DE.02.B1
dampedoscdiffeq =
. . . . (" [t] +by [t] +cy[t] == 0,y [0] == startery,
Differential Equations& Mathematica y [0] == starteryprime _};
ColumnForm [dampedoscdiffeq ]
©1999Bill Davis and Jerry Uhl 404627y [t] +0.18y "[t] +y”[t] ==0
Produced by Bruce Carpenter Published by Math Everywhere, Inc. y[0] == 226103
www.matheverywhere.com y'[0] == -1.41245

DE.02 Transition from Calculus to DiffEQ: The solution plots out this way:

The Forced Oscillator DiffEq endume =59

ndsol = NDSolve [dampedoscdiffeq, y [t1, {t O, endtime
BaS|CS ydamped [t_ ] =y [t] /. ndsol

}1; Clear [ydamped]
[1]; dampedplotl = Plot [ydamped [t1,

{t, 0, endtime  }, PlotStyle - {{Thickness [0.01 ], Red }},
AspectRatio - % PlotRange - All, AxesLabel -ty [t )]:
B.1) Underdamped oscillatorsb > 0 and small) and yit
R 2
overdamped oscillators b > 0and large) 1 .
.1 1 5 25
OB.1.a.i)

-2
The undamped oscillator diffeq i§ft] + cy[t] =0 with c> 0.

A damped sine wave which is squashe0 &=t gets large.
Here's a random undamped oscillator diffeq with random starter

See the undamped solution and the damped solution together:
values for YO] and y’[O] ] Show[undampedplot, dampedplot1 1;
¢ = Random[Real, {3, 51}1; yit]
startery = Random[Real, {2, 51}];
starteryprime = Random[Real, {-2, 2 }1;
Clear [t, y 1

undampedoscdiffeq =

{" [t] +cy[t] == 0,y [0] == Startery, Damped and undamped versions of the same oscillator.
y' [0] == starteryprime };
ColumnForm [Thread [undampedoscdiffeq 1] |:|Bla||)
404627y [t]+y”[t] ==0
y[0] == 2.26103

Here is the plot of the damped oscillator from part i)
y'[0] == -1.41245 | Show[dampedplotl T;
The solution plots out this way: yit]
2
1
N 1 5 5% !
-2 i
How do you damp it even more?
OAnswer:
endtime = 30;
ndsol

= NDSolve [undampedoscdiffeq, y [ti

, {t, 0, endtime 11
Clear [yundamped ]

To get this plot, you inserteb y'[t] with thisb:

b
yundamped [t_ ] =y [t] /.ndsol [1T; I0.18
undampedplot = Plot [yundamped [t1, {t O, endtime }, i )
) _ 1 To damp it even more you raibe
PlotStyle - {({Thickness [0.01 ], Blue 13, AspectRatio - 2’ It's fine to think of the raising the damping termas incorporating more
PlotRange - All, AxesLabel - "ty [t }]; friction.
yitl higherb = 0.5;
i Clear [ty 1;
1 3 =5 moredampedoscdiffeq = {y" [t] + higherby [t] + cy[t] ==
% y[0] == startery, y' [0] == starteryprime };
A N ColumnForm [Thread [moredampedoscdiffeq 11
sine wave. ) ) ) 404627y [t]+05y "[t]+y”[t] ==0
Regular repeating oscillations forever. V0] == 2.26103
How do clued-in diffeq folks reach in and damp this oscillator so that Yy’ (0] == -1.41245
the the solutions tend to O tgets large? The new solution plots out this way:
DAnswer: endtime = 30;
The undamped oscillator diffeq is ndsol = NDSolve [ )
moredampedoscdiffeq ,y [t1, {t O, endtime 1
"[t] + cylt] =0:
y [] y[] Clear [newydamped]
S;Ze;rmp[);dlolsc]diffeq ~ ymoredamped [t_ ] =y[t] /. ndsol [1];dampedplot2 = Plot [ymoredamped [t1,
" [t] +cCy[t] == 0, y [0] == startery, {t, 0, endtime }1, PlotStyle - {{Thickness [0.01 ], Magenta }},
y' [0] == starteryprime Y AspectRatio - —, PlotRange - All, AxesLabel Sty It
ColumnForm [undampedoscdiffeq ] 4
404627y [t]+y”[t] ==0 yzu ]
y[0] == 2.26103 i
y'10] == -1.41245 1 15 20 25 30
. . . -1
To damp this oscillator so that all the solutions terOl &st gets large,
. . . , See them all:
you keep everything the same but you insert a dampingb y'[t] ( || Showtundampedplot, dampedplot, dampedplo2 y
with b > 0) into the middle of the diffeq to get the damped oscillator

diffeq
y”[t] + by'[t] + cy[t] =0:

It's fine to think of the damping term as friction.

b = 0.18;
Clear [t, y 1
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0OB.1.a.iii) Underdamped versus overdamped

Here's what happens when you increase the damping term b quite a
more:
bigh = 5.2;
Clear [t, y 1
overdampedoscdiffeq =
{y" [t] + bigby" [t] +cy[t] == 0, y [0] == startery,
y' [0] == starteryprime }
ColumnForm [overdampedoscdiffeq 1
404627y [t]+52y '[t]+y”[t] ==
y[0] == 2.26103
y'[0] == -1.41245
The new solution plots out this way:
endtime = 30;
ndsol = NDSolve [overdampedoscdiffeq, y
Clear [yoverdamped 1]
yoverdamped [t_ ] =y[t] /.ndsol [1];
overdampedplot = Plot [yoverdamped [t1, {t O, endtime

[t], {t O, endtime }I;

}, PlotStyle -

1
{{Thickness [0.015 ], Red }}, AspectRatio - :, PlotRange - All,

AxesLabel - {"t","y
y[t] Over danped

\ t

5 10 15 20 25 30
Why do folks call this by the name overdamped?

OAnswer:

[t1"}, PlotLabel - "Overdamped" ];

D= oI

1.
0.

They say this ocscillator is overdamped because the plot doesn't
wiggle.
Too much friction.

B.2) Forcing the linear oscillator:
yforced[t] = yunforced[t] + yzeroinput[t]
For damped linear oscillators:

yunforced[t] is transient andyzeroinput[t] gives the
steady state behavior

0B.2.a.i)

Look at this plot of the solution of:
Y[t] + 0.4y[t] + 2.1y{t] = 0;
with yf0] = 1.5 and {0] = 3.0:
b =0.4;
c=21;
Clear [y, t ]
unforcedoscillator =y”[t]+by’[t]+cy[t] ==0;
initialdisplacement =1.5;
initialvel =3.0;
endtime = 30;
Clear [s,y, unforcedy, t 1
unforcedsolution =
NDSolve [ {unforcedoscillator, y [0] == initialdisplacement,
y’[0] == initialvel 3,y [t1, {t 0, endtime 1
unforcedy [t_ ] =y [t] /.unforcedsolution Ii1;

unforcedplot

PlotStyle
AxesLabel - {"t","y

= Plot [unforcedy [t], {t O, endtime 1},

- {{Thickness [0.01 ], MediumVioletRed }}, PlotRange - All,
[t]"}, PlotLabel - "Unforced Oscillator”,

1
AspectRatio - E]
ylt] Unforced Gscillator

2

1

-1

Here's what you get when you take the same damped oscillator and
the same starter data, but at tighgou throw in an external force
proportional to
fit] = 2 Sint]:
Clear [f, t, forcedy 1
flt.1=2Sin[t];

forcedoscillator =y”[t]+by’ [t]+cy[t]==f[t];

DE.02.B1-B2

forcedsolution =
NDSolve [ {forcedoscillator, y [0] == initialdisplacement,
y’[0] == initialvel },y [t1, {t O, endtime 1
forcedy [t_] =y[t] /. forcedsolution I11;

forcedplot
PlotStyle
AxesLabel - {"t', "y

= Plot [forcedy [t1, {t O, endtime 1},
- {{Thickness [0.01 ], Red }}, PlotRange - All,
[t1"}, PlotLabel - "Forced Oscillator”,

. 1
AspectRatio - 5 ] ;

yit] Forced Gscillator

-2
Compare:
both =

1
Show[unforcedplot, forcedplot, PlotLabel - "Both", AspectRatio - E]

yit] Bot h

-2
Describe what you see and try to explain why you see it.
OAnswer:

The unforced (damped) linear oscillator comes from:

] unforcedoscillator
21y [t] +04y "[t] +y”[t] ==0

with starter datiy[0] = 1.5 ancy’[0] = 3.0;
The forced (damped) linear oscillator comes from:

| forcedoscillator
21y [t]+04y "[t] +y”[t] ==2Sin [t]

with the same starter data.

Take another look:

] Showboth 1;
ylt] Both
2
1

-1
-2

Evidently the effect of the forcing function

f[t] = 2 Sint]
eventually overcomes the damping term and sends the damped
oscillator into a regular steady state.

OB.2.a.ii) Steady state and the zero input response

Look at a new forced linear oscillator:

b = Random[Real, {0.2,0.8 }1;

¢ = Random[Real, {2.0,3.5 }1;

Clear [y, t ]

initialdisplacement =5;

initialvel = 3.0;

endtime = 30;

Clear [s,y, notforcedy, t 1

f[t. 1=2Cos[2t];

forcedoscillator

forcedsolution =
NDSolve [ {forcedoscillator, y [0] == initialdisplacement,

y’[0] == initialvel },y [t1, {t O, endtime 1
forcedy [t_] =y[t] /. forcedsolution Ii1;

=y [t]1+by [t]+cy[t] ==f[t];

forcedplot
PlotStyle
AxesLabel - {"t', "y

= Plot [forcedy [t], {t O, endtime 3},
- {{Thickness [0.01 ], VenetianRed 1}}, PlotRange - All,
[t1"}, PlotLabel - "Forced Oscillator”,

1
AspectRatio - 3 1:

y[t Forced Gscillator
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This comes from:

| forcedoscillator

272607y [t] +0.256808y "[t] +y”[t] ==2Cos[2t]
with starter data[@] = 1.5 and ${0] = 3.0.
This forced oscillator is confused for a while and then settles into
steady-state in the long run.
How do you get your hands on plotting the long run steady state
behavior?

OAnswer:
It's simple!
You just change the starter data to something really easy such as
y[0] = 0 andy’[0] = O.
And then you solve:

] forcedoscillator
272607y [t] +0.256808y '[t] +y”[t] == 2Cos[21 ]

with starter datiy[0] = 0 andy’[0] = O.

Lots of folks call this the zero input response

initialdisplacement =0;
initialvel =0;
endtime = 30;

forcedoscillator =y”[t]1+by’[t]+cy[t]==f[t];
zeroinputsolution =
NDSolve [ {forcedoscillator, y
y’[0] == initialvel
Clear [yzeroinput ]
yzeroinput  [t_ ] =y[t] /. zeroinputsolution I11;
steadystateplot = Plot [yzeroinput [t1, {t O, endtime 1
PlotStyle - {{Thickness [0.02 ], GreenDark }}, PlotRange - All,
AxesLabel - {"t","y [t]1"}, PlotLabel - "Steady State",

[0] == initialdisplacement,
}.y [t1, {t O, endtime }];

. 1
AspectRatio - 3 ] ;

[t] Steady State

BoNS

Lots of folks call this the zero input solution

Compare with the plot of the original forced oscillator:

| Show[steadystateplot, forcedplot, PlotLabel - None];
yit]
4
2
0 30 !
-2
-4

In the long run they eventually settle into the same steady state
oscillations.

This will happen no matter what starter data you go with.

The zero input solution always captures the essence of the long-term
action of any forced damped oscillator.

OB.2.a.iii) Transient

Stay with the same oscillator and look at this plot of
yforcedit] — yzeroinpuft]:
transientplot = Plot [forcedy [t] -yzeroinput [t]1, {t O, endtime },
PlotStyle - {{Thickness [0.02 ], GeraniumLake }}, PlotRange - All,
AxesLabel - {"t","y [t]1"}, PlotLabel - "Transient",
AspectRatio - %]
ylt] Transi ent

4
2
t

5 2 0
-2

-4
Why do folks call this the transient effect?
How do you plot this directly?

DE.02.B2

OAnswer:
It's called the transient effect because it dies out because of the effect |
the damping term.
You can plot it directly by taking the original forced oscillator, keeping
the same starter data, but zeroing out the forcing funf[tin

endtime = 30;
initialdisplacement =1.5;
initialvel =3.0;

Clear [s,y, yunforcedy, t 1
unforcedoscillator =y”"[t]+by’ [t]+cCcy[t] ==0;
unforcedsolution =
NDSolve [ {unforcedoscillator, y [0] == initialdisplacement,
y’[0] == initialvel },y [t1, {t O, endtime }1;
yunforced [t_ ] =y[t] /.unforcedsolution I11;

directtransientplot
PlotStyle

= Plot [yunforced [t], {t O, endtime 3},
- {{Thickness [0.01 ], Red }}, PlotRange - All,

AxesLabel - {"t,"y [t]"}, PlotLabel - "Transient",
1
AspectRatio - 31;
ylt] Transi ent
2
1
B 5 20 0"
-1
Compare:
| Show[transientplot, directtransientplot 1;
y[t] Transi ent
4
2
5 W) t
-2

-4
On the money.

OB.2.b.i)
Here's a new forced oscillator subjected to a constant forcing function:

b = Random[Real, {05, 1.4 }];
c = Random[Real, {4.0,6.0 1}1;

initialdisplacement =-3.7;

initialvelocity =4.0;

Clear [f, t, yforced 1

f[t_ 1=5.0;

forcedoscillator =y”[t]1+by'[tl1+cy[t]==Ff][t];

forcedsolution =
NDSolve [ {forcedoscillator, y [0] == initialdisplacement,
y’[0] == initialvel },y [t1, {t O, endtime }1;
yforced [t_] =y[t] /.forcedsolution [11;

forcedplot = Plot [yforced [t1, {t O, endtime },

PlotStyle - {{Thickness [0.01 ], NavyBlue }}, PlotRange - All,
AxesLabel - {"t',"y [t]"}, PlotLabel - "Forced Oscillator”,

1
AspectRatio - I] ;
ylt] Forced Oscillator

giI\,\s/\'lo t

- éy \" 15 20 25 30

Come up with plots of the zero input solution and the the unforced
solution.
Show a plot of
yzeroinpyt] + yunforcedt]
together with the plot immediately above and describe what you see.

OAnswer:

Here comes a plot (yunforcedt]:

You get this by zeroing out the forcing function f[t]
and going with the given starter data.
Clear [y, t, transient 1

unforcedoscillator
unforcedsolution =
NDSolve [ {unforcedoscillator, y [0] == initialdisplacement,
y’[0] == initialvel },y [t1, {t O, endtime 1
yunforced [t_ ] =y[t] /.unforcedsolution I11;

=y [t1+by [t]+cy[t] ==0;

transientplot
PlotStyle

=Plot [yunforced [t], {t O, endtime 3},
- {{Thickness [0.01 ], MediumBlue }}, PlotRange - All,

AxesLabel - {"t","y [t1"}, PlotLabel

1
- "unforced", AspectRatio e 1:
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yit] unf or ced
2
1
o W15 20 25 30!
-2
-3
You can see yunforceclt] dying out.

That's why some folks like to call it "transient.”

Here comes a plot (yzeroinpuft]:

You get this by zeroing out the starting data
and going with given forcing function.
Clear [yzeroinput ]

forcedoscillator =y”[t]+by’ [t]+cy[t]==f[t];

zeroinputsolution = NDSolve [
{forcedoscillator, y [0] ==0,y "[0] ==0},y [t], {t O, endtime 1
yzeroinput  [t_ ] =y[t] /. zeroinputsolution I11;
steadystateplot = Plot [yzeroinput [t1, {t O, endtime }.
PlotStyle - {{Thickness [0.02 ], GreenDark }}, PlotRange - All,
AxesLabel - {"t","y [t]1"}, PlotLabel - "Steady state",
1
AspectRatio - 3]
ylt] Steady state
1.4
1.2
1
0.8 \~
0.6
0.4
0.2
Y5 10 15 20 25 30
Zap.

You can see yzeroinpu[t] settling into a steady state.
That's why some folks like to say you get
steady state information from yzeroinput

Here's a plot ayzeroinpuft] + yunforcedt]:

combinedaction = Plot [yzeroinput [t 1 +yunforced [t], {t O, endtime 3},

PlotStyle - {{Thickness [0.02 ], HotPink }}, PlotRange - All,
1
AxesLabel - {"t","™ 3}, AspectRatio - ;]
3
2
1
LU s T 10 15 20 25 w0t
-2
-3

Compare tdMathematic& plot of the action of the forced oscillator:

] Show[combinedaction, forcedplot, AxesLabel - {0,

s t

~ l 15 20 25 30
- 2
-3

They are the same. It works this way everytime.

If you want to see why, go on.

0B.2.b.ii) yforced[t] = yzeroinput[t] + yunforced[t]
In the last part it became apparent that
yforcedlt] = yzeroinpuft] + yunforcedt].
Explain why this happened and why you are guaranteed that this will
happen anytime you are dealing with a forced linear (damped or
undamped) oscillator.

OAnswer:
Go with a forced linear oscillator with cleared forcing function and

cleared coefficients:

Clear [y, f,b,c ]
forcedoscillator =y”"[t]1+by’ [t]+cy[t]l==f[t]

CYy[t]+by [t]+y"[t] ==f[t]
with cleared starter day[0] =
Facts to ponder:

p andy’[0] = q

- yzeroinpuft] solves:

Clear [yzeroinput ]
zeroinputeq = forcedoscillator /.
{y[t]-yzeroput [t],y ’[t] - yzeroinput

“[t1,y ”[t] > yzeroinput “[t]}

DE.02.B2-B3

cyzeroput [t ] +byzeroinput ‘[t] +yzeroinput “[t] ==fT[t]

with starter datyzeroinpufO] = 0 andyzeroinput[0] =

- yunforcedt] solves:

Clear [yunforced ]
unforcedeq = forcedoscillator /. {y[t]-yunforced [t],
y’[t] - yunforced “[t],y “[t] - yunforced “[t],f [t] -0}
cyunforced [t ] +byunforced ‘[t] +yunforced ”[t] ==

with starter datiyunforcedO] = p andyunforced[0] =

Adding the two equations and remembering that the derivatives of the

sums are sums of derivatives, you see that when you put
yforcedt] = yzeroinpuft] + yunforcedt],
then you are guaranteed tlyforcedt] solves the original forced
oscillator differential equation
yforced’[t] + byforced[t] + cyforcedt] = f[t] + O = f[t].

Also this gives you
yforcedO]

and
yforced[0]

= yzeroinpuf0] + yunforced0] =0+ p=p

= yzeroinput[0] + yunforced[0] =0 + q=q,

The upshotyforcedt] solves

| Clear [y, f,b,c 1

forcedoscillator =y”[t]1+by [t]+cy[t]==f[t]

Cy[t]+by [t]+y [t]==f[t]

with correct starter day[0] = p andy’[0] =

That's why you can count on

yforcedt] = yzeroinpuft] + yunforcedit]
for any and all forced linear oscillators.

B.3) Euler's identity:
E@+Ib)t = EatCogbt] + | Sin[bt]) wherel = V-1

OB.3.a)

Look at these:
Clear [t]
| ComplexExpand [E'! ]
Cos[t] +1Sin [t]
Clear [t]
| ComplexExpand [E'2! ]
Cos[2t] +1Sin [2t]
Clear [t]
| ComplexExpand [E' ™!
Cos[nt] +1Sin [nt]
| b = Random[Real, {-3, 3 }]; ComplexExpand
C0s[2.16529t ] +1Sin [2.16529t ]
Rerun several times.

[E\bl ]

a = Random[Real, {-3, 3 }]
b = Random[Real, {-3,3 }]
ComplexExpand [E@+'P) ]
2.30762

0.0535402

E230762t  Cos[0.0535402 t

] + 1 E280762L gjn 10.0535402t |
Rerun several times.

What the heck is going on here?

OAnswer:
Mathematica is spitting out Euler's identity.
Euler's Identity says:
If a andb are real numbers all =+/—1, then
E@ID = Fat(Cogb t] + I Sin[b t]).
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Folks call this the complex exponential. It is programmed right into
Mathematicaand you will want it to be programmed into your brain as
well.

Check it out:

a = Random[Real, {-3,3}];
b = Random[Real, {-3,3 }1;
ComplexExpand [E(@+P)
E3! (Cos[bt] +1Sin [bt])
E277429t C0s[2.60966t ] - 1E27742°! Sin [2.60966 t |
E277429t  (C0s[2.609661 | -1Sin [2.60966t 1)
Rerun several times.

It happens every time.

OB .3.b) The firstand second derivatives of E2+!'0)t
Check this out:
Clear [y, t, a, b, K 1
yIt 1 =KE(a+\h)l
E(aflb )t K
Iyl
(a+1b) E@IPITK
Iyt
(a+1b)2E@IPILK
What's the message?
Explain why it happens.

OAnswer:
The message is that when you go with
y[t] — KE(a+Ib)t
then you are guaranteed that
y'[t] = (a+ Ib)KE@+IDU = a4 |byy[t]
and
y”[t]

(a+ Ib)2KE®@+!Dt = (@ + [b)2ylt]

You take the derivative of the complex exponential the same way you
were used to taking the derivative of any exponential back in calculus

If you want to see why this works out the way it does, click on the
right.

Start with
y[t] = KE@+IDt = K Eat(Cogbt] + ISin[bt])

Clear [k, a, b,y t ]
y[t_]=KE"! (Cos[bt]+ISin [bt])
E3' K (Cos[bt] +1Sin [bt])

Multiply it out:

] Expand [y[t]]
E2' KCos[bt] +IE3' KSin [bt ]

Use the product rule to differentiate both parts with respetcrd
multiply out, remembering thil? = —1:

] Expand [y’ [t]]
aE3! KCos[bt]+IbE?3 KCos[bt] +laE?3" KSin [bt]-bE3 KSin [bt ]

Compare:

] Expand [(a+1b) y[t]]
aE2' KCos[bt] +IbE3 KCos[bt] +laE3 KSin [bt]-bE3 KSin [bt]

So when you start witty[t] = KE@+'Dt you get
y[t] = K(a + | b)E@+ID!

B.4) The characteristic equation of the unforced linear
oscillator diffeq
y'[t1+by[tl +cylt] =0

ZZ+bz+c=0.
If zy and z, solve the characteristic equation, ankK; and K,

DE.02.B3-B4

are constants, then
KiEat 4K, EZ!
is a solution of
y”[tl + by'[t] + cylt] = 0.
How to setK; and K, to handle starter data ony[0] and y’[O].

B.4.a.i) Using the solutions of the characteristic equation

Here's an unforced linear oscillator diffeq:
b = 0.45;
c=22;
startery = -1.0;
starteryprime =2.0;
Clear [t,y, Derivative 1
oscdiffeq =
{y" [t]1+by’[t]l+cy[t] ==0,y [0] == startery, y
ColumnForm [Thread [oscdiffeq 1]
22y [t]+045y "[t]+y”[t] ==
y[0] == -1.
y’[0] == 2.
The characteristic equation for this oscillator diffeq is:
Clear [z]
z24bz +C ==
22 +045z +2% ==
The characteristic equation for

y”[t] + by’[ig +cy[t]=0

ZZ+bz+c=0
Use the solutions of the characteristic equation to come up with a
formula for the solution of this oscillator diffeq.
Plot the solution and describe what you see.
OAnswer:

’[0] == starteryprime }

OStepl: Write down the characteristic equation:

Clear [z]

charequation =z2+bz +C ==

22 +045z +2% ==
Note the relation between the characteristic equation and the oscillator
diffeq:

| ColumnForm [Thread [oscdiffeq 1]

22y [t]+045y "[t]+y”[t] ==

y[0] == -1.

y'[0] ==2.
Again: the characteristic equation for

y’[tl + by’lt] + cy[t] =0
22 +bz+c=0
OStep 2: Solve the charactistic equation foz to set up the general
solution of the diffeq

| zsols = Solve [charequation, z 1
{({z >-0.225 -1.466071 }, {z--0.225 +1.466071 }}
Fish the solutions fcz out:

| z1 =zsols [[1,1,2 ]]
-0.225 -1.46607 |
| 22 =zs0ls [[2,1,2 ]]
-0.225 +1.46607 |
You can use the quadratic formula from high school do this with pencil
and paper.

Set up the general form of the solutions.
Clear [gensol, K1, K2 ]
gensol [t_]=KLE”(z1t) +K2E" (z2t)
[E(-0.225 1466071 )t 1 , E£(-0.225 +1466071 )t o
Here Kland K2 are cleared constants.

OStep 3: Solve for theK1 and K2 that correspond to the given
starting data ony[0] and y’[0].

ystarteq = (gensol [0] == startery );
yprimestarteq = (gensol' [0] == starteryprime ),
Ksols = Solve [{ystarteq, yprimestarteq }, {K1, K2 }]

{{K1->-05 +0.6053581, K2 - -05 -0.6053581 }}
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Substitute these valuesK1 andK2 in to get the raw form of the exact

formula:

] gensol [t] /.Ksols [[1]]
(-0.5 +0.6053581 ) E<—0225 -1.466071 )t _

Make it look nice by hittinggensolt] with the fundamental identity
E@+IDt = FatCogbt] + I EA'Sinbt]:

Clear [yformula 1]
yformula [t_ ] = Chop[ComplexExpand [gensol [t] /.Ksols [[1]]1]

~1.E 925! (C0s[1.46607t ] +1.21072E 02%5! Sin [1.46607t |

See the solution :

ColumnForm [Thread [oscdiffeq 11

(0.5 +0.6053581 ) EFO.ZZS +1.466071 )t

Plot [yformula [t], {t, 0,30 3},
1

- {{Thickness [0.01 1, Red }}, AspectRatio - —_—

PlotStyle -
GoldenRatio

PlotRange - All, AxesLabel
22y [t] +045y "[t] +y”[t] ==
y[0] ==-1

SOty 1t

-0.5
-1
A damped oscillator.
If you want to see why this method works, then go on to part iv) below
If you want another example, go on to the next part.
OB.4.a.ii) A random unforced damped oscillator
Here's an a random unforced damped linear oscillator diffeq:

b = Random[Real, {0.1,0.6 }];
¢ = Random[Real, {1,3 }];

startery = Random[Real, {-2,2 }];

starteryprime = Random[Real, {-2,2 }];

Clear [ty ]

linoscdiffeq = {y" [t]1 +by [t] +cy[t] == 0,

y[0] == startery, y' [0] == starteryprime };
ColumnForm [Thread [linoscdiffeq 1]
238862y [t]+0.120775y “[t] +y”[t] ==0
y[0] == 1.40783
y’[0] == 0.94763
The characteristic equation for this oscillator diffeq is:
Clear [z]
z24bz +C ==
238862 +0.1207752z +22 ==
The characteristic equation for

y It + by'[its] +cy[t]=0

ZZ+bz+c=0
Use the solutions of the characteristic equation to come up with a
formula for the solution of this oscillator diffeq.
Plot the solution and describe what you see.

OAnswer:

OStepl: Write down the characteristic equation:

Clear [z]
charequation
2.38862 +0.120775z +2z2% ==0
Note the relation between the characteristic equation and the oscillatc
diffeq:
| ColumnForm [Thread [linoscdiffeq 11
238862y [t] +0.120775y "[t] +y”[t] ==0
y (0] == 1.40783
y’[0] == 0.94763
Again: the characteristic equation for

y It + bY'[itS] +cy[t]=0

2 +bz+c=0

=z2+bz +C ==

DE.02.B4

OStep 2: Solve the charactistic equation foz to set up the general
solution of the diffeq

| zsols = Solve [charequation, z 1
{{z > -0.0603874 - 1.544341 }, ({z - -0.0603874 +1.544341 }}
Fish the solutions fcz out:

| z1 =zs0ls [1,1,2 1
-0.0603874 - 1.54434 1
| z2=2s0ls [2,1,2 1
-0.0603874 + 1.54434 |
You can use the quadratic formula from high school do this with pencil
and paper.

Set up the general form of the solutions.

Clear [gensol, K1, K2 ]
gensol [t ] =K1E?! +K2E?!
[E(-0.0603874 1544341 )t (1 , E(-0.0608874 11544341 )t o

Here K1l and K2 are cleared constants.
OStep 3: Solve for theK1 and K2 that correspond to the given
starting data ony[0] and y’[0].
ystarteq = gensol [0] == startery;
yprimestarteq = gensol ‘[0] == starteryprime;

Ksols = Solve [{ystarteq, yprimestarteq }, {K1, K21}]
{{K1-0.703916 +0.3343331, K2 - 0.703916 -0.3343331 }}

Substitute these valuesK1 andK2 in to get the raw form of the exact

formula:

| gensol [t] /.Ksols [1]
(0.703916 +0.334333 | ) E(-00603674 -L5a4341 )t
(0.703916 - 0.3343331 ) E(-0.0603874 +1.544341 )t

Make it look nice by hittinggensoft] with the fundamental identity
E@+IDt = EalCogbt] + IE2'Sin[bt]:

Clear [yformula ]
yformula [t_ ] = Chop[ComplexExpand [gensol [t] /.Ksols [1]1]

1.40783 E "0-0603874t  Co511.54434t | +0.668666 E 006038741 gin (1544341t |

See the solution :

ColumnForm [Thread [linoscdiffeq 11

Plot [yformula [t], {t 0,30 1},
1

PlotStyle - —_
GoldenRatio

- {{Thickness [0.01 ], Red }}, AspectRatio

PlotRange - All, AxesLabel [t1"y];

Sty
2.38862y [t ] +0.120775y "[t] +y”[t] ==
y[0] == 1.40783

y’ (0] == 0.94763

yIt]

A damped oscillator.
If you want to see why this method works, then go on to part iv) below.
If you want another example, go on to the next part.

OB.4.a.iii) A random unforced undamped oscillator
Here's an a random unforced undamped linear oscillator diffeq:

b = 0;

¢ = Random[Real, {1,3}];

startery = Random[Real, {-2,2 }];

starteryprime = Random[Real, {-2,2 }];

Clear [ty ]

linoscdiffeq = {y" [t] +by [t] +cy[t] ==0,

y[0] == startery, y' [0] == starteryprime };
ColumnForm [Thread [linoscdiffeq 11
1.26657y [t]+y”[t] ==
y[0] == -1.28264
y’[0] == 1.69058

The characteristic equation for this oscillator diffeq is:
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Clear [z]
z2+bz+c==0
126657 +2z2--0
The characteristic equation for

y It + b3/'[its] +cy[t]=0

ZZ+bz+c=0
Use the solutions of the characteristic equation to come up with a
formula for the solution of this oscillator diffeq.
Plot the solution and describe what you see.
OAnswer:

OStepl: Write down the characteristic equation:
Clear [z]
charequation =2z2+bz +cC ==
126657 +2z2=-0
Note the relation between the characteristic equation and the oscillatc
diffeq:
| ColumnForm [Thread [linoscdiffeq 11
1.26657y [t]+y”[t] ==0
y[0] == -1.28264
y’[0] == 1.69058
Again: the characteristic equation for
vl + byfl+  cyl=0
IS
22 + bz+ c=0.

OStep 2: Solve the charactistic equation foz to set up the general
solution of the diffeq

| zsols = Solve [charequation, z 1
{({z>0. -1.125421 }, {z-0. +1.125421 }}

Fish the solutions fcz out:

] z1=2s0s [1,1,2 ]
0. -1.12542 1|
] z22=2s0s [2,1,2 ]
0. +1.12542 1

You can use the quadratic formula from high school do this with pencil
and paper.

Set up the general form of the solutions.

Clear [gensol, K1, K2 ]
gensol [t ] =K1E?! +K2E?!
E(O. -1.125421 )t K1 + E(O. +1.125421 )t K2

Here Kland K2 are cleared constants.

OStep 3: Solve for theK1 and K2 that correspond to the given
starting data ony[0] and y’[0].

ystarteq = gensol [0] == startery;

yprimestarteq = gensol '[0] == starteryprime;

Ksols = Solve [{ystarteq, yprimestarteq }, {K1, K2 }]
{{K1- -0.64132 +0.7510871, K2 - -0.64132 -0.7510871 }}

Substitute these valuesK1 andK2 in to get the raw form of the exact
formula:

] gensol [t] /.Ksols [1]

(-0.64132 +0.751087 | ) E(O 1125421 )t _ (064132 +0.751087 | ) E(0- +1.125421 )t
Make it look nice by hittinggensolt] with the fundamental identity

E@+Ibt = FatCogdht] + | E2tSin[bt]:

Clear [yformula 1]
yformula [t_ ] = Chop[ComplexExpand [gensol [t] /.Ksols [1]1]
-1.28264 Cos [1.12542t ] +1.50217 Sin [1.12542t ]

See the solution :

ColumnForm [Thread [linoscdiffeq 11

Plot [yformula [t], {t, 0,30 1},
1

PlotStyle P r—
GoldenRatio

- {{Thickness [0.01 ], Red }}, AspectRatio -

PlotRange - All, AxesLabel - "ty
1.26657y [t]+y”[t] ==0
y[0] == -1.28264
y’[0] == 1.69058

[t1":];

DE.02.B4

A undamped unforced oscillator.
If you want to see why this method works, then go on.

OB.4.a.iv)
Why does this method work?

OAnswer:

Start with cleared coefficienbsandc:

Clear [y, t,b,c ]
linoscdiffeq = (y" [t] +by [t] +cy[t] == 0)
cCy[t]+by [t]+y"[t]==0

And do educated guesswork.
Go with numberK andz and put
guessyt] = KE?!
Because the diffeq is
y”’[t] + by'[t] + cy[t] =0,
you want to sele so that
guessy[t] + b guesqt] + bguessjt] =0
This is the same as
KzZ?E*' + bzKE'+cKE' =0
This is the same as
ZZ+bz+c=0.
The upshot:

If z1 andz2 solve 22 + bz + ¢ = 0, andK1 andK2 are any
constants, then
then both
K1 E?tandK2 E?2!
are guaranteed to solve
y’[t] + by[t] + cy[t]=0.
And so is
K1E?t+ K2 E?2!
guaranteed to solve
y’[t] + by'[t] + cyit]=0.
This leaves you two degrees of freedom to use (KLehdK2 to
solve
K1E?t4 K2 E?2'= given starting value on[@]
and
K1z1 B+ K2z2 E22! = given starting value on'j0].

0OB.4.a.v)

What happens in the disgusting (and rare) case that the characteristic
equation Z + bz + ¢ = 0 has only one solution?
OAnswer:

If the characteristic equation
7 + bz + ¢ = 0 (double root), you take the lone solutzh
and form
K1E# '+ K2tE?,
This is guaranteed to solve
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y”[t] + by'[t] + cy[t] =0.

This leaves you two degrees of freedom to use tK1;endK2 to
solve to get the right starting valuesy[0] andy’[0].
Case in point:

b = 6;
c =09
startery = Random[Real, {1,7 }1;
starteryprime = Random[Real, {-2,2 }1;
Clear [ty 1
linoscdiffeq = {y" [t]1 +by [t] +cy[t] ==
y[0] == startery, y' [0] == starteryprime }
ColumnForm [Thread [linoscdiffeq 11
9y [t] +6y [t]+y [t] ==
y[0] == 6.14121
y’[0] == -1.71868
OStepl: Write down the characteristic equation:
Clear [z]

charequation =z2+bz +cC ==

9+6z+22--0
Note the relation between the characteristic equation and the oscillatc
diffeq:

| ColumnForm [Thread [linoscdiffeq 11

9y [t]+BY [t]+y [t] ==

y[0] == 6.14121

y’[0] == -1.71868

OStep 2: Solve the charactistic equation foz to set up the general
solution

| zsols = Solve [charequation, z 1
{{z > -3}, {z--3}}

Fish the solutions fcz out:
] z1=2s0ls [1,1,2 1

-3
| z2 =zsols [[2,1,2 1]
-3

Only one solution - this tells you to insert the e:tira

Set up the general form of the solutions.

Clear [gensol, K1, K2 ]
gensol [t ] =K1E?! +K2t E?!

ES3 K1+ ES3! K2t

You insert the extra tbecause z1=22
Here K1 and K2 are cleared constants.

OStep 3: Solve for theK1 and K2 that correspond to the given
starting data ony[0] and y’[O].

ystarteq = gensol [0] == startery;

yprimestarteq = gensol ’[0] == starteryprime;

Ksols = Solve [{ystarteq, yprimestarteq }. {K1, K2 }]
{{K1l-6.14121, K2 - 16.7049 }}

Substitute these valuesK1 andK2 in to get the raw form of the exact

formula:

] gensol [t] /.Ksols [1]
6.14121 E 3! +16.7049E 3! t

Make it look nice by hittinggensolt] with the fundamental identity
E@+IDt = EatCogbt] + I E3'Sinbt]:

Clear [yformula 1]
yformula [t_ ] = Chop[ComplexExpand [gensol [t] /.Ksols [1]1]

6.14121E 3! +16.7049E 3! t

See the solution :

ColumnForm [Thread [linoscdiffeq 11

Plot [yformula [t1, {t, 0,20 1},
1

PlotStyle _
GoldenRatio

- {{Thickness [0.01 ], Red }}, AspectRatio -

PlotRange - All, AxesLabel Sty It

DE.02.B4-B5

Oy [t] +6y/[t]+y"[t] ==0
y[0] == 6.14121

y/[0] == -1.71868
yIt]
6
5
4
3
2
1
5 0 5 70 !

Damped out fast!

B.5) Trying to come up with formulas for solutions of the
forced oscillator diffeq
y”[t] + b y’[t] + c y[t] = f[t] via convolution integrals
Experience with the basic problems immediately
above will keep you from being totally clueless here.
Here's how you use the convolution integral method to go after an
exact formula for the oscillator coming from

Yt + 41Y[t + 7.2yt] = f[t]
with f[t] = 5Sin2t] , y[0] = 3.0 and {{0] = 2.2:

OStep 1: Calculateyunforced]t]

This involves coming up with the formula for the unforced solution.

This is the solution of the unforced damped oscillator
VIt + 4.1y[t] + 7.2yt] =0

with y[0] = 3.0 and ${0] = 2.2.

You already know how to do this:

Clear [f, t ]

flt_1=5Sin[2t]; (b=41; )

c=72;

ystarter = 3.0;

yprimestarter =22;

Clear [C1, C2, z, z1, z2, generalsol, t 1
charequation =z2+bz +c ==0;

zsols = Solve [charequation, z 1;

generalsol [t_] =

C1Et +C2F2' /. {z1 »zsols [1,1,2 [,22 »zsols [2 1,2 1}
C1 E(-205 -1731331 )t  cp E(-205 +1731331 )t

Csols =

Solve [ {generalsol

Clear [yunforced ]

yunforced [t_ ] = Chop[ComplexExpand [generalsol [t] /.Csols [1]]]
3.E 29! Cos[1.73133t ] +4.82288 E 29! Sin [1.73133t ]

Some scientists like to call this the transient solution.

You can see the effect of the damping term on this formula.
Put yunforceft] aside for a moment.

[0] == ystarter, generalsol “[0] == yprimestarter 1

OStep 2: Calculate the unit impulse responseyunitimpulsel[t]

This involves coming up with the formula of the solution of the
unforced oscillator
Y[l + 4yT[t] + 5ylt]=0
with y[0] =0 and y[0] = 1.
You already know how to do this:

Csols = Solve [ {generalsol
Clear [yunitimpulse 1
yunitimpulse [t_ 1 = Chop[ComplexExpand [generalsol

0.577591 E “295! sin [1.73133t |

[0] == 0, generalsol ~ "[0] ==1}];

[t]/.Csols [111]

OStep 3: Calculate
yzeroinput[t] = fotyunitimpulse[t - X]f[x]dx
This involves going after a formula for the zero input solution,
yzeroinpuft], of the forced oscillator
Y[t + 4y'[t] + 5ylt] =f[t]
with zeroed out starter datd0y=0 and y[0] = 0:
A miracle of calculus (to be explained later) is that you can get a
formula for yzeroinput] by setting

yzeroinpyt] = fotyunitimpulse{t— xX] f[X] dx
Clear [yzeroinput, X 1

t
yzeroinput  [t_ ] = Apart [Chop[j yunitimpulse [t -x] f [x] ax]]
o
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0.529169 E 295 (1. Cos [1.73133t ] +0.733259 Sin [1.73133t ]) -
0.529169 (1.Cos [2.t ] - 0.390244 Sin [2.t ])

Folks call this integral by the name “"convolution integral.”
This is how the convolution integral method got its name.

Looks good.
OStep 4: Setyformulay [t] = yzeroinput[t] + yunforced[t]:

Get your shot at an exact formula for the solution of
Y[t + 4y'[t] + 5ylt] =f[t]
with f[t] = 5 Sint], y[0] =3 and y[0] = 2
by putting
formulayt] = yzeroinpuft] + yunforcedt]:
Clear [yformula 1]
I yformula [t_ ] = Expand [yzeroinput [t ] +yunforced [t]]
3.52917 E 295t (Cos[1.73133t ] - 0.529169 Cos [2.t ] +
52109 E 295! Sin [1.73133t ] +0.206505 Sin  [2.t ]

Done!
See it:
Plot [yformula [t], {t, 0,14 3}, PlotStyle - {{Thickness [0.01 ], Red }},
1
A tRati ———————, Axeslabel "t t1"}]:
spectRatio - SoldenRato xesLabel - { Yy [t1"}]

You can see that the forcing functioft] = 5 Sin[2t] controls the
steady state behavior.

OB.5.a)

Use the convolution integral method to go after an exact formula for

the oscillator coming from
Y[t] + 2.4Y[t] + 6.7 yt] = f[t]
with f[t] = 20DiracDeltdt — 4], y[0] =8.0 and ¥{0] = -2.7.

OAnswer:
Here you go:
Copy paste and edit to get:

OStep 1: Calculateyunforced[t]

This involves coming up with the formula for the unforced solution.

This is the solution of the unforced damped oscillator
Y'[t] + 24Yy[t] + 6.7yt] =0

with 'y[0] = 8.0 and §{0] = —2.7.

You already know how to do this:

Clear [f,t ]

f[t_1 =30DiracDelta [t - 6];

b =24

c =6.7;

ystarter = 8.0;

yprimestarter =-27,;

Clear [C1, C2, z, z1, z2, generalsol, t 1

charequation =z2+bz +c==0;

zsols = Solve [charequation, z 1;

generalsol [t ] =

CLE! + C2F2' /. (z1 »zsols [1,1,2 1,22 -»zsols [2, 1,2 1}
c1 E(—142 -2.293471 )t +C2 E(—LZ +2.293471 )t

Csols =

Clear [yunforced ]
yunforced [t_ ] = Chop[ComplexExpand [generalsol [t] /.Csols [111]]

8.E 12! C0s[2.29347t ] +3.00854 E 2! Sin [2.29347t |
Some scientists like to call this the transient solution.

You can see the effect of the damping term on this formula.
Put yunforceft] aside for a moment.

OStep 2: Calculate the unit impulse responseyunitimpulse[t]

This involves coming up with the formula of the solution of the
unforced oscillator
V[l + 2.4Y[t] + 6.7yt]=0
with y[0] =0 and Y[0] = 1.
You already know how to do this:

Solve [{generalsol [0] == ystarter, generalsol ’[0] == yprimestarter 11,

DE.02.B5

Csols = Solve [{generalsol [0] == 0, generalsol ‘107 == 1}71;
Clear [yunitimpulse ]
yunitimpulse [t_ ] = Chop[ComplexExpand [generalsol [t] /.Csols [1]11]

0.436021 E 12! Sin [2.29347t ]
OStep 3: Calculate
yzeroinput[t] = J;yunitimpulse[t — x]f[x] dx

This involves going after a formula for the zero input solution,
yzeroinpuft], of the forced oscillator

Y[t] + 2.4Y[t] + 6.7 yt] =f[t]
with zeroed out starter datd0y=0 and y[0] = 0:
A miracle of calculus (to be explained later) is that you can get a
formula for yzeroinput] by setting

yzeroinpUt] = fotyunitimpulse{t - X] f[x]dx

Clear [yzeroinput, X 1

t
yzeroinput  [t_ ] = Apart [Chop[J yunitimpulse [t -x] f [x] ax]]
0

17520.6 E *2' Sin [2.29347 (-6 +t)] UnitStep [-6 +1t]

Folks call this integral by the name "convolution integral.”
This is how the convolution integral method got its name.

Looks good.
OStep 4: Setyformulay [t] = yzeroinput[t] + yunforced[t]:

Get your shot at an exact formula for the solution of
V[t] + 2.4Y[t] + 6.7 yt] =f[t]
with f[t] = 20DiracDeltdt — 4], y{0] =8.0 and ¥{0] = -2.7.
by putting
yformuldt] = yzeroinpuft] + yunforcedt]:
Clear [yformula ]
yformula [t_ ] = Expand [yzeroinput [t ] +yunforced [t]]
8.E 12! C0s[2.29347t ] +3.00854 E 12! Sin [2.29347t ] +
17520.6 E 12t Sin [2.29347 (-6 +t)] UnitStep [-6 +1t]
Done!
See it:

Plot [yformula [t], {t, 0,14 1},
1

PlotStyle - {{Thickness [0.01 ], Red }}, AspectRatio B .-
GoldenRatio

PlotRange - All, AxesLabel Sty 1M

The forcing function
fit] = 20DiracDelaft — 6]
goosed the oscillator att6.

OB.5.b)

Why do lots of old timers (those old profs who wear bowties) like to
say that the convolution integral method is the method of dividing and
conquering?

OAnswer:

The goal is to come up with a formula for the oscillator coming from
y”[tl + by'[t] + cy[t] = f[t]
with given starting data
yl0] =p andy’[0] =q.
The convolution integral method divides the problem in two pieces:
yunforcedt] solves
y’ltl + by'[t] + cylt]=0
with given starting data
y[0] =p andy’[0] =q.
yzeroinpuft] solves
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y'[t] + by'[t] + cylt] =f[t]
with starting data
y[0] =0 andy’[0] = 0.
The method conquers by putting
yformulg[t] = yzeroinpuft] + yunforcedt]
which solves
y'[t] + by'[t] + cylt] =f[t] + 0="f[t]
with given starting data
ylOl=p + 0=p andy’[0]=q + O=aq.
Kinda neat and kinda sweet.
OB.5.¢)
What can break the back of the convolution integral method?

OAnswer:
When you go with the convolution integral method to come up with a
formula for the solution of
y’[t] + by'[t] + cy[t] =f[t]
with given starting data
y[0] =p andy’[0] = q,
the machine has to be able to do the convolution integral
yzeroinpuft] = foxyunitimpulse{t —X] f[x] dt
whereyunitimpulsdt] solves
y'[t] + by'[t] + cy[t]=0
with y[0] = 0 andy’[0] = 1.
If f[t] is nasty enough, this integral can become painful or plain
impossible.

0OB.5.d) The calculus behind the convolution integral method

What guarantees that the convolution integral method always works
when the integrals can be done?
OAnswer:
This explanation is mainly for enthusiasts.

Calculus does!
There is only one issue to explain.
The issue is to explain why
yzeroinpuft] = fotyunitimpulse{t— X] f[x] dx
solves
y'[t] + by'[t] + cylt] = f[t]
with y[0] =0 andy’[0] = 0.

To this end, remember thyunitimpulsdt] solves
y'[Itl + by[t] + cy[t]=0
with y[0] =0 andy’[0] = 1;
so that
- yunitimpuls€0] = 0
- yunitimpulsé[0] = 1 and
- yunitimpulsé'[t] + b yunitimpulsé[t] + c yunitimpulsét] = 0.
Enteryzeroinpuft] into Mathematica:
Clear [f, t, yunitimpulse, yzeroinput, y, b, ¢, x 1

t
yzeroinput  [t_1] = j yunitimpulse [t -x]f[x]dx
o
t
J’ f [x] yunitimpulse [t -x]dx
o

Let Mathematica calculayzeroinput[t] andyzeroinput' [t]:
| yzeroinput' [t}

DE.02.B5

f f [x] yunitimpulse " [t -x] dx +f [t ] yunitimpulse [0]

| Oyzeroinput" [t1

Jt f [x] yunitimpulse ~ ” [t - x] dx + yunitimpulse [0]f"[t] +
? [t ] yunitimpulse " [0]

Remembering theyunitimpulsg0] = 0 andyunitimpulsé[0] = 1, look

at

yzeroinput'[t] + byzeroinput[t] + ¢ yzeroinpuft]:

(yzeroinput" [t] + byzeroinput' [t] + cyzeroinput [t]) /.
{yunitimpulse [0] -> 0, yunitimpulse' [0] -> 1}
t t
fre]+ CJ‘ f [x] yunitimpulse [t -x] dx +bJ f [x] yunitimpulse [t -x] dx +
o o

f f [x] yunitimpulse  “ [t - x] dx
0
This tells you that
yzeroinput'[t] + byzeroinput[t] + cyzeroinpuft]
is the same as

ft] + fot f[x] (yunitimpulselt — x] + b yunitimpulsé[t— x] + ¢ yunitimpulsgt — x]) dx.

This collapses to
flt] + [ fxI (0)dx = f[t].

Because

(yunitimpulsé’[t] + b yunitimpulsé[t] + ¢ yunitimpulsét]) = O

The upshot:
yzeroinput'[t] + byzeroinput[t] + cyzeroinpuft]
is guaranteed to Kf[t].

This explains why
yzeroinpuft] = f(;f[x] yunitimpulsét — x] d x
is guaranteed to solve
y’[tl + by[t] + cylt] = f[t].
Now check whetheyzeroinpulO] is guaranteed to Oz
| yzeroinput [t}
Jotf [x] yunitimpulse [t - Xx] dx
When you plug irt = 0, you get:

| yzeroinput  [0]
0

This checks.
Finally check whetheyzeroinput[0] is guaranteed to (02
1 yzeroinput' [t]
JA f [x] yunitimpulse " [t -x] dx +f [t ] yunitimpulse [0]
0
When you plug irt = 0, you get:

| yzeroinput'  [0]
f [0] yunitimpulse [0]

And this is zero because
yunitimpulsg0] = 0.
Explanation complete and you're out of here.

If you like this verification, there are many parts
of higher math you will also like.
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DE.02.T1

{t, 0, endtime }, PlotStyle - {{Thickness [0.015 ], Blue },

DE.02 Transition from Calculus to DiffEq: (Thickness [0.01 1, Req ). (Thickness [0.01 1. Red ),

AxesLabel - {"t", "y [t1"}, PlotPoints - 100,

The Forced Oscillator DiffEq AspectRatio - L];
Tutorials . ?

N

T.1) Amplitude and frequency of unforced oscillators

OT.1.a) Amplitude and frequency of unforced damped oscillators:

N

'\ 7.
L

You are in the lab and are in the process of coming up with a formula '4

for this given damped oscillator with these given starter value$dn y e .

and y[0]: Seed complete oscillations:
Clear [y, t 1 endtime = —4 ;
b =0.8; frequency
g = 24._0; ; . oscplot = Plot [(yformula [t ], amplitude [t], -amplitude [t]},
linoscdiffeq =y7[t1+by [t]+cy[t] == {t, 0, endtime  }, PlotStyle - {{Thickness [0.015 1, Blue },
Star:ery o= 5.9; 04 {Thickness [0.01 1, Red }, {Thickness [0.01 ], Red }},
starteryprime =-0.4;

AxesLabel - {"t","y [t]1"}, PlotPoints - 100,
24y [t]+08y '[t]+y’[t] ==

You copy, paste and edit from the Basics:
Clear [z]

charequation =2z2+bz +c ==0;

zsols = Solve [charequation, z 1;

1
AspectRatio - > ] ;

Clear [gensol, C1, C2 ]
gensol [t 1= c1 Ezsols 0112 gt +C2 Ezso\s 2,12 ]|l;

ystarteq = gensol [0] == startery;

yprimestarteq = gensol ’[0] == starteryprime; -

Csols = Solve [{ystarteq, yprimestarteq }, {C1,C21; See8 complete oscillations:

Clear [yformula ] . 8 .

yformula [t_ ] = Chop[ComplexExpand [gensol [t] /.Csols [1]1] endtime = frequency

59E 04! Cos[4.88262t ] +0.401424 E %' Sin [4.882621 | oscplot = Plot [{yformula [t], amplitude [t], -amplitude [t ]},
Your job is to calculate the amplitude and the frequency for this {t, 0, endtime  }, PlotStyle - {{Thickness [0.015 ], Blue },
H B H {Thickness [0.01 ], Red }, {Thickness [0.01 ], Red }},
damped_ unforced oscillator. Do it and show off your work with AxesLabel » (. [t1"7, PlotPoints 100,
convincing plots. 1
AspectRatio - 5];

OAnswer:

Look at:

] yformula [t]
59E 04! C0s[4.88262t | +0.401424 E °4! Sin [4.88262t |

Read off:

Clear [amplitude, t ]

amplitude [t_ ] = /5.9 2 +0.401424 2 E04t Petering out.

591364 E 04t Throw in a movie:
§ N 4.88262 8
requency = [T] endtime = ——;
0777093 frequency
. Clear [oscplotter, s 1
This damped oscillator goes through ab0.8 oscillations per time oscplotter  [s_]:=Plot [{yformula [t], amplitude [t], -amplitude [t]},
s
R t,0 — 1, PlotStyle Thickness [0.015 ], Blue 1},
unit. { P— } tyle - ({ [ ] }
H : . {Thickness [0.01 ], Red }, {Thickness [0.01 ], Red }},
Seel Complete oscillation: PlotRange - {{0, endtime 1}, {-amplitude [0] - 0.1, amplitude [0] +0.1 }3},
endtime = 1 . AxesLabel - {"t,"y [t]1"}, PlotPoints - 100,
' 1
frequency PlotLabel - s" = complete oscillations”, AspectRatio - —-];
oscplot = Plot [{yformula [t ], amplitude [t], -amplitude [t]}, 3
{t, 0, endtime  }, PlotStyle - {{Thickness [0.015 ], Blue }, Table [oscplotter  [s], {s,1,8 }I;
{Thickness [0.01 ], Red }, {Thickness [0.01 ], Red }}, ys[t] = conpl ete oscillations
AxesLabel - {"t","y [t]1"}, PlotPoints - 100, AD
1
AspectRatio - —]; 2 t
2 2 2 4 6 8 10
yit] -4
6 -6
4 \’6[t ] = conpl ete oscillations
2 4
2
t t
2 4 6 8 10
4
6
; YS[‘ ] 3= conplete oscillations
See2 complete oscillations: ;
2 t
endtime = —8M 2 6 8 10
frequency -4
oscplot = Plot [{yformula [t ], amplitude [t], -amplitude [t]}, -6
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ye[l] 4 = conplete oscillations
4
2
6 8 10 t

-2
-4
-6
y6[1] 5= conplete oscillations
4
2

t
2 8 10
-4
-6
y6[1] 6= conplete oscillations
4
2

t
2 8 10
-4
-6
y6[1] 7 = conplete oscillations
4
2

t
2 10
-4
-6
ysl'l\ 8= conplete oscillations
4
2

t
-2
-4
-6

Grab and animate slowly.

OT.1.b) Amplitude and frequency of unforced undamped oscillators

Will the same thing work for undamped unforced oscillators?

OAnswer:
Yah sure! You bettcha!
Copy, paste, edit and put it to work on this one:

Clear [y, t ]
b =0;
c =327;
linoscdiffeq =y”"[t]1+by’[t]+cy[t] ==
startery = 12.7;
starteryprime =3.1;
327y [t]+y [t] ==0
Clear [z]
charequation =2z2+bz +c ==0;

zsols = Solve [charequation, z 1;

Clear [gensol, C1, C2 ]

gensol [t 1= c1 Ezsols 0112 3¢t +C2 Ezso\s 2,12 ]|l;

ystarteq = gensol [0] == startery;

yprimestarteq = gensol '[0] == starteryprime;

Csols = Solve [{ystarteq, yprimestarteq }, {C1,C2}1;

Clear [yformula ]
yformula [t_ ] = Chop[ComplexExpand [gensol [t] /.Csols [1]1]
12.7 Cos [5.71839t ] +0.54211Sin [5.71839t |

Read off:

Clear [amplitude, t 1

amplitude [t_] = \/ 12.7 2 + 054211 2

12.7116

5.71839

frequency = N[ = ]

0.91011

This oscillator goes through about almlstomplete oscillation in one

time unit.

Seel complete oscillation:
1 .
frequency
oscplot = Plot [(yformula [t ], amplitude [t], -amplitude [t]},
{t, 0, endtime }, PlotStyle - {{Thickness [0.015 ], Blue },

{Thickness [0.01 ], Red }, {Thickness [0.01 ], Red }},
AxesLabel - {"t","y [t]1"}, PlotPoints - 100,

endtime =

. 1
AspectRatio - 5 ] ;

DE.02.T1

0.2 0.4 0.6 0 1
-5

-10

See2 complete oscillations:

endtime = ——2——;
frequency
oscplot = Plot [{yformula [t]1, amplitude [t], -amplitude [t]},
{t, 0, endtime  }, PlotStyle - {{Thickness [0.015 1], Blue 1},
{Thickness [0.01 ], Red }, {Thickness [0.01 ], Red }},
AxesLabel - {"t", "y [t 1"}, PlotPoints - 100,

. 1
AspectRatio - 5 ] ;

yit]

10
5
— t
-5

-10

Seed complete oscillations:

endtime = 74 ;
frequency
oscplot = Plot [{yformula [t ], amplitude [t], -amplitude [t]},
{t, 0, endtime }, PlotStyle - {{Thickness [0.015 1], Blue 1},
{Thickness [0.01 ], Red }, {Thickness [0.01 ], Red }},
AxesLabel - {"t","y [t]1"}, PlotPoints - 100,

1
AspectRatio - < ] ;

-10

See8 complete oscillations:

endtime = L;
frequency
oscplot = Plot [{yformula [t 1, amplitude [t], -amplitude [t1},
{t, 0, endtime 1}, PlotStyle - {{Thickness [0.015 1], Blue 1},
{Thickness [0.01 ], Red }, {Thickness [0.01 ], Red }},
AxesLabel - {"t',"y [t]1"}, PlotPoints - 100,

. 1
AspectRatio - 5 ] ;

yit]

10

-10

Throw in a movie:

8
endtime = —m8 ——;
frequency
Clear [oscplotter, s 1

oscplotter [s_]:=Plot [(yformula [t ], amplitude [t], -amplitude [t]},

{to, ——
frequency
{Thickness [0.01 ], Red }, {Thickness [0.01 ], Red }},
PlotRange - {{0, endtime }, {-amplitude [0] - 0.1, amplitude [0] +0.1 }},
AxesLabel - {"t","y [t]1"}, PlotPoints - 100,

}. PlotStyle - {{Thickness [0.015 1, Blue },

PlotLabel - s" = complete oscillations", AspectRatio - —];

Table [oscplotter [s1, {s,1,8 1}1;
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y[t] = conpl ete oscillations
10
5
3 i 6 g !
-5
10
y[t] 2= conplete oscillations
10
5
4 6 8 t
-5
10
y[t] 3= conplete oscillations
10
5
3 6 CH
-5
10
y[t] 4 - conpl ete oscillations
10
5
6 g !
-5
10
Yyt 5= conplete oscillations
10
5
6 g !
-5
10
ylt] 6= conpl ete oscillations
10
5
8 t
-5
10
y[t] 7 = conplete oscillations
10‘
5
8 t
-5
10
yl[t] 8= conplete oscillations

Grab and animate slowly.

T.2) Impulse-forced oscillators: The physical meaning of
the impulse hit

aT.2.a.0)

Showcase the convolution integral method and the Dirac delta
function by coming up with the exact formula for the forced oscillator
coming from
Y[t + 0.9Y[t] + 4.1yt] = f[t]
with f[t] = 10 DiracDeltdt — 7], y[0] = 2.0 and ${0] = 7.1.
Show off your work with a good plot.
Describe what you see.
OAnswer:

OStep 1: Calculateyunforced[t]

Clear [f, t ]
f [t_] = 10 DiracDelta [t -71;
b =0.9;
c =41,
ystarter = 2.0;
yprimestarter =71
Clear [C1, C2, z, z1, z2, generalsol, t 1
charequation =z2+bz +¢C ==0;
zsols = Solve [charequation, z 1;
generalsol [t ] =
C1E! + C2F2' /. (z1 »zsols [1,1,2 ],2z2 -»zsols [2, 1,2 T}
7.1
C1 E(-045 -1974211 )t _ o E(-0.45 +1.974211 )t

Csols =

Solve [{generalsol [0] == ystarter, generalsol
Clear [yunforced ]

yunforced [t_ ] = Chop[ComplexExpand [generalsol [t] /.Csols [111]]

"[0] == yprimestarter 1

DE.02.T1T2
2.E 0%t Cos[1.97421t | +4.05226 E 045! Sin [1.97421t |

OStep 2: Calculate the unit impulse responsyunitimpulse[t]
Ksols = Solve [{generalsol [0] == 0, generalsol ‘107 == 1}7];

Clear [yunitimpulse ]

yunitimpulse [t_ 1 = Chop[ComplexExpand [generalsol [t] /.Ksols [1]1]
0.506532 E °4°! sin [1.97421t ]

OStep 3: Calculate
yzeroinput[t] = j;yunitimpulse[t - X]f[x]dx

Clear [yzeroinput, X 1

t

yzeroinput [t ] = Apart [Chop[J yunitimpulse [t - x] f [x] dx]]
0

118.205 E 945! Sin [1.97421 (-7 +t)] UnitStep [-7 +t ]

OStep 4: Sefformulay [t] = yzeroinput[t] + yunforced[t]:
Clear [formulay 1]
formulay [t_ 1 = Expand [yzeroinput [t ] +yunforced [t]]
2.E 0% Cos[1.97421t ] +4.05226 E *45! Sin [1.97421t ] +
118.205 E °4! Sin [1.97421 (-7 +t)] UnitStep [-7 +t]

And a plot:

oscplot = Plot [formulay [t], {t 0,12 1},
PlotStyle - {{Blue, Thickness [0.01 1}}, PlotRange - All,
AxesLabel - {"t', "y [t1"}1;

ylt]

3
2
1

-1

Just when this oscillator seemed to be settling down, the impulse hit at
t = 7 goosed this oscillator.

For the fun of it, look at this plot (yformulg[t] andyzeroinpuft]:

Plot [{formulay [t ], yzeroinput [t1}, {t 0,12 13,
PlotStyle - {{Blue, Thickness [0.02 1}, {Red, Thickness [0.01 1}},
PlotRange - All, AxesLabel -ty [t1M L

-1
Think about what this plot is trying to tell you.

OT.2.a.ii) Impulses and Dirac Delta Functions

Take another peek at the plot of the impulse-forced oscillator coming
from
Y[t] + 0.9Y[t] + 4.1yt] = f[t]
with f[t] = 10 DiracDelt@t — 7], y[0] = 2.0 and ¥{0] = 7.1.
Show off your work with a good plot.
Describe what you see.
tail ={4,41};
Show[oscplot,

Arrow [{7, formulay [7]} - tail, Tail
[t]

- tail, VectorColor - Magenta 11;

y
4
3
2
1

-1

Explain why the oscillator had a sudden change of directios @t t
OAnswer:
Look at the differential equation
y”[t] + 0.9y[t] + 4.1yt] = 10 DiracDeltdt — 7]
and remember that
DiracDeltdt — 7] = 0 fort not equal tc7.
So, aside from the what happent = 7, this oscillator behaves just as
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an oscillator coming from
y’[t] + 0.9Y[t] + 4.1yt] = 0.

Look again:

tail = {6,4};

Show[oscplot,

Arrow [{7, formulay [7]} - tail, Tail
[t]

- tail, VectorColor - Magenta ]71;

y
4
3
2
1

-1

The differential equation

y”[t] + 0.9y[t] + 4.1yft] = 10 DiracDeltét — 7]
tells you that the forcing term

10 DiracDeltdt — 7]
packs all its punch & = 7 and abruptly redirects the oscillator from its
original path to a new (unforced) path.
This is in direct response to the impulse force that

10 DiracDeltdt — 7]

lays on the oscillator ¢ = 7.

Show[oscplot,

Arrow [{7, formulay [7]} - tail, Tail - tail, VectorColor - Magenta ],
Graphics [Text [“"impulse hit", tail 111;
[t]
i mpul se hit

OT.2.a.iii) Physical meaning of the impulse hit

Stay with the same setup:

V[l + 0.9Y[t] + 4.1yt] =f[t]
with f[t] = 10 DiracDeltdt — 7], y[0] = 2.0 and 0] =7.1.
and look at this plot of the derivative of the solution:

velocityplot =

Plot [formulay ‘[t], {t O, 12 }, PlotStyle - {{Red, Thickness [0.01 ]}},

AxesLabel - {"t", "velocity [t 1"}, DisplayFunction - Identity ];
tail = {4,4};
label = Graphics [{Text [“Impulse hit", tail 1}1;
pointer = Arrow [{6.999, formulay 7[6.999 1} - tail, Tail - tail ];

setup = Show([velocityplot, label, pointer,
DisplayFunction - $DisplayFunction 1;

velocity[t]

Use this plot to interpret the physical meaning of the impulse hit with
f[t] = 10 DiracDeltdt — 7] at t= 7.

OAnswer:
The impulse hit with
f[t] = 10DiracDeltdt — 7]

DE.02.T2>T3

instantaneously jumps thelocity up by10 at the instant of the
impulse hit at = 7.

oT.2.a.iv)

Go with d> 0, and go with
Y'[t] + by'[t] + cy[t] = KDiracDeltdt — d]

with given starting values or{@] and y[O0].

The experiment above sends the message that the impulse hit with
fit] = K DiracDeltdt — d]

instantaneously jumps
Y[l up by K

at the instant of the impulse hit at d.

Explain why this is guaranteed.

OAnswer:
Go withh > 0 and integrate both sides of
y’[t] + by'[t] + cy[t] = KDiracDeltdt - d]

fromd-htod+h to get

[ ([t + by'[t]+ cyith dt

=K fdd_;h DiracDeltdt — d] d't
=K

Reason: DiracDeIte{t - d] integrates out to
containing

1or any interval

This is the same as

d+h d+h d+h _
[ y/Itldt + [T by (tldt + [ eyltldt=K

As h closes in 010,
d+h d 0
li_h cyltldt —»
and
d+h

[T 'byltldt - 0.

yltlor yIt]

Reason: This is guaranteed because neither
can blow up to infinity or down to -infinity

Consequently, gh closes in 010,

d+h

n Y [t]dt - K.
But

d+h

[y [tldt=y'[d+h] - y'[d—h]
So ash closes in 010,

y'[d+h] -y [d-h] - K.

The upshot:
y'[t] jumps byK att = d.

T.3) Convolutions involving DiracDelta[x — d] are easy to do
by hand

oT.3.a.0)

Look at this experiment involving a convolution integral:

Clear [f, g, x, t 1
d=25;
f[x_1=Cos[X];

t
gt 1 =J f [t -x] DiracDelta [x -d] dx
0

Cos[25 -t ] UnitStep [-25 +t]
And plot:

gplot = Plot [g[t], {t0,8 1},
PlotStyle -> {{Thickness [0.015 ], Blue }},

1
AspectRatio  -> ? AxesLabel -> {"t',"g [t]1"}, PlotRange -> All,

Epilog -> {Red, Text ['d", {d, -0.08 }1}];

33



gt

1

0.5 /
T 6 C

05

-1
Explain what happened by explaining why
Joflt - x] DiracDeltdx — d] dx = f[t - d] UnitStefit - d].
OAnswer:

BecauseDiracDeltgx — d] = 0 forx < d, you are guaranteed that
glt] = fotf[t — X] DiracDeltgx — d] dx = 0 fort < d.

But fort > d,
olt] = [t —x] DiracDeltdx — d] dx = f[t - d].

Soq[t] = f[t — d] UnitStefdt — d].

See the plot off [t — d] UnitStefdt — d]
thisplot = Plot [f [t -d] UnitStep [t -d], {t 0,8 1},
PlotStyle - {{Thickness [0.01 ], Red }}, AspectRatio - —;—

AxesLabel - {"t',"g [t]1"}, Epilog - {Red, Text ["d", {d, -0.08 )])];

7 d 2 6 g !
0.5
1

Compare with the original:

] Show(gplot, thisplot 1;
glt]
1

0.5

T 6 N
0.5
1

Just as theory predicted, they are the same!

T.4) Ramp-forced oscillators

OT.4.a)

Here is a ramp forcing function and its plot:

Clear [ramp, g,t 1]
grt_1=05 (%7 -1);
changeover =2.7;
ramp [t_1] =
g[t] UnitStep [changeover -t ] +g[changeover ] UnitStep [t - changeover ]
Plot [ramp [t1, {t, 0,9 1}, PlotStyle - {{Thickness [0.01 ], Red }},
PlotRange - All, AxesLabel - {"t", "ramp [t]1"},

1
AspectRatio -+ ———————1;
GoldenRatio

0.5 (-1+E%"' ) UnitStep [2.7 -t] +2.80968 UnitStep  [-2.7 +t ]

DE.02.T3-T4

! 2 4 6 8
Ramgt] runs
— with g[t] = 0.5(E%7t- 1) fort< 2.7
- with g[2.7] for t> 2.7.
Here is a the plot of a damped oscillator forced by famp
Clear [y, t,f ]
fIt]=ramp[t];
b =1.6;
c=42;
ystarter =3.5;
yprimestarter =1.5;
diffeq =y”[t]+by [t]+cy[t]==f[t];

endtime = 10;
solution = NDSolve [ {diffeq, y [0] == ystarter,
y’[0] == yprimestarter 1,y [t1, {t O, endtime }1;

approxy [t_] =y[t] /.solution i1
ndsplot = Plot [approxy [t], {t O, endtime 1},
PlotStyle - {{Thickness [0.015 ], Blue }}, PlotRange - All,

1
AspectRatio - —— , AxesLabel - {"t", " t1" 3]s
P GoldenRatio { yom )]

\7 4 6 8 10

Use the convolution integral method to produce an exact formula for
this ramp-forced oscillator.

OAnswer:

Here you go:

OStep 1: Calculateyunforced]t]

Clear [C1, C2, z, z1, z2, generalsol, t 1

charequation =z2+bz +c ==0;

zsols = Solve [charequation, z 1;

generalsol [t_] =

CLE 4+ C2F2! /. {z1 »zs0ls [1,1,2 [,22 »zsols [2, 1,2 T}

C1E(-08-188681 )t , cp E(-08 +188681 )t
Csols =
Solve [{generalsol [0] == ystarter, generalsol “[0] == yprimestarter 1

Clear [yunforced ]
yunforced [t_ ] = Chop[ComplexExpand [generalsol [t] /.Csols [1]]]

35E 08! Cos[1.8868t ] +2.279E °8! Sin [1.8868t ]

OStep 2: Calculate the unit impulse responswyunitimpulse[t]

Csols = Solve [{generalsol [0] == 0, generalsol ‘101 == 1}1;
Clear [yunitimpulse ]
yunitimpulse [t_ 1 = Chop[ComplexExpand [generalsol [t] /.Csols [1]1]

0.529999 E °8! sSin [1.8868t ]

OStep 3: Calculate
yzeroinput[t] = j;unitimpulse[t —X] f[x] dx
Clear [yzeroinput, X 1
yzeroinput  [t_ 1 = Chop [Apart [Chop[fo! yunitimpulse [t -x]1f [x] dx]]]

0.0860585 (-1.38333 UnitStep  [2.7 -t ] +
1.EO®7Y UnitStep (2.7 -t] +7.77346 UnitStep  [-2.7 +t]) -

3.90726 E 08! (-1 Cos [5.09435 -1.8868t ] -0.00844302 Cos [1.8868t ] +
0.893014 Sin  [5.09435 - 1.8868t ] +0.00459153 Sin [1.8868t ] +
1.Cos [5.09435 -1.8868t ] UnitStep [2.7 -t] -

0.893014 Sin  [5.09435 -1.8868t ] UnitStep [2.7 -t ] +
1.48461 Cos [5.09435 - 1.8868t | UnitStep [-2.7 +t] -
0.629473 Sin  [5.09435 -1.8868t ] UnitStep [-2.7 +t])

Pay no attention to any error messages.

OStep 4: Sefformulay [t] = yzeroinput[t] + yunforced[t]:

Clear [formulay ]
formulay [t_ ] = Simplify [yzeroinput [t ] +yunforced [t]]

~0.119048 E 08! (_32.821 Cos [5.09435 -1.8868t | -
29.6771 Cos [1.8868t ] +29.3096 Sin [5.09435 -1.8868t | -
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18.9929 Sin  [1.8868t ] + (1.E 8! _0.722892 E 15t .

32.821 Cos [5.09435 - 1.8868t | -29.3096 Sin [5.09435 -1.8868t )
UnitStep  [2.7 -t ] + (-5.61937 E %8t .

48.7263 Cos [5.09435 -1.8868t | - 20.6599 Sin [5.09435 -1.8868t )
UnitStep [-2.7 +t])

Here is the formula plot together with tNDSolve plot:

formulaplot = Plot [formulay [t], {t, O, endtime 3},

PlotStyle - {{Thickness [0.008 ], Red }}, DisplayFunction - |dentity 1;
Show [ ndsplot, formulaplot 1;
y(t]

Perfecto.

T.5) Electrical folks and the forced oscillator

OT.5.a)

Lots of folks other than spring specialists are interested in the
oscillator. In fact, electrical folks really get into the oscillator in a big
way. Why?

OAnswer:
When spring specialists think of the forced oscillator differential
equation
y’[t] + by'[t] + cyit] = f[t],
they think of:
- tastime
- y[t] as displacement from mass stretched position,
- b as a drag measurement,

- ¢ as a measurement of the stiffness of the spring, and
- f[t] as an externally applied force which varies with time.

When the electrical specialist thinks of the the oscillator differential
equation
y’[t] + by'[t] + cylt] = f[t],
they think of:
- tastime
- y[t] as voltage
- b as a measurement of resistance,
- ¢ as a measurement of impedance and
- f[t] as a measurement of electromotive force.
Don't worry about these words if they are unfamiliar to you.

DE.O2 Transition from Calculus to DiffEq:
The Forced Oscillator DiffEq
y’It] + by'[t] + cylt] = f[t]
Give It a Try!

G.1) Going after formulas for some simple unforced and
forced oscillators*

0G.1.a) Damped, unforced

Here's a plot of the solution unforced damped oscillator
Y[t] + 0.3Y[t] + 4.2yt] = 0 with y{0] =1 and y[0] = 1.5:

b=03;
c=42;

DE.02.T4-G1

Clear [y, ndsy, t, f 1
diffeq  =y”[t]+by [t]+cy[t]==0;
endtime = 30;
ndsol =

NDSolve [{diffeq,y [0] ==1,y "[0] ==1.5 },y [t], {t O, endtime }1;
ndsy [t_] =y[t] /.ndsol [1;
ndsplot = Plot [ndsy [t], {t O, endtime 1},

PlotStyle - {{Thickness [0.01 ], Red }}, PlotRange - All,

1
AxesLabel - {"t", " t 1"}, AspectRatio —_— T
{ v P -' GoldenRatio ]
diffeq
y[t]
1
0.5
T 5 %0 !
-0.5

-1
42y [t]+03y "[t]+y"[t] ==

Use the charcteristic equation to come up with a formula for this
unforced damped oscillator.

O0G.1.b) Undamped,unforced

Here's a plot of the solution unforced undamped oscillator
Y'[t] + 4.2t] = 0 with y{0] = 1 and y[0] = 1.5:

b =0;
c =42
Clear [y, ndsy, t, f 1
diffeq  =y”[t]+by’[t]+cy[t]==0;
endtime = 30;
ndsol =

NDSolve [ {diffeq, y [0] ==1,y "[0] ==15},y [t]1, {t O, endtime }1;
ndsy [t_ ] =y[t] /.ndsol [17;
ndsplot = Plot [ndsy [t], {t O, endiime 1},

PlotStyle - {{Thickness [0.01 ], Red }}, PlotRange - All,

1
AxesLabel ", t 1"}, AspectRatio i
>4 y o ury P _' GoldenRatio ]
diffeq

42y [t]+y"[t] ==
Use the charcteristic equation to come up with a formula for this
unforced undamped oscillator.

OG.1.c) Forced, damped

Here's a forced damped oscillator plottednrigoive :
b =1.6;
c=42,
Clear [y, ndsy,t, f 1
frt.1=12Cos [2t];
diffeq  =y”[t]+by [t]+cy[t]==f[t];
endtime = 20;
ndsol =

NDSolve [{diffeq,y [0] ==1,y "[0] ==1.5 },y [t], {t O, endtime }1;
ndsy [t_] =y[t] /.ndsol [17;
ndsplot = Plot [ndsy [t], {t, O, endtime },

PlotStyle - {{Thickness [0.01 ], Red }}, PlotRange - All,

1
AxesLabel - {"t", " t 1"}, AspectRatio PO —
{ v P > GoldenRatio ]
diffeq

yit]
1.25

1

-0.5

42y [t]+16y "[t]+y”[t] ==12Cos [2t]
Use the convolution integral method to come up with a formula for
this forced oscillator.
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DE.02.G1-G2

Use your formula to say what the global behavior (steady state) of thit PlotStyle > {{Thickness [0.01 ], DeepPink }}, PlotRange - All
oscillator is. AxesLabel - {"t","ramp [t ]"}, AspectRatio ! I:

> GoldenRatio
0G.1.d) ramp [t ]
ranp(t)
Here's another forced damped oscillator plotted courtesysefe : 2
b =47,
c =6.8;
Clear [y, ndsy,t, f 1
flt_]1=6E";
diffeq  =y”[t]+by [t]l+cy[t]==f[t]; 0.5
endtime = 20;
ndsol = J t

. ) 2 4 6 8
NDSolve [ {diffeq, y [0] ==0,y "[0] ==-2.3 },y [t], {t O, endtime 1}]; . .
ndsy [t_] =y[t] /.ndsol [1T; 0.5 t UnitStep [4. -t] +2.UnitStep  [-4. +1t]

ndsplot = Plot [ndsy [t], {t O, endtime }, Ramgt] runs
PlotStyle - {{Thickness [0.01 ], Red }}, PlotRange - All, - with g[t] = 0.5t for t<4.0
AxesLabel - {"t',"y [t]"}, AspectRatio - ;] - Wlth gl4] =2 for t>4.0. ]
diffeq GoldenRatio Here is the plot of a damped oscillator forced by ridmp
ylt] Clear [y, t,f 1
frt1 =rampf[t];
0.3 b = 2.6;
0.2 c = 9.2
ystarter = 3.5;
0.1 yprimestarter = 1.5;
t
o 5 10 1 20 diffeq = (y" [t] + by [t] + cy[t] == f[t]);
-0.2 endtime = 10;
6.8y [t]+47y '[t]+y”[t] ==6E" ndsol -
Use the convolution integral method to come up with a formula for NDSolve [ {diffeq, y [0] == ystarter, y'  [0] == yprimestarter  },y [t],
this forced oscillator. {t, 0, endtime  }1; '
Use your formula to confirm that the global behavior (steady state) of ndsy [t_1 = y[t1/.ndsol [[1]];
this oscillator is 0. ndsplot = Plot [ndsy [t], {t, O, endtime 1},
PlotStyle -> {{Thickness [0.01 ], Blue 1}}, PlotRange -> All,
O0G.1.e) Impulse-forced AspectRatio  -> 1/GoldenRatio, AxesLabel ~ -> {"t","y [t1"}1;
. diff
Calculus Cal usesbsone to plot another forced damped oscillator. e
Here's what he did:
b =47
c =6.8;
Clear [y, t,f 1
f[t ]=6E"-7DiracDelta [t -5] +8DiracDelta [t -10]; y[t]
diffeq =y”[t]+by [t]+cy[t]==f[t];
endtime = 20; 3
ndsol =
NDSolve [ {diffeq,y [0] ==0,y "[0] == -2.3 },y [t], {t O, endtime }]; 2
ndsy [t_] =y[t] /.ndsol [1T;
ndsplot = Plot [ndsy [t], {t, O, endtime 3}, 1
PlotStyle - {{Thickness [0.01 ], Magenta }}, PlotRange - All,
1 A 7 3 3 70 ¢
AxesLabel - {"t',"y [t]"}, AspectRato ~» ———]; | \/
diffeq GoldenRatio 92y [t]+26y '[t]+y’[t] - 05tUnitStep  [4 —t]+2 UnitStep [-4. +1]
yit] Use the convolution integral method to produce an exact formula for
0.3 this ramp-forced oscillator.
0.2
0.1 G.2) Steady state and transients for forced damped
5 10 15 70 ! oscillators:
-0.1 . )
s All solutions eventually settle into the same steady state.
BBy [tl1.ary [t]+y"[tl==" Visualizing the effect of the forcing functions on forced
6 E" +8DiracDelta [-10 +t] -7 DiracDelta [-5+1t]
Inspect the formula for the forcing function: damped oscillators*
I frt: .
6E' +8DiracDelta [-10 +t] - 7 DiracDelta  [-5 +t ] 0G.2.a.i) Damped
Tell Cal why you know his plot is wrong. And then tell Cal where to Here are three plots of solutions a random damped oscillator
go. V'[t] + by'[t] + cy[t]=2Sin2.51 (b>0and c> 0).
Use the convolution integral method to come up with a formula for Two of the solutions have random starting values[6hand y[O0].
this forced oscillator and use it to give an accurate plot. The other solution is yzeroindtitwhich has starting value$0} = 0
What happens to'fit] as t passes througk-t5? and y[0] = 1:
What happens to'jt] as t passes througk-t10? Don't worry about this code.
You will learn more about it soon.
0G.1.f) Ramp-forced b = Random[Real, {0.5, 1.0 }I;
. ) . . c = Random[Real, {4, 6 }];
Here is a ramp forcing function and its plot: flt_]=2Sin [25t 1;
Clear [ramp, g, t ] force_doscillator =y’[t]1+by'[t]1+cy[t]==f[t];
grt_1=05t endtime = 30;
changeover = 4.0; Clear [y, y1,y2,y3,t 1
ramp [t_] = !n!t!aldisplacememl = Random[Real, {4, 10 }1;
g[t ] UnitStep [changeover -t ] +g[changeover ] UnitStep [t - changeover 1; !n!?a:\églll = gandom[l&:eg!, (-6,611;
Plot [ramp[t], {t, 0.9 }, :::t::lv::—:g aceme:no o
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y’[0] == initialvel3 Y,y [tl,
yl[t_1=y[t] /.soll [1;
y2[t_1=yI[t] /.sol2 [1T;
y3[t_1=yI[t] /.s0l3 [1T;
plots

{t, 0, endtime

{Thickness

PlotRange - All, AspectRatio
forcedoscillator

}, PlotStyle

487428y

[t]+052448y "[t] +y” [t

initialdisplacement3 = Random[Real, {-10, -4}1;

initialvel3 = Random[Real, {-6,6 }];

soll = NDSolve [ {forcedoscillator, y [0] == initialdisplacementl,
y’[0] == initialvell },y [t1, {t O, endtime }1;

sol2 = NDSolve [ {forcedoscillator, y [0] == initialdisplacement2,
y’[0] == initialvel2 },y [t1, {t O, endtime }1;

sol3 = NDSolve [ {forcedoscillator, y [0] == initialdisplacement3,

{t, 0, endtime  }1;

=Plot [{yl[t],y2 [t],y3 [t]},

- {{Thickness
[0.014 1, Red }, {Thickness
- Automatic, AxesLabel

[0.018 ], Blue 1},
[0.01 ], CadmiumOrange }},
St

] == 28Sin (25t |

Rerun several times.
The three solutions begin their trip in totally different ways, but when
tis large, you need a scorecard to tell them apart. In other words, the
all settle into the same steady state behavior - regardless of the startii

values on §0] and y[O].

f[t_]=2Sin [25t ];
forcedoscillator
endtime = 40;
Clear [y, yl,y2, y3,t 1

soll = NDSolve [ {forcedoscillator, y
y’[0] == initialvell Ly I[ti1,
sol2 = NDSolve [ {forcedoscillator, y
y’[0] == initialvel2 }y [ti,
sol3 = NDSolve [ {forcedoscillator, y
y’[0] == initialvel3 }.y [ti,
yl[t ] =yI[t] /. soll [1;
y2[t_]=yI[t] /. sol2 [1];
y3[t_1=y[t] /. sol3 [1;
plots
{t, 0, endtime
{Thickness
PlotRange - All, AspectRatio
forcedoscillator

}, PlotStyle

Sin [2.5t
Rerun several times.

DE.02.G2

=y [tl+by [t]l+cy[t]==f[t];

initialdisplacement1 = Random[Real, {4, 10 }];
initialvell = Random[Real, {-6,6 }];
initialdisplacement2 =0;

initialvel2 =0;

initialdisplacement3 = Random[Real, {-10, -4}];
initialvel3 = Random[Real, {-6,6 }1;

[0] == initialdisplacementl,
{t, 0, endtime 1

[0] == initialdisplacement2,
{t, 0, endtime  }1;

[0] == initialdisplacement3,
{t, 0, endtime 1

=Plot [{yl[t],y2 [t] y3 [t]},

- {{Thickness
[0.014 ], Red }, {Thickness
- 1 /5, AxesLabel

[0.018 ], Blue 3},
[0.01 ], CadmiumOrange }},
SOt

]

Remembering that any solutioftlyis of the form

Yt] = yzeroinpuft] + yunforcedt],

This time the solutions do not settle into the same steady state.
Remembering that any solutioftlyis of the form
yt] = yzeroinpuft] + yunforcedt],

explain why this happens.

0G.2.a.ii)

You are given a forced damped oscillator coming from

Y'[t] + by[t] + cylt] =f[t]
with given starter data[@] = p and y[0] = g (and with b> 0 and

c>0),

Does the steady state (long term, global scale) behavior of this
oscillator depend in any way on the specific values of the starting

data?
How do you know for sure?

0G.2.a.iii) Transient and steady state

You are given a forced damped oscillator coming from
Y'[t] + byT[t] + cylt] = f[t],
with given starter data[@] = p and y[0] = q (and with b> 0 and

c>0),

When you go with the convolution integral method, you get the

solution yft] in terms of

yt] = yunforcedt] + yzeroinpuft]

where yunforced[t] solves

Y'[t] + by'[t] + cy[t] = 0 with given starter datd§] = p and

y'l0l=q

and where yzeroinput[t] solves
Y'[t] + by'[t] + cy[t] = f[t], with y[0] = 0 and y[0] = O.

Why do you think lots of folks like to call yunforcigflby the name
"transient" and yzeroinpii} by the name "steady state?"

0G.2.b.i) Undamped

Here are three plots of solutions a random undamped oscillator

Y'[t] + cy[t] =2Sin2.51

(b>0andc 0).

Two of them have random starting values 0y yand y[0]. The other
is yzeroinpuitt] which has starting value$0} = 0 and y[0] = 1:

Don't worry about this code.
You will learn more about it soon.

b =0;

¢ = Random[Real, {4,6 }];

explain why this happens.
o0G.2.c.i)

Here are three plots of solutions a random damped forced oscillator
V'[t] + by'[t] + cy[t] =4.0Co$1.51, (b> 0 ancd c 0)

Two of the solutions have random starting values[6hand y[0].

The other solution is yzeroindtitwhich has starting value$0} = 0

and y[0] = 1:

Don't worry about this code.
You will learn more about it soon.

b = Random[Real, {0.5,1.0 }];
c = Random[Real, {4, 6 }];
f[t_1=4Cos[1l5t ];
forcedoscillator
endtime = 30;
Clear [y, yl,y2, y3,t ]

y’[0] == initialvel2 }y [ti,
sol3 = NDSolve [ {forcedoscillator, y
y’[0] == initialvel3 Ly [ti,
yl[t_1=y[t] /. soll [1;
y2[t_]1=y[t] /. sol2 [1T;
y3[t_1=y[t] /. sol3 [1T;
solplots
{t, 0, endtime
{Thickness
PlotRange - All, AspectRatio
AxesLabel - {"t", "™ }1;
443454y [t] +0.589273y

}, PlotStyle

5

=y“[t]+by [t]+cy[t]==f[t]

initialdisplacementl = Random[Real, {4, 10 }1;

initialvell = Random[Real, {-6,6 }1;

initialdisplacement2 =0;

initialvel2 =0;

initialdisplacement3 = Random[Real, {-10, -4}1;

initialvel3 = Random[Real, {-6,6 }1;

soll = NDSolve [ {forcedoscillator, y [0] == initialdisplacementl,
y’[0] == initialvell },y [t1, {t O, endtime }1;

sol2 = NDSolve [ {forcedoscillator, y [0] == initialdisplacement2,

{t, 0, endtime  }1;
[0] == initialdisplacement3,
{t, 0, endtime 1

=Plot [{yl[t],y2 [t],y3 [t]},

- {{Thickness
[0.014 ], Red }, {Thickness
- Automatic,

[0.018 1, Blue 1},
[0.01 ], CadmiumOrange }},

“[t]+y”[t] ==4Cos[15t ]

Throw in this plot of the forcing functiorjtf:

fplot = Plot [f[t],
PlotStyle - {{Thickness
Show[solplots, fplot, DisplayFunction

{t, 0, endtime

[0.02 ], Black }}, DisplayFunction

}, PlotRange - All,
- Identity  1;

- $DisplayFunction 1;
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Using only your eyes, describe in general terms how the solution plot:
are related to the plot of the forcing functigti.f

0G.2.c.ii)

Here are three plots of solutions a random damped forced oscillator
Y'[t] + by[t] + cyit] = 6.8 E®2!. (b> 0 and c> 0)

Two of the solutions have random starting values[6hand y[0].

The other solution is yzeroingtitwhich has starting value$0} = 0

and y[0] =

Don't worry about this code.
You will learn more about it soon.

b = Random[Real, {0.5,1.0 }1;

¢ = Random[Real, {4,6 }];

Clear [f, t 1]

f[t_]=68E02t;

forcedoscillator =y”’[t]+by’ [t]+cy[t]==f[t]

endtime = 30;

Clear [y, yl,y2,y3,t 1

initialdisplacementl = Random[Real, {4, 10 }1];

initialvell = Random[Real, {-6,6 }];

initialdisplacement2 =0;

initialvel2 =0;

initialdisplacement3 = Random[Real, {-10, -4}1;

initialvel3 = Random[Real, {-6,6 }];

soll = NDSolve [ {forcedoscillator, y [0] == initialdisplacement1,
y’[0] == initialvell },y [t1, {t O, endtime }1;

sol2 = NDSolve [ {forcedoscillator, y [0] == initialdisplacement2,
y’[0] == initialvel2 },y [t1, {t O, endtime }1;

sol3 = NDSolve [ {forcedoscillator, y [0] == initialdisplacement3,
y’[0] == initialvel3 },y [t1, {t O, endtime }1;

yl[t_1=y[t] /.soll [1;

y2[t_1=yI[t] /.s0l2 [1T;

y3[t_1=yI[t]/.sol3 [1I;

solplots =Plot [{yl[t],y2 [t],y3 [t1},

{t, 0, endtime }, PlotStyle - {{Thickness [0.018 ], Blue },
{Thickness [0.014 ], Red }, {Thickness [0.01 ], CadmiumOrange }},

PlotRange - All, AspectRatio - Automatic,

AxesLabel - {"t","™ }1;

5.33904y [t] +0.767432y '[t] +y”[t] == 6.8E 02!

lp! ’ag 5 5 i T !

Throw in this plot of the forcing functioriti:
fplot =Plot [f[t], {t O, endtime }, PlotRange - All, PlotStyle -
{{Thickness [0.015 1, Black }}, DisplayFunction - Identity  1;
Show[solplots, fplot, DisplayFunction - $DisplayFunction 1;

N B O

-2
-4
-6
Using only your eyes, describe in general terms how the solution plot:
are related to the plot of the forcing functigty.f
0G.2.c.iii)
Here are three plots of solutions a random damped forced oscillator
Y'[t] + by'[t] + cy[t] =3.2 (b>0and c 0)
Two of the solutions have random starting values[6hand y[0].
The other solution is yzeroingtitwhich has starting value$0} = 0
and y[0] =

Don't worry about this code.
You will learn more about it soon.

b = Random[Real, {0.5,1.0 1}1];
¢ = Random[Real, {4,6 }];

Clear [f,t ]

f [t_ ] = 3.2; forcedoscillator =y’ [t]+by [t]+cy[t]==f[t]
endtime = 30;

Clear [y, yl,y2,y3,t 1

initialdisplacementl = Random[Real, {4, 10 }1];

DE.02.G2

initialvell = Random[Real, {-6,6 }1;

initialdisplacement2 =0;

initialvel2 =0;

initialdisplacement3 = Random[Real, {-10, -4}];

initialvel3 = Random[Real, {-6,6 }];

soll = NDSolve [ {forcedoscillator, y [0] == initialdisplacementl,
y’[0] == initialvell 3,y [t1, {t O, endtime 1

sol2 = NDSolve [ {forcedoscillator, y [0] == initialdisplacement2,
y’[0] == initialvel2 },y [t1, {t 0, endtime }1;

sol3 = NDSolve [ {forcedoscillator, y [0] == initialdisplacement3,
y’[0] == initialvel3 },y [t1, {t O, endtime 1

yl[t_1=y[t] /. soll [1T;

y2[t_1=y[t]/.sol2 [1T;

y3[t_1=y[t] /.sol3 [1T;

solplots  =Plot [{yl[t],y2 [t],y3 [t]},
{t, 0, endtime }, PlotStyle - {{Thickness [0.018 ], Blue },

{Thickness [0.014 ], Red }, {Thickness [0.01 ], CadmiumOrange }},

PlotRange - All, AspectRatio - Automatic,
AxesLabel - {"t",™ }1;

458932y [t]+0.966691y '[t] +y”[t] == 3.2

-2
-4
-6
-8

Throw in this plot of the forcing functioriti:

fplot = Plot [f[t], {t O, endtime }, PlotRange  -> All, PlotStyle -
{{Thickness [0.015 ], Black }}, DisplayFunction -> Identity  1;
Show[solplots, fplot, DisplayFunction -> $DisplayFunction 1;
4
2
5 10 15 20 25 30 !
-2
-4

-6
-8
Using only your eyes, describe in general terms how the solution plots
are related to the plot of the forcing functigti.f

0G.2.c.iv)

Here are three plots of solutions a random damped forced oscillator
Y'[t] + by'[t] + cy[t] =0.3t, (b> 0 and c> 0)

Two of the solutions have random starting values[@hand y{0].

The other solution is yzeroingtitwhich has starting value$0} = 0

andy[0]=1

Don't worry about this code.
You will learn more about it soon.

b = Random[Real, {0.5,1.0 }1;
¢ = Random[Real, {4, 6 }];

Clear [f, t ]

f [t_ 1 = 0.3 t; forcedoscillator =y"[t]+by [t]+cy[t]==f[t]

endtime = 30;

Clear [y, yl,y2,y3,t 1

initialdisplacementl = Random[Real, {4, 10 }];

initialvell = Random[Real, {-6,6 }1;

initialdisplacement2 =0;

initialvel2 =0;

initialdisplacement3 = Random[Real, {-10, -4}];

initialvel3 = Random[Real, {-6,6 }];

soll = NDSolve [ {forcedoscillator, y [0] == initialdisplacementl,
y’[0] == initialvell },y [t1, {t O, endtime 1

sol2 = NDSolve [ {forcedoscillator, y [0] == initialdisplacement2,
y’[0] == initialvel2 }.y [t1, {t O, endtime }1;

sol3 = NDSolve [ {forcedoscillator, y [0] == initialdisplacement3,

y’[0] == initialvel3 1,y [t1, {t O, endtime 1
yl[t_1=y[t]/. soll [1T;
y2[t_1=y[t] /.sol2 [1];
y3[t_]=yI[t] /. sol3 [1];
solplots =Plot [{yl[t],y2 [t1,y3 [t]},
{t, 0, endtime }, PlotStyle - {{Thickness [0.018 ], Blue },
{Thickness [0.014 1, Red }, {Thickness [0.01 ], CadmiumOrange }},
PlotRange - All, AspectRatio - Automatic,
AxesLabel - {"t",™ }1;
410648y [t]+0.942412y "[t] +y”[t] == 0.3t

-2
-4
-6
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Throw in this plot of the forcing function ft]:

}, PlotRange -> All, PlotStyle -
-> Identity 1;

-> $DisplayFunction 1,

fplot = Plot [f[t], {t O, endtime
{{Thickness [0.015 1, Black }}, DisplayFunction
Show[solplots, fplot, DisplayFunction

Using only your eyes, describe in general terms how the solution plot:
are related to the plot of the forcing functigty.f

0G.2.c.v)

Here are three plots of solutions a random damped forced oscillator
Y'[t] + by[t] + cy[t] =3.2 (b>0and c> 0)
Two of the solutions have random starting values[6hand y[0].
The other solution is yzeroingtitwhich has starting value$0} = 0
and y[0] = 1:
Don't worry about this code.
You will learn more about it soon.
b = Random[Real, {0.5, 1.0 }];
¢ = Random[Real, {4, 6 }1;
Clear [f,t ]
fle1=32;
forcedoscillator
endtime = 30;
Clear [y, yl1,y2,y3,t 1
initialdisplacementl = Random[Real, {4, 10 }1;

=y [t1+by [t]+cy[t]==f[t]

initialvell = Random[Real, {-6,6 }];

initialdisplacement2 =0;

initialvel2 =0;

initialdisplacement3 = Random[Real, {-10, -4}1;

initialvel3 = Random[Real, {-6,6 }];

soll = NDSolve [ {forcedoscillator, y [0] == initialdisplacement1,
y’[0] == initialvell },y [t1, {t 0, endtime }1;

sol2 = NDSolve [ {forcedoscillator, y [0] == initialdisplacement2,
y’[0] == initialvel2 },y [t1, {t O, endtime }1;

sol3 = NDSolve [ {forcedoscillator, y [0] == initialdisplacement3,

y’[0]1 == initialvel3 },y [t1, {t O, endtime }1;
yl[t_1=y[t]/.soll [1T;
y2[t_1=y[t] /.sol2 [1T;
y3[t_1=y[t] /.sol3 [1T;
solplots = Plot [{yl[t],y2 [t],y3 [t]},
{t, 0, endtime }, PlotStyle - {{Thickness [0.018 ], Blue },
{Thickness [0.014 ], Red }, {Thickness [0.01 ], CadmiumOrange }},
PlotRange - All, AspectRatio - Automatic,
AxesLabel - {"t',™ }1;

477849y [t] + 0572247y '[t] +y”[t] == 3.2

7.5
5
2.5
10 15 20 25 30 '
-2.5
5
-7.5
-10
Throw in this plot of the forcing functiortf:
fplot = Plot [f [t], {t O, endtime 1}, PlotRange -> All, PlotStyle >

{{Thickness [0.015 ], Black }}, DisplayFunction -> Identity 1;
Show(solplots, fplot, DisplayFunction -> $DisplayFunction 1;

7.5

N hd
o 5

o o

-7.
-10

Using only your eyes, describe in general terms how the solution plot:

are related to the plot of the forcing functigti.f

0G.2.c.vi)
Here are three plots of solutions a random damped forced oscillator
Y'[t] + by[t] + cy[t] = 10 E°3¢-8" (h> 0 and c> 0)
Two of the solutions have random starting values[6hand y[0].
The other solution is yzeroindtitwhich has starting value$0} = 0
and y[0] = 1:

DE.02.G2

Don't worry about this code.

You will learn more about it soon.
b = Random[Real, {0.5,1.0 }1;
¢ = Random[Real, {4, 6 }];
Clear [f, t ]
fIt_]=10E03 (t-6)°
forcedoscillator =y”“[t]+by’[t]+cy[t]==f]t]
endtime = 30;
Clear [y, yl,y2,vy3,t 1
initialdisplacementl = Random[Real, {4, 10 }];

initialvell = Random[Real, {-6,6 }];
initialdisplacement2 =0;

initialvel2 =0;

initialdisplacement3 = Random[Real, {-10, -4}1;
initialvel3 = Random[Real, {-6,6 }1;

soll = NDSolve [ {forcedoscillator, y [0] == initialdisplacement1,
y’[0] == initialvell },y [t1, {t O, endtime 1

sol2 = NDSolve [ {forcedoscillator, y [0] == initialdisplacement2,
y’[0] == initialvel2 },y [t1, {t O, endtime 1

sol3 = NDSolve [ {forcedoscillator, y [0] == initialdisplacement3,
y’[0] == initialvel3 }.y [t1, {t O, endtime }1;

yl[t_1=y[t] /. soll [1];

y2[t_1=y[t] /. sol2 [1];

y3[t_1=y[t] /. sol3 [1T;

solplots =Plot [{yl[t],y2 [t],y3 [t]},
{t, 0, endtime }, PlotStyle - {{Thickness [0.018 ], Blue },

{Thickness [0.014 1, Red }, {Thickness [0.01 ], CadmiumOrange }},

PlotRange - All, AspectRatio - Automatic,
AxesLabel - {"t',™ }1;
10E03 ( 6+t)?
501161y [t] +0.806968y ‘[t] +y”[t] == 10 E*3 (-6:)°
5
2.5
5 ™ 15 20 5 30
-2.5
-5
-7.5
-10
Throw in this plot of the forcing functiorjtf:
fplot = Plot [f [t], {t O, endtime 1}, PlotRange -> All, PlotStyle -

{{Thickness [0.015 ], Black }}, DisplayFunction -> Ildentity  ];
Show[solplots, fplot, DisplayFunction -> $DisplayFunction 1;

10

-5

-10

Using only your eyes, describe in general terms how the solution plots
are related to the plot of the forcing functigti.f

O0G.2.c.vii)
Here is a square wave forcing functigti:f

Clear [f,t ]
f[t_1 = Sign [Sin [0.5Pit 1] + 1;

Plot [f[t], {t0,12 },

PlotStyle -> {{Thickness [0.01 ], Red }},
PlotRange -> All, AxesLabel -> {"t", "ramp [t]1"},
1
AspectRatio  -> ——————;
GoldenRatio
ranpt]
2
1.5
1
0.5

t

' 2 4 6 8 10 12
Here are three plots of solutions a random damped forced oscillator
V'[t] + by[t] + cy[t] =f[t], (b> 0 and c>0)
Two of the solutions have random starting values[6hand y[0O].
The other solution is yzeroingtitwhich has starting value$0} = 0
and y[0] = 1:
Don't worry about this code.
You will learn more about it soon.

b = Random[Real, {0.5,1.0 }1;
c = Random[Real, {4,6 }];
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forcedoscillator =y”[tl+by [t]l+cy[t]==f[t] b = Random[Real, {0.5, 1.0 }1;
endtime = 30; c = Random[Real, {4, 6 }];
Clear [y, y1,y2,y3,t 1 forcedoscillator =y“[t]1+by/[t]+cy[t]==f[t]
initialdisplacement1 = Random[Real, {4, 10 }]; endtime = 30;
initialvell = Random[Real, {-6,6 }]; Clear [y, yl,y2,y3,t ]
initialdisplacement2 =0; initialdisplacement1 = Random[Real, {4, 10 }];
initialvel2 =0; initialvell = Random[Real, {-6,6 }];
initialdisplacement3 = Random[Real, {-10, -4}1; initialdisplacement2 =0;
initialvel3 = Random[Real, {-6,6 }]; initialvel2 =0;
soll = NDSolve [ {forcedoscillator, y [0] == initialdisplacement1, initialdisplacement3 = Random[Real, {-10, -4}];
y’[0] == initialvell Y.y [t1, {40 endtime }1; initialvel3 = Random[Real, {-6,6 }1;
sol2 = NDSolve [ {forcedoscillator, y [0] == initialdisplacement2, soll = NDSolve [ {forcedoscillator, y [0] == initialdisplacement1,
y’[0] == initialvel2 Y,y [t1, {t 0, endtime }7]; y’[0] == initialvell },y [t1, {t O, endtime }];
sol3 = NDSolve [ {forcedoscillator, y [0] == initialdisplacement3, sol2 = NDSolve [ {forcedoscillator, y [0] == initialdisplacement2,
y’[0] == initialvel3 Y.y [t1, {10, endtime }1; y’[0] == initialvel2 3,y [t]1, {t O, endtime }1;
yl[t_]1=y[t]/.soll [1T; sol3 = NDSolve [ {forcedoscillator, y [0] == initialdisplacement3,
y2[t_1=y[t]/.so0l2 [1T; y’[0] == initialvel3 Y,y [t1, {t 0, endtime }1;
y3[t_1=y[t]/.sol3 [1T; yl[t_]1=y[t]/ soll [1T;
solplots = Plot [{yl1[t],y2 [t],y3 [t]}, y2[t_1=y[t] /. sol2 [1];
{t, 0, endtime }, PlotStyle - {{Thickness [0.018 ], Blue }, y3[t_1=y[t] /.sol3 [1];
{Thickness [0.014 ], Red }, {Thickness [0.01 ], CadmiumOrange }}, solplots =Plot [{yl[t],y2 [t],y3 [t1},
PlotRange - All, AspectRatio - Automatic, {t, 0, endtime }, PlotStyle - {{Thickness [0.018 ], Blue },
AxesLabel - {"t',"™ }1; {Thickness [0.014 ], Red }, {Thickness [0.01 ], CadmiumOrange }},
445602y [t] +0.535201y "[t] +y”[t] ==1+Sign [Sin [1.5708t ]] PlotRange - All, AspectRatio - Automatic,
AxesLabel - {"t",™ }1;
8 450861y [t] +0.970907y '[t] +y”[t] ==
j 0.67 (-1 +E®S! ) UnitStep [6. -t ] +12.7873 UnitStep  [-6. +1t]
) 6
4
h 25 2 30 ! 2 =
-2
-4 5 To 15 20 25 30 '
-6 ’i
Throw in this plot of the forcing functioriti: 6
fplot =Plot [f[t], {t O, endtime }, PlotRange - All, PlotStyle -
{{Thickness [0.015 ], Black }}, DisplayFunction - Identity ; Throw in this plot of the forcing functioriti:
Show[solplots, fplot, DisplayFunction - $DisplayFunction 1; fplot = Plot [f[t], {t O, endime }, PlotRange - Al, PlotStyle R
{{Thickness [0.015 1], Black }}, DisplayFunction - Identity 1;
Show[solplots, fplot, DisplayFunction - $DisplayFunction 1;
8
6 10
4
2 5 -
1 25 30 ! ¢
2 5 10 15 20 25 30
-4 5
-6
i 1 i 1 ¢ . . . .
UsmgloPI)é 3{0[:'2 eytlest, dfetic”]?e n ginerzta_l terfms how the solution plot: Using only your eyes, describe in general terms how the solution plots
are related to the plot of the forcing functigty. are related to the plot of the forcing functigti.f
0G.2.c.viii)
Here is a ramp forcing functiontf: G.3) Amplitude and frequency of unforced oscillators
Clear [f,g,t 1 .
9It_ 1 =067 (E%5t _1): O0G.3.a.)
fh[i‘”gle‘jve' =60; You are in the lab and in the process of coming up with a formula for
g[t] UnitStep [changeover -t] +g[changeover ] UnitStep [t - changeover | this given undamped unforced oscillator with starter values of
Plot [f[t], (0,12 }, PlotStyle - {{Thickness [0.01 ], Red}}, y[0] =5.9 and ¥{0] = -0.4:
PlotRange - All, AxesLabel - {"t", "ramp [t1"}, Clear [y, t ]
AspectRatio - _r —1: b=0;
GoldenRatio c=4n?
0.67 (-1+E®S! ) UnitStep [6. -t] +12.7873 UnitStep  [-6. +1t ] linoscdiffeq =y”[t]+by [t]+cy[t] ==
ranp(t] startery =5.9;
12 starteryprime =-0.4;
10 AnPy[t] ey [t] ==
8 You copy, paste and edit from the Basics:
6 Clear [z]
4 charequation =z?+bz +c ==0;
2 zsols = Solve [charequation, z 1;
Clear [gensol, C1,C2 ]
=% 4% &% 8§ 10 12! gensol [t_] = C1ES0s [L12 It , cp Epsols 1212 Tt
Here are three plots of solutions a random damped forced oscillator
’ _ ystarteq = gensol [0] == startery;
y [t] +b y,[t] +C y[t] - f[t] ! (b >0 and & O) yprimestarteq = gensol ‘[0] == starteryprime;
Two of the solu_t|on_s have (andom _startmg valugs[ﬁm and y[0]. Csols = Solve [ {ystarteq, yprimestarteq } {CL C2}1:
The other solution is yzeroingtitwhich has starting value$0} = 0 Clear [yformula ]
and y[O] =1 yformula [t_ ] = Chop[ComplexExpand [gensol [t] /.Csols [1]11]

Don't worry about this code. 5.9Cos [27t] - 0.063662Sin [27t]

You will learn more about it soon.
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Your job is to calculate the amplitude and the frequency for this
undamped unforced oscillator. Do it and show off your work with
convincing plots.

0G.3.a.ii)

Look again at the solutions of the characteristic equation from part i):
Clear [z];
charequation =224+bz +c ==0;
zsols = Solve [charequation, z 1
{{z>-21 71}, {z->21] nt}}
Can you come up with the frequency for the oscillator above directly
from the solutions of the characteristic equation without going to all
the bother of finding a solution formula?
What does your answer tell you about the frequency of any solution o
Iy [t1+by [tl+cy[t]==0
47yt ey (t] ==

0G.3.b.i)

You are in the lab and are in the process of coming up with a formuls
for this given damped oscillator with these given starter value$n y
and y[O]:

Clear [y, t ]

b =5.7;

c =20.1;

linoscdiffeq =y”"[t]+by’[t]+cy[t] ==

startery =5.9;

starteryprime =-04;

201y [t] +57y "[t]+y"[t] ==

You copy, paste and edit from the Basics:

Clear [z]

charequation =224+bz+c==0;

zsols = Solve [charequation, z 1;

Clear [gensol, C1, C2 ]

gensol [t1= c1 Ezsols [112 gt +C2 Ezso\s 212 gt :

ystarteq = gensol [0] == startery;

yprimestarteq = gensol ’[0] == starteryprime;

Csols = Solve [{ystarteq, yprimestarteq }, {C1,C2}yy;

Clear [yformula ]

yformula [t_ ] = Chop[ComplexExpand [gensol [t] /.Csols [1]1]

59E 285! Co0s[3.46085t ] +4.74305E 285! sin [3.46085t ]
Your job is to calculate the amplitude and the frequency for this
damped unforced oscillator. Do it and show off your work with
convincing plots.

0G.3.b.ii)
Look again at the solutions of the characteristic equation from part i):
Clear [z]
charequation =z?+bz +c ==0;zs0ls = Solve [charequation, z 1

{{z>-285 -3.460851 }, {z->-2.85 +3.46085!1 }}
Can you come up with the frequency for the oscillator above directly
from the solutions of the characteristic equation without going to all
the bother of finding a solution formula?
What does your answer tell you about the frequency of any solution o
Iy rt1+by[tl+cyft]==
201y [t]+57y [t]+y”[t] ==0
0G.3.c.i)

Here is a formula for the solution of the undamped unforced oscillator
Y[t] +9.0)t] =0
with random starter data:

b =0;

c =9.0;

Clear [y, yundamped, t ]

linoscdiffeq =y”[t]+by[t]l+cy[t] ==0;
ystarter = Random[Real, {2, 6 }1;
yprimestarter = Random[Real, {-4,4 }1;
Clear [C1, C2, z, z1, z2, generalsol, t 1
charequation  =2z2+bz +c ==0;

zsols = Solve [charequation, z 1;

generalsol [t_] =

C1E'! +C2F?! /. {z1 »zsols [[1,1,2 1,22 »zsols [2,1,2 T},
Csols =

Solve [{generalsol [0] == ystarter, generalsol
yundamped [t_ ] = Chop [ComplexExpand [generalsol
2.86672 Cos [3.t ] +1.06545Sin [3.t ]

|
You damp this oscillator by adding a damping term[tj:y

[0] == yprimestarter ~ }1;
[t]/.Csols [111]

DE.02.G3

b=21;
Clear [y, ydamped,t ]

linoscdiffeq =y”[t]1+by'[t]+cCcy[t] ==
Clear [C1, C2, z, z1, z2, generalsol, t 1
charequation

0
=z%24+bz+c==0;

zsols = Solve [charequation, z 1;
generalsol [t_] =

C1Et 4+ C2F2' /. {z1 »zsols [1,1,2 J,2z2 -»zsols [2, 1,2 1};
Csols =

Solve [{generalsol [0] == ystarter, generalsol
ydamped [t_ ] = Chop [ComplexExpand [generalsol

9.y [t]+21y '[t]+y"[t] ==0

2.86672 E 195! Co0s[2.81025t ] +2.20849 E 195! Sin [2.81025¢t ]
Does the damped version have the same frequency as the the
undamped version?
Does the damped version have the same amplitude as the the
undamped version?

0G.3.c.ii)

Here's a new unforced lightly damped oscillator diffeq with a plot
corresponding to some random starter data:

Clear [y, ndsy,t 1;
b = Random[Real, {0.3,0.7 }1;
¢ = Random[Real, {6.0, 12.0 1}1;

" [0] == yprimestarter 1
[t] /.Csols [1]1]

oscdiffeq =y”[t]1+by’[t]+cCcy[t]==0;
endtime = 10;

Clear [y1;

startery = Random[Real, {-2,21}];

starteryprime = Random[Real, {-2,2}];

ndsol = NDSolve [ {linoscdiffeq, y [0] == startery,
y’[0] == starteryprime }.y [t1, {t O, endtime }1;

ndsy [t_]1=y[t] /.ndsol [11;

ndsplot = Plot [ndsy [t], {t, O, endtime },

PlotStyle - {{Thickness [0.01 ], CadmiumOrange }}, PlotRange -> All,
1
AxesLabel ", t 1"}, AspectRatio —_—;
4 y ury P _’ GoldenRatio ]
oscdiffeq
y[t]
= N\
374 6 3 o !
-0.25
-0.5
0.75
-1
1.25
898336y [t] +0.402957y "[t] +y”[t] ==0
Now look at this:
zerospacer = 0.4;
azerosol = FindRoot [ndsy [t] ==0, {t, 0.8 }I;
azero =t /.azerosol [1T;
zeromarkers =
Table [Graphics [{Thickness [0.01 ], Red, Line [{{t, -0.51}, {t, 05 }}1}1,
{t, azero, endtime, zerospacer 1
Show[ndsplot, zeromarkers 1;
ylt]
0.5
0.25
o
-0.25
-0.5
0.75
-1
-1.25

Notice that the first vertical line hits the t-axis right on a place at
which the solution is 0. But the others don't do this.
Reason: The zerospacer at the very top of the code is wrong.
Your job is to look at the solutions of the characteristic equation:
charequation =z?+bz +c ==0;
zsols = Solve [charequation, z 1
{{z - -0.201479 -2.990451 }, {z —» -0.201479 +2.99045| }}
And then to use what you see to reset the zerospacing number so that
the vertical lines hit all the places at which the solution is zero. Show
off your answer with a plot.
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zsols = Solve [charequation, z 1;
0G.3.d)

Here'sMathematicacranking out an exact formula for the solution of g;izgl[?lensf'_ O s 112 31, gp gsos 1212 11

the undamped oscillator diffeq ystarteq = gensol [0] == startery;
y’ [t] +4.7 y[t] =0 yprimestarteq = gensol “[0] == starteryprime;

with y[O] =33 and y[O] =1.2: Csols = Solve [{ystarteq, yprimestarteq }, {C1,C2}1;
Clear [y, t ] Clear [newyformula 1]
b =0; newyformula [t_ ] = Chop[ComplexExpand [gensol [t] /.Csols [111]
c =47, 4 4 Ly .
linoscdiffeq =y”"[t]+by’ [t]+cy[t]==0 5.1yf52]‘ 04y TIt] +yrt] 0 02t o
startery =3.3; 33E ™ Cos[2.24944t ] +0.826871 E Sin [2.24944t )
starteryprime = 1.2; The formula coming from € 5.0 is:
Clear (z] ) | yformula [t ]
charequation =z“+bz+c==0;

3.3E 92! Cos[2.22711t ] +0.835165E 2! Sin [2.22711t ]
The formula coming from € 5.1 is:

| newyformula [t ]

3.3E 02! Cos[2.24944t ] +0.826871 E 02! Sin [2.24944t |

zsols = Solve [charequation, z 1;

Clear [gensol, C1, C2
gensol [t 1=C1 Ezsols 0112 gt +C2 Ezso\s 212 7t :
ystarteq = gensol [0] == startery;

yprimestarteq = gensol ’[0] == starteryprime; When you raised c, did the frequency go up down or remain the same”
Csols = Solve [{ystarteq, yprimestarteq }, {C1,C2}yy;
Clear [yundampedformula ] G4) Resonance*
yundampedformula [t_ ] = Chop [ComplexExpand [gensol [t] /.Csols [111]
47y [t]+y"[t]==0 Anyone wanting to upset a ﬁ?ck\ng slforlwqe will push in tune with
. oscillations of the stone,
33 C_OS (216795t ]_ * 0'553519_ Sin  [2.16795t ] . so as always to secure a favourable moment for a push. If the pushes are
Here isMathematicacranking out an exact formula for the solution of ~ outoftune,
. . . some increase the oscillations, but others check them.
the same oscillator after a small damping term has been inserted: But when they are all in tune, after a time, all the pushes are
Clear [y, t ] favorable.
b =02 ---Alfred North Whitehead
c =47, .
linoscdiffeq  =y”[t]1+by’[t]+cy[t]==0 The phenomenom is called "resonance."
startery =3.3;
starteryprime =1.2;
Clear [z]
charequation =2z2+bz +c ==0;

zsols = Solve [charequation, z 1;

Clear [gensol, C1, C2 ]
gensol 1= c1 Ezsols [112 gt +C2 Ezso\s 212 gt ;

ystarteq = gensol [0] == startery;

yprimestarteq = gensol “[0] == starteryprime;

Csols = Solve [({ystarteq, yprimestarteq }, {C1,C2}11; .

Clear [ydampedformula ] |:|G.4.a.|)

ydampedformula [t ] = Chop [ComplexExpand [gensol [t] /. Csols [1]1] Did you ever wonder why some mircophone-loud speaker systems

47y [t]+02y "[t]+y”[t] ==0

3.3E 01t Co0s[2.16564t | +0.706488 E 01! Sin [2.16564t |
When you put the damping term on the oscillator, did the frequency
go up down or remain the same?

squeal?
One way to look at this is to imagine that the sound from a
loudspeaker system is an ordinary undamped oscillator. When you
turn on the mircophone, you force this undamped oscillator with its
0G.3.e) own output.

Here isMathematicacranking out an exact formula for the solution of Eﬁég;g;%tz%;g:g‘g%;%zlItgt%fomt'on of the very ordinary

the damped oscillator diffe ' X :

v 10 0. Ayt 5'0qu: 0 Y'[t] + 4 y[t] = O with y{O] = 3.6 and ¥{0] = 0.8.

; _ _ . b =0;c =4, ystarter = 3.6;
Wlth y[O] - 33 and S/[O] =12 yprimestarter =0.8; Clear [C1, C2, z, z1, z2, generalsol, t 1
Clear [y, t ] charequation =2z2+bz +c == 0;
b =0.4; zsols = Solve [charequation, z 1;
c =5.0;
linoscdiffeq =y”[t]+by’ [t]+cy[t] == generalsol  [t_] =
startery = 3.3; CLE +C2F?! /. {z1 »zs0ls [1,1,2 1,22 »zsols [2, 1,2 T}:
starteryprime =1.2; Csols =
Clear [2] ) Solve [{generalsol [0] == ystarter, generalsol ‘[0] == yprimestarter  }1;
charequation =z°+bz+c==0;
zsols = Solve [charequation, z 1; Clear [yunforced ]
yunforced [t_ ] = Chop[ComplexExpand [generalsol [t] /.Csols [1]]]
Clear [gensol, C1,€2 1 o 212 3.6Cos [2t] +0.4Sin (2t ]
gensol [t_] = ClE®0® [L12 1, cppsos 1212 1t .
See how it plots out:

ystarteq = gensol [0] == startery; endtime = 50;
yprimestarteq = gensol " [0] == starteryprime; unforcedplot = Plot [yunforced [t], {t O, endtime 3},
Csols = Solve [{ystarteq, yprimestarteq b {C1, C23 15 PlotStyle - {{Thickness [0.015 ], Blue }}, AxesLabel - {"t',"y [t]1"},
Clear [yformula 1] 1
yformula [t_ ] = Chop[ComplexExpand [gensol [t] /.Csols [1]1] PlotLabel - "Undamped, Unforced Oscillator”, AspectRatio - E]

5.y [t]+04y "[t]+y"[t] == Y [t Jundanped, Unforced Oscillator

3.3E 02! Cos[2.22711t ] +0.835165 E 02! Sin [2.22711t | %

Now raise ¢ from 5 to 5.1 and keep everything else the same: 3 o

g'fa(; Lt Here's what happens when you use this formula to force this
c=51 undamped oscillator with its own output:
linoscdiffeq =y”[t]1+by’ [t]+cCcy][t] == Clear [f]
startery =33, f [t_ 1 =yunforced [t1];
starteryprime =1.2; Clear [y, t ]
Clear [z] solution = NDSolve [{y”[t] +by [t]+cy[t]==f[t],
charequation =z2+bz +C ==0; y [0] == ystarter, y " [0] == yprimestarter },y [t1, {t O, endtime }1;
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forcedy [t_] =y[t] /.solution [1n;
forcedplot = Plot [forcedy [t],
{t, 0, endtime }, PlotStyle - {{Thickness [0.015 ], OrangeRed }},
AxesLabel - {"t","y [t]1"}, PlotPoints - 3 endtime,
PlotLabel - "Undamped oscillator forced by its own output”,
AspectRatio - ———1———]
GoldenRatio
id¥mpdd oscillator forced by its own outp
40

20

o

-20

-40
Shake, rattle and roll. The loudspeaker is screaming!
Oscillation with greater and greater swings as time goes on.
This is what folks call "resonance."

See them together:

| Show[forcedplot, unforcedplot, PlotLabel - "Both" 1];
y[t] Both

40

20

O

-20

-40

Here's what happens when you use the convolution integral method t

come up with a formula for this forced oscillator:

OStep 1: Calculateyunforced[t]

Clear [C1, C2, z, z1, z2, generalsol, t 1
charequation =z224+bz +c ==0;
zsols = Solve [charequation, z 1;
generalsol [t ] =
C1EM +C2F2! /. {z1 »zsols [1,1,2 ],22 »zsols [[2,1,2 T}

cie?'t sc2e!t

Csols =

Solve [{generalsol [0] == ystarter, generalsol
Clear [yunforced ]

yunforced [t_ ] = Chop[ComplexExpand [generalsol [t] /.Csols [1]]]

3.6Cos [2t] +0.4Sin [21]
OStep 2: Calculate the unit impulse responsyunitimpulse[t]

Csols = Solve [{generalsol [0] == 0, generalsol 7[0] ==1}1;
Clear [yunitimpulse ]
yunitimpulse [t_ 1 = Chop[ComplexExpand [generalsol [t] /.Csols [1]11]

" [0] == yprimestarter I

%Sin [2t]

OStep 3: Calculate
yzeroinput[t] = fotunitimpulse[t —X]f[x1dx

Clear [yzeroinput, X 1

t
yzeroinput  [t_ ] = Apart [Chop[J yunitimpulse [t -x] f [x] dx]]
0
~0.1tCos [2t]+0.9 (0.0555556 +1.t ) Sin [2t ]
Pay no attention to any error messages.
OStep 4: Sefformulay [t] = yzeroinput[t] + yunforced[t]:

Clear [formulay 1]
formulay [t_ ] = Simplify [yzeroinput [t ] +yunforced [t]]
(3.6 0.1t ) Cos[2t] + (0.45 +0.9t ) Sin [2t ]

This is the formula for this resonating undamped oscillator.

Use this formula to come up with a formula for ampliftififor this

oscillator and explain why your formula guarantees that this oscillator

will go into resonance (i.e. the amplitude will grow to infinity).

0G.4.a.ii)

Take another look at the formula for this undamped oscillator forced
by its own output:

| formulay [t]

(3.6 -0.1t ) Cos[2t] + (0.45 +0.9t ) Sin [2t ]
The formula for the undamped unforced oscillator is:

] yunforced [t]

3.6Cos [2t] +0.4Sin [2t]

DE.02.G4

Is the frequency of the oscillator forced by its own output any
different from the frequency of the unforced oscillator?

0G.4.b.i)

Here's the formula for the solution of a simple unforced undamped
oscillator
Y'[t1+9y[t]=0
with random starting data.
Clear [y, t,c 1]

b =0;

c=09;

ystarter = Random[Real, {-1,11}1;
yprimestarter = Random[Real, {-1,1 }];
Clear [C1, C2, z, z1, z2, generalsol, t 1
charequation =22 +bz +c ==0;

zsols = Solve [charequation, z 1;

generalsol [t ] =

C1E +C2F?! /. {z1 »zsols [1,1,2 [,22 »zsols [2,1,2 1};
Csols =

Solve [{generalsol [0] == ystarter, generalsol
Clear [yunforced ]

yunforced [t_ ] = Chop[ComplexExpand [generalsol [t] /.Csols [1]]1]
0.286914 Cos [3t ] +0.327614 Sin  [3t ]

Here's the convolution integral method cranking out the formula for
the solution of the same undamped oscillator forced by
fit] = ASin[3t] + B Cog3t]:

The frequency of f[t] matches that of
the solution of the undamped unforced oscillator.

Here A and B are cleared constants.

" [0] == yprimestarter 1

OStep 1: Calculateyunforced[t]
Clear [C1, C2, z, 21, z2, f, A, B, generalsol, t 1
b =0;
c=09;
f[t_1=ASin[3t]+BCos[3t];

charequation =z2+bz +c ==0;
zsols = Solve [charequation, z 1;
generalsol  [t_1] =
CLEY +C2F2' /. {z1 »zsols [[1,1,2 11,22 >zsols [[2,1,2 11}

c1E® 4 Cc28M

Csols = Solve [{generalsol [0] == ystarter,
generalsol’ [0] == yprimestarter 1

Clear [yunforced 1;
yunforced [t_] = Chop[ComplexExpand [generalsol [t] /.Csols [[1]]11]

0.286914 Cos [3t] +0.327614 Sin  [3t ]

OStep 2: Calculate the unit impulse responswyunitimpulse[t]

Csols = Solve [{generalsol [0] == 0, generalsol 7101 == 1}1;
Clear [yunitimpulse 1
yunitimpulse [t_ ] = Chop[ComplexExpand [generalsol [t] /.Csols [1]11]

%Sin 3t

OStep 3: Calculate
yzeroinput[t] = f(;unitimpulse[t —X] f[x] dx

Clear [yzeroinput, x 1

t
yzeroinput [t ] = Apart [Chop[j yunitimpulse [t - x] f [x] dx]]
o

1 1 .
—gAtCos [3t]+ﬁ (A+3Bt) Sin [3t]

Pay no attention to any error messages.

OStep 4: Sefformulay [t] = yzeroinput[t] + yunforced[t]:
Clear [formulay ]
| formulay [t_ ] = Simplify [yzeroinput [t ] +yunforced [t]]
1
18
How does this formula signal that resonance (i.e. the amplitude will
grow to) is inevitable unless you go with
A=B=07?

0G.4.b.ii)

Stay with the same setup
Y[t +9y(t] =0

with random starting data as in part i).

And see what happens when you force that oscillator with
fit] = ASin(kt] + A Cogkt]:

((5.16445 - 3At) Cos[3t] + (5.89705 +A+3Bt) Sin [3t])
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Csols = Solve [{generalsol [0] == ystarter,

Unless k = 3,the frequency of f[t] does NOT match that of 5
[0] == yprimestarter 11

the solution of the undamped unforced oscillator. generalsol'

Here A, B, and karecleared constants.
Clear [yunforced 1;

yunforced [t_] = Chop[ComplexExpand [generalsol [t] /.Csols [[1]]1]

OStep 1: Calculateyunforced[t
p y [t 2.Cos [1.5843t ] - 0.631194 Sin [1.5843t |

Clear [C1, C2, z, z1, z2, f, A, B, generalsol, t, k 1 o -
b=0; OStep 2: Calculate the unit impulse responswyunitimpulse[t]
c=9;
frt_1=ASin[kt]+BCos[kt]; Csols = Sque [{generalsol [0] == 0, generalsol ~ "[0] ==1}];

; 2 . Clear [yunitimpulse ]
charequation =z°+bz+c==0;

yunitimpulse [t_ 1 = Chop[ComplexExpand [generalsol [t] /.Csols [111]

zsols = Solve [charequation, z 1; 0.631194 Sin (158431 |
. in .

generalsol [t ] =
C1E'! +C2E?! /. {z1 »zsols [[1,1,2 11,22 »zsols [[2,1,2 1]}
cied't s c2e!t
Csols = Solve [{generalsol [0] == ystarter,
generalsol’ [0] == yprimestarter 1

OStep 3: Calculate
yzeroinput[t] = j;yunitimpulse[t - X]f[x]dx
Clear [yzeroinput, X 1

t
Clear [yunforced 1; yzeroinput  [t_ ] = Apart [Chop[J yunitimpulse [t - x] f [x] dx]]
o

yunforced [t_] = Chop[ComplexExpand [generalsol [t] /.Csols [[1]1]]]
0.286914 Cos [3t ] +0.327614 Sin  [3t ]

OStep 2: Calculate the unit impulse responseyunitimpulse[t]

Csols = Solve [{generalsol [0] == 0, generalsol “[0] ==1}1; | .
Clear [yunitimpulse 1 formulay [t_ ] = Expand [yzeroinput [t ] +yunforced [t]]

yunitimpulse  [t_ ] = Chop [ComplexExpand [generalsol [t] /. Csols [1]11] 2.Cos [1.5843t ] -0.157799tCos [1.5843t ] -0.531593 Sin [1.5843t ]
L sin (3t Now look at this:
3 -
Clear [amplitude ]

-0.157799tCos [1.5843t ] +0.0996016 Sin [1.5843t ]

OStep 4: Sefformulay [t] = yzeroinput[t] + yunforced[t]:

Clear [formulay ]

OStep 3: Calculate . amplitude [t ] = \/ (2-0.164845t )2 + (-0.550685 )?;
yzeroinput[t] = fo unitimpulse[t — x] f[x] d x endtime = 150;
oscplot = Plot [(formulay [t1, amplitude [t], -amplitude [t]},
{t, 0, endtime }, PlotStyle -
{{Blue, Thickness [0.01 1}, {Thickness [0.005 1}, {Thickness [0.005 1}},

Clear [yzeroinput, X 1

t
yzeroinput  [t_ ] = Apart [Chop[j yunitimpulse [t -x] f [x] dx]]
0 H gy " ; l
3B Cos[3t]-3BCos[kt ] +AkSin [3t] ASin [kt ] PlotPoints - 200, AxesLabel - {"t","y [t1"}, AspectRatio - >
3 (-3+k) (3+k) (-3 +k) (3+k)

Pay no attention to any error messages.

Prolog - {{Red, Thickness [0.02 ], Line [{{O, -10}, {endtime, -10}}1},
{Red, Thickness  [0.02 1, Line [{{0,10 }, {endtime, 10 1}}1}}]:

OStep 4: Sefformulay [t] = yzeroinput[t] + yunforced[t]:

Clear [formulay 1]
formulay [t_ ] = Simplify [yzeroinput [t] +yunforced [t]]

I
3 (-9 +k?2)
8.84557 Sin [3t ] + AkSin [3t] +0.982841k 2Sin [3t] - 3ASin [kt ])
How does this formula signal that true resonance (amplitude growing
to o) is impossible unless 3 or k= -3 ?
How does this formula signal that something like true resonance
happens when you go with

((-7.74667 +3B+0.860742k 2) Cos[3t] -3BCos[kt ] -

,.-illl"'l]]]]]]
(AATARTHANEIN
LT

1l
I
I I

aorbtO, 20
and you make k close, but not equal to 3 ? The horizontal lines indicate that this oscillator is redlined at 10 in the
sense that it will break apart or fry| if[t] | ever gets bigger than 10.
0G.4.b.iii) This oscillator needs your help.

You want to put the undamped oscillator coming from You've got to fix it by making small changes in the set-up.

y'[t] + 16 yit] = 0

with y[0] =0 and y[0] =2
into resonance with a forcing function
fit] = 0.1 Sirfk t].
What number k do you go with?
Show off your answer with a decisive formula and plot.

0G.4.c.i)

Here's the convolution integral method spitting out a formula for the
forced undamped oscillator coming from

y'[t] + 2.51y[t] = 0.5 Si[V2.51 {
with y[0] =2 and y[0] = —-1:

OStep 1: Calculateyunforced|t]

Clear [f,t ]
f[t]1=05Sin [V251t ];
b =0;
c =251
ystarter =2;
yprimestarter =-1;
Clear [C1, C2, z, z1, z2, generalsol, t 1
charequation =2z2+bz +c ==0;
zsols = Solve [charequation, z 1;
generalsol [t_] =
C1E'! + C2F?! /. (21 »zsols [[1,1,2 1,22 »zsols [[2,1,2 1}

C1E(O -158431 )t | o E(0. 4158431 )t

One possibility that comes to mind is to look at the original
differential equation
y'[t] + 2.51[t] = 0.5 SifV2.51 {
with y[0] =2 and y[0] = —1:
and reduce the forcing term by going with
y'[t] + 2.51y[t] = B Sin[v2.51 {
with y[0] =2 and y[0] = -1
where B is some positive number comfortably less than 0.5.
In the long run, will doing this keep the oscillator under the red line?
How do you know?
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Another possibility that comes to mind is to look at the original
differential equation
y'[t] + 2.51y{t] = 0.5 Sir{v2.51 {
with y[0] = 2 and y[0] = -1:
and throw on a damper to get
Y'[t] + by[t] + 2.51)t] = 0.5 Sir{V2.51 {
with y[0] =2 and y[0] = -1

where b is a positive number about as small as you can make it so thi

| y[t] | never exceeds 10.

Come up with your b.

Back up your answer with a decisive plot of the formula of your
solution. Nonbsoive here.

0G.4.c.iii)

Yet another possibility that comes to mind is to look at the original
differential equation
y’[t] + 2.51{t] = 0.5 Sir{v/2.51 {
with y[0] = 2 and y[0] = —-1:
and change the forcing function slightly by going with
y'[t] + 2.51yt] = 0.5 SifAt]
with y[0] = 2 and y[0] = —1.
where A is a number as closey@.51 as you can make it so that
| y[t]| never exceeds 10.
Does this work?
Back up your answer with a decisive plot of the formula of your
solution. Nonpsoive here.

0G.4.d)

The forced undamped oscillator coming from
y'[t] + 4y[t] = 0.5 Co$2.04 1

with y[0]=5 and y{0] =0

is technically not in resonance.

Take a look at it:

Clear [f,y, fakey ]

f[t ]=3Cos[204t ];

endtime = 100;

ndssol = NDSolve [{y”[t]+4y[t] ==f[t],y [0] ==5,y "[0] ==0},
y[t], {t O, endtime }, MaxSteps - 2000 ];

y[t_]1=y[t] /. ndssol [1];

Plot [y [t1, {t O, endtime 1}, PlotStyle - {{Thickness [0.01 ], Red }},

1
PlotPoints - 2 endtime, AxesLabel - {"t""y [t]"}, AspectRatio - X]

-40

What is it about the the solutions of the characteristic equation of
Y'[t] + 4y[t] =0

that should have made you suspect right off the bat that

forced undamped oscillator coming from
Y'[t] + 4y[t] = 0.5Co0$2.04 1

with y[0] =5 and y[0] =0

is close to being in resonance?

G.5) Beating is near resonance

Experience with G.4) above will be helpful.

0G.5.a)

When you go with the undamped oscillator forced by
Y'[t] + cylt] = FCogpt]
with y[0] = 0 and y[0] =0
and with p- v/c fairly small so that the oscillator is nearly in
resonance, you get something lots of folks like to see.
F=7
c =4
p=23;
Clear [y, t, yformula 1
formula =
DSolve [{y”[t]+cy[t] ==FCos[pt],y [0] ==0,y "[0] ==0},y [t],t I];
yformula [t_ ] = N[Chop[ComplexExpand [y[t] /. formula [1]]11]
5.42636 Cos [2.t ] -5.42636 Cos [2.3t ]

DE.02.G4-G6

A rather plain, undistinguished formula.
But its plot is neither plain nor undistinguished:
oscplot =
Plot [yformula T[t], {t 0,60 3},
PlotStyle -> {{Blue, Thickness [0.01 1}3},
AxesLabel -> {"t","y [t]"}];

Did you ever feel that trig identities can be more interesting outside
the trig classroom than they were in the trig classroom?

Clear [A, a, b, t ]

Simplify  [2ASin [% (a+b) t] Sin [—Z— (a-b)t]]
A (-Cos[at ] +Cos[bt])
Look at the formula for the oscillator:

| yformula [t]
5.42636 Cos [2.t ] - 5.42636 Cos [2.3t ]

Match these by setting A5.42636, a 2.3 and b= 2 and to see that
an equivalent formula for this oscillator is:

A = 5.42636;
a=23;
b =2

newyformula [t_ ] =2ASin [% (a+b)t]Sin [% (a-byt]
10.8527 Sin  [0.15t ] Sin [2.15t ]
Good.
Now look at this embellished plot of the oscillator:
Clear [amplitude ]

1
amplitude [t_] =2ASin [E (a-b)t]

10.8527 Sin [0.15t ]

beatplot = Plot [{amplitude [t], -amplitude [t]}, {t, 0,60 1},
PlotStyle -> {{Red, Thickness [0.01 1}},
DisplayFunction -> Identity  1;

revealingplot =
Show[oscplot, beatplot, PlotLabel -> "Beats" ];

-10
Describe what you see and analyze newfornitilaynd the formula
for amplitudédt] to explain why you see it. What do folks mean when
they talk about beats?

O0G.5.b)

What happened above came from
Y'[t] + cylt]=F Codpt]
with y[0] =0 and y[0] =0
and with p- V¢ small.
In other words one oscillator was forced with another oscillator of
almost the same frequency.
Got any idea of why you hear a beating sound when someone
simultaneously strikes two tuning forks of about the same frequency?

G.6) Oscillators and shock absorbers - the meaning of the
damping term by’[t]*

Calculus& Mathematica thanks lead mechanics Aaron Finley
and Don Happ of Don's Automotive in Homer, lllinois
for some expert advice on shock absorbers.

O0G.6.a.i) The undamped oscillator

The differential equation of the undamped oscillator is
y'[t] + cy[t] = 0 with c>0.
Here is a sample with
c= 2.1, y{0] = 1.5, y[0] = 3.0:
c=21;
initialdisplacement =1.5;
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initialvel =3.0;

endtime = 16;

Clear [s,y,y,t ]

ndssol = NDSolve [{y”[t]+cy[t] ==0,y [0] == initialdisplacement,

y’[0] == initialvel },y [t1, {t O, endtime }1;
y[t_]=y[t] /. ndssol [1];
Plot [y[t], {t, O, endtime },
PlotStyle - {{Thickness [0.01 1, Blue }}, PlotRange - All,

AxesLabel - {"t","y [t]"}, PlotLabel - "Undamped Oscillator” 1;
yit] Undanped Oscil | ator

This gives you an idea of how your grandfather's tired old
Cadillac with worn-out shock aborbers will
oscillate immediately after you drive it over a big pot hole.

Say why you should have been able to predict in advance, with no
plotting, that as t advances from from 0, the plot[tf lyad to go up
before it could go down.
What happens when you keef@ythe same but you go with

y[0] < 0?

0G.6.a.ii) Frequency of the undamped oscillator

The differential equation of the undamped oscillator is
Y'[t] + cy[t] = 0 with c> 0.

Here's a new sample with
c=1.0, y{0] = 0.5, y[0] = -2.3:

c =1.0;
initialdisplacement = 0.5;
initialvel =-2.3;

endtime = 16;
Clear [s,y,y,t ]
ndssol = NDSolve [{y”[t]+cy[t] ==0,y [0] == initialdisplacement,
y’[0] == initialvel },y [t1, {t 0, endtime }1;

y[t_1=y[t] /. ndssol [1];
littlec =

Plot [y[t], {t, O, endtime 1}, PlotStyle - {{Thickness [0.01 ], Red }},

PlotRange - All, AxesLabel - {"t", "y [t1"}, PlotLabel »>c"=1c"1;

You may want to enlarge this graph by clicking on it and then dragging
one of the corners.

Here is what you get when you give a hefty increase to ¢ and keep
everything else the same:

c = 10.0;

Clear [y, t ]

ndssol = NDSolve [{y”[t] +cy[t] ==0,y [0] == initialdisplacement,
y’[0] == initialvel Y.y [t1, {t O, endtime }1;

y[t_]=y[t] /. ndssol [11;

bigc =

Plot [y[t], {t, O, endtime }, PlotStyle - {{Thickness [0.015 ], Green }},
PlotRange - All, AxesLabel - {"t" "y [t]"}, PlotLabel »c"=1¢c"1;

yit] 10. = ¢

0088 AN NNNNLN AN
- Bos ANV VNV INJ\S b
Here they are together:
Show[bigc, littlec,
PlotLabel - "Big ¢ and little ¢ and other stuff the same" 1;
Bi¥g!d and little c and other stuff the same

-2
Most folks like to say that the frequency of an undamped oscillator is
the measurement of the number of oscillations the oscillator makes
every unit of time t.
Run additional experiments if you like and then you make the call:
Does increasing c increase or decrease the frequency of the oscillato

OG.6.a.ii) Amplitude of undamped oscillators
The differential equation of the undamped oscillator is
Y'[t] + cy[t] = 0 with ¢c> 0.
Here's yet another new sample with
c= 2.0, y{0] = 1.5, y[0] =-3.8:

DE.02.G6

c =2.0;
initialdisplacement =1.5;
initialvel =-338;
endtime = 16;
Clear [y, t ]
ndssol =NDSolve [{y”[t]+cy[t] ==0,y [0] == initialdisplacement,
y’[0] == initialvel },y [t1, {t O, endtime 1

y[t_1=y[t] /. ndssol [11;
littlec =

Plot [y[t], {t O, endtime 1}, PlotStyle - {{Thickness [0.01 ], Red }},

PlotRange - All, AxesLabel - {"t","y [t1"}, PlotLabel ->c"=c"1;

-3
Here is what you get when you give a hefty increase to ¢ and keep
everything else the same:

c =120;

Clear [y, t ]

ndssol =NDSolve [{y”[t]+cy[t] ==0,y [0] == initialdisplacement,
y’[0] == initialvel },y [t1, {t O, endtime 1

y[t_]=yI[t] /.ndssol [1];

bigc =

Plot [y[t], {t O, endtime }, PlotStyle - {{Thickness [0.02 ], Green }},
PlotRange - All, AxesLabel - {"t","y [t]1"}, PlotLabel -c"=c¢c"];

yit] 12. = ¢
1 si
AANAAANAAL 1
-0. ab 5 750 1 2.5 15
-1?3% i ‘
Here they are together:

| Show[bigc, littlec,

PlotLabel - "Big ¢ and little ¢ and other stuff the same” 1:
Bt and little ¢ and other stuff the same

Most folks like to say that the amplitude of an undamped oscillator is

the measurement of the perpendicular distance between the t-axis and

the highest point on the plot of the oscillator.
Run additional experiments if you like and then you make the call:

Does increasing c result in an increase or a decrease of the amplitude

of the oscillator?
0G.6.a.iv) Cadillac versus Porsche

When you remove the shock absorbers from a car and you drive the
car over a pot hole, then the the oscillation of the car immediately
after hitting the pot hole is approximately modeled by the differential
equation

Y'[t] + cylt] =0.
When the car is your grandfather's Cadillac Sedan deVille you get a

certain c in the model. When the car is your sister's Porsche 911, you

get another c in the model.

Which do you think gives you thae larger ¢ : The Cadillac Sedan
deVille or the Porsche 9117
Explain how you came to your opinion.

OG.6.b.i) The damped oscillator

The differential equation of the undamped oscillator is
y'[t] + cy[t] = 0 with c> 0.

Here's yet another sample with
c= 4.1, y{0] = 6.2, y[0] = O:

c=41;

initialdisplacement =6.2;

initialvel =0;

endtime = 16;

Clear [y, t ]

ndssol =NDSolve [{y”[t]+cy[t] ==0,y [0] == initialdisplacement,

y’[0] == initialvel },y [t1, {t O, endtime 1

y[t_1=yI[t] /. ndssol [11;

undamped = Plot [y[t], {t O, endtime 1
PlotStyle - {{Thickness [0.01 ], Red }}, PlotRange - All,
AxesLabel - {"t,"y [t]1"}, PlotLabel - "Undamped Oscillator" 1;
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This gives you an idea of how your grandfather's tired old
Cadillac with worn-out shock aborbers will
oscillate immediately after you drive it over a big pot hole.

Here is what you get when you go with a small, positive b and throw &
by[t] term

into

Y[t + cylt]=0
to get

Y'[tl + byl[t] + cylt]=0
and you keep everything else the same:

b =0.1;

Clear [y, t ]
ndssol =
NDSolve [{y”[t] +by’[t]+cy[t] ==0,y [0] == initialdisplacement,
y’[0] == initialvel }.y [t1, {t 0, endtime }1;
y[t_]=y[t] /. ndssol [1T;
smallb =

Plot [y[t], {t 0, endtime
PlotRange - All, AxesLabel
ylt] 0.1=b

}, PlotStyle
- ("t "y

- {{Thickness [0.02 ], Green }},
[t]1"}, PlotLabel ->b"=b"];

This gives you an idea of how your grandfather's
Cadillac equipped with brand new light duty Monroe-matic shock aborbers
will oscillate immediately after you drive it over a big pot hole.

Here they are together:

I Show[undamped, smallb,

PlotLabel - "undamped and damped with all other stuff the same” 1;
¥hd] danped with all other stuff

-6l V
See what happens when you increase b just a little bit:
b = 0.5;
Clear [y, t ]
ndssol =
NDSolve [{y”[t] +by’[t]+cy[t] ==0,y [0] == initialdisplacement,
y’[0] == initialvel Y.y [t1, {t O, endtime }1;

y[t_]1=y[t] /. ndssol [1];
slightlybiggerb =
Plot [y[t], {t O, endtime
PlotRange - All, AxesLabel
yit] 0.5-b

}, PlotStyle
- ("t", ”y

- {{Thickness [0.02 ], Magenta }},
[t1"}, PlotLabel ->b"=b"];

Show[undamped, slightlybiggerb,
PlotLabel - "undamped and damped with all other stuff the same" 1;
¥ihld] danped with all other stuff

DE.02.G6

This gives you an idea of how your grandfather's

Cadillac equipped with brand new medium duty Monroe-matic shock aborbers

will oscillate immediately after you drive it over a big pot hole.
Why do you think folks like to say that when you go with a small,
positive b, and a positive c, then

Y'[t] + by[t] + cylt] = 0

is the differential equation of a damped oscillator?
Does increasing b increase or decrease the effect of the damping?

O0G.6.b.ii) Too much of a good thing: The overdamped oscillator

The differential equation of the undamped oscillator is
Y'[t] + cy[t] = O with c> 0.

Here's a new sample with

c=6.2, y{0] = 5.8, y[0] = 3.1:
c =6.2;

initialdisplacement =5.8;

initialvel =31,
endtime = 16;
Clear [y, t ]
ndssol = NDSolve [{y”[t] +cy[t] ==0,y [0] == initialdisplacement,

y’[0] == initialvel },y [t1, {t O, endtime 1
y[t_]=y[t] /.ndssol [1];
undamped = Plot [y[t], {t O, endtime 1},
PlotStyle - {{Thickness [0.01 ], Red }}, PlotRange - All,

AxesLabel - {"t,"y [t]"}, PlotLabel - "Undamped Oscillator" 1;
YyI[t] Undanped Oscillator

6

-6
You can damp this oscillator by going with a small positive b and
throwing in a
by[t] term
into
Y'[t] + cylt] = 0
to get

Y[t + by[t] + cylt]=0
and keeping everything else the same:
b=11;
Clear [y, t ]
ndssol =
NDSolve [{y”[t]+by’[t]1+cy[t] ==0,y [0] == initialdisplacement,
y’[0] == initialvel },y [t1, {t O, endtime 1

y[t_]=y[t] /.ndssol [11;
smallb =
Plot [y[t]1, {t O, endtime
PlotRange - All, AxesLabel

yl[t] 1.1=b
6

}, PlotStyle
Sty

- {{Thickness [0.02 ], Red }},
[t]"}, PlotLabel -»b"= b"1;

Now the oscillator is damped fairly heavily.

See what happens when you damp it even more:
b =5.2;
Clear [y, t ]
ndssol =
NDSolve [{y”[t]+by’[t]+cy[t] ==0,y [0] == initialdisplacement,
y’[0] == initialvel },y [t1, {t O, endtime }1;
y[t_1=y[t] /. ndssol [1T;
smallb =
Plot [y[t], {t O, endtime
PlotRange - All, AxesLabel
it] 5.2-b

}, PlotStyle
- "y

- {{Thickness [0.02 ], Red }},
[t 1"}, PlotLabel ->b"= b"];

y
5
4
3
2
1

2.5 5 7510 125 15 t

This is what your grandfather's old Cadillac equipped with
brand new extra heavy duty Monroe-matic Gas Magnum shock absorbers will
do immediately after you drive it over a big pot hole.
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Why do most folks say that when you go witk that are too large,
you run the risk of overdamping the oscillator?
Why is it unwise to put dump truck shock absorbers on a Porsche 911

0G.6.b.iii) Custom damping

Look at this:

b =0.2;
c =6.2;
initialdisplacement =7.0;
initialvel =-9.0;
endtime = 16;
Clear [y, t ]
ndssol =
NDSolve [{y”[t] +by’[t]+cy[t] ==0,y [0] == initialdisplacement,
y’[0] == initialvel },y [t1, {t O, endtime }1;
y[t_1=yI[t] /. ndssol [1];
lightlydamped =Plot [y[t], {t O, endtime }
PlotStyle - {{Thickness [0.01 1, Blue }}, PlotRange - All,
AxesLabel - {"t","y [t]1"}, PlotLabel - "Lightly damped Oscillator",
Epilog - {{Thickness [0.01 ], Red, Line [{{0,0.5 }, {endtime, 0.5 }}1},
{Thickness [0.01 ], Red, Line [{{0, -0.5}, {endtime, -0.5 }}1}}1;

YLightly danped Oscillator

This is the plot of the damped oscillator coming from
Y'[tl + by'[t] + cy[t] =0
with y[0] = 7.0, y[0] = - 9.0, b= 0.2 and c= 6.2.
Your job is to come up with a new damping coefficient b so that when
you keep everything else the same, then the plot of the new damped
oscillator:
- oscillates between the red lines for when t is bigger than 6 but
- oscillates above, between and below the red lines foruas from
0 to 6.
lllustrate your answer with a plot.

G.7) Damped, critically damped and overdamped unforced
oscillators

0G.7.a)

Here is a formula for the solution of the undamped unforced oscillator
Y'[t] + 25.0y[t]=0
with random starter data:

b =0;

c =25.0;

Clear [y, yundamped, t ]

linoscdiffeq =y”[t]+by[t]+cy[t] ==

ystarter = Random[Real, {2, 6 }1;

yprimestarter = Random[Real, {-4,4 }1;
Clear [C1, C2, z, z1, z2, generalsol, t 1
charequation =z2+bz +¢ ==0;

zsols = Solve [charequation, z 1;
generalsol [t ] =
C1E*! + C2F2' /. {z1 »zsols [1,1,2 1,22 »zsols [2, 1,2 1};
Csols =
Solve [{generalsol [0] == ystarter, generalsol
yundamped [t_ ] = Chop [ComplexExpand [generalsol
25y [t]+y"[t] ==
2.70867 Cos [5.t ] - 0.623509 Sin [5.t |
You can damp this oscillator lightly by adding a modest damping term

by[t]:
b =08;
Clear [y, ylightlydamped, t 1
linoscdiffeq =y”[t]+by'[t]+cy[t] ==
Clear [C1, C2, z, z1, z2, generalsol, t 1
charequation =z224+bz+c==0;
zsols = Solve [charequation, z 1;
generalsol [t ] =
C1FE! w C2F2' /. (z1 »zsols [1,1,2 ],2z2 »zsols [2, 1,2 1};
Csols =
Solve [{generalsol [0] == ystarter, generalsol
ylightlydamped [t_ 1 = Chop[ComplexExpand [generalsol
25.y [t]+08y "[t]+y”[t] ==
2.70867 E 04! Co0s[4.98397t ] - 0.408123 E 94! Sin [4.98397t ]

[0] == yprimestarter ~ }1;
[t] /.Csols [1]1]

"[0] == yprimestarter I
[t]/.Csols [11]]
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You can put on a really big damping term:
b =12.0;
Clear [y, yoverdamped,t ]
linoscdiffeq =y”[t]1+by'[t]1+cy[t] ==
Clear [C1, C2, z, z1, z2, generalsol, t 1
charequation =z?+bz +C ==0;
zsols = Solve [charequation, z 1;
generalsol [t_] =
C1Et + C2F2! /. {z1 »zsols [1,1,2 [,22 >zsols [2, 1,2 1};
Csols =
Solve [{generalsol [0] == ystarter, generalsol
yoverdamped [t_ ] = Chop[ComplexExpand [generalsol
25.y [t]+12.y "[t] +y”[t] ==0
-0.625764 E 931662t | 333444 F 268338t
This is what folks call an overdamped oscillator.
Reason: No sines or cosines; so it doesn't oscillate at all. It just dies
outto O.
See all three:

Plot [{yundamped [t ], ylightlydamped [t ], yoverdamped [t]},
{t, 0, 8 }, PlotStyle - {{Thickness [0.01 ], Blue 1},
{Thickness [0.01 ], Red }, {Thickness [0.01 ], Magenta }},

0

‘[0] == yprimestarter ~ }1;
[t]/.Csols [111]

1
AxesLabel - {"t", ™ }, AspectRatio - ?

PlotLegend - {"un", "light", "over" }, LegendSize - 0.4 ];

-1
o
- un
— lighf
— over

Your mission is to keep ¢ as defined above and find the critical value
beritical so that if

0< b < bcritical,
then the oscillator

Y[t + by[t] + cylt]=0
is not overdamped (i.e. its solution formulas have sines and/or
cosines), but if

beritical< b,
then the oscillator

Y'[t] + by[t] + cylt]=0
is overdamped (i.e. its solution formulas have no sines or cosines).
The code below may be useful.

Clear [C1, C2, z, z1, z2, b, generalsol, t 1

charequation =z2+bz +c ==0;
zsols = Solve [charequation, z 1

FYI: When you go with b = bcritical then lot of folks say that
the resulting oscillator is critically damped.
Critically damped oscillators are no big deal.

O0G.7.b)

This time go with cleared b and ¢, with-®. Your job this time is to
find bcriticalc] (in terms of c) so that if

0< b < beritical[c],
then the oscillator

Y'Itl + by'[t] + cylt] =0
is not overdamped (i.e. its solution formulas have sines and/or
cosines), but if

bcritcalc] < b,
then the oscillator

Y[t + by[t] + cylt] =0
is overdamped (i.e. its solution formulas have no sines or cosines).
The code below may be useful.

Clear [C1, C2, z, z1, z2, generalsol, t, b, ¢ ]

charequation =2z2+bz +c ==0;

zsols = Solve [charequation, z

]
((z ﬁ% (-b-vbZ-4¢)}, {z- % (-b+/b2-4¢)}}
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G.8) The effect of resistance in simple parallel electrical
circuits*
0G.11.a)

You don't have to understand the
electrical jargon to be able to do this problem.

You are fortunate enough to have your own computer set-up right in
your dorm room. One night, Brian, the EE student who lives across
the hall comes in and says, "Part of my EE 250 homework for
tomorrow is to analyze the effect of varying the size of the resistance
on the current in a simple parallel electrical circuit. | don't have a clue
about where to start."

At first, you think, "I'm scared because I'm a life science major and |
don't know anything about electrical circuits.” But you don't let on.
Instead, you say, "Let me see that EE 250 textbook." In the book you
see that in a simple parallel electrical circuit, one of the main
measurements is

Xt] = voltage drop across the capacitor
Reading on, you see thdtlis a solution of the oscillator diffeq

X'[t] + i’l‘_'—[‘]— + é—[ﬂ— =0
where L, C, and R are given positive humbers with

L = inductance

C = capacitance, and

R= resistance.
You say, "Brian, | don't even know what those words mean, but |
think | can help you because | undertand the meaning of the damping
term b in the oscillator diffeq

Y [t] + by [t] + cy[t]=0.

Taking this as your clue, describe the way that solution plots of

X[t + B X = 0 for small positive R

are fundamentally different in shape from solution plots of

X'[t] + X4 X = 0 for big positive R.

G.9) Using Euler's identity E®+'®t = EPt (Codqt] + | Sin[qt])
to help to anticipate behavior of solutions of the the
unforced oscillator diffeq
Y[t +by[tl+cylt]=0

by glancing at the solutions of the characteristic equation
ZZ+bz+c=0*

0G.9.a) Solutions of characteristic equation having formp +1q
andp — g with p <0 andq # 0 signal that all solutions are

damped sine waves squashed to 0 as t gets large

Here is an unforced linear oscillator diffeq:

b = Random[Real, {05, 1.5 }];
¢ = Random[Real, {3, 8 }1;

startery = Random[Real, {-3, 3 }1;

starteryprime = Random[Real, {-2, 2 }1;

Clear [t, y 1

linoscdiffeq = {y" [t] +by [t]l+cy[t] ==0,

y[0] == startery, y' [0] == starteryprime 1
ColumnForm [linoscdiffeq 1

449134y [t] +1.14174y "[t] +y”[t] ==0
y[0] == -2.19003
y’[0] == -0.869714
The solutions of the characteristic equation are:
Clear [z]
charequation =224+bz +c ==0;
zsols = Solve [charequation, z 1
{{z > -0.57087 -2.040941 }, {z > -0.57087 +2.040941 }}
These have the form
p+ g and p-1q with p< 0 and g O.
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Explain why this signals that all solutions are damped waves
squashed to O as t gets large.

oSample answer included as a gesture of friendship

If p+1qg andp-1q with p <0 and g+ 0 are the solutions of the
charcteristic equation of

y’ltl + by'[t] + cylt] =0,
then all solutions ay”’[t] + by'[t] + cy[t] = O look like

K1EP+ 1ot . K2 EP -lajt

=K1EPY(Codqt] + ISin[qt]) + K2 EPt(Codqt] + ISin[qt])

These yield combinations EPt Coqqt] andEP! Sin[q t].

Becausep < 0, the solutions are dampedQ@st gets large.
Becauseq # 0, the solutions oscillate like sine waves as they are
damped tc.

Now you try one.

O0G.9.b) Solutions of characteristic equation having form0+ 1 q
and 0—1q with q # O signal that all solutions are undamped sine
waves

Here is an unforced linear oscillator diffeq:
b = 0;
¢ = Random[Real, {3,5 }1;
startery = Random[Real, {-3,3 }1;
starteryprime = Random[Real, {-2,2 }1;

Clear [ty ]

linoscdiffeq = {y" [t] +by [t] +cy[t] == 0,
y[0] == startery, y' [0] == starteryprime Iy

ColumnForm [Thread [linoscdiffeq 11

46302y [t]+y”[t] ==0
y[0] == 2.94433
y’[0] == -0.196873

The solutions of the characteristic equation are:

Clear [z]
charequation =2z2+bz +c ==0;
zsols = Solve [charequation, z 1
{({z 0. -2.151791 }, {z »0. +2.151791 }}

These have the form
O+ lg and O- 1 qwith g+ 0.
Explain why this signals that all solutions are undamped waves.
|
0G.9.c) Damped but not oscillating solutions

Here is an unforced linear oscillator diffeq:
b = Random[Real, {4,6 }1;
¢ = Random[Real, {3,4 }1;

startery = Random[Real, {5, 8 }1;

starteryprime = Random[Real, {-2,2 }];

Clear [ty ]
linoscdiffeq = {y" [t] +by [t] +cy[t] ==
y[0] == startery, y' [0] == starteryprime }:
ColumnForm [Thread [linoscdiffeq 11
3.87329y [t]+4.77453y "[t] +y”[t] ==0
y[0] == 7.20924

y'[0] == -1.64156
The solutions of the characteristic equation are:
Clear [z]
charequation =z2+bz +c ==0;
zsols = Solve [charequation, z 1

{{z - -3.73847 }, {z - -1.03606 }}
These have the form

p and qwith g0 and g< O .
Explain why this signals that all solutions collapse to 0 without
oscillation.
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G.10) Add'em up: The superposition principle*
The superposition principle says:
If y1[t] solves

Y'[t] + by'[t] + cy[t] =f[t] with y[0] =rand y[0] =s
and ify2[t] solves
o Y'[tl + by'[t] + cyitl = g[t] with y[0] = pand y[0] = q,
then

ydt] = y1[t] + y2[t]
solves

Y'[t] + by[t] + cy[t] = f[t] + g[t] with y[0] =r + p and
y'[0l=s +q.

Click on the right for an explanation

y3"[t] + by3[t] + cy3[t]
= (y17[t] + y2”[t]) + b(yL'[t] + y2'[t]) + c(yl[t] + y2[t])

=(y1'[t] + byl'[t] + cyl[t]) + (y2"[t]+ b y2'[t] +cy2[t]) = f[t] +
and

y3[0] =y1[0] + y2[0]=r1 + p
and

y3'[0] =y1'[0] + y2'[0] =s + Q.

None of these problems require formulas or other extensive calcultion.

0G.10.a.i) Add them up

Use the superposition principle to set numbers p and q so that]if y1
solves

Y'[t] + 3y[t] + 8yit] =f[t]
with y[0] =1 and y[0] = 5,
and y2t] solves

Y[t + 3y[t] + 8y[t] =0
with y[0] = p and y[0] =q
then yit] = y1[t] + y2[t]
solves

Y[t + 3Y[t] + 8ylt] = f[t]
with y[0] = 3 and y[0] = O.

0G.10.a.ii)

If yzeroinpuft] solves
YLt + 2Y'[t] + 7ylt] = f[t]
with y[0] =0 and y[0] =0,
and yunforceft] solves
Y[t + 2Y[t] + 7y[t]=0
with y[0] = 12 and ¥{0] = —4
then what differential equation does
Wt] = yzeroinpuft] + yunforcedt]
solve?
Make sure you give the starting data.
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0G.10.a.iii)

If y1[t] solves
Y[t + 2y'[t] + 7y[t] = Sinft]
with y[0] =0 and y[0] =0,
and y2t] solves
Y[t + 2Y'[t] + 7y[t] = -Sint]
with y[0] =12 and ¥{0] = -4
then what differential equation does
y3tl = y1[t] + y2[t]
solve?
Make sure you give the starting data.

0G.10.a.iv)

Calculus Cal told Careful Carrie that if[glLsolves
Y'[t] + 3y[t] + 8y[t] = DiracDeltdt — 1]
with y{0] =3 and y[0] =5,

and if y4t] solves
Y’'[t] + 3y[t] + 8y[t] = DiracDeltdt — 1]
with y0] =7 and ¥[0] = -4,

then
y3t] = yi[t] + y2[t]

solves
y'[t] + 3y[t] + 8y[t] = DiracDeltgt — 1]
with 0] =10 and ¥{0] = 1.

What did Carrie say to Cal?

0G.10.a.v)

Given:

- y1[t] solves
V[t + 1.2Y[t] + 9.7y{t] = Sin(t]
with 0] =0 and y[0] =0,

— y2[t] solves
VIt + 1.2y[t] + 9.7y(t] = E%4tCodt]
with 0] =0 and y[0] = O,

- y3[t] solves
VIt + 1L.2Y[t] + 9.7yt]=0
with yf0] =1 and y{0] = 2.

What numbers p, g and r do you pick to make
Wit = pydlt] + qy2[t] + ry3it]

solve
V[t + 1.2y [t] + 9.7yt] = 2 Sint] + 3E%4tCoqt]
with 0] =3 and y[0]=67?

G.11) Boundary value problems: Shooting for a specified
outcome

O0G.11.a.i) Shooting the undamped oscillator for a specified

boundary value

This problem starts with an undamped oscillator
Y[t + 2.1)t]=0
with fO] = 0 but y[0] yet unspecified.
Clear [diffeq, sollist, thissol, colors,

t, starter, y, target, startingpoints, yprimestarter 1
sollist = {};

(oscillator = {y" [t] + 21y [t] == 0,
y[o1 == 0,
y' [0] == yprimestarter }) // ColumnForm
21y [t]+y”[t]==0
y[0] ==0
y’[0] == yprimestarter
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You are given the job of coming up with a starter velocif@lyso the

oscillator \ft] satisfies ¥6.0] = 2.32 to two accurate decimals.
endtime = 6.0;

goal =2.32;
target = {endtime, goal };
bullseye = Graphics [{PointSize [0.03 ], Red, Point [target 1}1;
targetlabel = Graphics [Text [target, target, {1,2 }11;
Show[bullseye, targetlabel, Axes - True, AxesLabel - {"t", "y [t1"},
PlotRange - {{0, 1.3 target [11}, {0, 2target [201}}1;
yIt]
4
3
.
2 6., 2.32)

1

1 2 3 4 5 6 7
Make a guess

y[0] = startervek 2.1
and activate the following solution plotter code which plots and
remembers your first try:

startervel = 2.1;
Clear [thistry, sollist 1;
thistry [t_1 = y[t] /. NDSolve [oscillator /.
yprimestarter -> startervel, y [t1, {t O, endtime Y1[I0111;
sollist = {thistry [t1};

numsols = Length [sollist 1

startingpoints = N[sollist /.t ->0,31;
names = Table [startingpoints [[k11, {k, numsols 1}1;
plotsols =

1

- —,
GoldenRatio
PlotStyle -> {{Thickness [0.01 ], Blue }}, AxesLabel -> {"t","y [t1"},

Plot [Evaluate [sollist 1, {t, 0, endtime }, AspectRatio

DisplayFunction -> Identity  [;

Show [ plotsols, bullseye, targetlabel, PlotRange -> All,
DisplayFunction -> $DisplayFunction 1,

TableForm [ {startingpoints, N [sollist /.t ->endtime, 3 1},

TableHeadings -> {{"y [0]1","y [6]"}, None }]

yit)
[ )

2 (6., 2.32)
15

1

0.5

) W B AR S

0.5

-1
15

y (0] 0.

y(6] 0.966

The solution corresponding t¢[@] = 2.1 undershoots the target. You
respond by increasing your starting value g@lyand trying again:
startervel =82;

Clear [thistry 1;
thistry [t_1=y[t] /. NDSolve [oscillator /.

yprimestarter - startervel, y [t1, {t O, endtime Y1011

PrependTo [sollist, thistry [ti1;

numsols = Length [sollist 1;

If [numsols > 3, numsols -= 1; sollist = Drop [sollist, -111;
startingpoints = N[sollist /.t 50,37,

names = Table [startingpoints Ik1. {k, numsols }1;

plotsols =

Plot [Evaluate ([sollist 1, {t O, endtime 3},

1

AspectRatio -» —————, PlotStyle - {{Thickness [0.01 ], Blue }},
GoldenRatio

AxesLabel - {"t","y [t]1"}, DisplayFunction - |dentity ];
Show[plotsols, bullseye, targetlabel, PlotRange - All,
DisplayFunction - $DisplayFunction 1;
TableForm [ {startingpoints, N [sollist /.t -endtime, 4 1},
TableHeadings - {{"y [0]","y [61"}, None }]
yIt]

y (0] 0. 0.
y[6] 3.773 0.9663
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Close, but no cigar.

Interact with this last code by changing the startervel values and
rerunning. The code is written to keep track of your last three attempts.
Remember your job is to come up with a starting value that makes
y[6] agree with 2.32 to two accurate decimals (after rounding).

O0G.11.a.ii) Shooting the damped oscillator for a specified boundary
value

This problem starts with a damped oscillator version of the oscillator
in part i) immediately above:
Y'[t] + 0.5Y[t] + 2.1y{t] =0
with O] = 1.3 but y[0] yet unspecified.
Clear [diffeq, sollist, thissol, colors,
y, t, starter, target, startingpoints, yprimestarter 1
sollist = {};
(oscillator = {y" [t] + 05y [t] + 21y [t] ==0,
y[0] == 1.3,
y' [0] == yprimestarter }) // ColumnForm
21y [t]+05y "[t]+y”[t] ==
y[0] == 1.3
y’[0] == yprimestarter
You are given the job of coming up with a starter velocif@lyso the
oscillator \ft] satisfies ¥5.0] = 2.79 to two accurate decimals.
endtime = 5.0;
goal =2.79;
target = {endtime, goal };
bullseye = Graphics [{PointSize [0.03 ], Red, Point [target ]}1;
targetlabel = Graphics [Text [target, target, {1,2311;
Show[bullseye, targetlabel, Axes - True, AxesLabel - "ty [t1ty,
PlotRange - {{0, 1.3 target [11}, {0, 2target [211}}1;

Make a guess

y[0] = startervelocity= 3.6
and activate the following solution plotter code which plots and
remembers your first try:

startervel = 3.6;
Clear [thistry, sollist 1;
thistry [t_1=y[t] /. NDSolve [oscillator /.
yprimestarter - startervel, y [t]1, {t O, endtime }1011;
sollist = {thistry [t]};
numsols = Length [sollist 1; Null;
startingpoints = N[sollist /.t -0,31;
names = Table [startingpoints [k1, {k, numsols 1}1;
plotsols = Plot [Evaluate [sollist 1. {t, 0, endtime 1
AspectRatio - ——1——— PlotStyle - {{Thickness [0.01 ], Blue }},
GoldenRatio
AxesLabel - {"t","y [t ]"}, DisplayFunction - ldentity ];
Show[plotsols, bullseye, targetlabel, PlotRange - All,
DisplayFunction - $DisplayFunction 1;
TableForm [ {startingpoints, N [sollist /.t -endtime, 3 1},
TableHeadings - {{"y [0]","y [6]"}, None }]
yIt]
°
(5., 2.79)

y[0] 13
y[6] 0.839

The solution corresponding t¢[9] = 3.6 undershoots the target. You
respond by increasing your starting value §@lyand trying again:

startervel = 30.2;

Clear [thistry 1;

thistry [t_1=y[t] /. NDSolve [oscillator /.

yprimestarter - startervel, y [t1, {t O, endtime }1[1];

PrependTo [sollist, thistry [t11;

numsols = Length [sollist 1;

If [numsols > 3, numsols -= 1; sollist = Drop [sollist, -111;
startingpoints = N[sollist /.t -0,31;

names = Table [startingpoints k1, {k, numsols }1;
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plotsols = Plot [Evaluate [sollist ], {t, 0, endtime },
1
AspectRatio -» ————— PlotStyle - {{Thickness [0.01 ], Blue }},
GoldenRatio
AxesLabel - {"t","y [t]1"}, DisplayFunction - |dentity ];
Show[plotsols, bullseye, targetlabel, PlotRange - All,
DisplayFunction - $DisplayFunction 1;
TableForm [ {startingpoints, N [sollist /.t -endtime, 4 1},
TableHeadings - {{"y [0]","y [61"}, None }]
y(t]
15
10
5
°
T 5 !
-5
-10
y[0] 1.3 1.3
y[6] 4.863 0.8386

Close, but no cigar.

Interact with this last code by changing the startervel values and
re-running. The code is written to keep track of your last three
attempts.

Remember your job is to come up with a starting value that makes
y[5] agree with 2.79 to two accurate decimals (after rounding).

0G.11.b) For your information

The trail and error shooter method you used above may seem dinky
and simple-minded. It is. But many professional experts prefer this
method over any other.
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