > 0, 

 

the solution is y@tD = 7.6 E-r t which is guaranteed to decay to 0 pretty 

durn fast:

See the solution of y¢@tD + r y@tD = 0 with y@0D = 7.6 and

with r = 0.8:
starter = 7.6; r = 0.8; Clear @y, t D
y@t_ D = starter E -r t

endtime = 20;

Plot Ay@t D, 8t, 0, endtime <,

PlotStyle ® 88Blue, Thickness @0.01 D<<, PlotRange ® All,

AspectRatio ®
1

�����������������������������������
GoldenRatio

, AxesLabel ® 8"t", "y @t D" <E;
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Decaying to 0. Typical exponential decay.

 

B.2) y@tD = E-r t starter +  E-r t Ù0

t
Er t f @tD â t

solves the forced exponential diffeq

          y¢@tD + r y @tD = f @tDwith y@0D = starter.

áB.2.a)

Old hands at diffeq know that you can get a formula for the solution 
of the forced exponential diffeq
       y'@tD + r y@tD = f @tD, with y@0D = starter
merely by calculating an integral. 
The formula for the solution is
       y@tD = E-r t starter+  E-r tÙ0

t
Er t f @tD â t .

            
Here is the formula at work on 
       y¢@tD + 2.6 y@tD = 3.4 E-0.3 t, with y@0D = 5.1:

Clear @yformula, f, t D
f @t_ D = 3.4 E -0.3 t ;
r = 2.6;
starter = 5.1;

yformula @t_ D = E-r t starter + E-r t à
0

t

Er t f @t D â t

5.1 E -2.6 t + E-2.6 t H-1.47826 + 1.47826 E 2.3 t L
See it:

endtime = 10;

Plot Ayformula @t D, 8t, 0, endtime <, PlotStyle ®

88CadmiumOrange, Thickness @0.01 D<<, AxesLabel ® 8"t", "y @t D" <,

PlotRange ® All, AspectRatio ®
1

�����������������������������������
GoldenRatio

E;
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Here is the formula at work on 
       y¢@tD - 1.2 y@tD = 0.8 t, with y@0D = 0:

Clear @yformula, f, t D
f @t_ D = 0.8 t;
r = -1.2; starter = 0;

yformula @t_ D = E-r t starter + E-r t à
0

t

Er t f @t D â t

E1.2 t H0.555556 - 0.666667 E -1.2 t H0.833333 + 1. t LL
See it:

endtime = 8;

Plot Ayformula @t D, 8t, 0, endtime <, PlotStyle ®

88CadmiumOrange, Thickness @0.01 D<<, AxesLabel ® 8"t", "y @t D" <,

PlotRange ® All, AspectRatio ®
1

�����������������������������������
GoldenRatio

E;
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Here is the formula at work on 
       y¢@tD + 0.5 y@tD = 3.7 Sin@2 tD, with y@0D = -3.0:

Clear @yformula, f, t D
f @t_ D = 3.7 Sin @2 t D
r = 0.5;
starter = -3.0;

yformula @t_ D = E-r t starter + E-r t à
0

t

Er t f @t D â t

3.7 Sin @2 t D
-3. E -0.5 t + E-0.5 t HH1.74118 + 0. I L -

H1.74118 + 0. I L E0.5 t HH1. + 0. I L Cos@2 t D - H0.25 + 0. I L Sin @2 t DLL
See it:

endtime = 20;

Plot Ayformula @t D, 8t, 0, endtime <, PlotStyle ®

88CadmiumOrange, Thickness @0.01 D<<, AxesLabel ® 8"t", "y @t D" <,

PlotRange ® All, AspectRatio ®
1

�����������������������������������
GoldenRatio

E;
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Explain why the formula
       yformula@tD = E-r t starter+ E-r t  Ù0

t
Er t f @tD â t

is guaranteed to work (if the integral can be done)
áAnswer:

Start with

       y'@tD + r y@tD = f @tD, with y@0D = starter.

Multiply both sides by  Er t to get:

       Er t y¢@tD + Er t r y@tD = Er t f @tD.
Lots of folks like to call Er t

 by the name "integrating factor."

And you note (thanks to the product rule of derivatives) that the new 

equation is same as

       D@Er t y@tD, tD = Er t f @tD.
 Check:

Clear @r, t, f, y D
¶t HEr t y@t DL == Er t f @t D

Er t r y @t D + Er t y ¢@t D == Er t f @t D

This tells you that the original diffeq 

       y'@tD + r y@tD = f @tD
 is the same as 

       D@Er t y@tD, tD = Er t f @tD.
 Next you integrate both sides  of

 

       D@Er t y@tD, tD = Er t f @tD
from 0 to t to get

       Er t y@tD - E0 y@0D
       = Ù0

t
D@HEr t y@tDL, tD â t = Ù0

t
Er t f @tD â t.

This gives         

       Er t y@tD - y@0D = Ù0

t
Er t f @tD â t.

 So

       y@tD - E-r t y@0D = E-r t  Ù0

t
Er t f @tD â t

This gives the exact formula for y@tD in terms or f @tD, r and y@0D:
       y@tD = E-r t y@0D + E-r t  Ù0

t
Er t f @tD â t.

áB.2) The downside

What's the downside of trying to integrate out?
áAnswer:

If you're working by hand with pencil and paper, the integrals can drive 

you nuts.

It can even drive mighty Mathematica nuts

Here is the formula at work on 
       y¢@tD + 0.5 y@tD = 3.7 Sin@2 tD, with y@0D = -3.0:

Clear @yformula, f, t D
f @t_ D = 3.7 E Sin @t D

r = 0.5;
starter = -3.0;

yformula @t_ D = E-r t starter + E-r t à
0

t

Er t f @t D â t

3.7 E Sin @t D

-3. E -0.5 t + 3.7 E -0.5 t à
0

t

 E0.5 t +Sin @t D â t

 

Mathematica could not calculate Ù0

t
 E0.5 t+ Sin@tD  â t.

Neither can anything or anybody else.

If you can calculate the integral, the method is as easy as apple pie. 

But if you can't do the integrals, the method is dead in the water.

Moral: Integrating out works best on contrived classroom problems.

B.3) Steady state for y¢@xD + r y @xD = f @tD with r > 0 : Any 

solution eventually settles into the same steady state. If r < 0, 

then all bets are off

áB.3.a.i)

Here are three plots of solutions a random forced exponential diffeq 
       y¢@tD + r y@tD = 4 Sin@2.5 tD,  ( with r> 0)
with random starting values on y@0D:

r = Random@Real, 80.5, 1.0 <D;
f @t_ D = 4 Sin @2.5 t D;
endtime = 20;
Clear @y, y1, y2, y3, t D
starter1 = Random@Real, 85, 10 <D;
starter2 = Random@Real, 8-2, 2 <D; starter3 = Random@Real, 8-10, -5<D;

y1@t_ D = E-r t starter1 + E-r t à
0

t

Er t f @t D â t;

y2@t_ D = E-r t starter2 + E-r t à
0

t

Er t f @t D â t;

y3@t_ D = E-r t starter3 + E-r t à
0

t

Er t f @t D â t;

plots1 = Plot @8y1@t D, y2 @t D, y3 @t D<,
8t, 0, endtime <, PlotStyle ® 88Thickness @0.018 D, Blue <,

8Thickness @0.014 D, Red <, 8Thickness @0.01 D, CadmiumOrange <<,
PlotRange ® All, AspectRatio ® Automatic, AxesLabel ® 8"t", "" <,
PlotLabel ® "y' @t D + r y @t D = f @t D with r > 0" D;
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Rerun several times.

Describe what you see and explain why you see it.
áAnswer:

Take a look at another one - this time it will be

       y¢@tD + r y@tD = 6 E-0.4 t + p t  

with random r > 0 random choice of p and random starting values on 

y@0D:
r = Random@Real, 80.5, 1.0 <D;

p = Random@Real, 8-0.5, 0.5 <D; f @t_ D = 6 E-0.4 t + p t;
endtime = 20;
Clear @y, y1, y2, y3, t D
y ¢@t D + r y @t D == f @t D
starter1 = Random@Real, 85, 10 <D;
starter2 = Random@Real, 8-2, 2 <D; starter3 = Random@Real, 8-10, -5<D;

y1@t_ D = E-r t starter1 + E-r t à
0

t

Er t f @t D â t;

y2@t_ D = E-r t starter2 + E-r t à
0

t

Er t f @t D â t;

y3@t_ D = E-r t starter3 + E-r t à
0

t

Er t f @t D â t;

plots2 = Plot @8y1@t D, y2 @t D, y3 @t D<,
8t, 0, endtime <, PlotStyle ® 88Thickness @0.018 D, Blue <,

8Thickness @0.014 D, Red <, 8Thickness @0.01 D, CadmiumOrange <<,
PlotRange ® All, AspectRatio ® Automatic, AxesLabel ® 8"t", "" <D;

0.552598 y @t D + y ¢@t D == 6 E-0.4 t - 0.384923 t
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Rerun several times.

Every time the three solutions begin their trip in totally different ways, 

but when t is large, you need a scorecard to tell them apart.  

In other words, they all settle into the same steady state behavior- 

regardless of the starting values on y@0D. The long term behaivior of the 

solutions is totally insensitive to the starting value on y@0D.

To explain why this happens, look at the formula

       y@tD = E-r t starter+ E-r t Ù0

t
Er t f @tD â t

If r > 0, then as t gets large, you are guaranteed that E-r t starter® 0.

The upshot: In the long run,  E-r t Ù0

t
Er t f @tD â t

That's what you're seeing here:
Show@plots1 D;
Show@plots2 D;
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áB.3.a.ii) 

Does this mean that when you have a a forced exponential diffeq 
       y¢@tD + r y@tD = f @tD, with r > 0 
 then the long term steady state behavior of solutions  
® depends only on the behavior of f@tD 
 and
® does not depend not on the starting value for y@0D?

áAnswer:

Yes!!!!

áB.3.a.ii) 

What happens when r< 0?
áAnswer:

Try it and see:
r = -0.1; f @t_ D = 3.8 Sin @2 t D;
endtime = 20;
Clear @y, y1, y2, y3, t D
y ¢@t D + r y @t D == f @t D
starter1 = Random@Real, 85, 10 <D;
starter2 = Random@Real, 8-2, 2 <D; starter3 = Random@Real, 8-10, -5<D;

y1@t_ D = E-r t starter1 + E-r t à
0

t

Er t f @t D â t;

y2@t_ D = E-r t starter2 + E-r t à
0

t

Er t f @t D â t;

y3@t_ D = E-r t starter3 + E-r t à
0

t

Er t f @t D â t;

plots = Plot A8y1@t D, y2 @t D, y3 @t D<,

 

8t, 0, endtime <, PlotStyle ® 88Thickness @0.018 D, Blue <,
8Thickness @0.014 D, Red <, 8Thickness @0.01 D, CadmiumOrange <<,

PlotRange ® All, AspectRatio ®
1

�����������������������������������
GoldenRatio

, AxesLabel ® 8"t", "" <,

PlotLabel ® "y' @t D + r y @t D = f @t D with r < 0" E;

-0.1 y @t D + y ¢@t D == 3.8 Sin @2 t D
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y’@tD + r y@tD = f@tD with r < 0

If r < 0, the solutions don't merge. 

To see why, look at the formula

       y@tD = E-r t starter+ E-r t Ù0

t
Er t f @tD â t.

When r < 0, the term E-r t starter does not go away as t gets big.

In fact E-r t starter gets bigger and bigger as t gets large. 

That's why different starter values on y@0D yield increasingly different 

plots as t gets large.
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DE.01 Transition from Calculus to DiffEq:
The Exponential Differential Equation

       y¢@tD + r y @tD = f @tD 
Tutorials

T.1)  The exponential diffeq and your personal finances
You deposit $K in a savings account bearing interest rate 
100 x percent per year compounded every instant.  This means that if 
balance@tD is the value in dollars of this untouched savings account at 
time t years after the deposit, then
       balance@tD = K ex t .

áT.1.a.i)

What differential equation does balance@tD solve?
áAnswer:

       balance¢@tD = K ex t x 

       = balance@tD x 

       = x balance@tD;
so balance@tD solves the unforced exponential differential equation

       balance¢@tD - x balance@tD = 0.

       with balance@0D = K. 

See the balance grow over a ten year period in this sample case of an 

initial deposit of K = $2000 with interest rate 100 x = 4 %.

Clear @balance, t D;
K = 2000;
x = 0.04;

balance @t_ D = K Ex t

endtime = 10;
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Plot Abalance @t D, 8t, 0, endtime <,

PlotStyle ® 88Thickness @0.01 D, DarkGreen <<,

AxesLabel ® 8"t", "bal @t D" <, AspectRatio ®
1

�����������������������������������
GoldenRatio

E;
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See what happens over a 30 year period:
endtime = 30; Plot Abalance @t D,

8t, 0, endtime <, PlotStyle ® 88Thickness @0.01 D, DarkGreen <<,

AxesLabel ® 8"t", "bal @t D" <, AspectRatio ®
1

�����������������������������������
GoldenRatio

E;
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áT.1.a.ii)

At the time of your original deposit of $K, you arrange with your bank 
to make a continuous deposit into your account at a rate of d dollars 
per year.  This means that after t years,
          t d additional dollars
have been deposited.  As the new money is deposited into the account, 
the new money begins to earn interest at the rate of 100 x percent 
compounded every instant. 
If balance@tD is the amount in the account t years after the arrangement 
was set up, then what differential equation does balance@tD satisfy and 
what is a formula for its solution?

áAnswer:

The differential equation is

       balance'@tD = x balance@tD + d

with

       balance@0D = P.
The derivative of the sum is the sum of the derivatives; the 

Hr balance@tDL term comes from interest and the d term comes from your 
continuous deposit.)

This diffeq is the forced exponential diffeq

       balance'@tD - x balance@tD = d

with

       balance@0D = K.

       A formula for its solution is:
Clear @balance, f, K, x, d, t D
starter = K;
r = -x;
f @t_ D = d;

balance @t_ D = Expand AE-r t starter + E-r t à
0

t

Er t f @t D â t E

Et x K -
d
�����
x

+
d Et x
���������������

x

 

áT.1.a.iii)

Plot balance@tD over the first 10 years for the case in which
       K= $5000, 
       d= $500, 
       100 x %= 5.3 % compounded every instant.

áAnswer:

It's a snap:

The diffeq is

        balance'@tD - x balance@tD = d

with

       balance@0D = K.

 Here's the formula for balance@tD:
Clear @balance, f, K, x, d, t D
endtime = 10;
K = 5000;
starter = K;
d = 500;
x = 0.053;
r = -x;
f @t_ D = d;

balance @t_ D = Expand AE-r t starter + E-r t à
0

t

Er t f @t D â t E

-9433.96 + 14434. E 0.053 t

Here comes the plot:
endtime = 10;

plot = Plot Abalance @t D, 8t, 0, endtime <,

PlotStyle ® 88Blue, Thickness @0.01 D<<, AspectRatio ®
1

�����������������������������������
GoldenRatio

,

AxesLabel ® 8"t", "$" <E;
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Better than $14, 000 in 10 years.

áT.1.b)

You and your significant other have just had a beautiful bouncing 
baby. You can already tell that the kid is as smart as all get-out, and 
you decide to set up a bank account geared toward producing big-time 
college money in 18 years. 
You can come up with $10, 000 for the account now and you can lock 
in an interest rate of
       100 r %= 4.6 % compounded every instant. 
How do you set your yearly payment rate d (to result in $t d after t 
years) to be sure of having $120, 000 dollars in your account by the 
end of 18 years?

áAnswer:

Thanks to the magic of differential equations, coming up with the 

answer is a piece of cake.

The diffeq is:

       balance¢@tD + 0.046 balance@tD = d

witth balance@0D = 10000.

Go with a cleared d to get a formula for balance@tD:
Clear @balance, f, K, x, d, t D
K = 10000; starter = K; x = 0.046; r = -x; f @t_ D = d;

balance @t_ D = Expand AE-r t starter + E-r t à
0

t

Er t f @t D â t E
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-21.7391 d + 10000 E 0.046 t + 21.7391 d E 0.046 t

After 18 years, the balance is:
balance @18D

22887.4 + 28.016 d

You want balance@18D = 120000:
Solve @balance @18D == 120000, d D

88d ® 3466.33 <<

You will need to put in about $3500 per year into the college account.

See it grow:
d = 3467;
endtime = 18;

plot = Plot Abalance @t D, 8t, 0, endtime <,

PlotStyle ® 88Blue, Thickness @0.01 D<<, AspectRatio ®
1

�����������������������������������
GoldenRatio

,

AxesLabel ® 8"t", "$" <E;
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There you go.

If you have a good job, this is a rather painless way of coming up with 

tuition, room and board.

T.2)  The jump function UnitStep@t - dD and the impulse 

function DiracDelta@t - dD
áT.2.a.i)

Here is a plot of the jump function UnitStep@t - dD for d = 2.5:

 

d = 2.5
Clear @t D
Plot AUnitStep @t - dD,

8t, 0, 4 <, PlotStyle ® 88Thickness @0.01 D, MarsOrange <<,

AspectRatio ®
1
�����
2

, AxesLabel ® 8"t", "UnitStep @t - dD" <,

Epilog ® 8Red, Text @"d", 8d, -0.1 <D<E;

2.5

1 2 3 4
t

0.2

0.4

0.6

0.8

1

UnitStep@t - dD

Here is a plot of the jump function UnitStep@t - dD for a random d:
d = Random@Real, 81, 3 <D
Plot AUnitStep @t - dD,

8t, 0, 4 <, PlotStyle ® 88Thickness @0.01 D, MarsOrange <<,

AspectRatio ®
1
�����
2

, AxesLabel ® 8"t", "UnitStep @t - dD" <,

Epilog ® 8Red, Text @"d", 8d, -0.08 <D<E;

1.45433

1 2 3 4
t

0.2

0.4

0.6

0.8

1

UnitStep@t - dD

Rerun a couple of times.

Describe how UnitStep@t - dD plots out. 
áAnswer:

Take another look:

 

d = Random@Real, 81, 3 <D
Plot AUnitStep @t - dD, 8t, 0, 4 <, PlotStyle ® 88Thickness @0.01 D, Blue <<,

AspectRatio ®
1
�����
2

, AxesLabel ® 8"t", "UnitStep @t - dD" <,

Epilog ® 8Red, Text @"d", 8d, -0.08 <D<E;

1.87594

1 2 3 4
t

0.2

0.4

0.6

0.8

1

UnitStep@t - dD

UnitStep@t - dD plots out so that:

         UnitStep@t - dD = 0 for t < d

and

         UnitStep@t - dD = 1 for t > d.

At t = d, 

         UnitStep@t - dD jumps from 0 to 1.

áT.2.a.ii) The impulse DiracDelta @t - d is the derivative of 
UnitStep@t - dD
Here is Mathematica's calculation of the derivative of 
       UnitStep@t - dD:

Clear @f, t, d D
f @t_ D = UnitStep @t - dD;
f ¢@t D

DiracDelta @-d + t D
What does this tell you about DiracDelta@t - dD for t not equal to d?

áAnswer:

Remember:

         UnitStep@t - dD = 0 for t < d

DE.01.T1®T2  

and

         UnitStep@t - dD = 1 for t > d.

So ¶t UnitStep@t - dD = 0 for all t¢s not equal to d.

Consequently:

         DiracDelta@t - dD = ¶t UnitStep@t - dD = 0 

 for all t¢s not equal to d.

áT.2.b.i) Integrating DiracDelta@t - dD
Look at these experiments: 

Clear @t, d D

à
-∞

∞
DiracDelta @t - dD â t

1

h = 2;

à
d-h

d+h

DiracDelta @t - dD â t

1

h = 1;

à
d-h

d+h

DiracDelta @t - dD â t

1

h = 0.1;

à
d-h

d+h

DiracDelta @t - dD â t

1

h = 0.00001;

à
d-h

d+h

DiracDelta @t - dD â t

1

h = 0.00001;

à
-∞

d-h

DiracDelta @t - dD â t

0

h = 0.00001;

à
d+h

∞
DiracDelta @t - dD â t

6  



0

Interpret these experiments.
áAnswer:

Even though DiracDelta@t - dD = 0 for t not equal to d, when you 

® integrate DiracDelta@t - dD over any interval containing d, you get 1.

® integrate DiracDelta@t - dD over any interval not containing d, you 

get 0.

Lots of folks like to say that  

       DiracDelta@d - dD = DiracDelta@0D
spikes at 0 to a certain order of infinity that makes all this work.

áT.2.b.ii) Integrals involving DiracDelta@t - dD are easy to do by 

hand

Look at these experiments: 
Clear @t, f, d D

à
-∞

∞
f @t D DiracDelta @t - dD â t

f @dD
h = 2;

à
d-h

d+h

f @t D DiracDelta @t - dD â t

f @dD
h = 1;

à
d-h

d+h

f @t D DiracDelta @t - dD â t

f @dD
h = 0.1;

à
d-h

d+h

f @t D DiracDelta @t - dD â t

f @dD
h = 0.00001;

à
d-h

d+h

f @t D DiracDelta @t - dD â t

 

f @dD
h = 0.00001;

à
-∞

d-h

f @t D DiracDelta @t - dD â t

0

h = 0.00001;

à
d+h

∞
f @t D DiracDelta @t - dD â t

0

Interpret these experiments.
áAnswer:

Even though DiracDelta@t - dD = 0 for t not equal to d, when you 

® integrate f @tDDiracDelta@t - dD over any interval containing d, you 

get f @dD.
® integrate f @tDDiracDelta@t - dD over any interval not containing d, 

you get 0.

It seems that DiracDelta@d - dD = DiracDelta@0D spikes to a certain 

order of infinity that makes all this work.

áT.2  .b.iii) DiracDelta@t - dD isn't a normal function

Give a short history of DiracDelta@t - dD.
áAnswer:

Nobel prize winning physicist Paul Dirac developed what is now called 

the Dirac delta function a little more than fifty years ago.  Scientists 

immediately put the Dirac delta function to use and got good results, 

but mathematicians objected because there was no firm mathematical 

foundation for the Dirac delta function. 

Luckily for science, the French mathematician, Laurent Schwartz, 

 

pulled off a 20th Century mathematical miracle by creating an 

extended theory of functions.  Schwartz's theory includes all functions 

that are functions in the normal sense of the word "function" and 

Scwartz's theory includes additional "functions" which some advanced 

folks call by the name "distributions." 

DiracDelta@t - dD is in this class of additional  "functions.". 

You are invited to use and enjoy this mathematical beauty with 

confidence and authority.  
If you have the desire to understand Schwartz's theory in full, 

then you're a good candidate to go on in advanced math.

T.3) Impulse-forcing the exponential diffeq with a 

DiracDelta function: 

The physical meaning of the impulse  hit
Old hands at diffeq know that you can get a formula for the solution 
of the forced exponential diffeq
       y'@tD + r y@tD = f @tD, with y@0D = starter.
The formula is:
       y@tD = E-r t starter+  E-r tÙ0

t
Er t f @tD â t .

Here is the formula at work on 
       y¢@tD + 0.45 y@tD = 8 DiracDelta@t - 4D, with y@0D = 9.0.:

Clear @yformula, f, t D
f @t_ D = 8 DiracDelta @t - 4D; r = 0.45; starter = 9.0;

yformula @t_ D = E-r t starter + E-r t à
0

t

Er t f @t D â t

9. E -0.45 t + 48.3972 E -0.45 t UnitStep @-4 + t D
See it:

DE.01.T2®T3  

endtime = 12;

solutionplot = Plot Ayformula @t D, 8t, 0, endtime <, PlotStyle ®

88CadmiumOrange, Thickness @0.01 D<<, AxesLabel ® 8"t", "y @t D" <,

PlotRange ® All, AspectRatio ®
1

�����������������������������������
GoldenRatio

E;

2 4 6 8 10 12
t

2

4

6

8

y@tD

Describe what you see and explain why you see it.
áAnswer:

Look at this embellished picture
tail = 86, 10 <;
label =

Graphics @8Text @"Impulse hit \n with DiracDelta @t - 4D", tail D<D;
pointer = Arrow @84, yformula @3.9999 D< - tail, Tail ® tail, HeadSize ® 1D;
Show@solutionplot, label, pointer D

2 4 6 8 10 12
t

2

4

6

8

10

y@tD
Impulse hit
with DiracDelta@t - 4D

� Graphics  �

8 DiracDelta@t - 4D fired at t = 4 and jumped y@tD a whole 8 units up at 

t = 4:
yformula @4.00000001 D - yformula @3.9999999 D

8.

That's the effect of forcing the exponential diffeq with a DiracDelta 

function.
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You can see why this happens by looking at

       yformula@tD = E-r t starter+ E-r t  Ù0

t
Er t 8 DiracDelta@t - 4D â t.

For 0 £ t < 4, DiracDelta@t - 4D = 0, 

so if t < 4, then

       yformula@tD = E-r t starter+ E-r t  Ù0

t
Er t 8 DiracDelta@t - 4D â t.

                         = E-r t starter+ E-r t  Ù0

t
Er t 0 â t

                         = E-r t starter+ 0

                         = E-r t starter

  

                        

For t > 4, then DiracDelta@t - 4D fires at t = 4 and

      yformula@tD = E-r t starter+ E-r t  Ù0

t
Er t 8 DiracDelta@t - 4D â t.

                        = E-r t starter+ E-r t  8 Er 4

                        = E-r t starter+ 8 E-r Ht-4L

So as t advances through t = 4, yformula@tD jumps from

       E-r 4 starter 

to

       E-r 4 starter+ 8 E-r H4-4L = E-r 4 starter+ 8.

This is a jump up of length 8.

T.4) The DiracDelta function in your personal finances

áT.4.a)

 

You deposit $7500 into an account paying 5.6 % interest over 10 
years. You plan to make an annual additional deposit of $8000 at the 
end of each of the 10 years. The same interest rate of 5.6 % is 
guaranteed over the 10 year period.
Use the DiracDelta function to help you to plot the projected status of 
your account:  

áAnswer:

The diffeq is

       balance¢@tD - 0.056 balance@tD = Ú
k=1

10
d DiracDelta@t - kD

with

       balance@0D = K.

 Here's the formula for balance@tD:
Clear @balance, f, K, x, d, t D
endtime = 10; K = 7500; starter = K; d = 8000; r = -0.056;

f @t_ D = â
k=1

10

d DiracDelta @t - kD;

balance @t_ D = Expand AE-r t starter + E-r t à
0

t

Er t f @t D â t E

7500 E0.056 t + 4569.67 E 0.056 t UnitStep @-10 + t D +

4832.88 E 0.056 t UnitStep @-9 + t D + 5111.24 E 0.056 t UnitStep @-8 + t D +

5405.63 E 0.056 t UnitStep @-7 + t D + 5716.98 E 0.056 t UnitStep @-6 + t D +

6046.27 E 0.056 t UnitStep @-5 + t D + 6394.52 E 0.056 t UnitStep @-4 + t D +

6762.83 E 0.056 t UnitStep @-3 + t D + 7152.35 E 0.056 t UnitStep @-2 + t D +

7564.31 E 0.056 t UnitStep @-1 + t D

Here comes the plot:
endtime = 10;

plot = Plot Abalance @t D,

8t, 0, endtime <, PlotStyle ® 88DarkGreen, Thickness @0.01 D<<,

AspectRatio ®
1

�����������������������������������
GoldenRatio

, AxesLabel ® 8"t", "$" <E;

 

2 4 6 8 10
t

20000

40000

60000

80000

100000

$

Better than $100, 000 in 10 years.

DE.01 Transition from Calculus to DiffEq:
The Exponential Differential Equation

       y¢@tD + r y @tD = f @tD  
Give It a Try!

G.1)  The exponential diffeq

áG.1.a)

The differential equation is
        y¢@tD + 0.2 y@tD = 0 with  y@0D = 15.3.
Your job is to come up with the formula for y@tD and then to plot it for 
0 £ t £ 10.

áG.1.b)

The differential equation is
        y¢@tD + 0.2 y@tD = Sin@tD with  y@0D = 15.3.
Your job is to come up with the formula for y@tD and then to plot it for 
0 £ t £ 10.

DE.01.T3®G1  

áG.1.c)

The differential equation is
        y¢@tD = - 0.2 y@tD + Sin@tD with  y@0D = 15.3.
Your job is to come up with the formula for y@tD and then to plot it for 
0 £ t £ 10.

áG.1.d)

The differential equation is
        y¢@tD - 0.5 y@tD = 0 with  y@0D = 0.3.
Your job is to write down the formula for y@tD and then to plot it for 
0 £ t £ 6.

áG.1.e)

The differential equation is
        y¢@tD = 0.5 y@tD  with  y@0D = 0.3.
Your job is to write down the formula for y@tD and then to plot it for 
0 £ t £ 6.

áG.1.f)

The differential equation is
        y¢@tD + 0.3 y@tD = 6.5 E-0.3 t with  y@0D = 15.3.
Your job is to write down the formula for y@tD and then to plot it for 
0 £ t £ 10.

áG1.g)

The differential equation is
        y¢@tD - 0.3 y@tD = 6 DiracDelta@t - 2D with  y@0D = 15.3.
Your job is to write down the formula for y@tD and then to plot it for 
0 £ t £ 6.
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G.2)  Steady state for y¢@tD + r y @tD = f @tD
áG.2.a.i)

Here are three plots of solutions a random forced damped exponential 
diffeq 
       y¢@tD + r y@tD = 5 E-Ht - 3L2   ( with r > 0)
with random starting values on y@0D:

r = Random@Real, 80.5, 1.0 <D;

f @t_ D = 5 E-Ht -3L2

;
endtime = 20;
Clear @y, y1, y2, y3, t D
starter1 = Random@Real, 85, 10 <D;
starter2 = Random@Real, 8-2, 2 <D; starter3 = Random@Real, 8-10, -5<D;

y1@t_ D = E-r t starter1 + E-r t à
0

t

Er t f @t D â t;

y2@t_ D = E-r t starter2 + E-r t à
0

t

Er t f @t D â t;

y3@t_ D = E-r t starter3 + E-r t à
0

t

Er t f @t D â t;

setup = Plot @8y1@t D, y2 @t D, y3 @t D<,
8t, 0, endtime <, PlotStyle ® 88Thickness @0.018 D, Blue <,

8Thickness @0.014 D, Red <, 8Thickness @0.01 D, CadmiumOrange <<,
PlotRange ® All, AspectRatio ® Automatic, AxesLabel ® 8"t", "" <,
PlotLabel ® "y' @t D + r y @t D = f @t D with r > 0" D;

5 10 15 20 t

7.5

-5

2.5

2.5

5

7.5

’@tD + r y@tD = f@tD with r >

Rerun several times.

Describe what you see and explain why you see it.

 

áG.2.a.ii)

Here are three plots of solutions a random forced damped exponential 
diffeq 
       y¢@tD + r y@tD = 4 DiracDelta@t - 3D + Sin@p tD  ( with r > 0)
with random starting values on y@0D:

r = Random@Real, 80.3, 0.8 <D;
f @t_ D = 4 DiracDelta @t - 3D + Sin @p t D;
endtime = 20;
Clear @y, y1, y2, y3, t D
starter1 = Random@Real, 85, 10 <D;
starter2 = Random@Real, 8-2, 2 <D;
starter3 = Random@Real, 8-10, -5<D;

y1@t_ D = E-r t starter1 + E-r t à
0

t

Er t f @t D â t;

y2@t_ D = E-r t starter2 + E-r t à
0

t

Er t f @t D â t;

y3@t_ D = E-r t starter3 + E-r t à
0

t

Er t f @t D â t;

setup = Plot @8y1@t D, y2 @t D, y3 @t D<,
8t, 0, endtime <, PlotStyle ® 88Thickness @0.018 D, Blue <,

8Thickness @0.014 D, Red <, 8Thickness @0.01 D, CadmiumOrange <<,
PlotRange ® All, AspectRatio ® Automatic, AxesLabel ® 8"t", "" <,
PlotLabel ® "y' @t D + r y @t D = f @t D with r > 0" D;

5 10 15 20
t

-8

-6

-4

-2

2

4

6

y’@tD + r y@tD = f@tD with r > 0

Rerun several times.

Describe what you see and explain why you see it.

áG.2.a.iii)

Here are three plots of solutions a random forced exponential diffeq 
                y¢@tD + r y@tD = 5 E-Ht - 3L2   ( with r < 0)
with random starting values on y@0D:

 

r = Random@Real, 8-0.3, -0.1 <D;

f @t_ D = 5 E-Ht -3L2

;
endtime = 16;
Clear @y, y1, y2, y3, t D
starter1 = Random@Real, 85, 10 <D;
starter2 = Random@Real, 8-2, 2 <D;
starter3 = Random@Real, 8-10, -5<D;

y1@t_ D = E-r t starter1 + E-r t à
0

t

Er t f @t D â t;

y2@t_ D = E-r t starter2 + E-r t à
0

t

Er t f @t D â t;

y3@t_ D = E-r t starter3 + E-r t à
0

t

Er t f @t D â t;

setup = Plot A8y1@t D, y2 @t D, y3 @t D<, 8t, 0, endtime <,

PlotStyle ® 88Thickness @0.018 D, Blue <,
8Thickness @0.014 D, Red <, 8Thickness @0.01 D, CadmiumOrange <<,

PlotRange ® All, AspectRatio ®
1

�����������������������������������
GoldenRatio

, AxesLabel ® 8"t", "" <,

PlotLabel ® "y' @t D + r y @t D = f @t D with r < 0" E;

2.5 5 7.5 10 12.5 15
t

20

40

60

80

100

y’@tD + r y@tD = f@tD with r < 0

Rerun several times.

Describe what you see and explain why you see it.

áG.2.a.iv)

Here are three plots of solutions a random forced exponential diffeq 
                y¢@tD + r y@tD = 5 E-Ht - 3L2   ( with r = 0)
with random starting values on y@0D:

r = 0;

f @t_ D = 5 E-Ht -3L2

;
endtime = 16;
Clear @y, y1, y2, y3, t D
starter1 = Random@Real, 85, 10 <D;
starter2 = Random@Real, 8-2, 2 <D;

DE.01.G2  

starter3 = Random@Real, 8-10, -5<D;

y1@t_ D = E-r t starter1 + E-r t à
0

t

Er t f @t D â t;

y2@t_ D = E-r t starter2 + E-r t à
0

t

Er t f @t D â t;

y3@t_ D = E-r t starter3 + E-r t à
0

t

Er t f @t D â t;

setup = Plot A8y1@t D, y2 @t D, y3 @t D<,

8t, 0, endtime <, PlotStyle ® 88Thickness @0.018 D, Blue <,
8Thickness @0.014 D, Red <, 8Thickness @0.01 D, CadmiumOrange <<,

PlotRange ® All, AspectRatio ®
1

�����������������������������������
GoldenRatio

, AxesLabel ® 8"t", "" <,

PlotLabel ® "y' @t D + r y @t D = f @t D with r = 0" E;

2.5 5 7.5 10 12.5 15
t

-5

5

10

15

y’@tD + r y@tD = f@tD with r = 0

Rerun several times.

Describe what you see and explain why you see it.
Click on the right for a tip

The solution formulas are

       E-r t starter1+ E-r t Ù0

t
Er t f @tD â t,

       E-r t starter2+ E-r t Ù0

t
Er t f @tD â t and

       E-r t starter3+ E-r t Ù0

t
Er t f @tD â t.

       

In this case r = 0, so the solution formulas are

       starter1+ Ù0

t
f @tD â t,

       starter2+ Ù0

t
f @tD â t and

       starter3+ Ù0

t
f @tD â t.

.
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G.3)  Visualizing the effect of the forcing functions on 

solutions of y¢@tD + r y @tD = f @tD  with r > 0

áG.3.a.i)

Here are three plots of solutions of a random forced exponential diffeq 
       y¢@tD + r y@tD = 5 Sin@1.5 tD  ( with r > 0)
with random starting values on y@0D:

r = Random@Real, 80.5, 1.0 <D;
f @t_ D = 5 Sin @1.5 t D;
endtime = 20;
Clear @y, y1, y2, y3, t D
starter1 = Random@Real, 85, 10 <D;
starter2 = Random@Real, 8-2, 2 <D;
starter3 = Random@Real, 8-10, -5<D;

y1@t_ D = E-r t starter1 + E-r t à
0

t

Er t f @t D â t;

y2@t_ D = E-r t starter2 + E-r t à
0

t

Er t f @t D â t;

y3@t_ D = E-r t starter3 + E-r t à
0

t

Er t f @t D â t;

setup = Plot @8y1@t D, y2 @t D, y3 @t D<,
8t, 0, endtime <, PlotStyle ® 88Thickness @0.018 D, Blue <,

8Thickness @0.014 D, Red <, 8Thickness @0.01 D, CadmiumOrange <<,
PlotRange ® All, AspectRatio ® Automatic, AxesLabel ® 8"t", "" <,
PlotLabel ® "y' @t D + r y @t D = f @t D with r > 0" D;

5 10 15 20
t

-8

-6

-4

-2

2

4

6
y’@tD + r y@tD = f@tD with r > 0

Throw in this plot of the forcing function f@tD:
fplot = Plot @f @t D, 8t, 0, endtime <, PlotRange ® All,

PlotStyle ® 88Thickness @0.02 D, Black <<, DisplayFunction ® Identity D;
Show@setup, fplot, DisplayFunction ® $DisplayFunction D;

 

5 10 15 20
t

-8

-6

-4

-2
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4

6
y’@tD + r y@tD = f@tD with r > 0

Using only your eyes, explain in general terms how the solution plots 
are related to the plot of the forcing function f@tD.

áG.3.a.ii)

Here are three plots of solutions a random forced exponential diffeq 
       y¢@tD + r y@tD = 5 E-Ht - 3L2   ( with r > 0)
with random starting values on y@0D:

r = Random@Real, 80.5, 1.0 <D;

f @t_ D = 5 E-Ht -3L2

;
endtime = 20;
Clear @y, y1, y2, y3, t D
starter1 = Random@Real, 85, 10 <D;
starter2 = Random@Real, 8-2, 2 <D;
starter3 = Random@Real, 8-10, -5<D;

y1@t_ D = E-r t starter1 + E-r t à
0

t

Er t f @t D â t;

y2@t_ D = E-r t starter2 + E-r t à
0

t

Er t f @t D â t;

y3@t_ D = E-r t starter3 + E-r t à
0

t

Er t f @t D â t;

setup = Plot A8y1@t D, y2 @t D, y3 @t D<,

8t, 0, endtime <, PlotStyle ® 88Thickness @0.018 D, Blue <,
8Thickness @0.014 D, Red <, 8Thickness @0.01 D, CadmiumOrange <<,

PlotRange ® All, AspectRatio ® Automatic, AxesLabel ® 8"t", "" <,

PlotLabel ® "y' @t D + r y @t D = 5 E-Ht -3L2

with r > 0" E;

 

5 10 15 20
t

-4

-2

2

4

6

8
y’@tD + r y@tD = 5 E-Ht-3L2 with r > 0

Throw in this plot of the forcing function f@tD:
fplot = Plot @f @t D, 8t, 0, endtime <, PlotRange ® All,

PlotStyle ® 88Thickness @0.02 D, Black <<, DisplayFunction ® Identity D;
Show@setup, fplot, DisplayFunction ® $DisplayFunction D;

5 10 15 20
t

-4

-2

2

4

6

8
y’@tD + r y@tD = 5 E-Ht-3L2 with r > 0

Using only your eyes and no calculation, explain in general terms how 
the solution plots are related to the plot of the forcing function

áG.3.a.iii)

Here are three plots of solutions a random forced exponential diffeq 
                y¢@tD + r y@tD = 0.4t  ( with r > 0)
with random starting values on y@0D:

r = Random@Real, 80.5, 1.0 <D;
f @t_ D = 0.4 t;
endtime = 20;
Clear @y, y1, y2, y3, t D
starter1 = Random@Real, 85, 10 <D;
starter2 = Random@Real, 8-2, 2 <D;
starter3 = Random@Real, 8-10, -5<D;

y1@t_ D = E-r t starter1 + E-r t à
0

t

Er t f @t D â t;

y2@t_ D = E-r t starter2 + E-r t à
0

t

Er t f @t D â t;

DE.01.G3  

y3@t_ D = E-r t starter3 + E-r t à
0

t

Er t f @t D â t;

setup = Plot @8y1@t D, y2 @t D, y3 @t D<,
8t, 0, endtime <, PlotStyle ® 88Thickness @0.018 D, Blue <,

8Thickness @0.014 D, Red <, 8Thickness @0.01 D, CadmiumOrange <<,
PlotRange ® All, AspectRatio ® Automatic, AxesLabel ® 8"t", "" <,
PlotLabel ® "y' @t D + r y @t D = 0.4 t with r > 0" D;

5 10 15 20t

-7.5
-5

-2.5

2.5
5

7.5

tD + r y@tD = 0.4 t with r

Throw in this plot of the forcing function f@tD:
fplot = Plot @f @t D, 8t, 0, endtime <, PlotRange ® All,

PlotStyle ® 88Thickness @0.015 D, Black <<, DisplayFunction ® Identity D
Show@setup, fplot, DisplayFunction ® $DisplayFunction D;

� Graphics  �

5 10 15 20t

-7.5
-5

-2.5

2.5
5

7.5

tD + r y@tD = 0.4 t with r

Using only your eyes and no calculation, explain in general terms how 
the solution plots are related to the plot of the forcing function f@tD.

áG.3.a.iv)

Here are three plots of solutions a random forced exponential diffeq 
       y¢@tD + r y@tD = -5 DiracDelta@t - 3D + 6 DiracDelta@t - 6D  ( 
with r > 0)
with random starting values on y@0D:

r = Random@Real, 80.2, 0.5 <D;
f @t_ D = -5 DiracDelta @t - 3D + 6 DiracDelta @t - 6D;
endtime = 20; Clear @y, y1, y2, y3, t D
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starter1 = Random@Real, 85, 10 <D;
starter2 = Random@Real, 8-2, 2 <D;
starter3 = Random@Real, 8-10, -5<D;

y1@t_ D = E-r t starter1 + E-r t à
0

t

Er t f @t D â t;

y2@t_ D = E-r t starter2 + E-r t à
0

t

Er t f @t D â t;

y3@t_ D = E-r t starter3 + E-r t à
0

t

Er t f @t D â t;

setup = Plot @8y1@t D, y2 @t D, y3 @t D<,
8t, 0, endtime <, PlotStyle ® 88Thickness @0.018 D, Blue <,

8Thickness @0.014 D, Red <, 8Thickness @0.01 D, CadmiumOrange <<,
PlotRange ® All, AspectRatio ® Automatic, AxesLabel ® 8"t", "" <D;

5 10 15 20 t

-7.5

-5

-2.5

2.5

5

7.5

Using only your eyes and no calculation, explain in general terms how 
the solution plots are related to the action of the forcing function
       f@tD = -5 DiracDelta@t - 3D + 6 DiracDelta@t - 6D .
How big are the jumps at t= 3 and t= 6?

áG.3.a.v)

Here are three plots of solutions the forced exponential diffeq 
       y¢@tD + 0.5 y@tD = 3   
with random starting values on y@0D:

r = 0.5;
f @t_ D = 3;
endtime = 20;
Clear @y, y1, y2, y3, t D
starter1 = Random@Real, 85, 10 <D;
starter2 = Random@Real, 8-2, 2 <D; starter3 = Random@Real, 8-10, -5<D;

y1@t_ D = E-r t starter1 + E-r t à
0

t

Er t f @t D â t;

 

y2@t_ D = E-r t starter2 + E-r t à
0

t

Er t f @t D â t;

y3@t_ D = E-r t starter3 + E-r t à
0

t

Er t f @t D â t;

setup = Plot @8y1@t D, y2 @t D, y3 @t D<,
8t, 0, endtime <, PlotStyle ® 88Thickness @0.018 D, Blue <,

8Thickness @0.014 D, Red <, 8Thickness @0.01 D, CadmiumOrange <<,
PlotRange ® All, AspectRatio ® Automatic, AxesLabel ® 8"t", "" <,
PlotLabel ® "y' @t D + 0.5 y @t D = 3 " D;

5 10 15 20 t

-7.5

-5

-2.5

2.5

5

7.5

y’@tD + 0.5 y@tD = 3

Throw in this plot of the forcing function f@tD:
fplot = Plot @f @t D, 8t, 0, endtime <, PlotRange ® All,

PlotStyle ® 88Thickness @0.02 D, Black <<, DisplayFunction ® Identity D;
Show@setup, fplot, DisplayFunction ® $DisplayFunction D;

5 10 15 20 t

-7.5

-5

-2.5

2.5

5

7.5

y’@tD + 0.5 y@tD = 3

The forcing function runs at 3, the solutions gravitate to 6.
Is this just an accident?
If not then why not?

Click on the right for a tip

The diffeq is

       y¢@tD + 0.5 y@tD = 3.

Is y@tD = 6 a solution?

Because r > 0, all solutions eventually merge.

 

G.4)  Sometimes the starter value on y@0D makes little 

difference; sometimes it does

áG.4.a.i)

Here are three plots of solutions of the forced exponential diffeq 
       y¢@tD + 1.85 y@tD = 0.7 t2  
with starter values on y@0D equal to -6, 0,and +7:

r = 1.85;
Clear @f, t D
f @t_ D = 0.7 t 2 ;
endtime = 5;
Clear @y, y1, y2, y3, t D
starter1 = 7;
starter2 = 0;
starter3 = -6;

y1@t_ D = E-r t starter1 + E-r t à
0

t

Er t f @t D â t;

y2@t_ D = E-r t starter2 + E-r t à
0

t

Er t f @t D â t;

y3@t_ D = E-r t starter3 + E-r t à
0

t

Er t f @t D â t;

solutionplots = Plot A8y1@t D, y2 @t D, y3 @t D<,

8t, 0, endtime <, PlotStyle ® 88Thickness @0.018 D, Blue <,
8Thickness @0.014 D, Red <, 8Thickness @0.01 D, CadmiumOrange <<,

PlotRange ® All, AspectRatio ®
1

�����������������������������������
GoldenRatio

, AxesLabel ® 8"t", "" <,

PlotLabel ® "y' @t D + 1.85 y @t D = 0.4 t 2 " E;

1 2 3 4 5
t

-6

-4

-2

2

4

6

y’@tD + 1.85 y@tD = 0.4 t2

The formulas for the plotted curves are:
Expand @y1@t DD

DE.01.G3®G4  

0.221112 + 6.77889 E -1.85 t - 0.409058 t + 0.378378 t 2

Expand @y2@t DD
0.221112 - 0.221112 E -1.85 t - 0.409058 t + 0.378378 t 2

Expand @y3@t DD
0.221112 - 6.22111 E -1.85 t - 0.409058 t + 0.378378 t 2

All these solution eventually merge onto a certain parabola. 
Give the formula for this parabola and add its plot to the solution plot.

Click on the right for a tip.

To plot your parabola, modify this code:
Clear @parabola, t D
parabola @t_ D = 0.9 - 1.1 t + 0.7 t 2 ;
parabolaplot = Plot @parabola @t D, 8t, 0, endtime <,

PlotStyle ® 88Black, Thickness @0.01 D<<, DisplayFunction ® Identity D;
Show@solutionplots, parabolaplot,

DisplayFunction ® $DisplayFunction D;

1 2 3 4 5
t

-5

-2.5

2.5

5

7.5

10

12.5

y’@tD + 1.85 y@tD = 0.4 t2

The plotted parabola formula is not correct. Your job is to enter the 

correct formula.

áG.4.a.ii)

Keep everything the same as in part i) above. The soultion calculate 
above are all solutions of:

y ¢@t D + r y @t D == f @t D
1.85 y @t D + y ¢@t D == 0.7 t 2

The solution formulas are:
Expand @y1@t DD

0.221112 + 6.77889 E -1.85 t - 0.409058 t + 0.378378 t 2

Expand @y2@t DD
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0.221112 - 0.221112 E -1.85 t - 0.409058 t + 0.378378 t 2

Expand @y3@t DD
0.221112 - 6.22111 E -1.85 t - 0.409058 t + 0.378378 t 2

Where does the value of r= 1.85 show up vividly in these formulas?
How does the fact that r> 0 explain why the plots try to merge?

áG.4.b.i)

Here are three plots of solutions of the forced exponential diffeq 
       y¢@tD + 2.13 y@tD = 3 Sin@2 tD + Sin@4 tD  
with starter values on  y@0D equal to -6, 0,and +7:

r = 2.13; Clear @f, t D
f @t_ D = 3 Sin @2 t D + Sin @4 t D;
endtime = 9;
Clear @y, y1, y2, y3, t D;
starter1 = 7;
starter2 = 0;
starter3 = -6;

y1@t_ D = E-r t starter1 + E-r t à
0

t

Er t f @t D â t;

y2@t_ D = E-r t starter2 + E-r t à
0

t

Er t f @t D â t;

y3@t_ D = E-r t starter3 + E-r t à
0

t

Er t f @t D â t;

solutionplots = Plot A8y1@t D, y2 @t D, y3 @t D<,

8t, 0, endtime <, PlotStyle ® 88Thickness @0.018 D, Blue <,
8Thickness @0.014 D, Red <, 8Thickness @0.01 D, CadmiumOrange <<,

PlotRange ® All, AspectRatio ®
1

�����������������������������������
GoldenRatio

,

AxesLabel ® 8"t", "" <E;

2 4 6 8
t

-6

-4

-2

2

4

6

The formulas for the plotted curves are:
Chop@Expand @y1@t DDD

 

7.8976 E -2.13 t - 0.702831 Cos @2 t D - 0.194771 Cos @4 t D + 0.748515 Sin @2 t D +
0.103716 Sin @4 t D
Chop@Expand @y2@t DDD

0.897603 E -2.13 t - 0.702831 Cos @2 t D - 0.194771 Cos @4 t D +
0.748515 Sin @2 t D + 0.103716 Sin @4 t D
Chop@Expand @y3@t DDD

-5.1024 E -2.13 t - 0.702831 Cos @2 t D - 0.194771 Cos @4 t D + 0.748515 Sin @2 t D +
0.103716 Sin @4 t D

All these solutions eventually merge onto a certain curve. 
Give the formula for this curve and add its plot to the solution plot.

áG.4.b.ii)

Keep everything the same as in part i) above. 
The solutions calculated above are all solutions of:

y ¢@t D + r y @t D == f @t D
2.13 y @t D + y ¢@t D == 3 Sin @2 t D + Sin @4 t D

The solution formulas are:
Chop@Expand @y1@t DDD

7.8976 E -2.13 t - 0.702831 Cos @2 t D - 0.194771 Cos @4 t D + 0.748515 Sin @2 t D +
0.103716 Sin @4 t D
Chop@Expand @y2@t DDD

0.897603 E -2.13 t - 0.702831 Cos @2 t D - 0.194771 Cos @4 t D +
0.748515 Sin @2 t D + 0.103716 Sin @4 t D
Chop@Expand @y3@t DDD

-5.1024 E -2.13 t - 0.702831 Cos @2 t D - 0.194771 Cos @4 t D + 0.748515 Sin @2 t D +
0.103716 Sin @4 t D

Where does the value of r= 2.13 show up vividly in these formulas?
How does the fact that r> 0 explain why the plots try to merge?

áG.4.c.i)

Here are three plots of solutions of the forced exponential diffeq 
       y¢@tD - 0.6 y@tD = 0.2 Ht - t2L  
with starter values on  y@0D equal to 1, 2 and 3:

r = -0.6; Clear @f, t D
f @t_ D = 0.2 Ht - t 2L;
endtime = 12;
Clear @y, y1, y2, y3, t D;
starter1 = 3;

 

starter2 = 2;
starter3 = 1;

y1@t_ D = E-r t starter1 + E-r t à
0

t

Er t f @t D â t;

y2@t_ D = E-r t starter2 + E-r t à
0

t

Er t f @t D â t;

y3@t_ D = E-r t starter3 + E-r t à
0

t

Er t f @t D â t;

solutionplots = Plot A8y1@t D, y2 @t D, y3 @t D<,

8t, 0, endtime <, PlotStyle ® 88Thickness @0.018 D, Blue <,
8Thickness @0.014 D, Red <, 8Thickness @0.01 D, CadmiumOrange <<,

PlotRange ® All, AspectRatio ®
1

�����������������������������������
GoldenRatio

, AxesLabel ® 8"t", "" <E;

2 4 6 8 10 12
t

500

1000

1500

2000

This time the solution plots pull apart instead of merging.
The solution formulas are:

Chop@Expand @y1@t DDD
1.2963 + 1.7037 E 0.6 t + 0.777778 t + 0.333333 t 2

Chop@Expand @y2@t DDD
1.2963 + 0.703704 E 0.6 t + 0.777778 t + 0.333333 t 2

Chop@Expand @y3@t DDD
1.2963 - 0.296296 E 0.6 t + 0.777778 t + 0.333333 t 2

Where does the value of r= -0.6  show up vividly in these 
formulas?
How does the fact that r< 0 explain why the solution plots go wildly 
separate ways as t gets large?
Remember that exponential growth eventually dominates power 
growth.

áG.4.c.ii)

Look at the three solution plots from part i) immediately above:

DE.01.G4  

Show@solutionplots D;

2 4 6 8 10 12
t

500

1000

1500

2000

Notice that some solutions eventually go up and others eventually go 
down.
The formula for the solution of
       y¢@tD - 0.6 y@tD = 0.2 Ht - t2L   with y@0D = starter is:

Clear @starter, y D

y@t_ D = Expand AE-r t starter + E-r t à
0

t

Er t f @t D â t E

1.2963 - 1.2963 E 0.6 t + E0.6 t starter + 0.777778 t + 0.333333 t 2

Remembering that exponential growth eventually dominates power 
growth, estimate a number d so that:
® If starter> d, then the corresponding solution eventually goes up.
® If starter< d, then the corresponding solution eventually goes down.
Show off your answer with a couple on nice plots.
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G.5)  Using the forced exponential diffeq to manage your 

money

áG.5.a) Your red BMW convertible

You graduate and get one of those high-paying yuppie jobs everyone 
hopes to get.  To announce your success, you decide to buy that new 
red BMW 325i convertible you've always had your heart set on. You 
go to the bank to talk about financing a $25, 000 loan for the BMW.
Here are the details:
® The interest on the unpaid part of the loan is to be compounded 
every instant.
® The payoff is to be continuous in the sense that a number d (the 
yearly rate) is to be set and then after t (whole or fractional) years, you 
are to pay $t d.  Thus after the first day you will have paid $ d����������365 , after 
the first month of the year you will have paid $ d�������12 , and after two 
years,  you will have paid $2 d.  The bank can transfer money from 
your account to their coffers every time they run their computers.
You can have the following options:
  ®  2-year loan at 4.9 % per year interest
       compounded every instant,
  ®  3-year loan at 6.9 % per year interest
       compounded every instant,
  ®  5-year loan at 10.9 % per year interest
       compounded every instant.
How much money $d will you have to pay each year under each of the 
options given?  
What is your total payout in each case?  

Click on the right for a tip

For the  2-year loan at 4.9 % per year interest compounded every 

instant, the diffeq is 

       P¢@tD = 0.049 P@tD - d with P@0D = 25000

 

This is the same as

       P¢@tD - 0.049 P@tD = d  with P@0D = 25000.

Solve this with d cleared.

You want to set d so that P@2D = 0.

áG.5.b) Planning ahead

You deposit $10000 into an account paying 4.8 % interest over 12 
years. You plan to make an annual additional deposit of $d at the end 
of every year.. The same interest rate of 4.8 % is guaranteed. You 
want to set d so that the account balance is  $150000 in 12 years.

You decide to use the DiracDelta function; so you copy, paste and edit 
this from one of the Tutorials:

The diffeq is

        balance'@tD - 0.048 balance@tD = Ú
k=1

12
d DiracDelta@t - kD

with
       balance@0D = 10000.
The formula for balance@tD is:

Clear @balance, f, K, x, d, t D
endtime = 12;
starter = 10000;
r = -0.048;

f @t_ D = â
k=1

12

d DiracDelta @t - kD;

balance @t_ D = Expand AE-r t starter + E-r t à
0

t

Er t f @t D â t E

10000 E 0.048 t + 0.562142 d E 0.048 t UnitStep @-12 + t D +

0.589783 d E 0.048 t UnitStep @-11 + t D + 0.618783 d E 0.048 t UnitStep @-10 + t D +

0.649209 d E 0.048 t UnitStep @-9 + t D + 0.681131 d E 0.048 t UnitStep @-8 + t D +

0.714623 d E 0.048 t UnitStep @-7 + t D + 0.749762 d E 0.048 t UnitStep @-6 + t D +

0.786628 d E 0.048 t UnitStep @-5 + t D + 0.825307 d E 0.048 t UnitStep @-4 + t D +

0.865888 d E 0.048 t UnitStep @-3 + t D + 0.908464 d E 0.048 t UnitStep @-2 + t D +

0.953134 d E 0.048 t UnitStep @-1 + t D

 

You look at:
balance @12D

17789.1 + 15.8409 d

Now you take over and set d so that balance@12D = 150000.

áG.5.c.i) You inherit $50, 000

Your Aunt Matilda passes away and leaves you with the tidy sum of 
$50, 000. You find a bank that will pay you 5.15 % per year 
compounded every instant. You want to enjoy some of this money, 
but you don't want to blow it away too fast.
You decide to deposit the $50, 000 but to pull out d dollars per year so 
that after t years, you will have blown d t dollars off.
If P @tD is the amount in the account, then why does P@tD solve the 
differential equation
       P¢@tD - 0.0515 P@tD = - d? 

áG.5.c.ii)

Continue with the set-up in part i) above. After some thought, you 
decide:
® d should be as big as possible. 
® But the balance in the account should never dip below  $30, 000  
for 10 years.
Estimate your d. 

Click on the right for a tip.

áTip:

You might want to look at:
Clear @P, f, K, x, d, t D
starter = 50000;
x = 0.0515;
r = -x;
f @t_ D = -d;

P@t_ D = Expand AE-r t starter + E-r t à
0

t

Er t f @t D â t E

19.4175 d + 50000 E 0.0515 t - 19.4175 d E 0.0515 t

For d = 9000, your balance looks this way:

DE.01.G5®G6  

d = 9000; Plot A8P@t D, 30000 <, 8t, 0, 10 <,

PlotStyle ® 88Thickness @0.01 D, Blue <, 8Thickness @0.01 D, Red <<,

PlotRange ® All, AspectRatio ®
1
�����
3
E;

2 4 6 8 10
-20000

20000

40000

d = 9000 is way too much.

Try d = 1000:
d = 1000;

Plot A8P@t D, 30000 <, 8t, 0, 10 <,

PlotStyle ® 88Thickness @0.01 D, Blue <, 8Thickness @0.01 D, Red <<,

PlotRange ® All, AspectRatio ®
1
�����
3
E;

2 4 6 8 10

40000

50000

60000

70000

You have room to raise d.

The d you are after lies somewhere between 1000 and 9000. Estimate 

your d by continued trial and error.

G.6)  Exponential models
Many of the problems here were influenced by problems 

in Ethan Bolker's book Using Algebra, Little,Brown, 1983.

áG.6.a.i) Inflation

When the government annouces an inflation rate of x % per year, this 
means that if the inflation rate never changes, then the price of an item 
that costs $100 today is given by is the solution P@tD of         
       P¢@tD = x P@tD, with P@0D = 100

Interpretation:  
  The rate at which the price goes up is directly proportional to the 
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current 
    price.

Take the current year for t= 0 and assume that the Federal Reserve 
Board holds inflation at 3.5 % per year for the next 50 years.  Give a 
plot of the projected price over the next 50 years of an item that costs 
$100 today.

áG.6.a.ii)

Take the current year for t= 0 and assume that the Federal Reserve 
Board holds inflation at 5.5 % per year for the next 50 years.  Give a 
plot of the projected price over the next 50 years of an item that costs 
$100 today.

áG.6.a.iii)

Take the current year for t= 0 and assume that the Federal Reserve 
Board holds inflation at 7.5 % per year for the next 50 years.  Give a 
plot of the projected price over the next 50 years of an item that costs 
$100 today.

áG.6.a.iv)

Take the current year for t= 0 and assume that the Federal Reserve 
Board holds inflation at 9.5 % per year for the next 50 years.  Give a 
plot of the projected price over the next 50 years of an item that costs 
$100 today.

áG.6.a.v)

Discuss how you expect the Federal Reserve Board's policies on 
inflation to influence your future.  Are a couple of extra points on the 
inflation rate anything to worry about?
What is it about the function 
       f@tD = E x t (for x > 0) 
that makes long-term high inflation rates really scary?

 

áG.6.b) 

When a condenser discharges electricity, the instantaneous rate of 
change of the voltage is proportional to the voltage in the condenser.
Suppose you have a discharging condenser and the instantaneous rate 
of change of the voltage is -0.01 of the voltage (in volts per second).  
How many seconds does it take for the voltage to decrease by 90 %?  

áTip:

As appealing as the answer of 90 seconds may be, it is not correct.

G.7)  Examining the formula  E-r t starter + E-r t Ù0
t
Er t f @tD â t 

and helping out a clueless EE student
When you are given
       y¢@tD + r y@tD = f @tD   with y@0D = starter,
you copy paste and edit
       y@tD = E-r t starter+ E-r t Ù0

t
Er t f @tD â t.

Enter it:
Clear @y, t, starter, r D;

y@t_ D = E-r t starter + E-r t à
0

t

Er t f @t D â t

E-r t i
k
jj 1000

��������������
r

-
1000 Er t
������������������������

r
y
{
zz + E-r t starter

Check whether y¢@tD + r y@tD = f @tD:
y ¢@t D + r y @t D

-1000 - E-r t i
k
jj 1000

��������������
r

-
1000 Er t
������������������������

r
y
{
zz r - E-r t r starter +

r i
k
jjE-r t i

k
jj 1000

��������������
r

-
1000 Er t
������������������������

r
y
{
zz + E-r t starter y

{
zz

Multiply it out:
Expand @y ¢@t D + r y @t DD

-1000

Yes.
       y@tD = E-r t starter+ E-r t Ù0

t
Er t f @tD â t 

solves y¢@tD + r y@tD = f @tD.

 

  
 And y@0D = E-r 0 starter+ E-0 t Ù0

0
Er t f @tD â t

               = starter+ Ù0

0
Er t f @tD â t 

               = starter+ 0 = starter
 So this y@tD also satisfies y@0D = starter:
 Now go back to
       y@tD = E-r t starter+ E-r t Ù0

t
Er t f @tD â t

Put: 
       yunforced@tD = E-r t starter
and
       yzeroinput@tD = E-r t Ù0

t
Er t f @tD â t

so that  
       y@tD = yunforced@tD + yzeroinput@tD.

Explain these facts:

áG.7.a.i)

       yunforced@tD solves y¢@tD + r y@tD = 0, with y@0D = starter.

áG.7.a.ii)

 yzeroinput@tD solves y¢@tD + r y@tD = f @tD, with y@0D = 0.

áG.7.a.iii)

® If r > 0, then yunforced@tD ® 0 as t gets large.

áG.7.a.iv)

® If r > 0, then, as t gets large, the plot of  
       y@tD = yunforced@tD + yzeroinput@tD
merges with the plot of yzeroinput@tD.

áG.7.b.i) Helping out a clueless EE student
You don't have to understand the

electrical jargon to be able to do this problem.

You are fortunate enough to have your own computer set-up right in 
your dorm room. One night, Brian, the EE student who lives across 

DE.01.G6®G7  

the hall comes in and says, "Part of my EE 207 Circuits homework for 
tomorrow is to analyze some circuits and  I don't have a clue about 
where to start."  

At first, you think, "I'm scared because I'm a life science major and I 
don't know diddly squat about electrical circuits."  But you don't let 
on. Instead, you say, "Let me see that EE 207 textbook." It turns out to 
be thicker and heavier than you had expected. In the text book you see 
that in a certain driven  circuit, the voltage v@tD satisfies
       c v¢@tD + v@tD����������r = f @tD, with v@0D given.
 where f@tD is called  the driving or forcing function.
You see also some words about capacitors,switches and nodal 
equations which you don't understand.
But you barrel ahead, converting this diffeq to
       v¢@tD + v@tD����������r c = f @tD���������c  with v@0D = starter
and you type:

Clear @v, r, c, f, starter D;

v@t_ D = E- t c�������
r starter + E- t c�������

r à
0

t E
t c�������
r f @t D

�������������������������
c

 â t

E- c t�������r starter +
E- c t�������r Ù

0

t
E

c t�������r f @t D â t
���������������������������������������������������

c

Why did you do this?

áG.7.b.ii)

In the book, you see that
®  E- c t�������r starter is called the natural (unforced) response of the driven 
circuit
and
® E-H t�r cL Ù0

t
EH t�r cL f @tD���������c  â t is called the forced response of the driven 

circuit
Brian asks you what this means. 
What do you say?
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áG.7.b.iii)

Next Brian gets out his homework assignment and asks you to solve  
       c v¢@tD + v@tD����������r = f @tDwith 
with c = 0.5, r= 0.2, f@tD = 1.2 and v@0D = 0.
Do it for him.
And give him a nice plot.

áG.7.b.iv)

Next Brian gets out his homework assignment agin and asks you to 
solve  
       c v¢@tD + v@tD����������r = f @tDwith 
with c = 0.5, r= 0.2, f@tD = 1.2 Cos@tD and v@0D = 2.
Do it for him.
And give him a nice plot.

áG.7.b.v)

And then Brian gets out his homework assignment again and asks you 
to solve  
       c v¢@tD + v@tD����������r = f @tDwith 
with c = 0.5, r= 0.2, f@tD = 3 DiracDelta@t - 2D and v@0D = 1.
Do it for him.
Explain why it is guaranteed that v@tD ® 0 as t gets large.

 

G.8)  Add'em up: The superposition principle
The superposition principle says:
If y1@tD solves
       y¢@tD + r y@tD = f @tD    with y@0D = p 
and if y2@tD solves
       y¢@tD + r y@tD = g@tD  with y@0D = q
then
       y3@tD = y1@tD + y2@tD 
solves
       y¢@tD + r y@tD = f @tD + g@tD with y@0D = p + q 

Click on the right for an explanation

       y3¢@tD + r y3@tD
          = Hy1¢@tD + y2¢@tDL + r Hy1@tD + y2@tDL
          = Hy1¢@tD + r y1@tDL + Hy2¢@tD + r y2@tDL = f @tD + g@tD 
and 

       y3@0D = y1@0D + y2@0D = p + q.

None of these problems require formulas or other extensive calculation.

áG.8.a.i) Add them up

Use the superposition principle to set a number p that if y1@tD solves
       y¢@tD + 8 y@tD = f @tD, with y@0D = 1, 
and y2@tD solves
       y¢@tD + 8 y@tD = 0, with y@0D = p,
then y@tD = y1@tD + y2@tD 
solves
       y¢@tD + 8 y@tD = f @tD, with  y@0D = 3.

 

áG.8.a.ii)

If yzeroinput@tD solves
         y¢@tD + 7 y@tD = f @tD, with y@0D = 0,
and yunforced@tD solves
       y¢@tD + 7 y@tD = 0, with y@0D = 12,
then what differential equation does
       y@tD = yzeroinput@tD + yunforced@tD
solve?
Make sure you give the starting data. 

áG.8.a.iii)

If y1@tD solves
       y¢@tD + 7 y@tD = Sin@tD, with y@0D = 0, 
and y2@tD solves
       y¢@tD + 7 y@tD = -Cos@tD, with y@0D = 12,
then what differential equation does
       y3@tD = y1@tD + y2@tD
solve?
Make sure you give the starting data. 

áG.8.a.iv)

That dimwit Calculus Cal told Careful Carrie that if y1@tD solves
       y¢@tD + 8 y@tD = DiracDelta@t - 1D, with y@0D = 3,
and if y2@tD solves
       y¢@tD + 8 y@tD = DiracDelta@t - 1D, with y@0D = 7,
then
       y1@tD + y2@tD 
solves
       y¢@tD + 8 y@tD = DiracDelta@t - 1D, with  y@0D = 10.
What did Carrie say to Cal?

DE.01.G7®G9  

áG.8.a.v)

Given:
® y1@tD solves
       y¢@tD + 9.7 y@tD = E-0.4 t Cos@tD, with  y@0D = 0,
and
® y2@tD solves
       y¢@tD + 9.7 y@tD = 0, with  y@0D = 1.
What numbers p and q do you pick to make
       y@tD = p y1@tD + q y2@tD
solve
       y¢@tD + 9.7 y@tD = 3 E-0.4 t Cos@tD, with  y@0D = 3?

G.9)  Formulas and diffeqs

áG.9.a.i)

Here are a couple of functions together with their plots.
Clear @f, g, x D
f @x_D = Sin @xD;
g@x_D = Cos@xD;
Plot @8f @xD, g @xD<, 8x, 0, 4 p<,

PlotStyle ® 88Red, Thickness @0.01 D<, 8Blue, Thickness @0.01 D<<,
AxesLabel ® 8"x", "" <D;

2 4 6 8 10 12
x

-1
-0.5

0.5
1

The red one is the sine function, and the blue one is the cosine 
function.  Would you say these functions are the same?  
There are values of x where the function values are the same.  Does 
that mean that the functions are the same?
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áG.9.a.ii)

Given two functions f@tD and g@tD:
What's the difference between these two statements?

Statement 1):
       f@tD = g@tD.
Statement 2): 
There are values of t for which f@tD = g@tD 

What could you do to check the first statement?
What would you do about the second statement?

áG.9.a.iii)

What do you think it means to say, "Two given functions are the 
same"?
What do you think it means to say, "Two given functions are 
reasonable approximations of each other?"

áG.9.b.i)

Here's the exponential diffeq:
 Lots of folks say that this is the 

 BOSS differential equation ... Numero Uno ... The heart of it all.

Clear @y, r, t, diffeq D;
diffeq = y ¢@t D - r y @t D == 0

-r y @t D + y ¢@t D == 0

Here's a formula for a function y@tD:
y@t_ D = Sin @r t D

Sin @r t D
For this y@tD, the right hand side of the differential equation
       y'@tD = r y@tD
is:

right = r y @t D
r Sin @r t D

The left hand side is:
left = y ¢@t D

 

r Cos @r t D
You make the call.  
Is 
       y@tD = Sin@r tD 
a solution of the differential equation? 

áG.9.b.ii)

Here's the exponential diffeq:
Clear @y, r, t, diffeq D;
diffeq = y ¢@t D == r y @t D

y ¢@t D == r y @t D
Here's a formula for new function y@tD:

y@t_ D = Exp@-r t D
E-r t

For this y@tD, the right hand side of the differential equation
       y¢@tD = r y@tD
is:

right = r y @t D
E-r t r

The left hand side is:
left = y ¢@t D

-E-r t r

You make the call.  
Is 
       y@tD = Exp@-r tD
a solution of the differential equation? 

áG.9.b.iii)

Here's the exponential diffeq:
Clear @y, r, t, k, diffeq D;
diffeq = y ¢@t D == r y @t D

y ¢@t D == r y @t D
Here's a formula for new function y@tD:

y@t_ D = k Exp @r t D
Er t k

 

For this y@tD, the right hand side of the differential equation
       y¢@tD = r y@tD
is:

right = r y @t D
Er t k r

The left hand side is:
left = y ¢@t D

Er t k r

You make the call.  
Is 
       y@tD = k Exp@r tD 
a solution of the differential equation? 

áG.9.c)

Here's a string of differential equations and a string of functions to go 
with them.  In each case, decide whether or not the given function is a 
solution of the given differential equation. 

áG.9.c.i)
Clear @f, x, diffeq D
diffeq = f ¢@xD == x + 2 Sin @xD

f ¢@xD == x + 2 Sin @xD

f @x_D =
x2

��������
2

- Cos@xD

x2
��������
2

- Cos@xD
f ¢@xD

x + Sin @xD

áG.9.c.ii)
Clear @f, x, diffeq D
diffeq = f ¢@xD == x + Sin @xD

f ¢@xD == x + Sin @xD

f @x_D =
x2

��������
2

- Cos@xD

x2
��������
2

- Cos@xD
f ¢@xD

DE.01.G9®G10  

x + Sin @xD

áG.9.c.iii)
Clear @f, x, diffeq D
diffeq = f ¢@xD == x

f ¢@xD == x

f @x_D =
x2

��������
2

+ 10

10 +
x2
��������
2

f ¢@xD
x

áG.9.c.iv)
Clear @f, x, diffeq D
diffeq = f ¢@xD == x f @xD

f ¢@xD == x f @xD

f @x_D = p ExpA x2

��������
2

E

E
x2

������2 p

f ¢@xD
E

x2

������2 p x

áG.9.c.v)
Clear @x, t, diffeq D
diffeq = x²@t D + 9 x@t D == 0

9 x @t D + x²@t D == 0

x@t_ D = Sin @3 t D
Sin @3 t D

x²@t D
-9 Sin @3 t D

G.10)  Ups and downs for functions
DiffEq's always have something to do with derivatives. This problem is a 

chance for you to refresh yourself on the true meaning of derivatives.

áG.10.a.i)

Here's the plot of a function f@xD, and a point on the plot at 81, f@1D<.
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Clear @f, x D
f @x_D = Sin @2 p xD + x2 ;

Plot Af @xD, 8x, 0, 2 <, AspectRatio ®
1

�����������������������������������
GoldenRatio

,

PlotStyle ® 88Thickness @0.01 D, Blue <<, AxesLabel ® 8"x", "f @xDD" <,

Epilog ® 8PointSize @0.03 D, Red, Point @81, f @1D<D<E;

0.5 1 1.5 2
x

1

2

3

4

f@xDD

Just by looking at the plot:
Do you say that the curve is going up or going down at the point 
81, f@1D<?
Do you say f¢@1D is positive or negative at the point x= 1?

áG.10.a.ii)

Here's the plot of the same function shown with a new point at 
81.5, f@1.5D<.

Plot Af @xD, 8x, 0, 2 <, AspectRatio ®
1

�����������������������������������
GoldenRatio

,

PlotStyle ® 88Thickness @0.01 D, Blue <<, AxesLabel ® 8"x", "f @xDD" <,

Epilog ® 8PointSize @0.03 D, Red, Point @81.5, f @1.5 D<D<E;

0.5 1 1.5 2
x

1

2

3

4

f@xDD

 

Just by looking at the plot:
Do you say that the curve is going up or going down at the point 
81.5, f@1.5D<?
Do you say that f¢@1.5D is positive or negative?

áG.10.a.iii)

Here's the plot of the same function f@xD, and a point on the graph at a 
randomly chosen point 8u, f@uD<.

u = Random@Real, 80, 2 <D;

Plot Af @xD, 8x, 0, 2 <, AspectRatio ®
1

�����������������������������������
GoldenRatio

,

PlotStyle ® 88Thickness @0.008 D, Blue <<, AxesLabel ® 8"x", "f @xDD" <,

Epilog ® 8PointSize @0.03 D, Red, Point @8u, f @uD<D<E;

0.5 1 1.5 2
x

1

2

3

4

f@xDD

Just by looking at the plot:
Do you say that the curve is going up or going down at the plotted 
point 8u, f@uD<?
Do you say that f¢@uD is positive, negative or zero?

áG.10.a.iv)

Here's the plot of the same function f@xD, and a point on the graph at a 
new randomly chosen point 8u, f@uD<.

u = Random@Real, 80, 2 <D;

Plot Af @xD, 8x, 0, 2 <, AspectRatio ®
1

�����������������������������������
GoldenRatio

,

PlotStyle ® 88Thickness @0.008 D, Blue <<, AxesLabel ® 8"x", "f @xDD" <,

Epilog ® 8PointSize @0.03 D, Red, Point @8u, f @uD<D<E;

 

0.5 1 1.5 2
x

1

2

3

4

f@xDD

Just by looking at the plot:
Do you say that the curve is going up or going down at the plotted 
point 8u, f@uD<?
Do you say that f¢@uD is positive, negative or zero?

áG.10.b.i)

Here's the plot of a new function g@xD together with the point at
        81.3, g@1.3D<.

Clear @g, x D
g@x_D = Hx - 1L Hx - 3L;

Plot Ag@xD, 8x, 0, 3 <,

PlotStyle ® 88Thickness @0.01 D, Blue <<, AspectRatio ®
1

�����������������������������������
GoldenRatio

,

PlotRange ® All, AxesLabel ® 8"x", "g @xDD" <,

Epilog ® 8PointSize @0.03 D, Red, Point @81.3, g @1.3 D<D<E;

0.5 1 1.5 2 2.5 3
x

-1

1

2

3

g@xDD

Given that f@xD is another function with 
       f¢@xD = g@xD, 
do you say that the plot of f@xD is going up or going down at the point 
81.3, f@1.3D<?

DE.01.G10  

áG.10.b.ii)

Here's the plot of the same function g@xD together with a point at
       82.5, g@2.5D<:

Plot Ag@xD, 8x, 0, 3 <,

PlotStyle ® 88Thickness @0.008 D, Blue <<, AspectRatio ®
1

�����������������������������������
GoldenRatio

,

PlotRange ® All, AxesLabel ® 8"x", "g @xDD" <,

Epilog ® 8PointSize @0.03 D, Red, Point @82.5, g @2.5 D<D<E;

0.5 1 1.5 2 2.5 3
x

-1

1

2

3

g@xDD

Given that f@xD is another function with 
       f¢@xD = g@xD, 
do you say that the plot of f@xD is going up or going down at the point 
82.5, f@2.5D<?

áG.10.b.iii)

Here's the plot of the same function g@xD together with the point at
       82.0, g@2.0D<:

Plot Ag@xD, 8x, 0, 3 <,

PlotStyle ® 88Thickness @0.008 D, Blue <<, AspectRatio ®
1

�����������������������������������
GoldenRatio

,

PlotRange ® All, AxesLabel ® 8"x", "g @xDD" <,

Epilog ® 8PointSize @0.03 D, Red, Point @82.0, g @2.0 D<D<E;
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0.5 1 1.5 2 2.5 3
x

-1

1

2

3

g@xDD

Given that f@xD is another function with 
       f¢@xD = g@xD, 
do you say that the plot of f@xD is going up or going down at the point 
82.0, f@2.0D<?

áG.10.c)

Make
       g@xD = x Hx - 2L Hx - 4L 
and plot:

Clear @g, x D
g@x_D = x Hx - 2L Hx - 4L;

Plot Ag@xD, 8x, -1, 4 <, PlotStyle ® 88Thickness @0.01 D, Blue <<,

AspectRatio ®
1

�����������������������������������
GoldenRatio

, AxesLabel ® 8"x", "g @xDD" <,

PlotRange ® All E;

-1 1 2 3 4
x

-15

-12.5

-10

-7.5

-5

-2.5

2.5

g@xDD

List the intervals inside 
       -1 £ x £ 4 
on which g@xD > 0. 
List the intervals inside 
       -1 £ x £ 4 
on which g@xD < 0. 

 

Given that f@xD is another function with 
       f¢@xD = g@xD,  
which way is the plot of  f@xD going on each of the intervals you listed?

G.11)  Diffeqs and tangent vectors*

áG.11.a.i)

Here's the exponential diffeq:
Clear @x, t, r D;
diffeq = x ¢@t D == r x @t D

x ¢@t D == r x @t D
Here's a formula of the solution x@tD of this diffeq with r= 0.25 and 
x@0D = 2.

r = 0.25;
starter = 2;
Clear @x, t D
x@t_ D = starter E r t

2 E0.25 t

And a plot of the solution:
solutionplot = Plot @x@t D, 8t, 0, 7 <, AxesLabel ® 8"t", "x @t D" <,

PlotStyle ® 88Thickness @0.01 D, Red <<D;

1 2 3 4 5 6 7 t

4

6

8

10

x@tD

Here are some pointers with their tails tacked at some points on the 
curve.

pointers = Table @Arrow @81, r x @t D<,
Tail ® 8t, x @t D<, VectorColor ® Blue D, 8t, 0, 6, 1.5 <D;

Hplot = Show@solutionplot, pointers D; L

 

1 2 3 4 5 6 7 t

4

6

8

10

x@tD

What do you say the relationship between the solution curve and those 
vectors is? 

áG.11.a.ii)

Take another look the last plot again:
Show@plot D;

1 2 3 4 5 6 7 t

4

6

8

10

x@tD

The plotted vectors are 
         81, 0.25 x@tD< 
with tails at 8t, x@tD< for a selection of t¢s. 
The slope of each plotted vector is
         0.25 x@tD.
The plotted curve is a solution of
         x¢@tD = 0.25 x@tD.
Use these two facts to try to explain why the plot came out the way it 
did.

áG.11.b.i)

Here's the exponential diffeq:
Clear @x, t, r D;
diffeq = x ¢@t D == r x @t D

x ¢@t D == r x @t D

DE.01.G10®G11  

Here's a formula of the solution x@tD of this diffeq with r= -0.43 and 
x@0D = 6.4.

r = -0.43;
starter = 6.4;

x@t_ D = starter E r t

6.4 E -0.43 t

And a plot of the solution:
solutionplot = Plot @x@t D, 8t, 0, 7 <, AxesLabel ® 8"t", "x @t D" <,

PlotStyle ® 88Thickness @0.01 D, Red <<D;

1 2 3 4 5 6 7 t

1

2

3

4

5

6

x@tD

Here are some pointers with their tails tacked at some points on the 
curve.

pointers = Table @Arrow @81, r x @t D<,
Tail ® 8t, x @t D<, VectorColor ® Blue D, 8t, 0, 6, 1.5 <D;

Hplot = Show@solutionplot, pointers D; L

1 2 3 4 5 6 7 t

1

2

3

4

5

6

x@tD

What do you say the relationship between the solution curve and those 
vectors is? 

áG.11.b.ii)

Take another look at the plot again:
Show@plot D;
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1 2 3 4 5 6 7 t

1

2

3

4

5

6

x@tD

The plotted vectors are 
         81, -0.43 x@tD< 
with tails at 8t, x@tD< for a selection of t's. 
The slope of each plotted vector is
         -0.43 x@tD.
The plotted curve is a solution of
         x'@tD = 0.43 x@tD.
Use these two facts to try to explain why the plot came out the way it 
did.

áG.11.c.i)

Here's a logistic differential equation:
Clear @x, t D;

diffeq = x ¢@t D == 0.3 x @t D i
k
jj1 -

x@t D
��������������

10

y
{
zz

x ¢@t D == 0.3 J1 -
x@t D
��������������

10
N x@t D

Here are three solution curves for this equation.
Clear @x1, x2, x3 D;
x1@t_ D = x@t D �. NDSolve @8diffeq, x @0D == 3<, x @t D, 8t, 0, 15 <DP1T;
x2@t_ D = x@t D �. NDSolve @8diffeq, x @0D == 10<, x @t D, 8t, 0, 15 <DP1T;
x3@t_ D = x@t D �. NDSolve @8diffeq, x @0D == 15<, x @t D, 8t, 0, 15 <DP1T;
solutionplot = Plot @8x1@t D, x2 @t D, x3 @t D<, 8t, 0, 15 <,

AxesLabel ® 8"t", "x @t D" <, PlotStyle ® 88Thickness @0.01 D, Red <,
8Thickness @0.01 D, Red <, 8Thickness @0.01 D, Red <<,

PlotRange ® All D;

 

2 4 6 8 10 12 14 t

6

8

10

12

14

x@tD

Here are some pointers with tails tacked to the solution curves.
scale = 1.75;

pointers1 = Table AArrow A91, 0.3 x1 @t D i
k
jj1 -

x1@t D
�����������������

10

y
{
zz=, Tail ® 8t, x1 @t D<,

VectorColor ® Blue, ScaleFactor ® scale E, 8t, 0, 14, 2 <E;

pointers2 = Table AArrow A91, 0.3 x2 @t D i
k
jj1 -

x2@t D
�����������������

10

y
{
zz=, Tail ® 8t, x2 @t D<,

VectorColor ® Blue, ScaleFactor ® scale E, 8t, 0, 14, 2 <E;

pointers3 = Table AArrow A91, 0.3 x3 @t D i
k
jj1 -

x3@t D
�����������������

10

y
{
zz=, Tail ® 8t, x3 @t D<,

VectorColor ® Blue, ScaleFactor ® scale E, 8t, 0, 14, 2 <E;

plot = Show@solutionplot, pointers1, pointers2, pointers3 D;

2.5 5 7.5 10 12.5 15
t

6

8

10

12

14

x@tD

What do you say is the relationship between the solution curves and 
those vectors?

áG.11.c.ii)

Take another look the plot again:
Show@plot D;

 

2.5 5 7.5 10 12.5 15
t

6

8

10

12

14

x@tD

The plotted vectors are 
        1.7581, 0.3 x@tD H1 - x@tD����������10 L<
with tails at 8t, x@tD< for a selection of t's. 
The slope of each plotted vector is
        0.3 x@tD H1 - x@tD����������10 L.
The plotted curves are solutions of
        x¢@tD = 0.3 x@tD H1 - x@tD����������10 L
Use these two facts to try to explain why the plot came out the way it 
did.

áG.11.c.iii)

Here is the plot of the three solutions of   
        x¢@tD == 0.3 x@tD H1 - x@tD����������10 L
from part i) above shown with a selection of new pointers:

scale = 1.75;

flow = Table AArrow Ascale 91, 0.3 x J1 -
x

��������
10

N=,

Tail ® 8t, x <, VectorColor ® Blue E, 8x, 0, 14, 2 <, 8t, 0, 14, 2 <E;

setup = Show@flow, solutionplot, Axes ® True, AxesLabel ® 8"t", "x" <D;

2.5 5 7.5 10 12.5 15 t

2

4

6

8

10

12

14

x
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What do these pointers suggest about solutions of
       x¢@tD = 0.3 x@tD H1 - x@tD����������10 L
with 0 < x@0D < 10?

What do these pointers suggest about solutions of
       x¢@tD = 0.3 x@tD H1 - x@tD����������10 L
with  x@0D = 10?

What do these pointers suggest about solutions of
       x¢@tD = 0.3 x@tD H1 - x@tD����������10 L
with  x@0D > 10?

áG.11.c.iv)

Here is the plot of the three solutions of   
       x¢@tD = 0.3 x@tD H1 - x@tD����������10 L
from part i) above shown with the pointers from part iii):

flow = Table AArrow Ascale 91, 0.3 x J1 -
x

��������
10

N=,

Tail ® 8t, x <, VectorColor ® Blue E, 8x, 0, 14, 2 <, 8t, 0, 14, 2 <E;

setup = Show@flow, solutionplot, Axes ® True, AxesLabel ® 8"t", "x" <D;
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What do these pointers suggest about the behavior of the solution of
       x¢@tD = 0.3 x@tD H1 - x@tD����������10 L
whose plot passes through 8t, x< = 85, 4<?

What do these pointers suggest about the behavior of the solution of
       x¢@tD = 0.3 x@tD H1 - x@tD����������10 L
whose plot passes through 8t, x< = 85, 12<?
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