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DE.O3 Laplace Transform and Fourier
Analysis
Basics

B.1) The Laplace transformY][s] of y[t] is
Yis = [ ESStylt dt.
The Laplace transform ofy'[t] is s Y[s] - y[O0].

The Laplace transform ofy"[t] is 2 Y[s] — sy[0] - y’[0]

Here's the inside scoop on the Laplace transform:
The functions legal for the Laplace transform are all functigths f
with the property that
ES'f[t] » 0 as t- o

for all large positive s.

Sifpt], Codpt] , Et, Logt]
and any quotient of polynomials are all legal.
The Laplace transform of a given functidt] fis another function,
F[sl, given by

Asl = "™ ESt{ dt.

(The t variable is integrated out, leaving only S.
For instance, here's the Laplace transform of
fit] =t

Clear [f F, s, t 1;

flel=t

F[s_] = LaplaceTransform frelts 1
1
s2

Check:

| jE'S‘f[t]dt
0

it [Res) >0, L, L ESt tat]

This is Mathematica's way of telling you that i ®, then

B eSSt dt= L.
If Mathematica is given the Laplace transform [¢f, fthen
Mathematica can often recover the formula foy. f
] InverseLaplaceTransform [F[sl,s, t ]
t

Some more play:

OExperiment 1:
Clear [f, F,s,t 1,
ft1=Sin[t];
F[s_] = LaplaceTransform  [f [t],t s ]

_1

1+s2

| InverseLaplaceTransform [F[s],s, t ]

Sin [t ]

| InverseLaplaceTransform [F[sl,s, t 1==f[t]
True

OExperiment 2:

Clear [f, F,s,t 1,

fre1=€";

F[s_] = LaplaceTransform  [f[t],t s ]
1

1+s

| InverseLaplaceTransform [F[s].,s, t ]

Ef(

| InverseLaplaceTransform [F[sl,s, t 1==f[t]
True
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OExperiment 3:
Clear [f, F,s,t 1

Fls_] =

s2+4
_2
4 +s2
| f [t_ 1 = InverseLaplaceTransform [F[s],s,t 1]
Sin [2t]
| LaplaceTransform  [f[t],t s ]
_2
4 152

OExperiment 4:
Clear [f, Lf, s, x 1;

FIs_] 52
— T ss2

5.2

2+s
| f [t_ ] = InverseLaplaceTransform [F[s].s,t 1]
52E 2!
| LaplaceTransform frelts 1

5.2

2+s

Before computers, folks did these by looking up functions
and their inverse Laplace transforms in printed tables.

Different functions have different Laplace transforms.

0OB.1.a.i) The Laplace transform of the first derivative

Look at this:

Clear [y, t,s 1;
LaplaceTransform [yrtl.ts 1

s LaplaceTransform [y [t],t,s ] -y (0]
One reason folks fall for the charms of the Laplace transform is that if
dtl =y'tl,

then you are guaranteed that the Laplace transforms line up like this:
Qgsl = s Y[s| - yI0]

where
ds] is the Laplace transform oftdy = y’[t]

and

Y[s] is the Laplace transform ofty.

This is a good fringe benefit because it tells you how to write down
the Laplace transform ofg = y’[t] once you've got your hands on
y[t] and its Laplace transform.

Play with it:
OExperiment 1:
Clear [y, Y,s, t 1;
y [t_ ] = E-O.4t :
LaplaceTransform  [y’[t1,t s ]
0.4
" 04 +s
| Together [s LaplaceTransform [y[til,ts 1-yI[011
0.4
" 04 +s

OExperiment 2:

Clear [y,s, t ;
yI[t_]1=E" Cos[rt];
Together [LaplaceTransform [y'rti, ts 11
“1-7%-s
1+72+2s +s2
| Together [s LaplaceTransform [y[ti,tts 1-y[011
“1-n2-s
1+7m2+2s +s2
Even when Mathematica can't handle the calculations, you can be
certain that if
dtl = y'[tl,
then you are guaranteed that
Gsl=sYls|-yl0] o ,
because you can use integration by parts to explain this formula. Do it

OAnswer:

Remember,

YIsl = [T E-Sty[t]dt,
and becausg|[t] = y’[t]

Glsl = [ ESty'[t]dt, .

53



The upshot:
Explaining why
Glsl =s Y[s] - y[0]
is the same as explaining why
Jy ESty'[tldt=s " ESty[t]dt-y[0].
To get a grasp on the left side, remember
o ESty'[tldt=limitof [ ESty'[t]dtasn— e

Now work on
o ESty[tiat
using integration by parts:
The integration by parts formula is
Jo urtIvItidt = ultlvit] I3 - ' vitlw[t] dt.
Make the assignments:
ult] = E-Stand v'[t] = y'[t].
This gives
u'[t] = —s EStandv[t] = y[t]
Plug into the integration by parts formula to get
Jy ESty'[tiat
= ESY[tIg - [-sEStyltldt
= ESty[t)l] + s [ E-Sty[t] dt
= E"y[n]-y[0] + s Jj E-Sty[t]dt.
Asn - oo,
k ESYyltldt - Gisl,

E™"y[n] - 0,
and

s fy ESty[tldt > sY[s].
So

G[s] = -y[0] + s Y[s] = s Y[s] - y[O]
as advertised.

If someone ever asks you whether you have seen the Laplace
transform, now you can say that you've seen a little bit about it. And
you can tell them that you saw it first in DiffE¢@athematica

OB.1.a.ii)
Look at this:
I Clear [y, t,s 1;
LaplaceTransform [y”[t1,ts 1
s? LaplaceTransform [y[tl,tts 1-sy[0]-y'[0]
You already know the Laplace transform Gityis
s Ys] - y[OQl.

How does this fact guarantee that the Laplace transforfi[tfig
€ Y[s] - sy{0] - y'[0]?

OAnswer:
Put
ht] = y”[t] andg[t] = y’[t]
so that
ht] = g'[t].

According to part a.i) above, you are guaranteed that
H[s] = s Gs] - g[Ol:

DE.03.B1»B2

Clear [G, H, g, y, Derivative, s 1;
Hls_1 =sG[s] -y'[0]
sG[s] -y'[0]

The formula in part a.i) also says that
Gls| = s Y[s] - y[O]:

| Expand [H[s] /.G [s] »>sY[s]-y[0]]
-sy[0]) +s% Y[s] -y’ [0]

So
HI[s] = & Y[s] — s y{0] - y’[0],
as advertised.

Try this formula out:

OExperiment 1:

Clear [y,s, x,t 1;
y[t_1=Sin [5t];
LaplaceTransform  [y”[t],t s 1]
125
T 25+s2
| Together [s? LaplaceTransform [y[tl,t,s 1-sy[0]-y'[0]]
125
" 25482

OExperiment 2:
Clear [y,s, t 1;

y[t_ 1 =Sin [t]+%Sin [2t1];

Together [LaplaceTransform [y”[ti, t,s 11
-8-5s2
(1+s2) (4+s2)
| Together [s? LaplaceTransform  [y[t],t, s ]-sy[0] -y’ [0]]
-8-5s2
(1+s2) (4+s2)

It works in theory even in castfathematicacan't handle.

B.2) Using the magic of the Laplace Transform to come up
with formulas for forced exponential diffeqs and forced
oscillator diffeqs

OB.2.a) Using the Laplace transform to solve a forced exponential
diffeq

Showcase the Laplace transform by using it to come up with the exact
formula for the solution of

Y[t +1.2V{t] = 4.75 E009tCog3.5t]

with y{0] = 5.2.

OAnswer:
With the Laplace transform, this is duck soup. You look at the diffeq:
y'[t] + 1.2 \t] = 4.75 E%-09tCo4g3.5t]
with y[0] = 5.2.

and then you enter

Clear [f, t,Y,y,s 1
r=12;
fIt_]=475E %! Cos[35¢t ];

LaplaceTransform [frti, t,s 1 +starter
starter =52;Y [s_]=

r+s
475 (009 +s)
52 + 53009 3)
12 +s

This is the Laplace transform of the solution.

To get the formula for the soluticy[t] you calculate the inverse
Laplace transform cY[s].

The formula for the solutioy[t] is:

| y [t_ 1 = Chop [Expand [InverseLaplaceTransform [Y[s],s, t 111
480893 E 12! 10.391074E °%! Cos[35t ] +1.23312E %% Sin [35t ]
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LaplaceTransforiif[t],t,5]+ b ystarte# s ystarter yprimestarter

That's all there is to it. Y[s] = Zibec
Check whether thiy[t] solves y'[t] + 1.2 y{t] = 4.75 E*091Cog3.5t]: withb=2.0,c=6.5, f[t] = 9.1E"*°", ystarter= 1.5 and
| Chop[Expand [y’ [t]+12y [t]1]] yprimestartee -4.7.
475E %0 Cos[35t ) Then your grandparents would look in a printed table to find which
Yepper. functiony[t] hasY[s] for its Laplace transform.
Check whether thiy[0] = 5.2 for thisy[t]:
IS_Z[O] This is similar to what you are doing, but you're using the computer to
Everything checks. find which functiony[t] hasY[s] for its Laplace transform.
OB.2.b) Using the Laplace transform to solve a forced oscillator oB.2.d)
diffeq Part of the job of mathematics is to explain why things are guaranteed

to work out.

Showcase the Laplace transform by using it to come up with the exac Explain why the methods used in parts a) and b) above worked.

formula for the forced, damped oscillator coming from

Y [t] + 1.3Y[t] + 6.5 )[t] = 9.1 E 08t DAnswer
with y{0] = 1.6 and ¥{0] = 3.7. OExplanation for the forced exponential diffeq
oAnswer: y'[t] + ry[t] = f[t]:

With the Laplace transform, this is also duck soup.
You look at the diffeq; Enter the differential equation with everything cleared:
y”[t] + 1.3Y[t] + 6.5}{t] = 9.1 E 08! |
with y[0] = 1.6 andy’[0] = 3.7.
and then you enter

Clear [f, t,Y,y,s 1
b=13;c =6.5;
f[t]=91E08t;

It's just a little algebra.

Clear [y, t,f,Y,r,s 1;
diffeq =y [t] +ry[t] == f[t]
ry [t]+y [t]==f[t]

Replace all the functions involved by their Laplace transforms:

laplaced = diffeq /.
{y[t] -> LaplaceTransform [yrti,ts 1,
y' [t]1 -> LaplaceTransform [y [ti,ts 1,

ystarter = S.i; yprimestarter =3.7; f [t] -> LaplaceTransform  [f[t],t, s 1}
Y[s_1 = - (LaplaceTransform [f[t],t,s ]+bystarter + r LaplaceTransform [y[t],t s ] +sLaplaceTransform [y(tl,tts 1-y[0] ==
s?+bs+c LaplaceTransform  [f [t],t s ]
s ystarter + yprimestarter )
1046 +525 + o4 Solve this for the Laplace Transformy(t]:
65 +13s +s? | sol = Simplify [Solve [laplaced, LaplaceTransform [yrti,t.s 111
.. . LaplaceT! f fltl,t, +y [0
This is the Laplace transform of the solution. {{LaplaceTransform [y ([t],1,s - —2PeceiEnsom L LLLs 1+¥[0]
To get the formula for the soluticy[t] you calculate the inverse There is is.
Laplace transform cY|s]. This tells you that the Laplace transform Y[s] of the solution y[t] is
The formula for the solutioy[t] is: Y[s] = LaplaceTransrfSLrﬁ[tLt,SH yio]
| y[t_ ] = Chop[Expand [InverseLaplaceTransform [Y[rsl,s, t 111 WhICh iS exactly the formula used in part a)_

1.4918 E 98! , 37082 E 965! Cos[2.46526t | +2.96268 E 95! Sin [2.46526t |

That's all there is to it.

Check whether thiy[t] solvesy”[t] + 1.3 y[t] + 6.5 y{t] = 9.1 E08t: OExplanation for the forced oscillator diffeq
| Chop(Expand [(y’)’[t]+13y '[t]1+65y [t1]] y'[t] + byt +cy[t] =1t
0.8
9LE % Again, it's just a little algebra.
Yepper. . . . . . .
Enter the differential equation with everything cleared:
Check whethey[0] = 1.6 andy’[0] = 3.7. Clear [y, tf,b ¢ s, Y :
IV[O] diffeq =y" [t] +by [t] +cy[t] == f[t]
5.2 Cy[t]+by [t]+y [t] ==f[t]
I3 z 101 Replace all the functions involved by their Laplace transforms:
. . laplaced = diffeq /.
Everythlng checks. {y[t]1 -> LaplaceTransform [y[t],t s ],
i ) ) y' [t] -> LaplaceTransform [y [ti,ts 1,
Amazing thing this Laplace transform. y" [t]-> LaplaceTransform [y" [t],ts 1,
) ) f [t ] -> LaplaceTransform ffrei.t,s 13
OB.2.¢c) Using the Laplace transform to solve a forced oscillator claplaceTransform [y [t],t s | +s? LaplaceTransform  [y[t], t s ]+
dff b (s LaplaceTransform [y[t],tts ]-y[0])-sy[0] -y'[0] ==
imeq LaplaceTransform frel,ts
You are using Mathematica to handle the Laplace transform. Solve this for the Laplace Transformy[t]:
How was it done in your grandparents' diffeq class?
| sol = Solve [laplaced, LaplaceTransform [ylti,t,s 11
oAnswer: {{LaplaceTransform  [y[t], t's |-
In your grandparents' time, they would look at a diffeq such as _ -LaplaceTransform _[f b2 SJZ*bY[OJ sy 101 -y" (0] 4y
There is is.
” ’ _ =—1.9t . . .
y’[t]+2.0y'[t] + 6.5)t] =9.1E This tells you that the Laplace transfoY[s] of the solutiory[t] is
with y[O] =15 andy’[O] =-4.7. Y[s] = LaplaceTransforiff[t],t,s] + b y[0]+ s y{0]+ y'[O]
- c+bsts?

and write down
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which is exactly the formula used in part b).

B.3) Fourier fit of periodic functions

OB.3.a)
Look at these:

oOFunction 1:

Clear [f,t 1;
flt_1=Cos[2nt];
L=1;

cycles =2;

Plot [f [t], {t O, cyclesL }, PlotStyle - {{Thickness [0.02 ], Blue 1}},

AxesLabel - {"t","f [t 1"}, PlotLabel - "cycles" cycles,
Epilog - {(Red, Thickness  [0.02 ], Line [{{0,0}, {L,01}}1},

{Text ["One Period", {% 0.1 }}}:

frt] 2cycles
1:

oFunction 2:

Clear [f,t 1;

It . Floor[t]'
[t]= 3 PRk
L=2;

cycles =4;

Plot [f[t], {t O cyclesL 1},
PlotStyle - {{Thickness [0.02 ], Blue }}, AxesLabel - {"t', "f
1

_) GoldenRatio
Epilog - {{Red, Thickness [0.02 ], Line [{{0,0}, {L,0 }}1},

PlotLabel - "cycles" cycles, AspectRatio

{Text ["One Period", {I—;- o1 MW

fit] 4cycles
1
0.8
0.6
0.4
0.2
Peri
v i 6 g !
OFunction 3:
Clear [f,t 1;
flt_]1=-04 + E-15 ~Floor [t]):
L=1;
cycles =4;

Plot [f[t], {t O cyclesL 1},
PlotStyle - {{Thickness [0.02 ], Blue }}, AxesLabel - {"t","f
1

” GoldenRatio '
Epilog - {{Red, Thickness [0.02 ], Line [{{0,0}, {L,0 }}1},

PlotLabel - "cycles" cycles, AspectRatio

{Text ["One Period", {% 01 }]}}:

[t

[ty

DE.03.B2-B3

ft] 4cycles

oFunction 4:

Clear [f,t 1;

f [t 1 =Sign [Sin [3t]];
2

L= —;
3

cycles =3;

Plot [f[t], {t O, cyclesL 1

PlotStyle - {{Thickness [0.02 ], Blue }}, AxesLabel - {"t", "f [t1"},

1
AspectRatio - —————, PlotLabel - "cycles" cycles,
GoldenRatio

Epilog - {(Red, Thickness  [0.02 ], Line [{{0,0}, {L,0}}1},
{Text ["One Period", {%,0_1 NI

ft] 3cycles
1

0.5

One Heriod

-0.5

-1
Folks call all of these functions periodic.
How do you recognize periodic functions?

OAnswer:

Most folks, like you, just eyeball a plot looking for cycles.
Once you spot a cycle, then you can say that its leLigtpresents one

period of the function. This gives you
f[t+ L] =f[t] forallt’s.

This is the definition that some folks prefer
when they talk about periodic functions.

OB.3.b.i) Fast Fourier fit of periodic functions

At the December, 1807 meeting of the French Academy of Sciences,
mathematician and engineer Joseph Fourier announced that you can
approximate an arbitrary function by sums of sine and cosine waves.
Those in attendance thought he was slightly off his rocker, but
eventually they were all forced to change their minds because time has
confirmed that Fourier's idea was one of the great scientific
break-throughs of all time. In this problem, you get the opportunity to
get your hands on Fourier's idea in action.

Go for it.

Activate these custom Mathematica instructions
made for your enjoyment and economic use.
They come from the home office to you.
Clear [FastFourierfit, Fourierfitters, F, Fvalues, n, k,
jump, num, numtab, coeffs, t, L 1;
1

jump [n_] : = jump [n] = N[—1;

jump jump [ o ]

Fvalues [F_,L_,n_ ] :=

N[Table [F[Lt], {t,0,1 - jump [n],jump [n]1}1];

numtab [n_] := numtab [n] = Table [k, {k, 1,n }];
Fourierfitters [L,n_t ] := Table [Eh‘nkl
{(k, -n +1,n - 1}];
coeffs [n_, list. ] := Join [Reverse [Part [Fourier [list ], numtab [n]]1],
Part [InverseFourier [list 1, Drop [numtab [n],1 111/
N[Sqrt [Length [list 111

FastFourierfit [FLn_,t 1:=

Chop [Fourierfitters [L,nt ].coeffs [n, Fvalues [F, L n 111
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To get an idea of what these new instructions can do for you, look at
this plot of a function[tt] whose period is k& 2, plotted for three
cycles:
Clear [f,t 1;
t t

f[t_1=Cos[15 (—2- - Floor [E])]
L=2;
cycles =3;
fplot =

Plot [f [t], {t 0, cyclesL }, PlotStyle - {{Thickness [0.02 ], Blue }},

AxesLabel - {"t", "f [t 1"}, PlotLabel - "cycles" cycles,

Epilog - {(Red, Thickness [0.03 ], Line [{{0,0 3}, {L, 0}}1},

{Text ["One Period", {%,0.1 H

AspectRatio - 1] ;

fe] 3cycles

1
0.8
0.6
0.4
0.2

e Peri®bd
34 5 6!

Now stay with the same functioftf.

I fit1

Cos |15 (% - Floor [%])]

Stay with L= 2 and go with r= 4 and look at:

I n=4
FastFourierfit If,L,nt 1
0.721126 + (0.0158769 +0.1491391 ) E™' "' + (0.0158769 -0.1491391 )E "' +
(0.0462506 +0.0591151 ) E2' "' + (0.0462506 - 0.0591151 ) E?' "t
(0.0512009 +0.02430661 ) E3' "' (0.0512009 - 0.02430661 ) E3' "t
That ran really fast.
Now look at this plot of ft] and FastFourierfit, L, n, t] with

n=4and L= 2:
Clear [realfit 1;
realfit [t_ 1 = Chop [ComplexExpand [FastFourierfit f,LLnt 111

0.721126 +0.0317538 Cos [rt ] +0.0925012 Cos [2 7t ] +0.102402 Cos [37t] +
0.298279 Sin [7t] +0.11823 Sin  [2 7t ] + 0.0486133 Sin (37t ]

See how realfit] plots out:

fitplot = Plot [(f [t 1, realfit [t1}, {t O, cyclesL },
PlotStyle - {{Thickness [0.02 ], Blue }, {Thickness [0.01 ], Red }},
AxesLabel - {"t',™ },
1

PlotLabel - "cycles" cycles, AspectRatio B
GoldenRatio

Epilog - {{Red, Thickness [0.02 1, Line [{{0,0}, {L, 0 }}1},
{Text ["One Period", {%,0.1 HH:
3cycles
1
0.8
0.6
0.4

0.2
One Peri o

1 2 3 4 5 6
What's happening here?

OAnswer:
Look at this embellished plot of the first cycle still going vL = 2

andn=4:

first = Plot [{f [t], realfit [t1}, {0, L },
PlotStyle - {{Thickness [0.01 ], Blue }, {Thickness [0.01 ], Red }},
AxesLabel - {"t","™ 1}, DisplayFunction - Ildentity  ];

L L }]

2n-1" 2n-1

fdata = Table [N[{t,f [t]}], {tO, L -

fdataplot = ListPlot [fdata,
PlotStyle - PointSize  [0.04 1, DisplayFunction - |dentity 1;
Showt[first, fdataplot, DisplayFunction - $DisplayFunction 1;

DE.03.B3

' 0.5 1 1.5 3!

Evidently, Fourierfiff, n, t] picks2 n— 1 equally spaced data points off
the plot off[t] betweert = 0 andt = L and tries to fit these points with
a combination of complex exponentials.

When you kickn up, you get a really good fit:
n=28§;
FastFourierfit If,L,nt 1
0.693549 - (0.0116423 -0.1549291 ) E' "' - (0.0116423 +0.1549291 )E "' .
(0.0189249 +0.0711746 1 ) E2' "t . (0.0189249 - 0.07117461 ) E?' "t 4
(0.0242786 +0.0437721 ) E3' "' (0.0242786 -0.0437721 ) E3' 7t .
(0.0261085 +0.02916751 ) E*' "' . (0.0261085 -0.02916751 ) E*' "t 4
(0.0269223 +0.0194654 1 ) E®' "' . (0.0269223 -0.01946541 ) E>' "t .
(0.0273257 +0.0120596 1 ) E®' "' . (0.0273257 -0.01205961 ) E®' "t .
(0.0275192 +0.00578952 1 ) E7' 7! 1 (0.0275192 -0.005789521 ) E’' "t
Clear [realfit 1;
realfit [t_ 1 = Chop[ComplexExpand [FastFourierfit [f,L,nt 111
0.693549 - 0.0232846 Cos [t ] + 0.0378498 Cos [2 rit ] +
0.0485571 Cos [3t ] +0.052217 Cos [4 rit | + 0.0538446 Cos
0.0546514 Cos [6 it ] +0.0550385 Cos [7 rt ] +0.309858 Sin

[Srt]

[
0.142349 Sin  [2 1t ] +0.087544 Sin  [3 1t ] +0.0583351 Sin [4

[

S5 +
at]+
nt]+

]

0.0389307 Sin  [5 7t ] +0.0241191 Sin (6t ] +0.011579 Sin  [7 7t ]
cycles =3;
fitplot =Plot [{f [t ], realfit [t1}, {t O, cyclesL 3},
PlotStyle - {{Thickness [0.02 ], Blue }, {Thickness [0.01 ], Red }},
AxesLabel - {"t",™ '},

1

” GoldenRatio
Epilog - {(Red, Thickness [0.02 1, Line [{{0,0 13}, {L,0}}1},

PlotLabel - "cycles" cycles, AspectRatio

{Text [*One Period", {% o1 MW

3cycles
1
0.8
0.6
0.4
0.2
QOne Perio
™23 4 5 6!
Hot plot.

And you get an extra benefit:

When you put the pericLl of f[t] into theFastFourierFif, L, t, n]
instruction, then the periods of the complex exponentials used by the fi
match the period of the forcing functif[t], and you continue to get

that good fit all the way:

cycles =8;

fitplot =Plot [{f [t], realfit [t1}, {t O, cyclesL 3},
PlotStyle - {{Thickness [0.02 1, Blue }, {Thickness [0.01 ], Red }},
AxesLabel - {"t","™ '},

1

” GoldenRatio
Epilog - {{Red, Thickness [0.02 ], Line [{{0,0}, {L,0}}1},

PlotLabel - "cycles" cycles, AspectRatio

{Text ["One Period", {% o1 MW

8cycles

7.5 10 12.5 15

You've got to agree that Fourier knew what he was talking about.
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0B.3.b.ii)

You could use the Mathematica Fit instruction to get the same effect
as the FastFourierfit instruction.
Why would anyone want this new FastFourierfit instruction?

OAnswer:

When you try to fit using many data points, theinstruction can bog
down badly.
On the other hand, thastrourieriit instruction really smokes.

Try it out on another function whose perio .

Clear [f,n,t 1]
f [t 1= ESln [l];
FastFourierfit f,2 m4,t ]

1.26607 +0.5651611E ' - 0565161 1E '' -0.13577E 2't -0.13577E 2't -
0.0224399 1E 3'' 4 0.0224399 IE 3'!

| FastFourierfit f,2 =81t 1

1.26607 +0.565159 |E ' - 0565159 1E 't -0.135748 E 2!t _0.135748 E 2't -
0.0221684 1E 3't 4 0.0221684 1E 3'' +0.00273712E *'' 1+ 0.00273712 E *'t &
0.000271463 1E  ~5'' - 0.000271463 1E 5't -0.0000224889 E 't -
0.0000224889 E 't - 1.60474 x10°C1E 7't +1.60474 x10CIET"

| FastFourierfit if,2 =x12,t ]

1.26607 +0.565159 IE ' - 0565159 1E ' -0.135748 E 2'' -0.135748 E 2't -
0.0221684 1E 3'' 400221684 1E 3'' +0.00273712E “*'' +0.00273712 E *'t &
0.000271463 |E  5'' - 0.000271463 IE S't -0.0000224887 E 't -
0.0000224887 E ®'t _ 159922 x10°C1E 7't 4159922 x10CIE"'t .+

9.96062 x10 8 E®'t 1996062 x10 8 E®'' 551839 x10°IE°'t -

551839 x10 0 1E®'t - 275296 x10°10 E10!t _ 275296 x10°10 ElO't

Almost instant responses.

The demands of modern science made it essential to be able to do
Fourier fits as fast as possible. In fact, fast Fourier fits continue to pla)
the starring role in most everything electronic including hot fields suct
as signal analysis, data compression and high definition television.

The ideas behind the workings of a fast Fourier fit instruction have
attracted the attention of some of the best mathematical scientists of :
time. None other than Gauss came up with a fast Fourier fit algorithrr
in 1866. The modern version of the workings behind the fast Fourier
fit sprang out of the 1960's with the work by John Tukey and his
cohorts at IBM and Princeton.
In their book, "Numerical Methods and Software" (Prentice-Hall, 1989),

David Kahner, Cleve Moler and Stephen Nash say

"Many knowledgeable people feel that [Tukey's fast Fourier fit] is
the single most important contribution to computing since
the advent of the stored programming concept.”
Those who want to study Tukey's idea should look at this book.

Mathematicé& workings behind thesstrourierfit instruction depend

heavily on Tukey's idea.

B.4) Combining Fourier fit and the Laplace transform to
come up with good approximate formulas for periodically
forced oscillators

"A cumbersome [exact] formula that gives a solution in explicit form is
frequently less useful than a simple approximate formula."
-------- DiffEq master V. I. Arnold

0OB.4.a)

You are given this periodic forcing functioft]f
endtime = 15.0;
Clear [f, t ]
t t
f =5.3Si 3 (—-Fl — H
(1 =53Sin [3 (5 -Foor [])];
fplot =Plot [f [t], {t O, endtime },

PlotStyle - {{Thickness [0.02 ], Blue }}, AxesLabel - {"t","f [t1":1;

DE.03.B3-B4
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And you are asked to come up with a formula for the solution of
Y[t] +1.8Y[t] + 8.3y(t] = f[t]
with y0] = 4.7 and ¥{0] = —0.9.
First you enter everything:
b = 1.8;
c = 83;
startery = 4.7,

starteryprime = -0.9;
Clear [t, y 1;

oscdiffeq = {y" [t] +by [t] +cy[t] ==f][t],
y[0] == startery, y' [0] == starteryprime 1
ColumnForm [oscdiffeq ]
83y [t]+18y "[t]+y”[t] ==53Sin [3 (% -Floor [%])]
y[0] ==47
y’[0] == -0.9

Then you see how the solution plots out:

ndsol = NDSolve [oscdiffeq, y [t], {t O, endtime
Clear [ysol 1;

}, MaxSteps - 2000 ];

ysol [t_]1=y[t] /.ndsol [1];ndsplot =
Plot [ysol [t], {t, O, endtime
PlotRange - All, AxesLabel

}, PlotStyle
Sty

- {{Thickness [0.02 ], Blue }},
[t1"}n;

2 4 6 8 10 12 14

-1

About what you expected.

Now the job is to come up with a formula for this solution.

You try the convolution integral method and Mathematica bogs down.
The integrals are just too complicated.

Then you think of the LapalceTransform and experiment with the
Laplace transform offf]:
fitlts 1
[sin [3 (% - Floor {EZ—J)JI s |
Mathematica again balks.
The integrals involved are just to complicated.
What do you do?

OAnswer:

| LaplaceTransform

5.3 LaplaceTransform

Instead of solving

y’[t] + 1.8 y[t] + 8.3 y{t] = f[t]

withy[0] = 4.7 ancy’[0] = -0.9,
you use Fourier fit to come up with a good sine and cosine wave
approximationapprox{t], of f[t] and then you use the Laplace
Transform to solve the nearby oscillator diffeq

y”[t] + 1.8 y[t] + 8.3 y[t] = approxft]

withy[0] = 4.7 ancy’[0] = —0.9.
Here you go:
Activate this code:

Clear [FastFourierfit, Fourierfitters, F, Fvalues, n, Kk,
jump, num, numtab, coeffs, t, L 1;
1
jump [n = jump [n] = N[—1;
jump [n_] jump [n] [Zn]
Fvalues [F_,L_,n_ ] :=

N[Table [F[LY],i(t, 0,1 - jump [n],jump [n]1}11;

numtab [n_] := numtab [n] = Table [k, {k, 1,n }];

2xikt

] 1= Table [E"T

Fourierfitters [L,n_, t_
{(k, -n +1,n - 1}];
coeffs [n_, list. ] := Join [Reverse [Part [Fourier [list ], numtab [n]]1],
Part [InverseFourier [list 1, Drop [numtab [n], 17111/
N[Sqrt [Length [list 111
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FastFourierfit [F,L.,n_,t ]:=
Chop [Fourierfitters [L,nt 1.coeffs [n, Fvalues [F, L n 111;
Look at

] Showffplot 1;

277276 1012 14 ¢

The period of this function iL = 2.
Get a good Fourier fit cf[t]:

L=2;
n=3;
Clear [approxf 1;
approxf [t_ ] = Chop[ComplexExpand [FastFourierfit f,L,nt 111
fitplot = Plot [(f [t]1,approxf [t1}, {t O, endtime }, PlotStyle -
{{Thickness [0.02 ], Blue }, {Thickness [0.01 ], CadmiumOrange }},
AspectRatio - 7]
GoldenRatio

3.37978 - 2.35661 Cos [t ] - 0.736414 Cos [27t] - 0.285912 Sin [t ] -
0.0783657 Sin (27t ]

o

IS

w

N

[

2 4 6 8 10 12 14

Nice fit:
Now move in with the Laplace transform to get a formula for the
solution of

y”[t] + 1.8 Y [t] + 8.3 y[t] = approxft]

withy[0] = 4.7 andy’[0] = -0.9.
Here you go:

Clear [f, t, approxY, approxy, s 1
b=18c =8.3;

f [t ] =approxf [t];

ystarter = 4.7; yprimestarter =0.9;

approxY [s_1] = (LaplaceTransform ffrei,ts 1+

s2+bs+c
b ystarter  + s ystarter + yprimestarter )
936 4 337978, 47 _ 0898218 _ 235661s _ 0492386  _ 07364145
" S : 12452 72182 4 72452 4 7252
83 +18s +s2

This is the Laplace transform of the the approximate solution.

To get the formula for the approximate solutiapproxyt]. you
calculate the inverse Laplace transfornapproxYs].

The formula for the solutioapproxyt] is:

| approxy [t_ ] = Chop[Expand [InverseLaplaceTransform [approxY [s],s,t 111
0.407202 +4.11678 E %°! Cos[2.73679t ] +0.154343 Cos [rt] +

0.0216786 Cos [27t] +2.12415E 09 Sin [2.73679t | - 0.3739Sin [rt] -
0.00535028 Sin  [2 7t |

There it is!
A simple approximate formula for the solution.
See it:

approxplot = Plot [approxy [t], {t, O, endtime 3},
PlotStyle - {{Thickness [0.01 ], Red }}, PlotRange - All,
AxesLabel - {"t","y [t1"}];

Compare with what you got frompsoive :
| Show [ ndsplot, approxplot 1;
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Both plots are fakes but they are both very good fakes.

B.5) Fourier integral fit of periodic functions

Here's how you can use integrals to go after a Fourier fit on an interval
[0, L]:

Start with the function and its plot ¢, L]:

Clear [f, t ]
flt_1=Sin[xt] (t -4);
L=4

Plot [f[t], {t, 0,L 1}, PlotStyle - {{Thickness [0.02 ], Blue }},
AxesLabel - {"t","f [t]"}1;

-2
- 3]

To try to fit f{t] on [0, L], you fit with combinations of
et

this way:
Clear [A, t ]
Jfrt et at
L Ji
Clear [k, complexfitter 1
m=5;

ALk_1:=N[

m
complexfitter [t 1= Chop[ Z ALK] pleen: ]
k=-m

-0.31831 -0.424413E ~*' 7' _0.424413E " - (0.0795775 +1.1 ) E' 7t -
(0.0795775 - 1.1 ) E' 7' +0.254648 E ~#' "' . 0.254648 E *7" +

0.106103 E 2! "t 4 0106103 E 2' "t 4 0.0606305 E ~%' "' 4 0.0606305 E “7*
Clear [realfitter, t 1

realfitter [t_ 1 = Chop [ComplexExpand [complexfitter [t111

-031831 - 0.848826 Cos [ 7] - 0.159155 Cos [t +0.509296 Cos 370

0.212207 Cos [2 it ] +0.121261 Cos [5%1] -2.Sin [rt]
Check out the fit with a plot:

Plot [{f [t ], realfitter [t1y, {t,O, L 1},
PlotStyle - {{Thickness [0.02 ], Blue }, {Thickness [0.01 ], Red }},
AxesLabel - {"t", ™ 2B

The periodic nature of the Fourier fit ruins the fit at the ends, but
inside[O0, L], the fit is not all that bad.

OB.5.a)

How do you try to go after a better fit?

OAnswer:

The same way you go after a better fast Fourier fit: You incmase

Try it:
Clear [A,t ]
Nintegrate [f [t] E-“"F, (O, L }
Alk_]:=A[k] = [ 3 ] ;
Clear [k, complexfitter 1
m=13;

Ik @nt

m
complexfitter [t_] = Chop[ Z Alk]ETT ]

k=-m
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-0.31831 - 0.424413E ~*'7' - 0.424413E ¥~ - (00795775 +1.1 ) E' "t -
(0.0795775 - 1.1 ) E' "' 10254648 E ~ %'t , 0.254648 E 7" .

0.106103E 2' "t 4 0.106103 E 2' "' 1 0.0606305 E ~#'”"! . 0.0606305 E “7" +
0.0397887 E 3! "t 1 0.0397887 E 3! 7! +0.0282942 E ~¥' 7! 1 0.0282942 E "7 4
0.0212207 E 4! 7t +0,0212207 E *' " +0.0165356 E “¥' ! . 0.0165356 E 7" +
0.0132629 E 5! "t 4 0.0132629 E 5' "t 1 0.0108824 E ~# ' 7t ,0.0108824 E 7 4
0.00909457 E 6! "t , 0.00909457 E ¢! "t 4 0.0077166 E -7 ' "t , 0.0077166 E 7

Clear [realfitter, t 1
realfitter [t_ ] = Chop[ComplexExpand [complexfitter [t11]

-0.31831 -0.848826 Cos | 1] - 0.150155 Cos [rt ] +0.509296 Cos |

2
5t
0.212207 Cos [2rt ] +0.121261 Cos | 5

+0.0424413 Cos [4 7t ] +0.0330712 Cos [

3t ]+
2

| +0.0795775 Cos (3t ] +

0.0565884 Cos 2ZL) .

[£24]

0.0265258 Cos [5 7t ] +0.0217648 Cos
13t
(2t

(M0 00181891 Cos (6t ] +
0.0154332 Cos ~2.8in [rt]

Check out the fit with a plot:

Plot [{f [t ], realfitter [t1}, {tO, L 13},
PlotStyle - {{Thickness [0.02 1, Blue }, {Thickness [0.01 ], Red }},
AxesLabel - {"t",™ }1;

That's almost as good as it can gef[0] had been the samef[L],
then the trouble near the endpoints would have disappeared.

0OB.5.b.i) The formula
ALKl = L [ E-ST at
What's the idea behind the formula
Akl = L [ ETE at
as used above?

OAnswer:

The idea:
You go for the whole ball of wax in one gulp.

Given a functiorf[t] with periodL, you go ahead and assume ff[t]t

can be written in a form like this:
m= 3;
Clear [k, f, complexfitter, A, L 1

k2 xt

m
complexfitter [t 1= Z A[k] E™T
k=-m

E - A[-3] + E"T A[-2] + ESTC A[-1] +A[0] + EFTCA[1] +
E*T A[2] + ETTC A(3)

Once you go with the assumption tf[t] = complexfitteft], you gotta
agree that

Ip@nt

fOLcompIexfittett] E- T dt = fOLf[t] E-

Ip@mt
T

dt,

no matter whap you go with.
Peek at what this tells you:

This might take a while.

DE.03.B5

Clear [p,f ]

b @mt

L
ColumnForm [Table [{Expand [J complexfitter [t1E T —dt ]
0

Ip ¢

L 27) t
" must be", I flt]E ¢ = at }
o

p, -m m]]

LA[-3], must be, [TE"*f[t]dt)

LA[-2], must be, jOLEﬂ%f (tyat}

LA(-1], must be, [TE*“f(t]at)

{
{
{
{LA[0], must be, [ f[t]at)
LA[1], must be, [‘E-2¢f[t]at
0
LA[2], must be, [“E-*-f[t]at
0
{

LA[3], must be, [TE-“*“f[t]at)
Your eyes lead you to the formula
Ik (2mt

AlKl = & [l E " at.
This is the formula that was used in part i) so successfully.

Explanation over.

OB.5.b.ii)
Not so fast.
Wasn't this supposed to be a math course?
You know very well that a false assumption like
fit] = complexfitteft]
can be used to explain anything.
How do you justify this false assumption?

OAnswer:
Good question.
The reason it works is that it is almost true.
Reason: For most functioff[t] with periodL, only a bureaucratic
bean-counter armed with a good magnifying glass could ever tell the

difference betweef[t] and the complexfitter you get with a very high
m.
Try iton
f[t] = V1- Codrt]
Because the period Codt] is2x, the period of[t] isL = 2.
Clear [f, t,x ]

flt_1=+v1-Cos[nt];

L=2

m= 6;

Clear [k, complexfitter, A 1

1k @mx

1
ALk_1:= N[T_-] Nintegrate  [f [x] ET—© —, {x 0,L }, AccuracyGoal - 3];

k@t

m
complexfitter [t_1=Chop[ Z ALKTETT ]

k=-m

0.900316 -0.300105E ' "' ~0.300105E ' "' - 0.0600211 E “2' "t -
0.0600211 E 2' "t ~0.0257233 E ' "' _0.0257233 E ' ! -
0.0142907 E ~4' 7' ~0.0142907 E *' "' - 0.0090941 E “®' 7t -
0.0090941 E °' 7' - 0.00629592 E ' "' - 0.00629592 E ©' "

This time the A[K]'s are calculated with NiIntegrate

Clear [realfitter, t 1
realfitter [t_ 1 = Chop [ComplexExpand [complexfitter [t111]
0.900316 -0.600211 Cos [st] -0.120042 Cos [2 st ] -0.0514466 Cos [3 7t ] -

0.0285815 Cos [4 1t ] -0.0181882 Cos [5 7t ] -0.0125918 Cos [6 st ]

cycles =4;

Plot [{f [t ], realfitter [t1}, {t O, L 1},
PlotStyle - {{Thickness [0.02 ], Blue }, {Thickness [0.01 ], Red }},
AxesLabel - {"t", ™ }, PlotRange - All 1;

=
N A D ® NN

o0 0@

‘ 05 T 5 7!

Tell that miserable bean-counter to get out of your life.

60



0OB.5.c.i) The connection between fast Fourier Fit and Fourier
integral fit

Go with fit] =t(3-1t) on[0, L] with L = 3 and compare what you get
from Fourier integral fit and fast Fourier fit.

Clear [f,t ]
flt_1=t (3-1);
L=3;

Clear [A,t ]

L ik ent
LftIE T at .
L
Clear [k, complexintegralfitter 1
m=5;

ALK_]1 : = A[k] = N[

complexintegralfitter

m
[L1=Chop[ > AKI ET]
k=-m

1.5 —0.455945E ~5! 7t 0455045 E ¥ _0.113986 E %!t _
0.113986 E “+ - 0.0506606 E 2! 7' - 0.0506606 E 2' " - 0.0284966 E ~¥ !t _

81t 101 71

0.0284966 E “< - 0.0182378 E ~¥ ! 7t _ 00182378 E 5"

n=m+1l;

FastFourierfit If,L,nt 1
1.48958 - 0.466506 E ~5' 7' _ 0466506 E “¥ - 0.125E ~¥' 7t -
0.125E ¥ - 0.0625E 2' "t - 0.0625E 2' "t - 0.0416667 E ~¥' "t -

101 7t

0.0416667 E <~ - 0.0334936 E ~¥' "' _0.0334936 E "5
They are almost the same.
Subtract them:
| Expand [complexintegralfitter [t 1 - FastFourierfit If,L,nt 11
0.0104167 +0.010561 E ~¥' 7! 4 0.010561 E “ +0.0110137 E ~¥'7t
0.0110137 E “5" +0.0118394 E -2' "' . 0.0118394 E 2' "' , 00131701 E ~¥' "t 4

101 1

0.0131701 E * + 0.0152558 E ~ %' " 1 0.0152558 E "5~

Look at those puny coefficients reflecting how close the fast Fourier

fit is to the Fourier integral fit.
Try it again with a bigger m:

Clear [k, complexintegralfitter 1

m= 10;

ket
T

m
[t_1=Chop[ > AlKIE T ];
k=-m

complexintegralfitter
n=m+1;
Expand [complexintegralfitter [t 1 - FastFourierfit If,L,nt 11
0.00309917 +0.00311185E ~¥' 7! . 0.00311185 E “+* +
4

0.00315039 E ~#' 7t . 0.00315039 E “'¥" +0.00321633 E 2' "t .
0.00321633 E 2' 7t 4 0,00331238 E ~¥' "t 4 0.00331238 E ¥ +

101 71

0.00344268 E ~¥ ' "' 1 0.00344268 E 5" + 0.00361324 E 4! 7t
0.00361324 E 4' "t 1+ 0.00383251 E ~ ¥ ' 7! 4 0.00383251 E 5"

161 nt

0.00411247 E - %' 7t 1 0.00411247 E “* + 0.00447017 E ¢! "t .

201t

0.00447017 E 5' "t 1 0.00493027 E %! 7t ; 0.00493027 E -
How do you explain this striking similarity of the two Fourier fits?

OAnswer:
The fast Fourier fit tries to fit at equally spaced points on the plot of
f[t] on][O, L].

When you go with a hign in FastFourierfif, L, n, t], you are fitting
so many densely packed points tFastFourierfitf, L, n, t] is almost
fitting all the points on the plot ¢[t] on[O, L].

This nearly replicates the Fourier integral fiff[t] on[O, L] because
the Fourier integral fit tries to fit all the points on the plof[tffon
[0, L].

OB.5.c.ii) Practicalities
Explain the following statement:

"Fast Fourier fit is almost always fast and practical; Fourier integral fit
is sometimes slow and sometimes impractical and even impossible."

DE.03.B5

OAnswer:

The Achilles heel of the Fourier integral fit is the integral
L _ lk@m
L [ E T at
that must be done to calculate the coefficients. For some funf[thns
the only practical possibility is to go witlhtegrate . But the highly
oscillatory nature of
lk@2mt

flt]E-— T
sometimes makes the integrals impractical even fowf@grate

Fast Fourier fit carries none of this disappointing baggage. It runs
quickly and accurately, provided no impulses are around.

OB.5.c.iii)
Why do folks want to do Fourier integral fit?

oCalculational Answer:
If the professors demand that the students work by hand, then the
student has little choice between Fourier integral fit and fast Fourier fit.
Reason:
Doing fast Fourier fit by hand is completely out of the question.
Doing integrals by hand is not.

OTheoretical Answer:
In theoretical situations, most good folks want to use the Fourier
integral fit because it gives them a specific formula to work with. But
after the theory is developed and calculations begin, then the same
folks usually go with fast Fourier fit.

OB.5.d.i) The advantage of fast Fourier fit over Fourier integral fit

In their book, "Numerical Methods and Software" (Prentice-Hall, 1989),
David Kahner, Cleve Moler and Stephen Nash say
"Many knowledgeable people feel that [fast Fourier fit] is
the single most important contribution to computing since
the advent of the stored programming concept."

Fourier integral fit has been around for more than 200 years.

Fast Fourier fit has been around less than 50 years and really came
into its own with the computer revolution of which you are a part.
Why are many compuer-literate folks so quick to de-emphasize
Fourier integral fit in favor of fast Fourier fit?

OAnswer:

The Achilles heel of the Fourier integral fit is the integral
Ik@mt

Lo e at
which must be done to calculate the coefficients of the approximation.

Even withMathematicathese integrals can either be very slow or
impossible. Numerical integration (via tNIntegrate instruction) is
theoretically possible, but the highly oscillatory nature of

ft) B~
sometimes makes the integrals impractical even for for numerical
integration.

Fast Fourier fit does not care how the function is presented and it
doesn't care about doing any integrals. Fast Fourier works rapidly and
well for any function - other than impulse hits.

It is robust and fast.

Compare them on the square wave:

Clear [f, t ]
f[t_1=Sign [Sin [xt]]+1;
L=2

61



cycles =4;
fplot =Plot [f[t], {t 0, cyclesL 1},
PlotStyle - {{Thickness [0.02 ], Blue }}, AxesLabel - {"t","f [t1"y,
I
GoldenRatio
Epilog - {{Red, Thickness [0.02 ], Line [{{0,0}, {L, 0 }}1},

PlotLabel - "cycles" cycles, AspectRatio

{Text [*One Period", {%,OAl HIH:

fe] 4cycles

Go for a fast Fourier fit:

n = 6; Clear [fastapproxf ]

fastapproxf [t_ ] = FastFourierfit f,LLnt 1
1.08333 - (0.0833333 -0.6220081 ) E'”! - (0.0833333 +0.6220081 )E "'
0.0833333 E 2! "' . 0.0833333E 2' "' - (0.0833333 -0.166667 | ) E3' "t -

(0.0833333 +0.166667 1 ) E3' 7' .+ 0.0833333E 4' "' . 0.0833333E 4' "t -
(0.0833333 - 0.04465821 ) E5' "' _ (0.0833333 +0.04465821 ) E°' "t

Check it out:

Clear [realfit 1
realfit [t_ 1 = Chop[ComplexExpand [fastapproxf [ti111;

fastfitplot = Plot [(f [t ], realfit [t1}, {t O, cyclesL 1,
PlotStyle - {{Thickness [0.02 ], Blue }, {Thickness [0.01 ], Red }},
AxesLabel - {"t", "™ },
1

PlotLabel - "cycles" cycles, AspectRatio - _
GoldenRatio

Epilog - {{Red, Thickness [0.02 ], Line [{{0,0}, {L, 0 }}1},

{Text [*One Period", {%,O.l HIM:

4cycles

Now do the same thing with the integral Fourier fit:

Try numerical integration Viintegrate

Clear [A,t 1;
Nintegrate [ [t] E-"“F*%, (1,0,L }]
ALK_1:=A[k] = N[ i I:
Clear [k, integralfitter ]
m=5;
. N u Ik @mt
integralfitter [t_1 = Chop[ Z ALKIETT ]
k=-m
Nintegrate::ncvb : Nintegrate failed to converge to prescribed accuracy after 7
recursive bisections in t near t = 2.58979720715110728™*"-12.
1. +0636621E ' "' -0636621E ' +02122071E “3' 7t

0.212207 1E 3' 7' 40127324 1E 5! 7"t _0.1273241E 5' 7t
This gives an answer, bhtathematicas telling you that it doesn't
quite trust the answer.

Check it out:
Clear [realfit ]
realfit [t_ 1 = Chop [ComplexExpand [integralfitter [t111;
integralfitplot = Plot [{f [t ], realfit [t1}, {t O, cyclesL },
PlotStyle - {{Thickness [0.02 ], Blue }, {Thickness [0.01 ], Red }},
AxesLabel - {"t","™ 1},

- ;,
GoldenRatio
Epilog - {{Red, Thickness [0.02 1, Line [{{0,0}, {L, 0 }}1},

PlotLabel - "cycles" cycles, AspectRatio

{Text [*One Period", {%,O.l HIM:

DE.03.B5-T1

The calculation of the integral fit took a lot longer than the calculation
of the fast fit.

Fast Fourier fit went through this like a hot knife in butter.

Fourier integral fit went through this like a butter knife cutting steak.

0B.5.d..ii)

If you are working with hand calculations only, why is Fourier
integral fit your only real choice?

OAnswer:
Fast Fourier fit involves solving many linear equations. Solving these
equations by hand is just out of the question.
This leaves you no choice but Fourier integral fit. That's why you often
see the Fourier integral fit in the old-fashioned courses that emphasize
hand calculation.

DE.O3 Laplace Transform and Fourier
Analysis
Tutorials

T.1) Using Fourier Fit to try to detect periodic forcing
functions that force some undamped oscillators to beat or go
into near or true resonance

OT.1l.a.i)

Activate this code.

Clear [FastFourierfit, Fourierfitters, F, Fvalues, n, Kk,
jump, num, numtab, coeffs, t, L 1;

. . 1

jump [n_] := jump [n] = N[—n—];

Fvalues [F_,L_,n_ ] :=
N[Table [F[Lt], {t, 0,1 - jump [n],jump [N]}]1;

numtab [n_] := numtab [n] = Table [k, {k, 1,n }];
Fourierfitters [L,n_t ] := Table [EMLkl s
{(k, -n +1,n - l}];
coeffs [n_, list. ] := Join [Reverse [Part [Fourier [list ], numtab [n]]1],
Part [InverseFourier [list 1, Drop [numtab [n],1 111/
N[Sart [Length [list 111

FastFourierfit [F,L,n_t ]:=
Chop [Fourierfitters [L,n,t ].coeffs [n, Fvalues [F,L,n 1]1;
Look at this periodic function[f]:
Clear [f, t 1;
f[t_]=148 (035t -Round[0.35t 1)? ;
thigh = 12;
fplot =
Plot [f [t1, {t O, thigh }, PlotStyle - {{Thickness [0.02 ], Blue }},
1
PlotRange - All, AxesLabel - "t f [t 1"}, AspectRatio - ?]
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Now look at this fast Fourier fit oftf]:
1 .
0.35 '
n=7;
Clear [approxf 1;
approxf [t_ ] = Chop[ComplexExpand [FastFourierfit f,L,nt 111
fitplot = Plot [{f [t], approxf [t1},

1
{t, 0, 20 }, AspectRatio - —2- PlotRange - All, PlotStyle -

1.24592 - 1.52498 Cos ([2.19911t ] +0.401106 Cos [4.39823t | -
0.194244 Cos [6.59734t ] +0.123532 Cos [8.79646t | -
0.0930221 Cos [10.9956t | +0.0794439 Cos [13.1947t |

g P N O W g

0.

10 15 20

5
Use what you see to come up with values of ¢ so that the undamped

forced oscillator
YI[t] +cyltl = f[t]

are fried by going into resonance or near resonance (beating) .

OAnswer:

Take another look at that good Fourier fit:

1 approxf [t]

1.24592 - 1.52498 Cos [2.19911t ] +0.401106 Cos [4.39823t ] -
0.194244 Cos [6.59734t ] +0.123532 Cos [8.79646t ] -
0.0930221 Cos [10.9956t | +0.0794439 Cos [13.1947t |

That big coefficient on thCog2.199111 term tells you that when you
putc = 2.1991%, you can count on the undamped forced oscillator

y’[t] +cyit] = flt]
to go into resonance or near resonance (beating) .
See it happen:

Clear [f, t, approxY, approxy, s 1;
b= 0;
c = 219911 2

endtime = 120;
f[t_1 = approxf [t1;

ystarter = Random[Real, {-1,1 }1;
yprimestarter = Random[Real, {-1,1 }];
1
approxY [s_] = ———— (LaplaceTransform frti,ts 1+
s2+bs+c

bystarter  + systarter + yprimestarter );
approxy [t ] =
Chop [Expand [InverseLaplaceTransform [approxY [s],s,t 111;

approxplot = Plot [approxy [t],
{t, 0, endtime }, PlotStyle -> {{Thickness [0.01 ], Red }},
PlotPoints -> 2 endtime, AspectRatio -> 1/ GoldenRatio,

vl 4.83608

-20

-40

Fried.
In fact, if you take anc neai2.1991%2,

then you can still count on resonance or near resonance (beating):

Clear [f, t, approxY, approxy, s 1;

b= 0;

c = 219911 2 +Random[Real, {-0.3,0.3 }I;
endtime = 120;

{{Thickness [0.015 1, Blue }, {Thickness [0.01 ], CadmiumOrange })];

PlotRange -> All, AxesLabel -> {"t""y [t]"}, PlotLabel ->cl;

DE.03.T1

frt_ 1 = approxf [t];

ystarter = Random[Real, {-1,1 }1;
yprimestarter = Random[Real, {-1,1 }1;
1
approxY [s_] = ————— (LaplaceTransform [frtl,t,s 1+
s2+bs+cC

b ystarter + systarter + yprimestarter );
approxy [t ] =
Chop [Expand [InverseLaplaceTransform [approxY [s1,s,t 111;

approxplot = Plot [approxy [t], {t, O, endtime 3},
PlotStyle -> {{Thickness [0.01 ], Red }}, PlotPoints -> 2 endtime,
AspectRatio  -> 1 / GoldenRatio,
PlotRange -> All, AxesLabel -> {"t"""y [t]1"}, PlotLabel ->cCl;

yit] 5.00392

Rerun several times.

To find even more resonatiicls, look again at the good Fourier fit:

| approxf [t]

1.24592 - 1.52498 Cos [2.19911t ] +0.401106 Cos [4.39823t ] -
0.194244 Cos [6.59734t ] +0.123532 Cos [8.79646t ] -
0.0930221 Cos [10.9956t ] +0.0794439 Cos [13.1947t |

That fairly big coefficient on thCog4.398231 term tells you that
when you puc = 4.3982%, you can count on the undamped forced
oscillator

y”[t] + cyit] = f[t]
to go into resonance or near resonance (beating) .

See it happen:

Clear [f, t, approxY, approxy, s 1;
b= 0;

c = 4.39823 %

endtime = 80;

frt_1 = approxf [t1;

ystarter = Random[Real, {-1,11}];
yprimestarter = Random[Real, {-1,1 }];
1
approxY [s_] = ———— (LaplaceTransform [freil,t,s 1+
s2+bs+c

b ystarter + systarter + yprimestarter );
approxy [t_] =
Chop [Expand [InverseLaplaceTransform [approxY [s1,s,t 111;

approxplot = Plot [approxy [t1],
{t, 0, endtime 1}, PlotStyle -> {{Thickness [0.01 ], Red }},
PlotPoints -> 2 endtime, AspectRatio -> 1/ GoldenRatio,
PlotRange -> All, AxesLabel -> {"t""y [t1"}, PlotLabel ->cl;

yit] 19. 3444

-1
-2
-3

To find even more resonatiicgg, look again at the good Fourier fit:
| approxf [t]
1.24592 -1.52498 Cos [2.19911t ] +0.401106 Cos [4.39823t | -

0.194244 Cos [6.59734t ] +0.123532 Cos [8.79646t | -
0.0930221 Cos [10.9956t | +0.0794439 Cos [13.1947t |

That fairly big coefficient on thCog6.59734 1 term tells you that
when you puc = 6.59734, you can count on the undamped forced
oscillator

y”[t] +cylt] = f[t]
to go into resonance or near resonance (beating) .
See it happen:

Clear [f, t, approxY, approxy, s 1
b=0;
¢ = 6.59734 2;

endtime = 80;
ft.1 = approxf [t1;
ystarter = Random[Real, {-1,1 }];
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yprimestarter = Random[Real, {-1,1 }];

approxY [s_] = (LaplaceTransform ffrel.ts 1+

s2+bs+cC
bystarter  + systarter + yprimestarter );
approxy [t_] =
Chop [Expand [InverseLaplaceTransform [approxY [s],s,t 111;
approxplot = Plot [approxy [t1,
{t, 0, endtime }, PlotStyle -> {{Thickness [0.01 ], Red }},
PlotPoints -> 2 endtime, AspectRatio -> 1 / GoldenRatio,
PlotRange -> All, AxesLabel -> {"t","y [t]"}, PlotLabel ->c1;

yit] 43. 5249

1

Yougettheidea.

aT.1.a.ii)
Why did that work?

OAnswer:

When you go withy”[t] + ¢ y[t] = 0 (withc > 0).

the natural output consists of combinations of
Codct] ancSin[c t].

When you forcey”[t] + ¢? y[t] = 0 with these combinations you get
y”[t] + 2 y[t] = ACogct] + B Sinct]

which is guaranteed to be in true resonance.

So when you see an approximate forcing function such as
2.0Sirf2t] - 0.4Cog4t] + 0.5Sin[61],

then you can be sure that each of the following undamped forceds

oscillators is in resonance or near resonance:
y'[t] + 4 y[t] = 2.0Sif21t] — 0.4 Co$4t] + 0.5Sir{61],
y'[t] + 16 y[t] = 2.0Sif2t] — 0.4 Co$41] + 0.5Sif{61], and
y'[t] + 36 y[t] = 2.0Sif2t] — 0.4 Co$4t] + 0.5Sir61].

T.2) The Laplace transform ofyzeroinput[t] is the same as
the product of Laplace transform otf[t] and the Laplace
transform of yunitimpulse[t]

OT.2.a.0)

Given a forced oscillator diffeq
y’[th+ by [t] + cylt] = f[t],
you know yunitimpulségt] solves
Vit +by[tl+cylt]=0
with y0] = 0 and y[0] = 1.
The Laplace transform,Yunitimpul$gt of yunitimpulseft] is

Clear [f, t, b, c, Yunitimpulse , y, ystarter, yprimestarter, s 1
frt.1=0;

ystarter = 0;

yprimestarter =1,

Yunitimpulse  [s_] = (LaplaceTransform frel,ts 1+

s2+bs+cC
bystarter  + systarter + yprimestarter )
1
c+bs+s?

Short and sweet.

Given a forced oscillator diffeq
y’[t] + by [t] + cyit] = f[t],
you know yzeroinput] solves
VIt +by[tI+cyltl=0

DE.03.T1-T3

with y0] = 0 and y[0] = 1.
The Laplace transform, Yzeroingtjt of yzeroinpuitt] is

Clear [f,t, b, c, Yzerinput, y, ystarter, yprimestarter, s 1
ystarter = 0;
yprimestarter = 0;

Yzeroinput [s_] = (LaplaceTransform [frtil,t,s 1+

s2+bs+c
b ystarter + systarter + yprimestarter )

LaplaceTransform  [f [t], ts ]
c+bs+s2

Two benefits:

- This allows you to write down the Laplace transform of
yzeroinpuft] directly in terms of the Laplace transform ftfl fand the
coefficients b and ¢ with no extra calculation.

— And this reveals that the Laplace transform of yzerojtpistthe
same as the product of Laplace transformfand the Laplace
transform of yunitimpulsg]:

| LaplaceTransform [f[tl,t,s 1 Yunitimpulse [s]

LaplaceTransform  [f [t],t, s ]
c+bs +s?

Is the fact that the Laplace transform of yzeroifipig the same as
the product of Laplace transform ¢f]fand the Laplace transform of
yunitimpulsdt] an accident?

OAnswer:

Get ready.

In Mathematics there are no accidents.

oT.2.a.i)

Look at this calculation of the convolution of two cleared functions
f[t] and dt]:

Clear [f, g, h,t s Xy 1
t

h[t_] =J gt -x1f[x]dx
0

t
Jf[x] gt -x]dx
o

Calculate the Laplace transform d¢f]h
| LaplaceTransform [hitl, ts 1
LaplaceTransform [f[t],t, s ] LaplaceTransform [git], ts 1]

This tells you trt1at the Laplace transform of the convolution
fit] = [t —x]1gIx] dx
is the Laplace transform oftf times the Laplace transform dfth

Use this fact to explain why the Laplace transform of yzerojtipat
the same as the product of Laplace transfornitbfhd the Laplace
transform of yunitimpuls].

OAnswer:
Remember that
yzeroinpuft] = fotyunitimpulse{t - Xx]f[x]dx.
This is the same as
hit] = J, f[x]glt - x] dx
with g[t — x] = yunitimpulsdt — x] andh[t] = yzeroinpuft] .

According to what was said above,the Laplace transform of
yzeroinpuft] = h[t]

is the product of the Laplace transfornyunitimpulsdt] = g[t] and

the Laplace transform ([t].

T.3) A good way of screwing up your Fourier fits

OT.3.a)
Activate this code.

Clear [FastFourierfit, Fourierfitters, F, Fvalues, n, k,
jump, num, numtab, coeffs, t, L 1;
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jump [n_1 : = jump [n] = N[z—n]; This plot resulted from feedirL = 7 into the FourierFit instruction.

Fvalues [F_,L_,n_ 1 := . _ . .
N[Table [FILT], {t0,1 - jump [n],jump [n1311: The trouble is theL = 7 is not a period cf[t].

The formula forf[t] is:

numtab [n_] := numtab [n] = Table [k, {k, 1,n }I; ] frt]
1+Cos[1.3t ] Sign [Sin [1.3t ]

2mikt

Fourierfitters [Ln,t ] :=Table [ETt, Calculate the period (f[t]

tk, -n+1,n - 1}]; :
coeffs [n_, list_ ] := Join [Reverse [Part [Fourier [list 1, numtab [n]]], | sove [1.3t ==2nx1t]
Part [InverseFourier [list 1, Drop [numtab [n], 1111/ {{t -4.83322 }}

NESat [Length [ist 111 SetL = 4.83322 and run everything again:

FastFourierfit [F,oL.,n_,t ]:= L = 4.83322;
Chop [Fourierfitters [L,n, t ].coeffs [n, Fvalues [F,L,n 11]; n = 10;
Look at this plot of a periodic function: Clear [approxf ] o
Clear [f,t 1: approxf [t_ ] = Chop[ComplexExpand [FastFourierfit [f,L,nt 111
fIt_]= Cos[L3 t]Sign [Sin [L3t 1] + 1 ; fiplot = Plot [{(f [t], approxt [‘i}’
thigh = 12; {t,0,thigh ), AspectRatio  ~ —, PloRange  ~ Al Plotstyle
fplot = {{Thickness [0.015 ], Blue }, {Thickness [0.01 ], CadmiumOrange }}];
Plot [f [t1, {t O, thigh }, PlotStyle - {{Thickness [0.02 ], Blue }}, 1.05 -0.1Cos [1.3t ] +0.1Cos [26t ] -0.1Cos [3.9t ] +0.1Cos [5.2t | -

0.1Cos (65t ] +0.1Cos [7.8t ] -0.1Cos [9.1t ] +0.1Cos [10.4t ] -
0.1Cos [11.7t ] +1.73205 x10°7 Sin [1.3t ] +0.827636Sin [2.61 | +
frt) 0.296261 Sin  [5.2t ] +0.150953 Sin  [7.8t ] +0.066791 Sin [10.4t ]

1
PlotRange - All, AxesLabel - "t f [t 1"}, AspectRatio - ?];

2 7 6 g 10 12!

Now look at this attempt at a fast Fourier fit tf

Lookin' real nice.
To get a good Fourier fit, you've got to set the peLad the Fourier
fit to be equal to the period of the function you are fitting.

L=
n = 15; . .. .
Clear [approxf 1; T.4) Inserting an extrat when the characteristic equation
approxf [t_] = Chop [ComplexExpand [FastFourierfit fLnt 111 doesn't give two different solutions
fitplot =Plot [{f [t],approxf [t]}, .
) ) 1 OT.4.a.0)
{t, 0, thigh }, AspectRatio - > PlotRange - All, PlotStyle - , . . . . .
) ! ) Here's an oscillator differential equation with starter data:
{{Thickness [0.015 1, Blue }, {Thickness [0.01 ], CadmiumOrange )}]; b-6
1.14311 +0.742814 Cos [2t ] +0.0390951 Cos [4t ] - 0.257364 Cos [6t ] - ¢ i 9:
0.188126 Cos [8t ] +0.00806777 Cos [10t ] +0.0504127 Cos [12t ] - CI(_ear’ ity 1

0.0679726 Cos (14t ] - 0.145915 Cos [16t ] - 0.0810613 Cos [18t ] +

oscdiffeq =y”[t]+by’[t]+cCcy][t] ==
0.0115204 Cos [20t ] - 0.00631859 Cos [22t ] - 0.0962819 Cos [24t ] -

0.117143 Cos [26t ] - 0.0408109 Cos (28t ] + 0.415482 Sin  [2t ] - Oy[t] +6y [t]+y"[t] == o )
0.25703 Sin (4t ] -0.0860823 Sin (6t ] +0.145233Sin (8] + Here's what happens when you use the charcteristic equation to go
0.140967 Sin _ [10t ] - 0.0168037 Sin  [121 ] - 0.0842575 Sin {141 | + after formulas for the solution of this oscillator differential equation
0.00337488 Sin (16t ] + 0.088743 Sin (181t ] + 0.0464058 Sin (20t ] - ith | d
0.0482512 Sin [22t ] - 0.0522351 Sin  [241t ] + 0.0307325 Sin  [26t ] + with sample starter data
0.0670608 Sin (281 ] V0] =1.2 and ${0] = 3.4.

Clear [z]

charequation =z2+bz +c ==0;

zsols = Solve [charequation, z 1
{{z->-3}, {z~>-3}}
| Clear [combo, C1, C2 ]
combo [t 1= c1 Ezso\s 0112 gt +C2 Ezscls 212 3t
C1E3! +C2ES3!
| ystarteq = combo[0] == 1.2

What went wrong? Cl+C2--12
How do you fix it? | yprimestarteq = combo’ [0] == 3.4
. -3C1-3C2==34
pAnswer | Csols = Solve [{ystarteq, yprimestarteq }, {C1,C2}]
Take another |00k RowReduce:luc  : Result for RowReduce of badly conditioned matrix
) {{1., 1, -12}, {-3, -3, -34}) may contain significant numerical errors.
| Showfitplot  1; {{Cl- -4.20336 x10'®, C2 - 4.20336 x10%}}
What went wrong?
OAnswer:
Look atcombdt]:
] combort]

C1ESt L Cc2ES!
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At first glance there appear to be two degrees of freedom here, but
because the charactertistic equation has only one solution, you have
only one degree of freedom. This is not enough to allow you to match
up with the starter data «y[0] andy’[0].

OT.4.a.i) Inserting at
What can you do to get around this problem?

OAnswer:

Old DiffEq hands know how to tweicombdt].
Here's how they do it:
Look atcombdt]:

] comboft]
C1E®! 1 Cc2ES!

Insert at onto one of the terms:

Clear [bettercombo ]
bettercombo  [t_ ] = combo[t] /. C2E=3! 5t C2E3!

ClE3! +C2E3' ¢
Try it out:

ExpandAll [

oscdiffeq /. {y[t] -> bettercombo [t],
y' [t]1 -> bettercombo' [t],
y" [t] -> bettercombo" [t1}]

True
The upshot:
bettercombft] solves the differential equation and gives you the two
genuine degrees of freedom you need to match up with the starter da
ony[0] andy’[0Q].

ystarteq = bettercombo [0] == 1.2;
yprimestarteq = bettercombo " [0] == 3.4;
Csols = Solve [{ystarteq, yprimestarteq }, {C1,C2}]

{{C1-12,C2 >7.}}

This gives you the exact formula:

Clear [yformula 1]
yformula [t ] = bettercombo [t] /.Csols [1]

12E 3t +7.E 3t

Inserting the extret did the trick.

aT.4.a.ii)
When do you insert an extra t as in part i) above?

oAnswer:
If there are two different solutions of the characteristic equation, then
you don't insert any extitaln fact if you do, you will have a
guaranteed screw-up.
If the characteristic equation has only one solution (double root), then
you need to insert ttteas in part i) above.

OT.4.a.iii) How important is the issue of the extrét?
How important is the issue of the extra t?
oAnswer:
If you want an exact formula, it's important.
If you are willing to settle for a very good approximate formula then
it's not an issue at all.
Watch this:
b=3;
2

o3

Clear [ty 1;
oscdiffeq =y”[t]+by’[t]+cy[t]==0
YL i ayrityayrit) =0

Here's what happens when you use the characteristic equation to go
after formulas for the solution of this oscillator differential equation

DE.03.T4

with starter data
y[0] =2 andy’[0] = 1.

Clear [z]
charequation =z2+bz +c ==0;
zsols = Solve [charequation, z 1

{z--3) 2--3))
Only one solution of the characteristic equation. If you want an exact

formula, then you need to insert ithe

Clear [exacty ]
exactsol = DSolve [{oscdiffeq, y [0] ==2,y "[0] ==1},y [t],t 1;
exacty [t_] =y[t] /. exactsol [1]

ES3Y/2 (2441

There's that extra
If you are willing to settle for a good approximate formula, you look at

the original differential equation:

b =3;
3,2
°-(3):
2
Clear [ty 1;
diffeq =y”[t]+by’[t]+cy[t]==0
2L Layrey eyt ==

Tweak the damping teriba little bit to get a nearby oscillator:
tweakedb = 1.0001 b;

Clear [ty ]
nearbydiffeq =y”[t] +tweakedby "[t] +cy[t] ==0
EV%L £3.0008y ‘[t]+y”[t] ==
Solve the nearby oscillator diffeq via the characteristic equation:
Clear [z]
charequation =22 +tweakedb z +cC == 0;

zsols = Solve [charequation, z 1
{{z > -152136 }, {z »-1.47894 }}
Clear [combo, C1, C2 ]
combo [17 ]= c1 Ezso\s 0112 gt +C2 Ezsols 212 3t

C1E 152136t oo 147804t
| ystarteg = combo[0] ==

Cl+C2==2

| yprimestarteq = combo’ [0] ==

-1.52136 C1 -1.47894C2 ==1

| Csols = Solve [{ystarteq, yprimestarteq }, {C1, C2}]
{{Cl- -93.2856, C2 - 95.2856 }}

Clear [approxy ]
approxy [t_ 1 =combof[t] /.Csols [1]

-93.2856 E 152136t g5 2g5g £ -147894t
No extrat.
Compare the two solutions:

endtime = 12;
Plot [(exacty [t 1, approxy [t1}, {t O, endtime 1
PlotStyle - {{Blue, Thickness [0.02 1}, {Red, Thickness [0.01 1}},

1
PlotRange - All, AxesLabel - (", }, AspectRatio - ?]

1.5

0.5

2 4 [ 8 10 12
Sharing ink all the way.
You can't tell the difference without a scorecard.

The upshot: The matter of inserting thie important only when
theoretical exactness is paramount.

In practical situations, you can almost always tweak the damping term
to get good, practical results.
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OT.4.b.i)

Use the Laplace transform to explain where the éxtomes from.
OAnswer:

Here's another oscillator differential equation which needs thetextra

b 8;

c = 16;

Clear [ty 1;

oscdiffeq = (y' [t] + by [t] +cy[t] == 0)
16y [t]+8y [t]+y"[t] ==

Here's what happens when you use the characteristic equation to go

after formulas for the solution of this oscillator differential equation
with starter data
y[0] =2 andy’[0] = 3.

Clear [z]

charequation =z2+bz +C ==0;

zsols = Solve [charequation, z ]
{({z > -4}, {z->-4})

Uh-oh.
Only one solution of the characteristic equation. To see where the ext

t comes from, go to the Laplace Transform:
Clear [t, Y, approxy, s 1

f [t_ ] = 0; ystarter = 2; yprimestarter =3;
Y[s_] = ————— (LaplaceTransform [frel,ts 1+
s2+bs+cC
b ystarter  + s ystarter + yprimestarter );

y [t_ ] = Chop [Expand [InverseLaplaceTransform
2B v 11E

Now you can see where the extigomes from.

[Y[s],s, t 111

Look at the Laplace transform of the soluty[t]:

] Apart [Y[s]]
11 . 2
(4+8)2  4+s

The inverse Laplace transform of
2 -4
= is 2E

and the inverse Laplace transform of

L = -11D[(Zp), 8] is 11tE-4Y:

(4+9?
I 2 InverseLaplaceTransform [L sit]
s+4

2E4t
1

I 11 InverseLaplaceTransform [-D[ e s].st ]
+

11E“4tt

That's where thecomes from.
aT.4.b.ii)

In the last part, knowing that the inverse Laplace transform of
2 s 284
S+ !
you recognized that the inverse Laplace transform of
o - 11D, 5 is —tEC4Y,

(4+s? S+4
(That's where the extra t really comes from.)
Is this a special case of a general rule?

oAnswer:
You bet your sweet pocket calculator!
The rule is this:
If
Y[s] is the Laplace transform y[t],
then the inverse Laplace transform of
Y’'[s] is—ty[t].
It's even programmed infdathematica

DE.03.T4

Clear [s,t,y,Y 1]
Y[s_1 = LaplaceTransform
InverseLaplaceTransform

-ty [t)
You can explain this sweet little rule as follows:
Y[s] = [T ESty[t] dt
Y'Isl = ds(f; EStyItldh = 7 as(E"y[t) dt
Y'[s] = [T ESty[t] (-t dt
Y'[s] = [T ESU(-ty[t]) dt

[yltl,ts 1
[YIsl,s t ]

This tells you thaY’[s] is the Laplace transform —ty[t].
Nice, simple calculus.

OT.4.b.jii)

Is there a way you can see where the ebx¢ames from without
resorting to the black box of the Laplace transform?
OAnswer:

The idea for this explanation comes from V. | Arnold's book
Ordinary Differential Equations,
Translated from the Russian by Roger Cooke, Springer-Verlag, 1992.

Yes there is!
The prototype oscillator differential equation whose characteristic

equation has only one solution is:

Clear [oscdiffeq, r,y, t 1
b=2r
c=r?;
oscdiffeq
2

=y [t]+by/[t]+cCcy[t] ==
yIt]+2ry [t]+y [t] ==0

Check:

Clear [z]

charequation =z2+bz +c ==0;

zsols = Solve [charequation, z 1
{{z>-1}, {z>-1}}

r

Good.
Now tweak this oscillator this way:
Clear [nearbyoscdiffeq, y, h, t 1

nearbyoscdiffeq [h_1=y”[t]1+ @2r +h)y [t]+r (r+h)y[t] ==
rher)ytl+ (h+2r)y [t]+y"[t] ==

Whenh is very small, then the two differential equations are almost the
same.

| ColumnForm [ {oscdiffeq, nearbyoscdiffeq
r2yt]+2ry [t]+y”[t]==0
r (0.00001 +r)y[t]+ (0.00001 +2r)y [t]+y”[t]==0

Now look at formulas for solutions of both:

Clear [yexact,p,q 1]
exactsol = DSolve [{oscdiffeq, y
yexact [t_] =y[t] /.exactsol [1]
E™ (p+(a+pr)t)

Clear [ynearby, p,q ]
nearbysol =

DSolve [ {nearbyoscdiffeq [hl,y [0] == p,y" [0] ==q}, y [t], t 1;
ynearby [t_,h_ ] = y[t] /.nearbysol [[1]]

ot [ ECOUt gapr)  hpagepr
E [ h ’ h

[0.00001 1}]

[0] ==p,y "[0] ==q},y [t],t I

Put:

Clear [g, X ]
gix_] = -E™!
_Etx
And notice thaynearbyt, h] is given by:
Clear [altynearby 1]

hy -
alynearby [t h_ 1= (q+pr) (glr +h] -glrl) P

h Erl
o, (BT B (qepr)
E p h
Check:
| Simplify [ynearby [t h ] -altynearby [t h ]]
0
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Good.
As h closes in 010,
nearbyoscdiffefh] closes in otoscdiffeq;
so
ynearbyt, h] closes in otyexacit].
But
ynearbyt, h] = @:eo@sid | _p_

and ach closes in 010, this closes in on:

, P
I @+P1) QI+ o

E'  p+E™ (qepr)t
This is the same as:
| vexact [t]
E™ (p+(a+pr)t)
So the extrd& comes from taking a derivative.

If this argument really appeals to you,
you may have a bright future as a mathematical scientist.

T.5) The Gibbs phenomenon

DiffEq& Mathematica is pleased to acknowledge that this problem
is based in part on the exposition in Gilbert Strang's book
"Introduction to Applied Mathematics"
(Wellesley-Cambridge Press, 1986).

Activate this code.

Clear [FastFourierfit, Fourierfitters, F, Fvalues, n, k,
jump, num, numtab, coeffs, t, L 1;

. . 1
jump [n_] := jump [n] = N[Z];

Fvalues [F_,L_,n_ 1 :=
N[Table [F[Lt], {t, 0,1 - jump [n],jump [N]1}]11;

numtab [n_] : = numtab [n] = Table [k, {k, 1,n }];

2mikt

Fourierfitters [Ln,t ] :=Table [ET7,

tk, -n +1,n - 1}];

Part [InverseFourier [list 1, Drop [numtab [n], 17111/
N[Sqrt [Length [list 111

FastFourierfit [FoL,n,t ]:=

Chop [Fourierfitters [L.nt ].coeffs [n, Fvalues [F L n 11];

Look at this plot:

Clear [f,t 1;

f [t_1 =Sign [Sin [xt]];
L=2;

cycles =3;

fplot =

AxesLabel - {"t", "f [t 1"}, PlotLabel - "cycles" cycles,
Epilog - {{Red, Thickness [0.02 ], Line [{{0,0}, {L, 0 }}1},

{Text [*One Period", {%,0.1 HIM:

frt] 3cycles

4 & t

-1
Now look at this fast Fourier fit off] shown with ft]:

n=_8;
Clear [realfit 1;
realfit [t_ 1 = Chop[ComplexExpand [FastFourierfit f,L,nt 111;
fitplot = Plot [{f [t], realfit [t1}, {0, L 3},
PlotStyle - {{Thickness [0.01 ], Red }, {Blue }}1;

0.5 1.5

coeffs [n_, list. ] := Join [Reverse [Part [Fourier [list ], numtab [n]]],

DE.03.T4-G1

OoT.5.a)

Late last century, the American mathematician Gibbs noticed
theoretically (with no machine help) the same phenomenom you are
seeing here. Lots of folks call this by the name "Gibbs phenomenon.
What is the Gibbs phenomenon?

OAnswer:

Look again:
| Showffitplot  1;

Increase the quality of the Fourier fit:

n = 12;

Clear [realfit 1;

realfit [t1 =

Chop [ComplexExpand [FastFourierfit f,L,nt 111;
newfitplot = Plot [{f [t ], realfit [t1}, {t, O, L 1},

PlotStyle -> {{Thickness [0.01 ], Red }, {Blue }}1;

1ipaann
0.5
0.5 15
0.5
-1

Look at the jum(f[t] takes in the middle. Notice that the fast Fourier
fit overshoots on one side of the jump with a compensating undershoo

on the the other side of the jump.

Gibbs proved theoretically that when you go with a high quality fast
Fourier fit (bign) of any periodic functiof[t], then you will always
get this phenomenon at a jumpf|t].

DE.O3 Laplace Transform and Fourier
Analysis
Give lta Try!

Plot [f [t1, {t, O, cyclesL }, PlotStyle - {{Thickness [0.02 ], Blue }},

G.1) Using the Laplace transform to solve some forced
exponential and forced oscillator diffeqs

0G.1l.a)
Use the Laplace transform to come up with the exact formula for the
solution of the forced exponential differential equation
Y[t] - 0.5yt] = 8 Cog21]
with yf0] = 4.
0G.1.b)
Use the Laplace transform to come up with the exact formula for the
forced, damped oscillator coming from
Y'[t] + 0.7 Y[t] + 2.8t] = 2 Sin 3.21]
with y{0] =3.2 and ${0] = -0.6.
Inspect the formula to come up with a formula that describes the
long-term behavior of this oscillator.
Give a nice plot.

0G.1.c.i)

Look at this:

Clear [f,F,s, t 1;
f [t_ ] = DiracDelta [t -2.7 ];
F[s_] = LaplaceTransform  [f[t],t, s ]
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E-27s

Use the integral definition of the Laplace transform to explain the
output.

0G.1.c.ii)

Showcase the Laplace transform method and the Dirac delta function
by coming up with the exact formula for the forced oscillator coming
from

Y [t]+0.5y[t] + 3.1y{t] = f[t]

with ft] = 10 DiracDeltdt — 8.5], y[0] =8 and y[0] = 2.
Show off your work with a good plot.

0G.1.d.i)

Look at this function:
Clear [f,t ]
fIt]=Sin[t] (1-UnitStep [t -x])
Plot [f[t], {t 0,6 },PlotStyle - {{Thickness [0.015 7], Blue }},

AspectRatio

1
ey AxesLabel - {"t',"f [t]"}];

Sin [t] (1 -UnitStep [-m+t])
flt]

ocooo

1
.8
.6
.4
.2

I B S R A

Explain why the formula
fit] = Sin[t] (1 — UnitStedt — x])
guarantees that
- f[t] = Sin[t] forO<t< 7 and
- f[t] =0 for t> n.

0G.1.d.ii)

Stay with the same functioffitf = Sin[t] (1 — UnitStegdt — ]) as in
part i) above.
Showcase the Laplace transform method to come with the exact
formula for the forced oscillator coming from

Y[t]+0.7y[t] + 9.1yft] = f[t]

with  y0] =4 and y[0] = 0.
Show off your work with a good plot.

0G.1.e.)

Plot the new function[f] described as follows:
- f[t]=tforO<t<2and
- f[t] =0 fort> 2.

0G.1.e.ii)

Stay with the same functiofitf as in part i) above.
Use the Laplace transform method to come with the exact formula for
the forced oscillator coming from
Y[t]+ 0.7 y[t] + 9.1 yft] = f[t]
with  y0] =4 and y[0] = 0.
Show off your work with a good plot.

G.2) Periodic functions and some Fourier fits

Activate this code.
Clear [FastFourierfit, Fourierfitters, F, Fvalues, n, k,
jump, num, numtab, coeffs, t, L 1;

jump [n_1 : = jump [n N[ ! B
jump [n_] @ = jump [n] = TRk
Fvalues [F_,L_,n_ 1 :

N[Table [F[Lt ],_{t, 0,1 - jump [n],jump [n]}1];

numtab [n_] : = numtab [n] = Table [k, {k,1,n }1;

2kt

Fourierfitters [Ln_,t 1 :=Table [ETT,

tk, -n +1,n - 13];

DE.03.G1:G2

coeffs [n_, list. ] := Join [Reverse [Part [Fourier [list ], numtab [n]]1],
Part [InverseFourier [list 1, Drop [numtab [n], 17111/
N[Sqrt [Length [list 111

FastFourierfit [FoLn_,t ]:=
Chop [Fourierfitters [L,n t ].coeffs [n, Fvalues [F, L n 111;
0G.2.a.i)

Look at this plot of
fit] = 3(Ceiling[ 1 - +):
Clear [f,t 1;
frt_]1=3 (Ceiling [%] - %)
Plot [f[t], {t 0,13 }, PlotStyle
1

GoldenRatio
PlotRange - All ];

- {{Thickness [0.01 ], Blue }},

AspectRatio - , AxesLabel - {"t", "f [t1"y,

I S S R TR R
This function is periodic.

Identify the period L offt] and plot three cyles oftf.
0G.2.a.ii)

Give a fairly decent, but not necessarily great, fast Fourier fit of this
function on[0, L] and then plot three cyles dtffand your fast
Fourier fit.

0G.2.b.i)

Look at this plot of

fit] = 10(Ceiling[ £ + Floorl 51— 21):
Clear [f,t 1;

fIt_1=10 (Ceiling [%] + Floor [%] - STt);

Plot [
frt1, {t 0,21 1}, PlotStyle
AxesLabel - {"t',"f [t1"}1;

- {{Thickness [0.01 ], DeepCadmiumRed }},

-10
This function is periodic.
Identify the period L of fit] and plot three cyles oftf.

0G.2.b.ii)

Give a fairly decent, but not necessarily great, fast Fourier fit of this
function on[0, L] and then plot three cyles dtffand your fast
Fourier fit.

0G.2.c)

Look at this plot of
flt] = 5 Cog3t| - 7 Sir{ +1:
Clear [f,t 1;
f[t_]=5Cos[3t]-7Sin [%]
Plot [f[t], {t, 0,35 },
PlotStyle - {{Thickness [0.01 ], PermanentRedViolet 13N
AxesLabel - {"t","f [t]1"}];
frt]
10
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This function is periodic.
Identify the period L offt] as a multiple off and plot two cyles of
f[t].

G.3) Using Fourier fit and the Laplace transform to come
up with good approximate formulas for some periodically
forced oscillators

Activate this code.
Clear [FastFourierfit, Fourierfitters, F, Fvalues, n, k,
jump, num, numtab, coeffs, t, L 1;

jump [n_] : = jum [n]—N1 H
jump [n_] := jump = [H]’
Fvalues [F_,L_,n_ 1 :=

N[Table [F[Lt], {t, 0,1 - jump [n],jump [n]}11;

numtab [n_] : = numtab [n] = Table [k, {k, 1,n }];

2mikt

Fourierfitters [L,n_t_ ] := Table [E T,

{k -n+1,n - 1}];
coeffs [n_, list. ] := Join [Reverse [Part [Fourier [list ], numtab [n]]],
Part [InverseFourier [list 1, Drop [numtab [n], 1111/
N[Sqrt [Length [list 111

FastFourierfit [F,oL,n_t 1:=
Chop [Fourierfitters [L,n, t ].coeffs [n, Fvalues [F,L,n 11];

0G.3.a)

When you go after a reasonably accurate formula for the forced,
damped oscillator coming from
V[t + 1.3Y[t] + 5.4 ft] = f[t]
with \fO] =2.2 and 0] =-3.5
and
with fit] = Ceiling[ $1- %,
you first look at the plot of[f]:

Clear [f,t 1;

f [t_1 = Ceilin [t ] L.
] = g 3 3

cycles =4;

L=3;

fplot = Plot [f [t1, {t O, cyclesL }, PlotStyle >
{{Thickness [0.02 ], MidnightBlue }}, AxesLabel - {"t", “f [t1"y,

1
PlotLabel - "cycles" cycles, AspectRatio - T

Epilog - {{Red, Thickness [0.02 ], Line [{{0,0}, {L, 0 }}1},

{Text [*One Period", {%,0.1 HIM:

fre) 4cycles

./
L
-/
/

. 0 t
This f[t] is periodic with period = 3.
Next you go after a reasonably good fast Fourier fit of this function
and check it out:

L =3;
Clear [approxf 1;
n = 6;
approxf [t_] = Chop[ComplexExpand [FastFourierfit if,Lnt 111
0.458333 - 0.0833333 Cos | 2’3” | -0.0833333 Cos [__4’3” ]-
0.0833333 Cos [2t] -0.0833333 Cos | 8t | - 0.0833333 Cos [L;‘ ]+
0.311004 Sin | 2 ’3” | +0.144338 Sin | 4’3” | +0.0833333 Sin  [27t] +
0.0481125 sin [ 821 ] 1 0.0223291 Sin [me]
Check it out:
cycles =5;
fitplot = Plot [{f [t], approxf [t]}, {t O, cyclesL 1},
PlotStyle - {{Thickness [0.02 ], Blue }, {Thickness [0.01 ], Red }},
AxesLabel - {"t","™ 1},

1

” GoldenRatio
Epilog - {{Red, Thickness [0.02 ], Line [{{0,01}, {L, 0 }}1},

PlotLabel - "cycles" cycles, AspectRatio

{Text ["One Period", {%,OAl HIM:

DE.03.G2-G3

5cycles

Folks like to call those little overshoots and undershoots at the jumps
by the name "Gibbs Phenomena.”
For a word on this, see the Tutorials.

Looks pretty good.

Now you take over and use the Laplace transform to come up with a

pretty decent approximate solution of
Y[t] + 1.3y[t] + 5.4 yt] = f[t]
with yf0] = 2.2 and ${0] = —-3.5.

0G.3.b.i)

Here is the plot of a periodic function:
Clear [f,t 1;
f[t_1=05 (Sign [Cos[nt]]+1);
L=2
cycles =3;
fplot =Plot [f[t], {t O cyclesL 1},
PlotStyle - {{Thickness [0.02 ], Blue }}, AxesLabel - {"t", "f t1"y,

1
PlotLabel - "cycles" cycles, AspectRatio - T

Epilog - {{Red, Thickness [0.02 ], Line [{{0,0}, {L, 0 }}1},

{Text [*One Period", {% o1 MW

fie] 3cycles

ooee
NBODE

7 6!

This f[t] is periodic with period |= 2. Use fast Fourier fit to do a
reasonably good job of fitting this function with combinations sine
and cosine waves.

Don't be too picky.

0G.3.b.ii)

Go with the same[f] used in part i) and use the formula for the fast
Fourier fit you got in part i) together with the Laplace transform to
slam out an approximate formula for the solution of the forced
oscillator

Y[t]+0.2y[t] + 3.7 yt] = f[t]

with y0] =1 and y[0] = 2.
Plot your approximate formula.

0G.3.b.iii)

Look at the formula you got in part ii) above.
What part of the formula reflects the starting data
W0l =1 and y[0] = 2?
What part of the formula reflects the steady state behavior of the
forced oscillator?

0G.3.c)

Use Fast Fourier fit and the Laplace transform to come up with a good

approximate formula of the steady state behavior of the forced,
damped oscillator coming from
Y[t] + 2.3y[t] + 6.7 yt] = f[t]
with Ji0] =4.3 and ¥0] =-2.5
and with {t] as specified below:
Clear [f,t 1;
1L =08Abs [ - Round[ ]];
fplot = Plot [f [t], {t, 0,10 }, PlotStyle - {{Thickness [0.02 ], Blue }},
AspectRatio - %, AxesLabel - {"t","f  [t]"}];

frt)

cooo
RPN WS
| ;

) g 10!

This time you have to be careful about setting the period L.
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G.4) Fourier analysis

Activate this code before you start.

Clear [FastFourierfit, Fourierfitters, F, Fvalues, n, k,
jump, num, numtab, coeffs, t, L 1;

; . 1
jump [n_] := jump [n] = N[E];

Fvalues [F_,L_,n_ 1 :

N[Table [F[Lt ],_(t, 0,1 - jump [n],jump [n]}1];

numtab [n_] : = numtab [n] = Table [k, {k, 1,n }];

2mikt

] : = Table [E T,

Fourierfitters [L,n_,t

tk, -n +1,n - 1}];
coeffs [n_, list. ] := Join [Reverse [Part [Fourier [list 1, numtab [n]]],
Part [InverseFourier [list 1, Drop [numtab [n], 17111/
N[Sqrt [Length [list 1711

FastFourierfit [FL,n,t. ]:=
Chop [Fourierfitters [L,n,t ].coeffs [n, Fvalues [F, L, n 111;
0G.4.a.)

Here's a plot of the forced undamped oscillator
VIt + 4yt = f[t]
with 0] =0 and Y[0] = 2
and
with fit] = 5 Sint]°:
endtime = 25;Clear [f,y,t 1;
f[t_]=58Sin [t1°% ndssol =NDSolve [
{y"[t1+4y[t]==Ff[t],y [0]==0,y "[0] ==2},y [t], {t O, endtime }];
ndsy [t_] =y[t] /.ndssol [17;
ndsplot = Plot [ndsy [t], {t O, endtime },

PlotStyle - {{Red, Thickness [0.01 ]}}, AxesLabel - {"t","y [t]"}];

-5

-10

This is showing signs of resonance. When you showed this plot to the
dork Calculus Cal, he said, "Look at the characteristic equation for the
unforced oscillator
V[t] + 4y[t] = 0:"
Clear [z]
Solve [z? +4 == 0]
{{z->-21}, {z->21}}

Cal then continued, "There must be some mistake because the only
way you can put this oscillator in resonance is to force it with
multiples of Cof2t] or Sinf2t]."
You said, "Maybe that's the impression you got from the Tutorials, but
| don't agree; look aff] and a plot:"

f [t

Pl[ot] If[t1, {t0,3Pi 3},

PlotStyle -> {{Thickness [0.01 ], Blue }},
AxesLabel -> {"t", "f [t1":1;
5Sin [t]°

fre)
5

4
3
2
1
t

2 4 6 8
And then you said: "The period dftfis L =7 ; look at a reasonably
good Fourier fit of ft]:"
| Chop [ComplexExpand [FastFourierfit If, -9t 111]
1.5625 -2.34375Cos [2t] +0.9375Cos [4t ] - 0.15625 Cos [6t ]

DE.03.G4

And then you said, "Now | see where the resonance came from."
What did you mean?

0G.4.a.ii)

At this point, Cal was totally clueless, and you decided to rub it in a
bit by saying, "I think | can eliminate the resonance altogttieby
adding
2.34375 Cgat]

to f[t]. Just take a look:"

Clear [y, t 1

ndssol =NDSolve [{y”[t]+4y[t] ==f[t]+234375Cos [2t],

y[0] ==0,y "[0] ==2},y [t], {t O, endtime }];
y[t_1=y[t] /.ndssol [1T;
adjustedplot =

Plot [y [t1, {t O, endtime }, PlotStyle - {{Red, Thickness [0.01 1}},

1
PlotRange - All, AxesLabel - {"t" "y [t]1"}, AspectRatio - g];

ylt]
1

.5
1
0.5
05 \/ &f \)go\f % \J2o0 s ¢
No resonance here.
How did you come up with this idea of filtering out the bad term?

0G.4.b.i)

Later in your life, you are working for Ameritech. One fine morning
your boss comes into your office saying , "There is a problem with an
oscillator designed in the Columbus office. The oscillator comes from
Y[t + @27 ylt] = f[t],
with y0] =0 and y[0] =0
and with {t] specified as follows:"
Clear [f,t 1;
f[t.1=3Abs[0.2t -Round[0.2t 11;

fplot = Plot [f [t1, {t, 0,15 }, PlotStyle - {{Thickness [0.02 ], Blue }},

1
AxesLabel - {"t","f [t]"}, AspectRatio - g];

ft]

VAVAVAN
E T4 6 8 101z 14" !

Your boss says, "Look at this plot to get an idea of what the trouble
is:"
endtime = 80;
Clear [y, t, Derivative 1;
ndssol = NDSolve [{y”[t]+122y[t]==f[t],y [0] ==0,y "[0] == 0},
y[t], {t 0, endtime 1}, MaxSteps - 15001;
y[t_]1=y[t] /. ndssol [11;
ndsplot =
Plot [y[t], {t O, endtime

}, PlotStyle - {{Red, Thickness [0.01 ]1}},

1
AspectRatio > —, Axeslabel > ('t\"y  [t1"}];

yit]
10

7.5
2.5

-2.5

-5
-7.5
You say, "Looks like near resonance to me."
And then your boss says, "Just what | was afraid of. We can't tolerate
an amplitude of more than 4 and this oscillator has amplitudes
exceeding 4."

Show [ ndsplot,
Graphics [{Thickness [0.01 ], Line [{{0, 4}, {endtime +5,4 }}1}1,
Graphics [{Thickness [0.01 ], Line [{{O, -4}, {endtime +5, -4}}1}11;

A
AL :
LWy z, 0

The boss says: "We can't put a damper on this oscillator. Can you fix
this by adding an extra term of the form

ACo$Bt] or ASinBt] with —-0.5<A <0.5
to f[t] ?"
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Remembering that little session with Cal in the Mathematica lab back
at school, and noticing that the period @@f fs L = 5, you look at:

] N[Chop[ComplexExpand [FastFourierfit f,5,12,t 1111

0.75 -0.611411 Cos [1.25664t ] -0.0711294 Cos [3.76991t ] -
0.0281083 Cos [6.28319t ] - 0.0165499 Cos [8.79646t ] -
0.0122039 Cos [11.3097t ] - 0.0105972 Cos [13.823t |

And then you say: "I'm not sure, but I'll give it my best shot."
Do it.

0G.4.b.ii)

This morning, your boss comes into your office saying, "We have
another problem oscillator. It comes from

Y[t +(L.6°yltl = f[t],

with yf0] = 0 and y[0] = 0
and with {t] specified as follows:"

Clear [f,t 1;
f [t_1 =Sign [CoS[0.5 nt]]+1;

fplot = Plot [f [t], {t 0,12 3}, PlotStyle - {{Thickness [0.02 ], Blue }},
1
AxesLabel - {"t","f [t]"}, AspectRatio - E]
frt]
2
1.5
1
0.5
‘ i 8 12
"Take a look:"
endtime = 60;
Clear [y, t, Derivative 1;
ndssol = NDSolve [{y”[t] +1.6 2y[t] ==f[t],y [0] == 0,y "[0] == 0},

y[t1, {t O, endtime }, MaxSteps - 2000 ];

y[t_]1=y[t] /. ndssol [1];
Plot [y[t], {t O, endtime
Sty

}, PlotStyle
[t1"11;

- {{Red, Thickness [0.01 1}},

AxesLabel

And then your boss said, "We can't tolerate an amplitude of more thai
2.0 as truns from 0 to 60. Try to work your magic again to fix this this
by adding an extra term of the form

ACo$Bt]or ASinBt] with —-1.5=sA <15
to f[t]."
What do you say and what do you do?

G.5) Mistakes, experiments and opinions

Activate this code.

Clear [FastFourierfit, Fourierfitters, F, Fvalues, n, k,
jump, num, numtab, coeffs, t, L 1;

) o 1
jump [n_] := jump [n] = N[E]

Fvalues [F_,L_,n_ 1 :

N[Table [F[Lt], {t,0,1 - jump [n],jump [n]}11;

numtab [n_] : = numtab [n] = Table [k, {k, 1,n }];

2mikt

] : = Table [E T,

Fourierfitters [L,on_ t_

tk, -n +1,n - 1}];

coeffs [n_, list. ] := Join [Reverse [Part [Fourier [list

Part [InverseFourier [list 1, Drop [numtab [n], 1111/
N[Sqrt [Length [list 1711

1, numtab [n]11],

FastFourierfit [FoL.n,t ]:=
Chop [Fourierfitters [L,n, t ].coeffs [n, Fvalues [F, L, n 111;
0G.5.a)

That nitwit Calculus Cal starts to plot this periodic function:

DE.03.G4-G5

Clear [f, t 1;
Si 2

f [t 1= &,

2+Cos[4t]
cycles =4;
Plot [f [t1, {t, 0,6 1}, PlotStyle - {{Thickness [0.02 ], Blue }},

1
AxesLabel "t f t 1"}, AspectRatio _—
>t A P ? GoldenRatio ]

ft)
0.5
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Intent on getting a decent fast Fourier fit with as little thought as

possible, Cal copies and pastes some code:

L =1;n =5;Clear [t, realfastfit 1

realfastfit [t_ ] = Chop[ComplexExpand [FastFourierfit f,Lnt 111
0.199184 +0.0143339 Cos [2 1t ] -0.0709849 Cos (4t ] -
0.0592728 Cos [6 1t | - 0.0556396 Cos [8 7t ] -0.24815Sin [2 7t ] -

0.0886425 Sin  [4 7t ] -0.0380883 Sin  [6 1t ] -0.0170081 Sin

8rt]

Smiling in satisfaction, Cal plot$tf and his fast Fourier fit:

Plot [(f [t 1, realfastfit [t1}, {t,0,6 3},

PlotStyle - {{Thickness [0.02 ], Blue }, {Thickness
AxesLabel - {"t","™ 1}, AspectRato - —]
GoldenRatio
0.6
0.5
0.4
0.3
0.2
0.1
&t

Cal is dumbfounded (as always).

[0.01 1, Red }},

Step in and tell Cal what he did wrong and then fix it so it looks as

good as it can.

0G.5.b)
Here's a new periodic function:
Clear [f, t 1;

t t

fIt = — -Floor [—1];

(L1 = 5 -Foor []
L=2
cycles =4;
Plot [f[t], {tO,cyclesL 1},

PlotStyle - {{Thickness [0.02 ], Blue }}, AxesLabel - {"t", "f
1
- —_—,

GoldenRatio

[0.02 ], Line [{{0,01}, {L 0}}1},

PlotLabel - "cycles" cycles, AspectRatio

Epilog - {{Red, Thickness

{Text ["One Period", {%— o1 }1}}:

frt] 4cycles

1
0.8
0.6
0.4
0.2

Peri
2 4 6 g !

[ty

Now look at these plots which compare the plot[tiftb plots of

FastFourierFif, L, n, t]:

Clear [t, n, realfastfitter, comparisonplot 1;
realfastfitter [t,n_1:=
Chop [ComplexExpand [FastFourierfit f,L,nt

comparisonplot [n_1:=Plot [{f [t], realfastfitter

PlotStyle - {{Thickness [0.02 ], Blue }, {Thickness

PlotRange - {-0.1,1.1 1},

AspectRatio - 1, AxesLabel - {"t","™ }, PlotLabel
Table [comparisonplot [n], {n,2,10,2 1}I;

111
[tn 1}

-nl;

fo.01 g,

{to. 2L 3,
Red }},
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Nintegrate  [f [t] E" S0, L 3
Alk_1:= H

L
Clear [k, complexintegralfitter 1;
m= 3;

1k @mt

m
integralfitter [t_1=Chop[ Z AlKIET T ]
k=-m

© © o o
N A O ® -

. 0.31831 -0.954931E ' "' +0.954931E '”~! _-0.31831E 2!t
0.31831E 2' 7t . 095493 1E 3! 7t 095493 1E 3!t
Convert it to sines and cosines:
| realintegralfitter [t_1 = Chop[ComplexExpand [integralfitter [t111]
0.31831 - 0.63662 Cos [2t] -1.90986 Sin [rt] +1.90986 Sin [37t]
And the corresponding fast Fourier fit:
n=m+1
fastfitter [t_ 1 = FastFourierfit f,L,nt 1
¢ 0.25 + (0.75 -0.751 )E'"t 4+ (0.75 +0.751 ) E "' - (0.25 +0.251 ) E2! 7t _
(0.25 -0.251 ) E?' "t - (0.75 -0.751 ) E3' "t _ (0.75 +0.751 ) E}' 7t
Convert it to sines and cosines:
| realfastfitter [t_ ] = Chop[ComplexExpand [fastfitter [t111
0.25 +15Co0s [nt] -05Cos [27t] -15Co0s [3xt] -15Sin [nt] -
05Sin [2nt]+15Sin [3xt]
See both along with(f]:
Plot [{f [t ], realfastfitter [t 1, realintegralfitter [t1}y, (O, L 1},
j t PlotStyle -> {{Thickness [0.02 ], Blue 3},
{Thickness [0.01 ], CadmiumOrange }, {Thickness [0.01 ], Red }},

AspectRatio  -> 1,
AxesLabel -> {"t","™ }1;

e @ o ©
N A O ® e N B O @ e

e o o 9o

© © o o
N A O ®

The plot of f[t]is blue.
The plot of the fast Fourier fit is orange.
The plot of the Fourier integral fit is red.

Raise m=n+ 1 and do everything again:

m= 8;

10
1 L=2
Clear [A, integralfitter,
-8 realintegralfitter, realfastfitter, fastfitter, k, t 1;
-6 Nintegrate  [f [t ] B (oL ]
4 Alk_1:= T H
2 Clear [k, complexintegralfitter 1;
1 34t e ent

m
integralfitter [t_1=Chop[ Z ALKIET T ]
Grab and animate at various speeds. K=-m

h h | o 0.31831 -0.954931E ' "' +0.954931E '”!' -0.31831E 2'”"' -0.31831E 2' "t
What do these plots depict? 095493 1E -3' ™' _0,95493 1E 3' ™' . 0.106103E ' 7! + 0.106103 E 4' ™! -

o o o o

Does the Gibbs phenomenon show up? 031831 1E 5' ™ _0.318311E 5' "' 40106103 E ®' 7t + 0106103 E &' 7t _
. . - 0.318311E 7' 7' .0.3183L1E 7'”"' -0.0212207 E “®' "t _0.0212207 E 8' "t
0G.5.c.i) Fast Fourier versus Fourier integral . . .
) ) ) o Convert it to sines and cosines:
What is the inherent advantage of using fast Fourier fit instead of the | realintegralfitter [t ] = Chop [ComplexExpand  [integralftter [t
Fourier integral fit? 0.31831 - 0.63662 Cos [2nt] +0.212207 Cos [4 it ] +0.212207 Cos [6 rt | -
. 0.0424413 Cos [8 1t ] - 1.90986 Sin [t ] +1.90986 Sin  [37t] +
0G.5.c.ii) 0.63662 Sin  [57t] - 0.63662Sin [7 7t ]
Here's a periodic function: And the corresponding fast Fourier fit:
Clear [f, t 1; n= m+ 1; o
f[t_]=Sin[xt] (3-Sin [xt]) Sign [Cos[2xt]]; fastfitter [t_ 1 = FastFourierfit f,L,nt 1
-t
Plot [f [t], {t, 0,4 }, AspectRatio ; 0.264376 - 0'7|g,3,128 'E ) 21 nt 21 7t
GoldenRatio 0793128 |E ' ' ~0.321714 E 2! "t _0.321714E 2' "t
PlotStyle - {{Thickness [0.01 ], Blue }}, AxesLabel - {"t","f [t]"}]; 1.13716 1E 3' 7' _ 113716 1E 3' 7! 10163531 E *' "' 4 0.163531E 4! 7t .
fit] 0.15597 IE ' 7t _0.15597 IE ®' "' 410117812 E ®' "' ,0.117812E &' 7t -
4 0.550901 1E 7' "t 105550901 1E 7' "' _0.0918169 E ' "' _0.0918169E &' "t
8 Convert it to sines and cosines:
2 | realfastfitter [t_ ] = Chop[ComplexExpand [fastfitter [t111
1 0.264376 -0.643429 Cos [2 7t ] +0.327063 Cos [4 7t ] +0.235624 Cos [6 7t ] -
t 0.183634 Cos [8t] - 1.58626 Sin  [rt] +2.27432Sin [3nt] +
1 0.311941Sin  [5xt] -1.1018Sin [7 nt]
2 See both along witht]:
H H H T H H H Plot [{f [t ], realfastfitter [t 1, realintegralfitter [t1y,
This f_unctlon IS. pe.I'IOdIC Wl.th penOd £2. {t, 0, L 1}, PlotStyle - {{Thickness [0.02 ], Blue },
Here is a Fourier |ntegral fit: {Thickness [0.01 ], CadmiumOrange }, {Thickness [0.01 ], Red }},
L=2 AspectRatio - 1, AxesLabel - {"t","™ }1;
Clear [A, integralfitter,
realintegralfitter, realfastfitter, fastfitter, k, t 1;
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The plot of f[t] is blue.
The plot of the fast Fourier fit is orange.
The plot of the Fourier integral fit is red.

Are the results from the integral fit and the fast fit the same? Are they

significantly different?

How do you account for this?

What do you think would happen if you raised=m + 1 to a much
larger number?

How does your experience with these calculations mesh with what
you said in part i)?

G.6) The transfer function is the Laplace transform of
yunitimpluse[t]
The Laplace transform ofyzeroinput[t] is the transfer

function times the Laplace transform of the forcing function

Given an oscillator
Y[tl + by[t] + cy[t] = f[t]
with given starting data, lots of folks solve fdtlyby putting
Mt] = yzeroinpuft] + yunforcedt].
Here
yzeroinpUt]
solves
Y[t] + by[t] + cylt] = f[t]
with 0] =0 and y{0] =0
and
yunforce(d]
solves
YItl + byl[t] + cylt]=0
with the given starting data.

Coming up with the formula for yunforcgglis always easy; it's just
algebra which Mathematica can always handle.

Coming up with a precise formula for yzeroinpuits where all hell

can break loose because of intractable integrals or intractable Laplact

transforms. Engineers know how to make an end-run around this
potential roadblock. They go with the oscillator diffeq:
Clear [y, t, f, b, c 1
oscdiffeq =y"[t]+by [t]+cy[t]==f[t]
Cy[t]+by [t]+y [t] ==f[t]
And then they write down the Laplace transform of yzeroinput:

DE.03.G5-G6

ystarter = 0; yprimestarter = 0; Clear [Yzeroinput,s ]
Yzeroinput [s_] = ————— (LaplaceTransform ffrel.t,s 1+
s2+bs+c
b ystarter + S ystarter + yprimestarter )
LaplaceTransform frej,ts 1
c+bs +s2

This tells you that the Laplace transform of yzeroifipuis
Tﬁ‘bl—sTE times the Laplace transform gt
For this reason, some folks like to call

_ 1
Hsl = £+bs+c i
by the name "transfer function."

Clear [H]
1

H[s_] = —u
(s s2+bs+c

1
c+bs +s2
Again, the big point is that the Laplace transform of yzero{tjist
just:
| His] LaplaceTransform  [f[t],t s ]

LaplaceTransform  [f[t],t, s ]
c+bs +s2

And you get this without an explicit calculation of yzeroirjgut
0G.6.a)

How is the transfer function
_ 1
HSl = o550 , ,
related to the characteristic equation for the unforced oscillator
coming from
Y[t + by'[t] + cy[t] =07

How are singularities of 8] related to roots of the characteristic
equation?

What information do you get about an unforced oscillator when you
know that all the singularities of its transfer functiofsjHhave
negative real parts?

1

0G.6.b.i) The transfer functioH[s] = e

transform

is the Laplace

of yunitimpulse[t]

Given the forced oscillator:
Clear [y, t,f, b, c 1
oscdiffeq =y”"[t]1+by’ [t]+cy[t]==f[t]
cy[t]+by [t]+y [t]==f[t]

You get yunitimpulsg] as the solution of:
Clear [y, t,f, b, c 1
unforcedoscdiffeq =y’[t]+by’ [t]+cy[t] ==

Cy[t] +by [t]+y"[t] ==0

with y[0] = 0 and y[0O] = 1.

The Laplace transform of yunitimpulskis::
ystarter = 0; yprimestarter =1
Clear [Yunitimpulse, s 1
1

sZ+bs+cC
(LaplaceTransform [0,t,s ] +bystarter  +s ystarter + yprimestarter )
1

c+bs+s?

This is a good fringe benefit because it tells you that you can
write down the Laplace transform of yunltlmpulse{t] without
going to all the trouble of calculating yunltlmpulse[t].

How is the Laplace transform of yunitimpulgerelated to the transfer
function Hs] of the unforced oscillator diffeq
YIt]+by[t] +cyit] = 0?

Yunitimpulse [s_]=

What function has ] as its Laplace transform?

0G.6.b.ii)

Is it true that the Laplace transform of the solution of

Clear [y, t,f, b, c 1
oscdiffeq =y”[t]+by ' [t]+cy[t]==f[t]

cy[t]+by [t]+y"[t]==f[t]
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with y[0] =0 and y[0] =0is
the Laplace transform of yinitimpulgétimes the Laplace transform
of f[t]?
0G.6.b.iii)
Remember the convolution integral method. In this method you get
yzeroinpuft] by calculating this convolution integral:
yzeroinpyt] = fotyunitimpulse{t - X] f[x] dx.

Let Mathematica calculate the Laplace transform of yzerdijput

Clear [yzeroinut, yunitimpulse, t, f, x 1

yzeroinput  [t_ ] = J-‘ yunitimpulse [t -x]f[x]dx

0

LaplaceTransform
LaplaceTransform

[yzeroinput [t],t s ]
[f[t],t, s ] LaplaceTransform [yunitimpulse [tl,ts ]

How does this calculation jibe with what you said in part ii above?

G.7) MathematicaFats and the Laplace transform

Some of the problems discussed here were taken from actual student
assignments in an
electrical engineering course in Linear Signals and Systems at a
well-known university.

Given a wide berth by the fraternity and sorority crowd because he
constantly chews snuff right in the lab, "Mathematica Fats" is not at
the social center of the Mathematica lab. Maybe this has something t
do with his habit of popping Life Savers and drinking coffee without
spitting out his Copenhagen snuff. You know the type. But recently
Fats has become very popular with the electrical engineering crowd,
and in fact has become one of the most popular residents of the
Mathematica lab.

The reasons:

— Fats knows mathematics;

- Fats knows Mathematica; in fact he learned a lot of mathematics by
exploring Mathematica, and

- Fats knows how to use Mathematica to fake hand work.

This makes him especially useful to the students in Electrical
Engineering 313 (Signals) whose professor demands that they do all

of their work by hand.
Today you are sitting in on one of Fats' sessions in the lab.

0G.7.a) Trig identities

The first problem on the Electrical Engineering assignment is to find
the Laplace transform of the functioft]fgiven by
flt] = Sin[t + aJ.
Fats' reaction:
Clear [F,s,t,a ]
F[s_] = LaplaceTransform
Cos[a] +sSin [a]
1+s2
One student asks, "How do | make this look as if it were done by
hand?"
Fats says, "Apply a trig identity like this:
| handstepl = Chop[TrigExpand [Sin [t +a]]]
Cos [t ] Sin [a] + Cos[a] Sin [t ]
And then replace Sjfi and Co§] by their Laplace transforms:

[Sin [t +a],t s ]

] LaplaceTransform  [Sin [t],t s ]
1
1+s2
] LaplaceTransform  [Cos[t],t s ]

S
1+s2

Which you write up as if you looked them up in a table.”
handstepl /. {Sin [t] -> LaplaceTransform [Sin[t],ts 1,
Cos[t ] -> LaplaceTransform [Cos[t],t,s 1}
Cos[a] . s Sin [a]
1+5s2 1+5s2

Taking a fresh dip and placing it between his cheek and gum, Fats
says, "You know this is really a problem from high school trig."
Now you try one.

Fake a hand calculation of the Laplace transform oftGds.2].

DE.03.G6-G7

0G.7.b) Using the definition of the Laplace transform

The second problem on the Electrical Engineering assignment is to
find the Laplace transform of the functioftlygiven by
Wt] = Sint] for O<t=<n
but
Mt]=0 for n<t.
Fats' reaction: Do this integral by Mathematica:
Clear [Y,y,s, t ]
H -st
Y[s_1 _L Sin [t]E dt
1+s2  1+s2
And then say you looked it up in a table."
Explain why Fats is right.

0G.7.c) Differentiating the Laplace transform

The third problem on the Electrical Engineering assignment is to find
the Laplace transform of the functioft]fgiven by

fit] = tE3tSin4 ]
Fats' reaction:

Clear [F,s]
F[s_] = LaplaceTransform  [tE 3! Sin [4t1,t s ]
8 (3+5s)

(16 + (3+5)2)2
"To make this look like it was done by hand, look at this:" says Fats.

Clear [g,t ]
| LaplaceTransform [tg [t]l.t,s 1]

-LaplaceTransform (901 ) (gt ], t, s |
"This tells you that the Laplace transform oftgs minus the
derivative of the Laplace transform dtly
Now say you looked up this in a table:

| LaplaceTransform [E3tSin [4t],t,s ]

4

16+ (3+5)2
Now differentiate with respect to s and multiply b¥ to get the
Laplace transform of

{t] = tE3t'Sin[41]."
Do it and check yourself with Mathematica.

O0G.7.d) The Laplace transform of the convolution is the product of
the Laplace transforms.

The next problem on the EE 313 homework set is to find the inverse
Laplace transform of:

Clear [Y,s]
1

(s2+1) (s2+4)

Y[s_1=
S S
(1+s2) (4+52)
Some of the engineering students are clueless. Fats says, "That prof
probably wanted you to do some miserable algebra. Let's surprise the
prof. Look at this."
Clear [f, g, h, t,s X,y 1

t
hit_] =jf[t -Xx]1g[x] dx
0

t
Jf[t -X] g[Xx]dx
o

| LaplaceTransform
LaplaceTransform

thitl,ts 1
[f[t],t s ] LaplaceTransform [g[t], t,s 1
Fats goes on: "This tells you that the Laplace transform of the

convolution .
t] = [Jf[t - x] gIx] dx
is the Laplace transform oftf times the Laplace transform dfth
That's cool.
So you can get the inverse transform of
1
Yis] = (F+1) (+4)

by looking up the inverse transforms of

1 1
_wyandgg
in a table like this :

Clear [f,t 1;
1

f [t_ 1 = InverseLaplaceTransform [———
s24+1

s, t ]

Sin [t ]
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Clear [g,t ] A student says, "What's that?"
g[t_ ] = InverseLaplaceTransform [2;4 s, t ] Fats says, "It's the same aE]Y"
L S°+ | simplify [Apart [Y[s]]-Y[s]]
> Sin [2t] 0
And now the function jt] whose Laplace transform i is just: Then Fats says to look at this:
Clear [y, t ] | LaplaceTransform  [E<', t s 1]
t
1
V[L]=Lf[t—xlg[xldx TKis
Sin [t] L g (2t Now you take over. Explain where the inverse Laplace transform of
3 6 Y [s] comes from.
Check: .
] Together [LaplaceTransform  [y[t],t s 1] I:lG.7.g) Periodic |mpulses
m Another problem is to find the inverse Laplace transform of
- § - B
This is the same as: sl = g
S
] Yis] | InverseLaplaceTransform [ E .S, t ]
1 B -1
— S
(1+582) (4+52) InverseLaplaceTransform [—lET st ]
Now you try one. No dice.
The students run to Fats who says: "Not surprising; look at this:"
. . Clear [x
Use the same method to come up with the inverse Laplace Transforn e 1
of Series [1— x0,9 }]
-X
1
Y[S]zm:wﬁ Lax+x?ex3ex?ax®ex8ox” x84+ x%40[x]10
So
ES
e
1-E—
=1+ ES+E2S+ESS+ . E*S+. .
Fats continues: "Now look at this:"
Clear [s,t, k ]
LaplaceTransform [DiracDelta [t]1,t, s 1
1
| LaplaceTransform [DiracDelta [t -1],t s ]
EfS
| LaplaceTransform [DiracDelta [t -2],t, s ]
E—Zs
| LaplaceTransform  [DiracDelta [t -3],t, s ]
. -3s
0G.7.e) Mathematica Fats and Calculus Cal E )
. o | LaplaceTransform  [DiracDelta [t -10],t s ]
There is some pressure to have Calculus Cal join Fats' group. But try g-10s

as they might, the students could not convince Calculus Cal to get
anywhere near Mathematica Fats. Cal knows that when he blurts out
something really stupid such as

Taking a new dip of snuff and a huge slug of coffee, Fats licks his lips
and says , "It should now be clear what periodic impulse has
ES

"If F[s] is the Laplace transform oftf and Gs] is the Laplace _E
transf?{rmGof @tl, then _ i;EE_S FE2S1E35+ Eks4
s Gls] _
is the Laplace transform of for its Laplace transform.
fit] gitl,”

5

then Fats will eat him up and spit him out with his spent snuff. What does Fats mean’

Fats goes on to say, "l think a rather slick answer to this problem is
DiracDeltgSin[r t]]."

Is Fats right?

Just to keep yourself at a big distance from Cal, say why Cal's idea
that if Hs] is the Laplace transform oftf and Gs] is the Laplace
transform of ¢t], then Ks] G[s] is the Laplace transform oftf g[t] is

rea"y stupid The characters Mathematica Fats and Calculus Cal are based on real
e . people.
What function has [8] G[s] for its Laplace transform?
0G.7.f) Partial fractions G.8) Critically damped oscillators
The next problem on the EE 313 homework set is to find the inverse 0G.8.a)
Laplace transform of: o ) o _
Clear [Y,s,t ] Here's a damped oscillator whose characteristic equation has only one
v 652+22s +18 solution:
5 P —
[s-1 (s+1) (s+2) (s+3) Clear [r1];
18 +22s + 652 Clear [y, yoriginal, t 1
(1+s) (2+s) (3+5) originaloscillator =y [t] + (2r)y [t] +r2y[t] ==
Fats' first reaction is: rPy[t]«2ry [t]+y"[t] ==0
Clear [z]
1 Iri\;e‘rseLap}ezifeTre{Tsform [Y[s]l, s/t 1] charequation =
3E +2E +E . X . originaloscillator /oy It1->22%,y [t1->zy [t]1->1};
Fats says, "Here's how to make it look like a hand calculation:" zsols = Solve [charequation, z ]
I Apart [Y[s]] ({z>-r), {(25-1}}
i ,.2 3 Here's a formula for the exact solution of this oscillator with starting
1+s 2+s 3+s data
Fancy folks call this the partial fraction decomposition of Y[S]. — v, -
Partial fractions are a big deal in old-fashioned calculus courses. y[O] p and y[O] g.
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Clear [p,q 1;
originalsol =
DSolve [ {originaloscillator,
y[0l ==p.y [0] ==ql,y [t], t1;

Clear [yoriginal 1;
yoriginal [t_1 = y[t] /. originalsol [[11]
E™ (p+(a+pr)t)
Why are you not surprised by the exti@n the right?
0G.8.b.i)

Here is a damped oscillator whose characteristic equation has only
one solution:

Clear [ycritical 1;
3
r=—;
4
criticaloscillator Sy [t]+ (2r)y [t]+r2y[t]==0
9)/1([51] . 3y2[l] LY It] ==0
Clear [p,q ]
criticalsol =
DSolve [ {criticaloscillator, y [0] ==p,y "[0]1 ==q},y [t].t 1;
ycritical [t_1=yI[t] /. criticalsol [11

et o (3P a) )

Change the damping term a wee bit and keep everything else the san
and you get:
Clear [ychangedamp ]
changedamposcillator
gylé” . (%+h)y’[t] £y [t] =20
changedampsol =
DSolve [{changedamposcillator,
y[0] ==p,y [0] ==q},y [t],t];

=y [t]1+ (2r +h)yy' [t]+r2y[t]==0

ychangedamp [t_, h_ 1 = y[t] /. changedampsol [[1]]

4+/h+/3+h

When you make k& 0.0001, you get:
] ychangedamp [t, 0.0001 ]
-14.4335 E 075871t (296556 p +4q) +14.4335 E 074139t (303484p +4q)
When you make B —0.0001, you get:
| Chop [ComplexExpand [ychangedamp [t, -0.0001 ]1]
1. E 074995t . Cos[0.00866011t ] +86.5982 E 74995t pgin [0.00866011t ] +
115.472 E “9749%5t g sin [0.00866011t |
Compare all three formulas:
] ychangedamp [t, 0.0001 ]
-14.4335 E 075871t (206556 p +4q) +14.4335 E 074139t (303484p +4q)
| ycritical [ti
B3 (o (3 ca) ]
| Chop [ComplexExpand [ychangedamp [t, -0.0001 ]1]

1. E 074995t 5 Cos[0.00866011t | +86.5982 E 74995t psin [0.00866011t | +
115.472 E 074995t g sin [0.00866011t |

Account for the change in character of the formulas.

0G.8.b.ii)

Now go with random p and g and see how the three formulas plot out

p = Random[Real, {-5,5 }1;
q = Random[Real, {-5,5 }]; Plot [(ychangedamp [t, 0.0001 1,
ycritical [t ], Chop [ComplexExpand [ychangedamp [t, -0.0001 111},
{t, 0,15 1}, PlotStyle - {{Thickness [0.04 ], Yellow 1},
{Thickness [0.02 ], Black }, {Thickness [0.01 ], Red }},
1

- All, AspectRatio - —_
GoldenRatio

AxesLabel - {"t","™ 1}, PlotRange I:

3 |

. LR
w o N G kg

Rerun several times.

DE.03.G8G9

Explain this:
Even though the formulas for all three were radically different in
character, all three plot out approximately the same.

0G.8.b.iii)

Here are the three formulas that you plotted out above:

] ychangedamp [t, 0.0001 1]

97.2936 E 075871t _ 100.486 E 074139t

| yeritical [t

E3t/4 (319219 -1.71269t )

| Chop [ComplexExpand [ychangedamp [t, -0.0001 ]]]

~3.19219 E 074991 (C0s5([0.00866011t ] - 197.749 E °74995t sin [0.00866011t |
One of these actually oscillates (just a wee bit) and the others do not.
Which one actually oscillates (in theory)?

0G.8.b.iv)

Lots of folks say that a damped oscillator whose characteristic
equation has only one solution is "critically damped" in the sense that
- If the damping term is decreased, then the resulting oscillator
actually oscillates.

- If the damping term is increased, then the resulting oscillator is
"overdamped" because it does not oscillate at all.

Why do you think folks say this?

G.9) Recovering the expansion of a function from its
Laplace transform

0G.9.a.)

By now, you know that you can bypass a lot of grubby calculation
provided you deal exclusively in Laplace transforms. This may seem
strange, but it's not at all dangerous because the Laplace transform of
a function carries the full DNA of the function.
For instance, if you have the Laplace transforfg] ¥f a function yt],
you can recover the values gy and y[0] directly from Y[s]
without inverting. For instance, to recovgB} you just calculate

WO] = Limit[s Y[s], S— o]
And, once you have[] you just calculate

y[0] = Limit[s® Y[s] — s y{0], S— ]

Try these out on this sampldsY:
Clear [y,s, t,Y 1;
2 (4+5s)
9+ (s-5)2
2 (4+s)
9+ (-5+5)2
To recover J0] without inverting Ys], look at
VO] = Limit[s Y[s], s— o]
| ExpandAll [Together [sY([s]]]

8s . 25s?
34 -10s +s2 34 -10s +s?

By going with quotients of the dominant terms, you can pick off
y0] = Limit[s Y[s], S— o]

Y[s_1 =

= Limjt& + 2—5252— S o]

=G2=2
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To recover ¥{0] without inverting Ys], look at
y[0] = Limit[s? Y[s] — s Y{0], S— oo] :
| Together [s?Y[s]-sy[01] /.y [0] 2

-68s +28s?
34 -10s +s?

By going with quotients of the dominant terms, you can pick off
¥[0] = Limit[s? Y[s] — s }{0], s — o]
= Limftz25% 25, s ]

= Limft 8%, s o] = 28.

Check:
Clear [y, t 1;
y [t_ ] = InverseLaplaceTransform [Y[sl.s, t 1;
y[0] ==
y’[0] == 28
True
True
This checks.

Now you do one.

Here is the Laplace transform of a functidt]y
Clear [Y,s1;

3s%+12s%-15s

1+3s2+3s44+5s6

-15s +12s3% + 3s°

1+3s2+3s%+sb

Calculate the limits
)O] = Limit[s Y[s], s— ]

Y[s_] =

and

¥[0] = Limit[s? Y[s] — s y{0], s — oo]
to come up with §0] and y[0] without inverting the Laplace
transform. Then invert the Laplace transform to check your
calculations.

0G.9.a..ii) Explanations

Look at this calculation which was explained in the Basics:

Clear [y,s,t 1;
LaplaceTransform  [y' [t],t, s ]
s LaplaceTransform [y [t],t.s ] -y[0]

Putting
Y[s] = LaplaceTransforty|[t], t, g,
this calculation tells you that
s Ys| - y[0] = LaplaceTransforiy’[t], t, §] = f0°°E‘S‘y’[t] dt
So
yO0] = s Y[s| - [E-Sty’[t] dt
no matter what s is.
Take the limit as s> o to get
y0] = Limit[s Y[s] - ["ESty/[t] dt, s o]

= Limits Y[s], s> o] —
Limit ["E"Sty’[t] dt, s— o]

Limits Y[s], s— ] - 0
(because® collapses as s gets large and positive)

= Limits Y[s], s> ]
This explains why you can calculate
J0] = Limit[s Y[s], s— o]

Now look at this calculation which was also explained in the Basics:

Clear [y, s, t 1
LaplaceTransform Iy" [tl.ts 1

s? LaplaceTransform [yltl,tts 1-sy[0]-y'[0]
This tells you that
$Y[s| - sy[0] - y'[0] = [TEStY[t] dt.
Adapt the explanation above to explain why, once you have your
hands on §0], you can calculate
Y[0] = Limit[s? Y[s] — s}{0], S— ]
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0G.9.a.iii)

Look at this:

Clear [y, s, t I;
LaplaceTransform [y" [tl,.t.s 1

s2 LaplaceTransform [yitl,tts 1-sy[0] -y [0]
Once you have your hands of®lyand y[0], what limit involving
Ys], y[0] and y[O]
do you calculate to calculaté[¥]?
No explanation is asked for.

0G.9.a.iv)

Look at this:

Clear [y, s, t 1]
LaplaceTransform [y" [t1,ts 1

s3 LaplaceTransform [y [t],t,s ] -s?y[0] -sy’[0] -y”[0]
Once you have your hands oy, y'[0], and y[0],what limit
involving
Ys], y[0l , y'[Oland y'[O]
do you calculate to calculate the third derivativ@5§2X31[0] 2
No explanation is asked for.

This part is for only those participants
who have a knowledge of series expansions.

At this point, it becomes clear that, givefs) you could go on and
on to slam out as many of the values of the higher derivatives at 0
y0l, y'[01, y’[O], yTagBM(S)J [ol, yTagBo>1<4>J[OwTagBon(sn [0, ..

BYALCLS (WIT )

as you like. After ybu have these, you have as much of the expansion

of y[t] in powers of t as you like:

Clear [y, t 1;
Series [y[t], {t, 0,6 1}]

, 1., 2, 1 @3 3, 1 @ 4, 1 5 5
y[0J+y[0]1+2y [0t *5Y [0]t oY [0]t * 150 Y [0]t>+
1 (6) 6 7
50 y [0]t°+O[t]
Clear [y, t 1;
Series [y[t], {t 0,12 }]

1

, 1., 2.1 @3 3,1 @ 4
VIOl +y' 101t + 2y (01124 £y® (01434 oy @ 0114 s o1

y® [07t%

1 ywgyee, vy 1017 y®[0jt? y®[0jt? y1% (o)1
720 Y 5040 40320 362880 3628800
y(ll) [0]{11 y(12}[0]t12
39916800 479001600
This tells you that if you assume tht]yhas an expansion in powers
of t and you assume that all the higher derivativeqtdfaye legal for

the Laplace transform, then you can recover the expansidt] af y

+ o[t

powers of t. And this gives you a hint of why Laplace transforms can
be inverted. And it gives you a hint of why you can leave the Laplace

transform world anytime you like.

G.10) Using Fourier fit to slam out trig identities

Activate this code.

Clear [FastFourierfit, Fourierfitters, F, Fvalues, n, Kk,
jump, num, numtab, coeffs, t, L 1;

) o 1.
jump [n_] := jump[n] = N[Z]'

Fvalues [F_,L_,n_ 1 :=
N[Table [F[Lt], {t, 0,1 - jump [n],jump [N]}]11;

numtab [n_] := numtab [n] = Table [k, {k, 1,n }1;

{k, -n +1,n -1}];
coeffs [n_, list_ ] := Join [Reverse [Part [Fourier [list ], numtab [n]11],
Part [InverseFourier [list 1, Drop [numtab [n], 1111/
N[Sart [Length [list 111

Fourierfitters [L,n_t ] := Table [EMLkl s

FastFourierfit [F,L,n_t ]:=
Chop [ Fourierfitters [L,n t ].coeffs [n, Fvalues [F, L, n 111;
0G.10.a.)

Look at these little experiments:
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OExperiment 1: f[t] = Sin[t]?

Clear [f,t ]

ft_1 =Sin [t]%

L=2m;

{n, Chop [ComplexExpand [FastFourierfit f,L,nt 111}

{n, 1,8 }
(1,0}
{2,05 }
(3,05 -0.5Cos
(4,05 -0.5Cos
(5,05 -0.5Cos
{6,0.5 -0.5Cos
(7,05 -0.5Cos
(8,05 -0.5Cos

Compare:
] N[Expand [TrigReduce [f [t]]11]
05 -05Cos [2.t1 ]

OExperiment 2: f[t] = Coqt]*:

Clear [f, t ]
f[t_]=Cos[t]?
L=2m
{n, Chop [ComplexExpand [FastFourierfit f,L,nt 111}
{n, 1,8 }
(1,1}
{2,05 }
{3,0.375 +0.625Cos [2t ]}
{4,0.375 +0.5Cos [2t]}
{5,0.375 +0.5Cos [2t] +0.125Cos [4t ]}
{6,0.375 +05Co0s [2t] +0.125Cos [4t ]}
{7,0.375 +0.5Cos [2t] +0.125Cos [4t ]}
{8,0.375 +0.5Cos [2t] +0.125Cos [4t ]}

Compare:
] N[Expand [TrigReduce [f [t]]11]
0.375 +0.5Cos [2.t ] +0.125Cos [4.1 ]

OExperiment 3:f[t] = Sin[t]®

Clear [f,t ]
f[t 1 =Sin [t18;
L=2m
{n, Chop [ComplexExpand [FastFourierfit f,L,nt 111}
{n, 1,12 }
(1,0}
(2,05 }
(3,0.210938 - 0.210938 Cos [2t ]}
(4,028125 - 05Cos [2t ]}
(5, 0.273437 - 0.429687 Cos [2t ] +0.15625 Cos [4t ]}
{6,0.273438 - 0.4375Cos [2t ] +0.226562 Cos [4t ]}
(7,0.273438 - 0.4375Cos [2t ] +0.21875 Cos [4t ] - 0.0546875 Cos [6t ]}
(8,0.273437 - 0.4375Cos [2t ] +0.21875Cos [4t ] - 0.0625Cos [6t ]}
{9, 0.273438 - 0.4375Cos [2t

Compare:
] N[Expand [TrigReduce [f [t11]]
0.273438 -0.4375Cos [2.t ] +0.21875Cos [4.t ] - 0.0625Cos [6.t ] +
0.0078125 Cos [8.t ]

Do you have any hunch about what's going on here, or are you

clueless?

If you have a hunch, then say what your hunch is.

If you are sure you know what's going on, then explain in full.
Click for a tip.

To get a good clue, you might want to look at plots like these:

Clear [f,n,t 1;
frt 1 = Sin[t1%;
L = 2Pj

n =2
Clear [fitter 1];
fitter [t_1 = Chop[ComplexExpand [FastFourierfit f,L,nt 111;

Plot [{f [t], fitter [t1}, {t 0oL },
PlotStyle -> {{Thickness [0.02 ], Blue }, {Thickness [0.01 ], Red }},
PlotRange -> All, PlotLabel ->n"=n"1;

] +0.21875 Cos [4t ] - 0.0625 Cos [6t ] + 0.0078125
{10, 0.273437 - 0.4375Cos [2t ] +0.21875 Cos [4t ] - 0.0625 Cos [6t ] +0.007812
(11, 0273437 - 0.4375Cos [2t ] +0.21875 Cos [4t ] - 0.0625 Cos [6t ] + 0.007812
(12, 0273438 - 0.4375Cos [2t ] +0.21875 Cos [4t ] - 0.0625 Cos [6t ] +0.007812
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2=n
0.5
1 2

-0.5

-1

n =3

Clear ([fitter 1;

fitter [t_1 = Chop[ComplexExpand [FastFourierfit If,L,nt 111;

Plot [{f [t ], fitter [t1), {t oL 3},
PlotStyle -> {{Thickness [0.02 1, Blue }, {Thickness [0.01 ], Red }},

PlotRange -> All, PlotLabel ->n"=n"1;
3=n
0.5
1 2

-0.5

-1

n = 4;

Clear [fitter 1;

fitter [t_1 = Chop[ComplexExpand [FastFourierfit f,L,nt 111;

Plot [{f [t], fitter [t1), {t oL 3},
PlotStyle -> {{Thickness [0.02 ], Blue }, {Thickness [0.01 ], Red }},
PlotRange -> All, PlotLabel ->n"=n"1;

4=n

°©
a e
-
N

-0.5
-1
n = 5;
Clear [fitter 1;
fitter [t_1 = Chop[ComplexExpand [FastFourierfit If,L,nt 111;

Plot [{f [t], fitter [t1}, {tO, L 3},
PlotStyle -> {{Thickness [0.02 1, Blue }, {Thickness [0.01 ], Red }},

PlotRange -> All, PlotLabel ->n"=n"1;
5=n
0.5
1 2

-0.5

-1

n = 6;

Clear [fitter 1;
fitter [t_1 = Chop[ComplexExpand [FastFourierfit [f,L,nt 111;

Plot [{f [t], fitter [t1y, {t O, L 1},
PlotStyle -> {{Thickness [0.02 1, Blue }, {Thickness [0.01 ], Red }},
PlotRange -> All, PlotLabel ->n"=n"1;

1

0.5
1 2

-0.5

1

0G.10.a.ii)

Run this new experiment:

Clear [f, t 1;
f[t ] =Cos[t]%;
L=2m
{n, Chop [ComplexExpand [FastFourierfit f,Lnt 111}
{n, 1,12 }

L, 1}

(2,05 3

{3, 0.333334 +0.666666 Cos [2t ]}
{4,0.250488 +0.5Cos [2t]}

(5,0.20577 +0.403566 Cos [2t ] +0.390663 Cos [4t])

(6,0.185438 +0.352104 Cos [2t ] +0.314562 Cos [4t ]}

(7,0.178371 +0.329962 Cos [2t ] + 0.269878 Cos [4t ] +0.221788 Cos [6t ]}
(8,0.176559 +0.322571 Cos [2t ] +0.249512 Cos [4t ] +0.177429 Cos [6t ]}
(9,0.176235 +0.320723 Cos [2t ] +0.242443 Cos [4t ] +0.157099 Cos [6t ] + 0.10
(10, 0.176199  + 0.320396 Cos (2t | + 0.240631 Cos (4t ] +0.150032 Cos (6t ] + 0.0
(11, 0.176197 +0.32036 Cos [2t ] + 0.240307 Cos [4t ] +0.14822 Cos [6t ] + 0.076
(12, 0176197 +0.320358 Cos (2t ] + 0.240271 Cos (4t ] +0.147896 Cos (6t ] + 0.0

Compare:

] N[Expand [TrigReduce [f [t]1]1]
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0.176197 +0.320358 Cos [2.t ] +0.240269 Cos [4.t ] +
0.147858 Cos [6.t ] +0.0739288 Cos [8.t ] +0.0295715 Cos [10.t ] +
0.0092411 Cos [12.t ] +0.00217438 Cos [14.t ] +0.000362396 Cos [16.t ] +
0.000038147 Cos [18.t ] +1.90735 x10® Cos[20.t ]
What's your opinion on the reason that this experiment didn't turn out
the way the experiments in part i) above turned out?
Modify this experiment so that it does turn out the way the
experiments in part i) above turned out.

0G.10.a.iii)

Go with f[t] = Sin[t]**
And look at:
Clear [f,t 1;
f[t_] =Sin [t1%;
N[Expand [TrigReduce [f [t]1]]]
0.225586 - 0.386719 Cos [2.t ] +0.241699 Cos [4.t ] - 0.107422 Cos [6.t ] +
0.0322266 Cos [8.t ] - 0.00585938 Cos [10.t ] +0.000488281 Cos [12.t ]

Use Fourier fit to slam out the same trig identity.
0G.10.a.iv)

Go with f[t] = Sin[5 t] Sin[3t].
And look at:

Clear [f,t 1;
f[t_]=Sin[5t]Sin [3t];
N[Expand [TrigReduce [f [t1]11]
05Cos [2.t ] -05Cos [8.t ]

Use fast Fourier fit to slam out the same trig identity.
0G.10.a.v)

Go with f{t] = CosHl t]
And look at:

Clear [f,t 1;

f[t_1=Cosh[lt 1;

N[Expand [TrigReduce [f [t]1]]]
Cos |t ]

Use Fourier fit to slam out the same trig identity.

0G.10.a.vi)
Go with f{t] = Sinh 1]
And look at:

Clear [f,t 1;

f[t_1=Sinh [It ];

N[Expand [f [t ], Trig - True 11
1.1Sin [t]

Use Fourier fit to slam out the same trig identity.
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