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DE.O7 Eigenvectors and Eigenvalues for
Linear Systems
Basics

B.1) Linear systems are diffeq systems you can make with a
coefficient matrix of numbers

OB.1.a.i)

Here's a diffeq system:

Clear [x,y,t 1]
diffeqsystem =
({X [t],y [t1} == {29x [t] + 04y [t], -14x [t] + 0.6y [t]});
ColumnForm [Thread [diffeqsystem 11
X' [t]==29x [t] +04y [t]
y'[t]==-14x [t]+06y [t]

How do you tell that this diffeq system is a linear system?

OAnswer:
You can tell it's a linear system because you can make it with a matri
Here's how:

Take another look:
] ColumnForm [Thread [diffeqsystem 1]
X'[t]==29x [t]+04y [t]
y'[t]==-14x [t]+06y [t]

You can read off a matri; A:

A={{29,04 }, {-14,06 }};
MatrixForm  [A]

29 04
(—1.4 0.6 )

Folks call this matrix by the name "coefficient matrix."
Now you can use this matrix to write the given linear system in this

compact way:

linearsystem = ({X'[t1,y [t1} == A. {X[t],y [t1});
ColumnForm [Thread [linearsystem 11
X'[t]==29x [t]+04y [t]
y'[t]==-14x [t]+06y [t]
Compare:

] ColumnForm [Thread [diffeqsystem 1]
X' [t] ==29x [t] +04y [t]
y' [t] ==-14x [t]+0.6y [t]

Any diffeq system you can make with a coefficient matrix of numbers
is a linear system.

OB.1.a.ii)

Here's another diffeq system:
Clear [Xx,y,t 1
diffeqsystem =
({X' [t1,y [t1} == {29x [t]1"2 + 04y [t], -14x [t]y[t] + 0.6y [t1});
ColumnForm [Thread [diffeqsystem 11
X' [t]==29x [t]2+04y [t]
Y [t]1==06y [t]-L14x [t]y[t]
How do you tell that this diffeq system is not a linear system?

OAnswer:

Take another look:

| ColumnForm [Thread [diffeqsystem 11
X' [t]==29x [t]2+04y [t)]
y'[t]==06y [t]-14x [t]y[t]

You can tell that this is not a linear system because there is no way tc
get that
x[t]2
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or that

X[t ylt]
term by multiplying{x[t], y[t]} by a coefficient matrix of numbers.

B.2) Eigenvectors of the coefficient matrix give the
directions of propellers and suckers.

Eigenvalues of the coefficient matrix measure the
strengths of propellers and suckers

OB.2.a.i) Eigenvectors: Suckers and propellers
Here's a linear system of differential equations:

Clear [x,y,t 1]
linearsystem =
({X' [t1,y [t1} == {L75x [t] + 217y [t],217x [t] - 0.75y [t]})
(X'[t],y [t]}=={L75x [t]+217y [t],217x [t]-0.75y [t]}

Here it is in slightly better form:
| ColumnForm [Thread [linearsystem 1]
X' [t]==175x [t]+217y [t]
y'[t]==217x [t] -0.75y [t]
Read off the coefficient matrix A:
| A= {{175,217 }, {217, -0.75}};
MatrixForm  [A]
1.75 217
(2.17 -0.75 )
Now you can use this matrix to write the given linear system in this
compact way:
Clear [x,y,t ]
matrixlinearsystem = ({X' [t1,y [t1} == A. {X[t1,y [t1});
ColumnForm [Thread [matrixlinearsystem 11
X' [t] ==175x [t]+217y [t]
y' [t]==217x [t]-0.75y [t]
Introducing the cofficient matrix A makes it really easy to write
down the flow field for this linear system:

Clear [Field ]
Field [x_,y_1=A.{xy}
(1.75x +217y,217x -0.75y }
Look at the scaled flow:
= Table [Arrow [Field [x,y ], Tail - {x,y }, VectorColor

flowplot - Blue,

. 6 6
ScaleFactor - 0.3, HeadSize 0.6 1, {x, -3,3, E} {y, -3,3, E}]

Show[flowplot, Axes - True, AxesLabel - {"X","y" }1;

-4
Look at this flow carefully.

After you've got a good feel for this flow, leMathematicacalculate
two special vectors related to the coefficient matrix A:

Clear [eigenvector 1;

{eigenvector  [1], eigenvector [2]} = Eigenvectors  [A]
{{0.865779, 0.500427 }, {-0.500427, 0.865779 }}
Plot scaled versions of these special vectors and their negatives
together with the field:

scalefactor = 3.5;
headsize =1,
revealer = Show[flowplot,
Arrow [eigenvector [1], Tail - {0, 0 }, VectorColor - Red,
ScaleFactor - scalefactor, HeadSize - headsize 1,
Arrow [-eigenvector [1], Tail - {0, 0 }, VectorColor - Red,
ScaleFactor - scalefactor, HeadSize - headsize 1,
Arrow [eigenvector  [2], Tail - {0, 0 }, VectorColor - Red,
ScaleFactor - scalefactor, HeadSize - headsize 1,
Arrow [-eigenvector  [2], Taill - {0, 0 }, VectorColor - Red,
ScaleFactor - scalefactor, HeadSize - headsize ], Axes - True,

AxesLabel - {"X","y" }1;
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The pros call these special vectors by the name:
eigenvectors.

Hot plot.
Describe what you see.

OAnswer:

Take another look:

] Show[revealer, PlotLabel

Flow with & genvectors

- "Flow with eigenvectors" 1;

The eigenvectors tell all!
The flow is sucked towar{0, 0} by the influence of the eigenvectors
on the upper left and lower right.

That's why DiffEq& Mathematica folks call the eigenvectors
on the upper left and lower right by the name "suckers."

Then the flow is propelled away fro{0, O} by the influence of the
eigenvectors on the lower left and upper right.

That's why DiffEq& Mathematica folks call the eigenvectors
on the lower left and upper right by the name "propellers.”

0OB.2.a.ii) Eigenvectors: Suckers and propellers

Try it again with this new linear system:
X[t] = —1.4Xt] — 1.3yft]
y[t] = 0.5Vft].
The coefficient matrix is:
I A= {{-14, -131}, {0,05 }};
MatrixForm  [A]
-1.4 -13
( 0 0.5 )
Compare with the given linear system
X[t] = —1.4xXt] — 1.3yt]
yit] = 0.5t
Clear [x,y,t 1
matrixlinearsystem = (X' [t1,y [t1} == A. {X[t1,y [t1});
ColumnForm [Thread [matrixlinearsystem 11
X' [t] ==-14x [t]-13y [t]
y [t]==05y [t]
That's the right matrix.
Look at the flow:
Clear [Field 1]
Field [x_,y_1=A.{xYy}
flowplot = Table [Arrow [Field [x,y ], Tal - {xy},
VectorColor - Blue, ScaleFactor - 0.3, HeadSize - 0.25 ],

6 6
x, -3,3, —} {y. -3.3, —}]
{ =} {y — ]
Show [ flowplot, Axes - True, AxesLabel - {"x"
{-14x -13y,05y }
y
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Look at this flow carefully.
After you've got a good feel for this flow, Ietathematicacalculate
the eigenvectors of the matrix A:

Clear [eigenvector 1;

{eigenvector  [1], eigenvector [2]1} = Eigenvectors  [A]

{{1.,0. 3}, {-0.564684,0.825307 }}

Plot scaled versions of these special vectors and their negatives
together with the field:

scalefactor =3.5;
headsize =1;
eigenplot = Show|[flowplot, Arrow [eigenvector  [1], Taill - {0,0 },
VectorColor - Red, ScaleFactor - scalefactor, HeadSize - headsize 1,
Arrow [-eigenvector [1], Tail - {0, 0 }, VectorColor - Red,
ScaleFactor - scalefactor, HeadSize - headsize 1,
Arrow [eigenvector  [2], Tail - {0, 0 }, VectorColor - Red,
ScaleFactor - scalefactor, HeadSize - headsize 1,
Arrow [-eigenvector [2], Taill - {0, 0 }, VectorColor - Red,
ScaleFactor - scalefactor, HeadSize - headsize ], Axes - True,
AxesLabel - {"Xx","y" }1;
y

SSSN\\EZ4
SSSNNNT)
Another hot plot.
Describe what you see.

OAnswer:

Take another look:

| Show[eigenplot, PlotLabel - "Flow with eigenvectors" 1;

Flow with & genvectors
PN
NS

<%

The eigenvectors tell all!
The flow is sucked towar{0, 0} by the influence of the eigenvectors
that point down the horizontal axis.

That's why DiffEq& Mathematica folks call the eigenvectors
on the horizontal axis by the name "suckers."

Then the flow is propelled away fro{0, 0} by the influence of the
eigenvectors on the upper left and lower right.

That's why DiffEq& Mathematica folks call the eigenvectors
on the upper left and lower right by the name "propellers.”

OB.2.a.iii) Eigenvectors: Suckers and no propellers

Try it again with this new linear system:
X[t] = —0.57Xt] + 0.17 y{t]
y[t] 0.17 X{t] — 0.93y{t].

The coefficient matrix you want is:

A= {{-057,017 }, {0.17, -0.93 }};
MatrixForm  [A]

-0.57 0.17
( 0.17 -0.93 )
Compare

Xt YTt = A< {x[t], yItl}
with the given linear system:
X[t] = —0.57 X{t] + 0.17 yt]
y[t] = 0.17 Xt] — 0.93yt]:
Clear [x,y,t 1]
linearsystem = ({(X' [t1,y [t1} == A. {X[t1l,y [t1});
ColumnForm [Thread [linearsystem 1]
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X' [t] ==-057x [t]+0.17y [t]

Yy [t]==017x [t]-093y [t]
That's the right matrix.
Look at the flow:

Clear [Field 1]

Field [x_,y_1=A.{Xy}

flowplot = Table [Arrow [Field [x,y 1, Tail - {xy },
VectorColor - Blue, ScaleFactor - 0.35, HeadSize - 0.25 1,

6 6
X =3,3, —} {y. -3,3 —}|
{ R =]
Show [flowplot, Axes - True, AxesLabel - {"x","y" }1I;
{-057x +0.17y,017x -0.93y }

Look at this flow carefully.
After you've got a good feel for this flow, IBtathematicacalculate
the eigenvectors of A:

Clear [eigenvector 1;
{eigenvector  [1], eigenvector [2]} = Eigenvectors  [A]

({-0.36945, 0.929251 }, {0.929251, 0.36945 }}
Plot these special vectors and their negatives together with the field:

scalefactor =3.0;
headsize =1,
eigenplot = Show[flowplot, Arrow [eigenvector  [1], Taill - {0,0},

VectorColor - Red, ScaleFactor - scalefactor, HeadSize
Arrow [-eigenvector [1], Tail - {0, 0 }, VectorColor - Red,
ScaleFactor - scalefactor, HeadSize - headsize 1],
Arrow [eigenvector [2], Tail - {0, 0 }, VectorColor - Red,
ScaleFactor - scalefactor, HeadSize - headsize ],
Arrow [-eigenvector  [2], Tail - {0, 0 }, VectorColor - Red,
ScaleFactor - scalefactor, HeadSize - headsize ], Axes - True,
AxesLabel - {"x","y" }1;

- headsize 1],

OAnswer:

Take another look:

] Show[eigenplot, PlotLabel
Flow with éf genvectors

- "Flow with eigenvectors" 1;

Mathematica folks call

That's why DiffEq&
both of these eigenvectors by the name "suckers."

The sucking influence of the sucker eigenvectors on the upper left an

lower right is a bit stronger than the sucking influence of the sucker
eigenvectors on the lower left and upper right.

OB.2.a.iv) Eigenvectors: Propellers and no suckers

Try it again with this new linear system:
X[t] = 0.14t] + 0.5t]
ylt] = —0.5Xt] + 1.5¥t].

The coefficient matrix is:

A={{0.1,05 1}, {-05 15 }};
MatrixForm  [A]

DE.07.B2

01 05
(—0.5 15 )

Compare with the given linear system
X[t] = 0.1xt] + 0.5Ht]
ylt] = —0.5Xt] + 1.5Wt]:
Clear [x,y,t 1]

linearsystem = ({(X' [t1,y [t1} == A. {X[t1,y [t1});
ColumnForm [Thread [linearsystem 1]

X [t]==01x [t]+05y [t]
y' [t] ==-05x [t]+15y [t]
That's the right matrix.
Look at the flow:
Clear [Field ]
Field [x_,y_ 1=A.{XYy };
flowplot = Table [Arrow [Field [x,y ], Tal - {x vy},
VectorColor - Blue, ScaleFactor - 0.35, HeadSize -0.3 1],

{x -3,3 %}, {v. -3.3 %}]?

Show [ flowplot, Axes - True, AxesLabel - {"X","y" }1;

Look at this flow carefully.
It's a little tougher to see what's happening with this one.

After you've got a good feel for this flow, letathematicacalculate
the eigenvectors of A:

Clear [eigenvector 1;
{eigenvector [1], eigenvector [2]} = Eigenvectors  [A]

{{-0.387392, -0.921915 }, {-0.921915, -0.387392 }}
Plot scaled versions these eigenvectors and their negatives together
with the field:

scalefactor =3.5;
headsize =1;

eigenplot = Show|[flowplot, Arrow [eigenvector  [1], Tail - {0,0 },
VectorColor - Red, ScaleFactor - scalefactor, HeadSize - headsize ],
Arrow [-eigenvector [1], Tail - {0, 0 }, VectorColor - Red,
ScaleFactor - scalefactor, HeadSize - headsize 1,
Arrow [eigenvector [2], Tail - {0, O }, VectorColor - Red,
ScaleFactor - scalefactor, HeadSize - headsize 1,
Arrow [-eigenvector [2], Taill - {0, 0 }, VectorColor - Red,
ScaleFactor - scalefactor, HeadSize - headsize ], Axes - True,
AxesLabel - {"Xx","y" }1;

Now it's not so hard to see what's happening.
Describe what you see.
OAnswer:
Take another look:

| plotl = Show[eigenplot, PlotLabel
ow with el genvecto

- "Flow with eigenvectors" 1;

Both eigenvectors work together to propell the flow away f{0, O}.
That's why DiffEq& Mathematica folks call these eigenvectors “propellers.”
The influence of the following two propelling eigenvectors is not very

strong:

Show[flowplot, Arrow [eigenvector  [2], Tail - {0,0},

VectorColor - Red, ScaleFactor - scalefactor, HeadSize - headsize 1,
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Arrow [-eigenvector [2], Tall - {0, 0 }, VectorColor - Red,
ScaleFactor - scalefactor, HeadSize - headsize ], Axes - True,
AxesLabel - {"x","y" 1}, PlotLabel - "Weak propellers" 1;

Weak prgpel |l ers

The dominant propelling influence comes from the other eigenvectors

Show[ flowplot, Arrow [eigenvector  [1], Tail - {0,0},
VectorColor - Red, ScaleFactor - scalefactor, HeadSize

Arrow [-eigenvector [1], Tail - {0, 0 }, VectorColor - Red,
ScaleFactor - scalefactor, HeadSize - headsize ], Axes - True,

AxesLabel - {"x","y" '}, PlotLabel - "Strong propellers” 1;

- headsize 1,

Strong pyopel l ers

Grab the last two plots and animate slowly.

The flow is greatly influenced by these two dominant eigenvectors.

OB.2.b.i) Eigenvalues tell you whether an eigenvector is a propeller
or a sucker

How do you uséathematicao tell in advance whether an
eigenvector is a sucker or a propeller?

OAnswer:
It's not very hard.
For instance when you come across a linear system like this:

X[t] = L.75Xt] + 1.8)ft]
Y'[t] = 2.17 Xt] — 0.75)t].
The coefficient matrix is:

A= ({17518 1}, {217, -0.75}};
MatrixForm  [A]

Clear [Xx,y,t 1
linearsystem = (X [ty [t1} == A. {x[t],y [t]});
ColumnForm [Thread [linearsystem 1]
175 1.8
(2.17 -0.75 )
X' [t] ==175x [t] +18y [t]
Yy [t]==217x [t]-075y [t]

You askMathematicafor the eigenvectors (A:
Clear [eigenvector 1;
{eigenvector  [1], eigenvector [2]} = Eigenvectors  [A]
{{0.855709, 0.517458 }, {-0.448361, 0.893853 }}
Now you ask for the eigenvaluesAf

Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue
(2.83848, -1.83848 }

There is one eigenvalue corresponding to each eigenvector.
Eigenvalu¢l] is positive. This tells you thieigenvectdr] is a

propeller. Check it out:
Clear [Field ]
Field [x,y_1=A.{XYy }
flowplot = Table [Arrow [Field [x,y 1, Tail

[2]} = Eigenvalues [A]

- {X, y }, VectorColor - Blue,

ScaleFactor - 0.2, HeadSize ~0.31, {x, -3,3, 1—62-} {y. -3.3 —l%-}]

Show[ flowplot, Arrow [eigenvector [1], Tail - {0, 0 }, VectorColor
ScaleFactor - 3, HeadSize - 1], Arrow [-eigenvector [1],
Tail - {0, 0 }, VectorColor - Red, ScaleFactor - 3, HeadSize - 1],
Axes - True, AxeslLabel - YO

- Red,

DE.07.B2

Yes,eigenvectdrl] is a propeller.
You knew this in advance because you knew eigenvalugl] is
positive:

| eigenvalue [1]
2.83848

Now look at eigenvalug?]:

| eigenvalue [2]
-1.83848

Negative. This tells you theeigenvectdr2] is a sucker.
Check it out:

Show [ flowplot, Arrow
ScaleFactor

[eigenvector  [2], Tail - {0, O }, VectorColor
- 3, HeadSize - 1], Arrow [-eigenvector [2],

- Red, ScaleFactor - 3, HeadSize -1],
- (XYL

- Red,

Tail - {0, 0 }, VectorColor
Axes - True, AxesLabel

Yes,eigenvectdr?] is a sucker.
You knew this in advance because you knew eigenvalug?] is
negative:

| eigenvalue [2]
-1.83848

OB.2.b.ii) Eigenvalues measure the relative strengths of propellers

How do you uséMathematicao measure the relative strengths of two
propellers?

OAnswer:
When you come across a linear system like this:
X'[t] = 0.36 Xt] + 0.81yt]
y'[t] = =0.21 {t] + 1.53)t].

The coefficient matrix is:

A= {{0.36,0.81 1}, {-0.21,153 }};
MatrixForm  [A]

0.36 0.81

(—0.21 1.53 )

Check:

Clear [x,y,t ]

linearsystem = ({X' [t1,y [t1} == A. {X[t1l,y [t1});
ColumnForm [Thread [linearsystem 11

X' [t]==0.36x [t]+0.8ly [t]

y'[t] ==-021x [t] +153y [t]

You askMathematicafor the eigenvectors A:

Clear [eigenvector 1;
{eigenvector [1], eigenvector [2]} = Eigenvectors  [A]
{{-0.629468, -0.777027 }, {-0.978649, -0.205541 }}

Now you ask for the eigenvaluesAif

Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue
{1.35988, 0.53012 }

Both eigenvalugl] andeigenvalug?] are positive. This signals that
botheigenvectdrl] andeigenvectdi2] are propellers.

[2]1} = Eigenvalues [A]

But eigenvalugl]is more than twice the size eigenvalug?].
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This tells you that the dominant propelle eigenvectarl].

Check it out:

Clear [Field 1]

Field [x_,y_1=A.{xy }

scalefactor =0.35;

flowplot = Table [Arrow [Field [x,y ], Tal - {x,y }, VectorColor - Blue,

5 6 6
ScaleFactor - 0.4, HeadSize 031, {x, -3,3, E} {v. -3.3 E}]

Show[ flowplot,
Arrow [eigenvector [1], Tail - {0, O }, VectorColor - Red,
ScaleFactor - 4.0, HeadSize - 1], Arrow [-eigenvector [1],
Tail - {0, 0 }, VectorColor - Red, ScaleFactor - 4.0, HeadSize - 1],
Axes - True, AxeslLabel - Y'Y,
PlotLabel - "Dominant propeller” 1;
Doni nant Yor opel | er

Look at the field vectors. Yeeigenvectdr] is the dominant
propeller.

Check oueigenvectdr2]:

Show[ flowplot,
Arrow [eigenvector [2], Tail - {0, 0 }, VectorColor - Red,
ScaleFactor - 4.0, HeadSize - 1], Arrow [-eigenvector [2],
Tail - {0, 0 }, VectorColor - Red, ScaleFactor - 4.0, HeadSize - 1],
Axes - True, AxeslLabel - {"x","y" 1}, PlotLabel - "Weaker propeller” 1;

Weaker pfopeller

Grab both plots, align and animate slowly.
Look at the field vectors. A much weaker propeller.
You knew this in advance because you knew that
eigenvalugl] > eigenvalug?] > 0.

| {eigenvalue [1], eigenvalue [2]}
{1.35988, 0.53012 }

OB.2.b.iii) Eigenvalues measure the relative strengths of suckers
How can you us&lathematicao measure the relative strengths of
two suckers?

OAnswer:

When you come across a linear system like this:
Xt] = —0.88xt] + 0.16[t]
y'[t] = 0.54Xt] — 0.92yt].

The matrix you want is:

A = {{-0.88,0.16 }, {054, -0.92 }};
MatrixForm  [A]

Clear [Xx,y,t 1
linearsystem = (X [ty [t1} == A. {X[t],y [t]});
ColumnForm [Thread [linearsystem 1]
-0.88 0.16
( 054 -0.92 )
X' [t] ==-0.88x [t]+0.16y [t]
y'[t]==054x [t]-092y [t]

You askMathematicafor the eigenvectors (A:

DE.07.B2-B3

Clear [eigenvector 1;
{eigenvector [1], eigenvector [2]} = Eigenvectors  [A]

{(-0.453302, 0.891357  }, {0.503415, 0.864045 }}

Now you ask for the eigenvaluesAif
Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Eigenvalues [A]
{-1.19462, -0.605382 }

Both eigenvalugl] andeigenvalug?] are negative.
This tells you that boteigenvectdrl] andeigenvectdi2] are suckers.

But eigenvalugl] is about twice as negative eigenvalug?].
This tells you that the dominant suckeeigenvectdr].

Check it out:

Clear [Field ]

Field [x_,y_1=A.{xy };

flowplot = Table [Arrow [Field [x,y 1, Tail - {x Yy},
VectorColor - Blue, ScaleFactor - 0.35, HeadSize 031,

6 6

xo-8s ) e ss gl
Show [ flowplot,

Arrow [eigenvector [1], Tail - {0,0},

VectorColor - Red, ScaleFactor - 3.0, HeadSize - 17,

Arrow [-eigenvector [1], Tail - {0,0 },

VectorColor - Red, ScaleFactor - 3.0, HeadSize - 1], Axes - True,
AxesLabel - {"x","y" 1}, PlotLabel - "Dominant sucker" 1;
Domi nan¥ sucker
3

W?Z

Y an
e

¥

Look at the field vectors. Yeeigenvectdrl] is the dominant sucker.
Check ouleigenvectdr2]:

Show[flowplot, Arrow [eigenvector  [2], Tail - {0,0 },
VectorColor - Red, ScaleFactor - 3.0, HeadSize - 17,
Arrow [-eigenvector [2], Tail - {0,0},
VectorColor - Red, ScaleFactor - 3.0, HeadSize - 1], Axes - True,
AxesLabel - {"x","y" 1}, PlotLabel - "Weaker sucker" 1;
Weaker Ysucker

Grab both plots and animate slowly.
Look at the field vectors. A much weaker sucker.
You knew this in advance because you knew that
eigenvalugl] < eigenvalug?] < 0.

B.3) How you can use eigenvectors and eigenvalues to
understand

where exact formulas for solutions of linear systems
come from

This assumes familiarity with B.2) above.

Most everyone seems to want quick code to copy, paste and edit
to produce exact formulas for the solutions
of given linear systems with given starter data.
If you want it, then here it is.

Here's a random coefficient matrix for a random linear system:
A = {{Random[Real, {-2,2 }], Random [Real, {-2,2 }1},
{Random[Real, {-2,2 }], Random [Real, {-2,2 }1}};
Clear [x,y,t ]
linearsystem =
({X [t],y [t1} == A. {xX[t],y [t]1});
ColumnForm [Thread [linearsystem 1]
X'[t] ==0.989698 x [t] +1.71716y [t]
y’[t] == -0.0461689 x [t] - 1.63099y [t ]
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With random starter data ¢r[0], y[0]}:

| {xstarter, ystarter } = {Random[Real, {-2, 2 }], Random [Real, {-2,2 }]}

{0.0402287, 1.54997 }
Formulas for the solution paix[t], y[t]} of this linear system with
this starter data are:
Clear [eigenvector, eigenvalue 1;

{eigenvalue [1], eigenvalue [2]} = Chop[Eigenvalues [A]];
{eigenvector [1], eigenvector [2]} = Chop[Eigenvectors  [A]];

Clear [x, Yy, x1,y1, x2,y2,t, Cl1, C2 1

{x1[t_1,yl [t_]1} =Chop[eigenvector [1] Exp [eigenvalue [1]t]];
{X2[t_1,y2 [t_]1} = Chop[eigenvector [2] Exp [eigenvalue [2]t]];
XTI 1,y [t 1y =Cl{x1[t], yl [t]}+C2{x2[t],y2 [t]};

starter = {xstarter, ystarter };
starterequation = {x[0],y [0]} == starter;
Csols = Solve [starterequation 1;

(X[ 1,y [t 1} = Chop[ComplexExpand [{x[t],y [t]} /.Csols [111]
{-1.04037 E 160038t 3 0goe E 0959089t
1.56923 E ~160038t _ 0019262 E 0959089t

Check:
Expand [{x"[t],y "[t1}] == Expand [A. {x[t1,y [t1}]
{x[0],y [0]} == {xstarter, ystarter }
True
True

See part of the corresponding trajectory:
endtime = 3; ParametricPlot [{x[t],y [tl},
{t, 0, endtime 1}, PlotStyle - {{Thickness [0.01 ], CadmiumOrange }},
AxesLabel - {"x","y" '}, AspectRatio -1,
Epilog - {PointSize [0.03 1, Red, Point [ {xstarter, ystarter 31 L

y
1.5
1.25
1
0.75
0.5
0.25

-0.25

Note how the eigenvalues of the coefficient matrix show up in the
formula for the solution:
(X[t1,y [t1}
Chop [Eigenvalues [A]]
{71_04037 E -1.60038 t +1.0806 E 0.959089 t ,
1.56923 E -1.60038t _ 0.019262 E 0.959089 t }
{-1.60038, 0.959089 }

Give it another whirl with a different random linear system with a
different random starting point f¢x[0], y[O]}:

A = {{Random[Real, {-2,2 }], Random [Real, {-2,2 }1},
{Random[Real, {-2, 2 }], Random [Real, {-2,2 }1}};
Clear [x,y,t 1
linearsystem =
(X [t1y [t1} == A {X[t],y [t]});
ColumnForm [Thread [linearsystem 11
{xstarter, ystarter } = {Random[Real, {-2,2 }], Random [Real, {-2,2}1};
({x[0],y [0]} == starter )

Clear [eigenvector, eigenvalue 1;

{eigenvalue [1], eigenvalue [2]} = Chop[Eigenvalues [A]];
{eigenvector  [1], eigenvector [2]1} = Chop[Eigenvectors [A]l];
Clear [x,vY,x1,yl, x2,y2,t, Cl1, C2 1

{x1[t_1,yl [t_1} = Chop[eigenvector [1] Exp[eigenvalue [1]t]];
{X2[t_1,y2 [t_1} = Chop[eigenvector [2] Exp[eigenvalue [2]t]];

XTI 1,y [t 1) = CL{xI[t],yl [t]} + C2{x2[t],y2 [t]};

starter = {xstarter, ystarter };
starterequation = ({x[0],y [0]} == starter );
Csols = Solve [starterequation 1;

{X[t_1,y [t_1} = Chop[ComplexExpand [{x[t],y [t]} /.Csols [[1]11]

X'[t] ==-1.73251x [t]-0.705918y [t]
y'[t] ==-0.103493 x [t] -1.36263y [t]
(x[0],y [0]} == {0.0402287, 1.54997  }
{0.268969 E 187508t _ 3 o59g1 E 122006t
0.0543203 E 187508t 1 49509 F 122006t

Note how the formulas are related to the eigenvalues of the coefficien

matrix:

DE.07.B3

{x[t],y [t1}
Eigenvalues [A]
{0.268969 E ~187508t _ 2 05981 E 122006t
0.0543203 E ~1875081 1 49529 E -122006t
{-1.87508, -1.22006 }
Rerun the last two active cells a couple of times.

If you want to see why these formulas came out the way they did, then

jump into B.3) and follow it up with a healthy romp in B.4)

OB.3.a.i) Straight line trajectories along eigenvectors.

Here's a linear system of differential equations:

Clear [x,y,t ]
linearsystem =
({X' [t1,y [t]} == {0.84x [t] + 090y [t], 040x [t] - 031y [t]});

ColumnForm [Thread [linearsystem 1]
X [t] ==084x [t]+09y [t]
y'[t]==04x [t]-031ly [t]
You read off the coefficient matrix:

A= {{0.84,0.90 }, {0.40, -0.31 }};
MatrixForm  [A]

084 09
( 0.4 -0.31 )
Check:

] ColumnForm [Thread [{X' [t],y' [t1} == A. {X[t],y [t]1}]]
X' [t] ==084x [t]+09y [t]
y'[t] ==04x [t]-031ly [t]
Good.
You ask for the eigenvectors:
Clear [eigenvector 1;
{eigenvector [1], eigenvector [2]} = Eigenvectors  [A]
{{0.961835, 0.27363 }, {-0.539111, 0.842235 }}

The eigenvalues:

Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Eigenvalues [A]

{1.09604, -0.566039 }
The flow with eigenvectors:

Clear [Field ]
Field [x_.,y_1=A.{xy};
flowplot = Table [Arrow [Field [x,y ], Tail - {x,y }, VectorColor - Blue,
ScaleFactor - 0.4, HeadSize - 0.3 1, {x, -3, 3, %} {y, -3, 3, 16—2}]
eigenplot =
Show[flowplot, Arrow [eigenvector [1], Tail - {0, 0 }, VectorColor - Red,
ScaleFactor - 3.5, HeadSize - 1], Arrow [-eigenvector [1],
Tail - {0, 0 }, VectorColor - Red, ScaleFactor - 3.5, HeadSize - 1],
Arrow [eigenvector [2], Tail - {0, 0 }, VectorColor - Red,
ScaleFactor - 3.5, HeadSize - 1], Arrow [-eigenvector [2],
Tail - {0, 0 }, VectorColor - Red, ScaleFactor - 3.5, HeadSize - 1],
Axes - True, AxesLabel - XYL

Note that the flow along each plotted eigenvector is a straight line
determined by the eigenvector you are looking at.
Now look at these calculations:

Clear [s]
A. (seigenvector [1]) == eigenvalue [1] (seigenvector [1])

True
And:

] A. (seigenvector [2]) == eigenvalue [2] (seigenvector [2])
True

How do you use these calculations to explain why the trajectories
along the eigenvectors are straight lines?
OAnswer:
Look again:
] Show(eigenplot 1;
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And look at the calculations again.

Clear [s]
A. (s eigenvector

True

And:

] A. (seigenvector
True

[1]) == eigenvalue [1] (seigenvector [1])

[2]) == eigenvalue [2] (seigenvector [2])

These properties define eigenvalues and eigenvectors.
Remembering that the linear system is
Xt YTt = A {XIt], yitl},
this tells you that i{x[t], y[t]} is a multiple of one of the eigenvectors,
then
{XTt, yTth

is forced to point in the same (or opposite) direction as the eigenvectc

points.

The upshot:

If a trajectory hits the line determined by one of the eigenvectors, it he

no choice but to run along the line determined by that eigenvector.

Here's a plot of a solution that starts right on the middle of

eigenvectdrl]:

multiplier = 0.5;

{a, b } = multiplier eigenvector [11;
starterpoint ={a,b};

Clear [x,y,t,m,n ]

Mx_, y_ 1,n X,y 1}=A.{Xy }

xequation =x'[t] ==m[x[t],y [t]];

yequation =y’[t]==n[X[t],y [t]];

xstarter = x[0] == g;

ystarter  =y[0] == b;

endtime =2.5;

approxsolutions = NDSolve [ {xequation, yequation, xstarter, ystarter },

{x[t1,y [t1}, {t O, endtime }];
Clear [trajectory 1

trajectory [t1-=
{x[t] /. approxsolutions 11,y [t]1 /. approxsolutions [11};
trajectoryplot =
ParametricPlot [trajectory [t1, {t, O, endtime }, PlotStyle -
{{CadmiumOrange, Thickness  [0.015 ]}}, DisplayFunction - Identity  1;

starterplot

Show|[
eigenplot, starterplot, trajectoryplot, PlotRange - All, Axes
AxesLabel - {"x","y" '}, DisplayFunction - $DisplayFunction,
PlotLabel - "Trajectory along an eigenvector” 1;

= Graphics [{Red, PointSize  [0.04 ], Point [starterpoint 111,

- True,

Trajectory ¥l ong an ei genvect or

Propelled away fror{0, O} on the straight line trajectory determined by

eigenvectdrl].
Check out what happens when you start a trajectory at
1.9 eigenvectdp]:

multiplier =1.9;
{a, b } = multiplier eigenvector [21;

DE.07.B3

starterpoint ={a b}
Clear [x,y,t,mn ]
{Mix_,y_ 1,nIx,y_ I1}=A.{Xy}

xequation =Xx'[t] ==m[x[t],y [t]1];
yequation =y’[t] ==n[x[t],y [t1];
xstarter =Xx[0] == a;

ystarter  =y[0] == b;

endtime = 4;

approxsolutions = NDSolve [{xequation, yequation, xstarter, ystarter
{x[t1,y [t]}, {t O, endtime }1;
Clear [trajectory 1
trajectory [t 1=
{X[t ] /. approxsolutions
trajectoryplot =
ParametricPlot [trajectory [t], {t O, endtime 3}, PlotStyle -
{{CadmiumOrange, Thickness  [0.015 ]}}, DisplayFunction - |dentity
starterplot = Graphics [{Red, PointSize  [0.04 ], Point
Show[
eigenplot, starterplot, trajectoryplot, PlotRange - All, Axes
AxesLabel - {"x","y" 1}, DisplayFunction - $DisplayFunction,
PlotLabel - "Trajectory along an eigenvector” 1;

[11,y [t ] /. approxsolutions i1}

Trajectory alony an ei genvector

Sucked toward{0, 0} on the straight line trajectory determined
eigenvectdr2].

Play with different starter points on the eigenvectors and diffe
endtimes.

OB.3.a.ii) Formulas for the straight line trajectories

Stay with the same linear system as above. Formulas for the
trajectories that start on the tips of the eigenvéti@nd
eigenvectdi?] are:

Clear [x1,yl,x2,y2,t 1

{x1[t_1,yl [t_]} = eigenvector

{X2[t_1,y2 [t_1} = eigenvector
{0.961835 E 10904t 027363 E 109604t
(0530111 E 0566039t 0 gqoo35 E -0.566039t

Explain where these formulas come from.

[l] Ee\genvalue 11t
[2] Ee\genvalue 21t

OAnswer:

The key idea comes from these calculations:

Clear [s]
A. (s eigenvector
True

And:

] A. (seigenvector
True

The linear system is
XTtL YTt = A XL yitD.

[1]) == eigenvalue [1] (seigenvector [1])

[2]) == eigenvalue [2] (seigenvector [2])

If {x1[t], y1[t]} is on a multiple oeigenvectdrl], then

1

[starterpoint 1115

- True,

by

rent

{XLTt], y1Tt]} = A.{x1[t], y1[t]} = eigenvalugl] {x1[t], y1[t]}.

This gives
x1't] = eigenvalugl] x1[t]
y1Tt] = eigenvalugl] y1[t].

These are both exponential differential equations, and you know that

these give you

x1[t] = x1[0] Exp[eigenvalugl] t]
and
y1[t] = y1[0] Exp[eigenvalugl] t].
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This gives
{x1[t], y1tl} = {x1[0], y1[0]} Expleigenvalugl]t] .
where{x1[0], y1[0]} is the starter point at the tip eigenvectdrl].

Check this out:

Clear [x1,yl,t 1]
{x1[t_1,yl [t_1} =eigenvector [1] Exp [eigenvalue [1]t]
{0.961835 E 109604t 027363 E 109604t
J (x17[t1,yl/[t1y==A. {x1[t],yl [t]}
True
] (x1[0],y1 [0]} == eigenvector  [1]
True

This tells you that
{x1[t], y1[t]}
solves the linear system
{X1Tt], y1Tth} = A. {x1[t], y1[t]}.
with
{x1[0], y1[0]} = eigenvector].
See these formulas fx1[t] andy1[t] plot out this straight line
trajectory:

endtime = 1.5;
eigentrajectoryplot =
ParametricPlot [{x1[t],yl [t]}, {t O, endtime }, PlotStyle -
{{CadmiumOrange, Thickness  [0.015 ]}}, DisplayFunction - Identity 1;

starterplot = Graphics [{Red, PointSize = [0.04 ], Point [{x1[0],yl [0]}1}];

Show[eigenplot, starterplot,
eigentrajectoryplot, PlotRange - All, Axes - True,
AxesLabel - {"x","y" '}, DisplayFunction - $DisplayFunction,
PlotLabel - "Trajectory along an eigenvector" 1;

Trajectory alonY an ei genvector

Similarly, the formulas for solutions coming from the straight line

trajectory coming from eigenvectdi2] are:
Clear [x2,y2,t 1]
{x2[t_1,y2 [t_]} = eigenvector [2] Exp [eigenvalue [2]t]
{-0.539111 E 0566039t (842035 F ~0566039t

Check it out:

| 2 itl,y2 [ty ==A. {x2[t1,y2 [t]}
True

] {x2[0],y2 [0]} == eigenvector  [2]
True

See it now:

endtime =5.5;
eigentrajectoryplot =
ParametricPlot [{x2[t],y2 [t]}, {t O, endtime }, PlotStyle -
{{CadmiumOrange, Thickness [0.015 ]}}, DisplayFunction - Identity 1;

starterplot = Graphics [{Red, PointSize = [0.04 ], Point [{x2[01,y2 [0]}1}];

Show[eigenplot, starterplot,
eigentrajectoryplot, PlotRange - All, Axes - True,
AxesLabel - {"x","y" '}, DisplayFunction - $DisplayFunction,
PlotLabel - "Trajectory along an eigenvector” 1;

Trajectory alonY an ei genvector

DE.07.B3

0OB.3.a.iii) Formulas for other trajectories
Stay with the same linear system and matrix A.

Here are straight line solution pairs starting at the tips of each of the

eigenvectors:
Clear [x1,y1, x2,y2,t 1
{XL[t_],yl [t_]} = eigenvector ~[1] EP0envale (1]t
{X2[t_],y2 [t_]} = eigenvector ~[2] EFloenvale (2]t
{0.961835 E 109604t 027363 E 109604t
(-0.539111 E 0566039t (ggoo35 F -0566039t 4
Now see how this random combination
CLx1[t], ya[t]} + C2{x2[t], y2[t]
of the straight line solution pairs plots out:

Here C1 and C2 are random constants.

C1 = Random[Real,
C2 = Random[Real,
Clear [x,y,t ]

X[ 1,y [t 1y=CLl{x1[t],yl [t]}+C2{x2[t],y2 [t1};

{-2,21}];
{-2,21]

endtime =5;

curveplot = ParametricPlot [{x[t1,y [t1}, {t O, endtime }, PlotStyle -
{{Thickness [0.015 ], CadmiumOrange }}, DisplayFunction - Identity  ];

starterplot = Graphics [{PointSize [0.04 ], Red, Point [{x[0],y [0]}1}];

Show[eigenplot, starterplot, curveplot,
PlotRange - {{-4,4}, {-4,4 }}, Axes - True, AxeslLabel - Y,
DisplayFunction - $DisplayFunction, PlotLabel - Nonel;

{x[t],y [t]1}

Eigenvalues [A]

-4
(-0.798559 E 0566039t _ (574301 E 109604t
1.24756 E 0566039t _ (163387 E 109604t
{1.09604, -0.566039 }

The formula at the top is the parameterization of the plotted
trajectory.

Below the formulas, the eigenvalues of the coefficient matrix are listed.

Rerun many times.

Damned if those curves don't look like trajectories!
Check out

{X[t], Y[t} = CL{x1t], y1[t]} + C2{x2[t], y2[t]
for cleared constants C1 and C2.

Clear [x,y,t,Cl1,C2 ]

XIL 1,y [t 1} =Cl{x1[t], yl [t]}+C2{x2[t],y2 [t]};
{X[t1,y "[t1} == Expand [A. {x[t],y [t]1}]
True

What's the message?

OAnswer:
The message is:
When you go with straight line trajectory solutions
{x1[t], y1[t]} and{x2[t], y2[t]}
coming from the tips oleigenvectdrl] andeigenvectdi2],
and you go with and two constaiC1 andC2 you like, then any

combination{x[t], y[t]} like this:

Clear [x,y,t Cl1,C2 ]

(X[t 1,y [t_1}=CL{xi[t],yl [t]1}+C2{x2[t],y2 [t]}
{-0.539111 C2 E -0.566039t | 961835 C1 E 109604t X

0.842235 C2 E ~0-566039t 27363 C1 E 109604t

gives you a formula for a solution p{x[t], y[t]} (a trajectory) of the
linear system

{XTtL YTt = A {x[t], yIt]}.
Check:

| x'[t1,y [t1} ==Expand [A. {x[t],y [t]1}]
True

You can explain why this happens this way:
ALX[tL yIt = AL (CL{X1[t], yItl + C2{x2[t], y2[t]})
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= CLA.{x1[t], y1[t]} + C2A.{x2[t], y2[t]})
= C1{x1Tt], y1[tl} + C2{x21t], y2Tt]}

= {X't], yTtl}.
0OB.3.a.iv) The formula for any trajectory

Stay with the same linear system and matrix A.

A = {{0.84,0.90 }, {0.40, -0.31 }};
MatrixForm  [A]

Clear [x,y,t 1
ColumnForm [Thread [{x' [t], Yy [t1} == A. {X[t],y [t]1}]]
0.84 0.9
( 04 -0.31 )
X' [t] ==0.84x [t] +09y [t]
y'[t]==04x [t]-031ly [t]
Given starter data
{x[01, ){[0]} = {-0.8, 1.5, _ .
come up with formulas for the functions[tlxand yt] that solve this
linear system.

OAnswer:

Calculate the eigenvalues and the eigenvectors:

Clear [eigenvector, eigenvalue 1
{eigenvector [1], eigenvector [2]} = Eigenvectors [A]
{eigenvalue [1], eigenvalue [2]} = Eigenvalues [A]

({0.961835, 0.27363 }, ({-0.539111, 0.842235 }}
(1.09604, -0.566039 }

One sucker and one propeller.
Set up formulas for the straight line trajectories starting at the tips of

the two eigenvectors:

Clear [x1,y1, x2,y2,t ]

{XL[t_],yl [t_ 1]} = eigenvector [1] Exp [eigenvalue [1]t]
{0.961835 E 109604t 027363 £ 109604t
] (x2[t_1,y2 [t_]} = eigenvector [2] Exp [eigenvalue [2]t]
{-0.539111 E 0566039t (842035 F -0566039t

Make a combination of the two straight line formulas but use

undetermined cconstant coefficientC1 andC2 this way:

Clear [C1, C2]

XTI 1,y [t 13 =Cl{xI[t], yl [t]}+C2 {x2[t],y2 [t]}
(-0.539111 C2 E ~0566039t , 0.961835 C1 E 109604t

0.842235 C2 E 0566039t 027363 C1 E 109604t

This trajectory starts at:

I 101,y (01}
{0.961835C1 - 0.539111 C2, 0.27363C1  +0.842235C2 }

The given starter data are
{x[0], y[O]} = {-0.8, 1.5.
| starter ={-08,15 }
(-08,15 }
Determine the coefficientC1 andC2 so that
{x[0], y[O]} = {-0.8, 1.5:

| starterequation = {x[0],y [0]} == starter
{0.961835 C1 - 0.539111 C2, 0.27363 C1 +0.842235C2 } == {-0.8,15 }

Solve for C1 and C2:
| Csols = Solve [starterequation 1
{{C1-0.14085, C2 - 1.73522 }}
The formulas you are after are:

I (X[ 1,y [t_1}={x[tl,y [t]} /. Csols [L]
(-0.935475 E ~0566039t 0135475 F 109604t
1.46146 E 0566039t 0385408 E 109604t

Check it out:
| Expand [{x"[t1,y [t1}] == Expand [A. {X[t],y [t1}]
True
| (x[01,y [01} == starter
True
See it:

endtime = 3;
trajectoryplot =

DE.07.B3-B4

ParametricPlot [{X[t],y [t]}, {t O, endtime }, PlotStyle -
{{CadmiumOrange, Thickness  [0.015 ]}}, DisplayFunction - Identity ];

starterplot = Graphics [{Red, PointSize  [0.04 ], Point [{x[0],y [0]1}1}1;
Show[
eigenplot, starterplot, trajectoryplot, PlotRange - All, Axes - True,

AxesLabel - {"x","y" }, DisplayFunction - $DisplayFunction 1;

Perfecto.
Play with other starting points.

B.4) Eigenvectors involving the imaginary number
| =V =1 do not stand in your way; they are swirlers

Just when you thought you were getting good at this, someone flips
you this linear system:
Clear [x,y,t 1]
linearsystem =
({X' [t],y [t1} == {O03x [t] + 15y [t], -L.7x [t] + 0.1y [t]1});
ColumnForm [Thread [linearsystem 1]
X [t]==03x [t]+15y [t]
y[t]==-17x [t] +01ly [t]
And asks you to come up with formulas for the functioftband yt]
that solve this linear system with starter data
{x[0], ylo} = {-0.2, 0.3:
You read off the coefficient matrix A:
A={{03,15 1}, {-1.7,01 }};
MatrixForm  [A]
03 15
( -1.7 0.1 )

Intent on looking for the straight line trajectory formulas, you
calculate the eigenvalues of A,
| Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Chop[Eigenvalues [A]]
{0.2 +1.593741, 0.2 -1.593741 }
and the eigenvectors of A:
Clear [eigenvector 1;
{eigenvector [1], eigenvector [2]1} = Chop [Eigenvectors  [A]]
{{-0.0428746 - 0.683309 I, 0.728869 }, {-0.0428746 + 0.683309 I, 0.728869 1}

You inspect this carefully and note that the dreaded number
I= V-1
is sitting conspicuously in the output.
But when you use the code at the beginning of B.3) above to go after
formulas for the solution pafx[t], y[t]}, you get:

{xstarter, ystarter }={-02,03 1};

Clear [eigenvector, eigenvalue 1;

{eigenvalue [1], eigenvalue [2]} = Chop[Eigenvalues [A]];
{eigenvector  [1], eigenvector [2]1} = Chop[Eigenvectors  [A]];

Clear [x,vy, x1,yl, x2, y2,t, C1, C2 1

{x1[t_1,yl [t_1} =Chop[eigenvector [1] Exp[eigenvalue [1]t]1];
{X2[t_1,y2 [t_1} = Chop[eigenvector [2] Exp [eigenvalue [2]t]1];
XTI 1,y [t 1y =Cl{x1[t], yl [t]}+C2{x2[t],y2 [t]1};

starter = {xstarter, ystarter }:
starterequation = {x[0],y [0]} == starter;
Csols = Solve [starterequation 1

{X[t_1,y [t_1} = Chop[ComplexExpand [{x[t],y [t]1} /.Csols [1]1]
{-0.2E %2t Cos[1.59374t ] +0.269806 E °2! Sin [1.59374t ],
0.3E 92! Cos[1.59374t ] +0.194511E 2! Sin [1.50374t ]}
Exponentials combined with sines and cosines.
Compare the formula with the eigenvalues of the coefficient matrix:

| Eigenvalues [A]

{0.2 +1.593741, 0.2 -1.593741 }

If you want to see why these formulas came out the way they did, then
jump into what follows.
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0OB.4.a.i) Formulas for trajectories

Stay with the same linear system
{XTtL YTt = A {X[t]. y[tD:
Clear [x,y,t 1
linearsystem =
(X' [t1,y" [t1} == {03x [t] + 15y [t], -17x [t] + 0.1y [t]});
ColumnForm [Thread [linearsystem 1]
X' [t] ==03x [t] +15y [t]
y'[t]==-17x [t]+0.1ly [t]
Look again at the eigenvectors of the coefficient matrix A:
Clear [eigenvector 1;
{eigenvector  [1], eigenvector [2]1} = Chop [Eigenvectors  [A]]
{{-0.0428746 - 0.683309 I, 0.728869 }, {-0.0428746 + 0.683309 I, 0.728869 1)
and eigenvalues of A:

Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Chop[Eigenvalues [A]]

(0.2 +1.593741,02 -1.593741 }
How do you interpret the presence of the complex numbers involving
| =v-17?

OAnswer:
The presence of the complex numbers invoh = v -1 tells you
that the straight line trajectories along the eigenvectors are strictly
imaginary. In the real world, there are no straight line trajectories.

Check this out:

Clear [Field ]
Field [x_,y_1=A.{xYy };
scalefactor =0.2;
flowplot = Table [Arrow [scalefactor Field X,y 1,
Tail - {x,y }, VectorColor - Blue, HeadSize ->0.2 ],

{X, -2,2,025 1}, {y, -2,2,025 1}1;
Show [ flowplot, Axes

- True, AxesLabel - {"x","y" }1;

All the trajectories swirling like all get-out.
No straight line trajectories here.
And this was predicted by the presencl = v -1 in the output from:

| {eigenvalue [1], eigenvalue [2]}
(0.2 +1.593741,02  -1593741 }
The upshot:
The presence ( = v -1 in eigenvalues indicates that the

eigenvectors are what DiffEg@&athematicaolks call "swirlers."

OB.4.a.iii) Propelling swirlers

Stay with the same linear system.

| ColumnForm [Thread [{x' [t],y" [t1} == A. {X[t],y [t]}]]

X' [t]==03x [t]+15y [t]

y'[t]==-17x [t]+0.1y [t]
In spite of the imaginary numbers in the eigenvectors and eigenvalue:
come up with formulas for functiongtkand \it] that solve this linear
system with the starter data

{x[0], y[o} = {-0.2, 0.3
given above.
OAnswer:

This is just a copy, paste and edit job on B.3.
Don't worry about the imaginary numbers and go with them as if they
were ordinary numbers:

Clear [eigenvector 1;

{eigenvector [1], eigenvector [2]} = Chop [Eigenvectors  [A]]

DE.07.B4

{{-0.0428746 - 0.683309 I, 0.728869 }, {-0.0428746 + 0.683309 |, 0.728869 1}

Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Chop[Eigenvalues [A]]

{0.2 +1.593741,0.2 -1.593741 }

Set up formulas for the (imaginary) straight line trajectories starting at

the tips of the two eigenvectors:

Clear [x1,yl, x2,y2,t 1
{x1[t_1,yl [t_]} = Chop[eigenvector [1] Eegenvalve (11t
((-0.0428746 - 0.683309 | ) E(02 1593741 )t 70gggg E (02 +1593741 )t

If this output bothers you, take the Tutorial on the complex exponential.

| {X2[t_1,y2 [t_1} = Chop[eigenvector [2] ES9envalue 21t
{(-0.0428746 +0.683309 | ) E(0-2 1598741 )t 0728869 E (02 1593741 )ty
If this output bothers you, take the Tutorial on the complex exponential.

Make a combination of the two (imaginary) straight line formulas but

use undetermined coefficierC1 andC2 this way:
Clear [x,y,t, Cl,C2 ]
XIL 1,y [t 1y =Cl{x1[t], yl [t]}+C2{x2[t],y2 [t]}
{(-0.0428746 + 0.6833091 ) C2 E(02-1593741 )t _
(0.0428746 +0.683309 | ) C1E(02 1598741 )t
0.728869 C2 E (02 -1593741 )t , 0728869 C1 E (0-2 +1593741 )t

This (yet undetermined) trajectory starts at:

| x101,y 101}
{(-0.0428746 - 0.6833091 ) C1- (0.0428746 - 0.6833091 ) C2,
0.728869 C1 +0.728869 C2 }

The given starter data are
{x[q1, y[Ol} = {-0.2, 0.3.

| stater ={-02,03 }
(-02,03 }

Determine the coefficientC1 andC2 so that
{xQ], y[O]} = starter:

starterequation = ({x[0],y [0]} == starter )
Csols = Solve [starterequation 1

{(-0.0428746 - 0.683309 1 ) C1- (0.0428746 - 0.6833091 ) C2,
0.728869 C1 +0.728869 C2 } ==

(-02,03 }

{{C1-0.205798 -0.1334341,C2 -0.205798 +0.1334341 }}

Use these values C1 andC2 to nail down the solution pg{X][t], y[t]}

with {x[0], y[O]} = starter:

| (X[ 1,y [t_1}={x[t]l,y [t]} /. Csols [1]
{(-0.1 +0.134903 | ) E(02-15%741 )t _ (01 ,0.134903 | ) E(0-2 1598741 )t
(0.15 +0.0972556 | ) E(02 1598741 )t . (015 _0.0972556 | ) E(02 1593741 )t

Clean this up by haviniglathematicaapply the fundamental identity
E@+Dt = E3Y(Cogb] +i Sin[b]):
Clear [cleanx, cleany 1
{cleanx [t_1,cleany [t_]} = Chop[ComplexExpand [{x[t],y [t]1}]1]

{-0.2E %2t Cos[1.59374t ] +0.269806 E °2! Sin [1.59374t ],
0.3E %?! Cos[1.59374t ] +0.194511 E 2! Sin [1.59374t ]}

Check these formulas out:

] Expand [{cleanx “[t],cleany ‘[t]1}] == Expand [A. {cleanx [t], cleany [t]}]
True

| {cleanx [0], cleany [0]} == starter

True

See the flow plot and the corresponding trajectory:

flowplot = Table [Arrow [Field [x,y 1, Tal - {x ¥y},
VectorColor - Blue, ScaleFactor - 0.2, HeadSize -0.35 1],
6 6
{x, -3,3, E}’ {v. -3,3, E}]’
endtime = 11.5;
trajectoryplot =
ParametricPlot
{{CadmiumOrange, Thickness
starterplot = Graphics [{Red, PointSize
Show[
flowplot, starterplot, trajectoryplot, PlotRange
AxesLabel - {"x","y" }, DisplayFunction

[{xX[t],y [t]}, {t O, endtime }, PlotStyle -
[0.015 ]}}, DisplayFunction - Identity ];
[0.04 1, Point  [{x[0],y [01}1}1;

- All, Axes - True,
- $DisplayFunction 1;
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Life in the fast lane.
Look at that spiral!

Take another look at the formula #{x[t], y[t]}:

] (cleanx [t],cleany [t]}
{-0.2E %2! Cos[1.59374t ] +0.269806 E 2! Sin [1.59374t ],
0.3E 22! Cos[1.59374t ] +0.194511E 92! Sin [1.59374t ]}

Look at the eigenvalues of the coefficient matrix:

| Eigenvalues [A]
{0.2 +1.593741, 0.2

The positive exponent on the exponential explains why the trajectory

- 1593741 }

propelled away frormr {0, 0}.

Do you see that number anywhere in the eigenvalues?

The sine and cosine terms explain why the trajectory oscillates aroun:
{0, O}.

Do you see the numbers inside the cosine and sine terms anywhere i
the eigenvalues?

The spiral results from the combined effects of the exponential terms
and the sine and cosine terms.

This is why DiffEq& Mathematica folks call the eigenvectors propelling

swirlers.

B.5) Eigenvalue-trajectory analysis summary:
Propellers, suckers, pure swirlers, sucking swirlers, and
propelling swirlers

OB.5.a.i) Two Propellers:
Two positive eigenvalues

If you find that both eigenvalues of the coefficient matrix A are
positive, then you already know that both eigenvectors are propellers
and that all the trajectories are propelled away ffon®}.

How do the formulas back this up?

OAnswer:
The formulas back this up.
For instance if
eigenvalugl] of A is 0.9
and
eigenvalug?] of A is 3.0,
then every trajectory is given by the formula
{x[t], y[t]} = Cleigenvectdd] E®°' + C2eigenvecta2] E >
The exponential terms
E0.9t and E3.Ot

propel the trajectories away frc{0, 0}.
The result: All solutions go to infinity at becomes very large.

See two propellers in action:

DE.07.B4-B5

Clear [x,y,t 1]
linearsystem =
(X' [t1,y" [t1} == {13x [t] + 05y [t], -03x [t] + 1.2y [t]});
ColumnForm [Thread [linearsystem 1]
X' [t]==13x [t]+05y [t]
y' [t]==-03x [t]+12y [t]
A= {{13,05 }, {03,12 }};
MatrixForm  [A]
1.3 0.5
(0.3 1.2 )

Check the eigenvalues of the coefficient maAx

Clear [eigenvalue 1]
{eigenvalue [1], eigenvalue
{1.64051, 0.859488 }

Both eigenvalues are positive. This means that both eigenvectors are

[2]} = Eigenvalues [A]

propellers. See some random trajectories with scaled eigenvectors:

{xstarter, ystarter } =
{Random[Real, {-40, 40 }], Random [Real, {-40, 40 }1};
endtime =7;
starterpoint = {xstarter, ystarter };
Clear [Xx,y,t 1
X1,y [t1}=
Chop [ComplexExpand [Expand [MatrixExp [At]. {xstarter, ystarter 3111
trajectoryplot =
ParametricPlot [{X[t],y [t]}, {t O, endtime }, PlotStyle -
{{CadmiumOrange, Thickness  [0.015 ]}}, DisplayFunction - Identity  1;
starterplot = Graphics [{Red, PointSize  [0.05 ], Point [starterpoint 131

Clear [eigenvector ]

{eigenvector  [1], eigenvector [2]1} = Eigenvectors  [A];

scalefactor = 200;

headsize = 50;

eigenplot = {Arrow [eigenvector [1], Tail - {0, 0 }, VectorColor - Red,

ScaleFactor - scalefactor, HeadSize - headsize 1,

Arrow [-eigenvector [1], Taill - {0, O }, VectorColor - Red,
ScaleFactor - scalefactor, HeadSize - headsize 1,

Arrow [eigenvector [2], Tail - {0, 0 }, VectorColor - Red,
ScaleFactor - scalefactor, HeadSize - headsize 1,

Arrow [-eigenvector [2], Tail - {0, 0 }, VectorColor - Red,
ScaleFactor - scalefactor, HeadSize - headsize 1};

Show[starterplot, trajectoryplot,
eigenplot, PlotRange - {{-2 scalefactor, 2 scalefactor }

{-2 scalefactor, 2 scalefactor }}, Axes - True,
AxesLabel - {"x","y" 1}, PlotLabel - "Two positive eigenvalues”,
DisplayFunction - $DisplayFunction 1;
(-25.8525 F 0859488t _ g 43947 F 164051t 5o 7767 E 0859488t _ g 4ogEp E L640SLL

Two positive/ ei genval ues
P 4006/ 9

Rerun many times.

Off we go into the wild orange yonder.

After you run this several times, you will be able to detect which
eigenvector corresponds to the larger eigenvalue.

oOB.5.a.ii) Two suckers:
Two negative eigenvalues guarant{x[t], y[t]} is sucked
to {0, O}
no matter what the starting data ox[0], y[0]} are.

If you find that both eigenvalues of A are negative, then you already
know that both eigenvectors are suckers and all the trajectories are
sucked towardO, 0}.
This means that if[x] and yft] solve the linear system, then you are
guaranteed that as t gets large

{xIt], yltl} - {0, O}
no matter what the starting data {@f0], y[0]} are.
How do the formulas back this up?

OAnswer:
The formulas back this up.
For instance if
eigenvalugl] of Ais -0.9
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and

eigenvalug?] of A is —-3.0,
then every trajectory is given by the formula

{x[t], y[t]} = Cleigenvectdd] E-%°! + C2 eigenvectde] E-30t
The exponential terms

E—O.gt and E—S.Ot
suck the trajectories toward the draiq{0, 0}.
This forces

{x[t], y[tl} —> {0, Otast - o
no matter what the starting data{x[0], y[O]} are.

The result: All solutions end &0, 0} whent is sufficiently large.

See two suckers in action:

Clear [x,y,t 1
linearsystem =
({X' [t],y [t1} == {-13x [t] + 05y [t], 0.3x [t] - 12y [t]});
ColumnForm [Thread [linearsystem 1]
X' [t] ==-13x [t]+05y [t]
Yy [t]==03x [t]-12y [t]
Read off the coefficient matrix:
A={{-13,05 }, {03, -1.21}};
MatrixForm  [A]
-1.3 05
los 12
Check the eigenvalues of the coefficient meAix
Clear [eigenvalue ]
{eigenvalue [1], eigenvalue
{-1.64051, -0.859488 }

[2]} = Eigenvalues [A]

Both eigenvalues are negative. This means that both eigenvectors ar
suckers.
See some random trajectories with scaled eigenvectors:

ranger = 10;
{xstarter, ystarter } =
{Random[Real, {-ranger, ranger
Clear [Xx,y,t 1
X[ 1,y [t1}=
Chop [ComplexExpand [Expand [MatrixExp [At]. {xstarter, ystarter 3111
trajectoryplot =
ParametricPlot

}1, Random [Real, {-ranger, ranger 1y

[{x[t],y [t1}, {t O, endtime 1}, PlotStyle -

{{CadmiumOrange, Thickness  [0.015 ]}}, DisplayFunction - Identity  1;
starterpoint = {xstarter, ystarter };
starterplot = Graphics [{Red, PointSize  [0.05 ], Point [starterpoint 111,
ranger

scaler

Clear [eigenvector ]

{eigenvector  [1], eigenvector [2]} = Eigenvectors  [A];

scalefactor =5;
headsize =1,
eigenplot = {Arrow [eigenvector [1], Tail - {0, 0 }, VectorColor - Red,

ScaleFactor - scalefactor, HeadSize - headsize ],
Arrow [-eigenvector  [1], Tail - {0, 0 }, VectorColor - Red,
ScaleFactor - scalefactor, HeadSize - headsize ],
Arrow [eigenvector  [2], Tail - {0, 0 }, VectorColor - Red,
ScaleFactor - scalefactor, HeadSize - headsize ],
Arrow [ -eigenvector [2], Tail - {0, O }, VectorColor - Red,
ScaleFactor - scalefactor, HeadSize - headsize 1};
Show[
starterplot, trajectoryplot, eigenplot, PlotRange - All, Axes - True,
AxesLabel - {"x","y" '}, PlotLabel - "Two negative eigenvalues”,
DisplayFunction

- $DisplayFunction 1;
(5.93E 164051t 591135 F 0.859488t

Two Hegative ei genval ues

, -4.03848 E 164051t 256497 08504881

Rerun several times.
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Down the drain &{0, O}.
After you run this several times, you will be able to spot the
eigenvector that corresponds to the most negative eigenvalue.

oOB.5.a.iii) A propeller and a sucker:
One positive and one negative eigenvalue

If you find that one of the eigenvalues of A is positive and the other
eigenvalue of A is negative, then you already know that one
eigenvectors is a propeller, the other eigenvector is a sucker and that
almost all trajectories end up being propelled away f{@nd}, but

some of the trajectories are sucked tow@rd} before they begin

their journeys away frort0, C}.

How do the formulas back this up?

OAnswer:
The formulas back this up.
For instance if
eigenvalugl] of A is -4.8
and
eigenvalug?] of A is 2.7,
then every trajectory is given by the formula
{X[t], y[t]} = C1eigenvectdi] E-*8! + C2 eigenvectd®] E>7!
Ast continues to advance fraOp the exponential term
E-4.8t

eventually decays 10 but the the exponential term
E2.7t

blasts the trajectories into outerspace in the directieigenvectai?]
(unlessC2 = 0).

The result: You can expect the trajectories to go to infinityt as
becomes very large, but some may move tow{0, 0} first, under the
influence of the sucking eigenvector.

See a propeller and a sucker in combined action:

Clear [x,y,t ]
linearsystem =

({x [t1,y [t1} == {08x [t] + 02y [t], 04x [t] - 12y [t]});
ColumnForm [Thread [linearsystem 1]

A = {{0.8,02 }, {04, -1.2}};
MatrixForm  [A]
X' [t] ==08x [t]+0.2y [t]
y'[t]==04x [t]-12y [t]
08 0.2
(0.4 -1.2 )

Check the eigenvalues of the coefficient maAix

Clear [eigenvalue ]
{eigenvalue [1], eigenvalue
(-1.23923, 0.83923 }

Mixed signs. This means one eigenvector is a propeller and the other i

[2]1} = Eigenvalues [A]

a sucker. See some random trajectoies shown with the eigenvectors:

ranger = 200;

{xstarter, ystarter } = {Random[Real, {-ranger /2, ranger /2}],
Random[Real, {-ranger /2,ranger /2}1};

endtime = 9;

Clear [x,y,t ]
{X[_ 1,y [t1} =
Chop [ComplexExpand [Expand [MatrixExp [At]. {xstarter, ystarter 3111

trajectoryplot = ParametricPlot [{x[t1,y [t]}, {t O, endtime 1},
PlotStyle -> {{CadmiumOrange, Thickness  [0.015 ]}},
DisplayFunction -> Identity 1

starterpoint = {xstarter, ystarter };
starterplot = Graphics [{Red, PointSize
Point [starterpoint 131;

[0.06 1,
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scaler = 0.9ranger; Clear [x,y,t 1
Clear [eigenvector ] linearsystem =
{eigenvector  [1], eigenvector [2]} = Eigenvectors [A]; (X' [t1,y [t1} == {-12x [t] + 15y [t], -23x [t] + 1.2y [t1});
eigenplot = ColumnForm [Thread [linearsystem 1]
{Arrow [scaler eigenvector [1], Tail -> {0, O }, VectorColor -> Red], A= {{-12,15 1}, {-23,12 }};
Arrow [ -scaler eigenvector [1], Tail -> {0, 0 }, VectorColor -> Red], MatrixForm  [A]
Arrow [scaler eigenvector [2], Tail -> {0, 0 }, VectorColor -> Red], X' [t]==-12x [t] +15y [t]
Arrow [ -scaler eigenvector [2], Tal -> {0, 0 }, VectorColor ~ -> Red]}; yoIt] == -23x [t]+12y [t]
Show[starterplot, trajectoryplot, eigenplot, 12 15
PlotRange -> {{-ranger, ranger }, {-ranger, ranger ) ( ) ) )
Axes -> True, AxesLabel => "Ny, -23 1.2
DisplayFunction -> $DisplayFunction, Check the eigenvalues Af
PlotLabel  -> "Eigenvalues of mixed signs" 1
(372675 E 123923t _ 447886 E 083923t 379985 E 123923t _g7g539 E 083923t | Clgar [eigenvalue ] )
{eigenvalue [1], eigenvalue [2]} = Eigenvalues [A]
i genval ueg_of m xed signs
200 {0. +1.417741, 0. -1.417741

The formisp + | g with
p = 0 andg notO.
This means that the eigenvectors are pure whirlers (no suck and no

propell).
Rerun several times. The same result; the trajectories oscillate ar{0, 0} on ellipses. And
After you run this several times, you will be able to spot the propelling the solution plots are sine waves.
eigenvectors that correspond to the the positive eigenvalue but
occasionally you will see the initial influence of the sucker. See some trajectories followed by the corresponding individual
OB.5.a.iv) Two pure swirlers: solution plots:
. . ranger = 30;
Eigenvaluep + Ilgand p — Iqwith p = 0 andq notO ranger ranger
] i {xstarter, ystarter } = {Random[Real, {- , 11
If you find that the eigenvalues of A are of the form: anger  ranger 2 2
p+ Iqand p— Iqwith p = 0 and g not 0, Random[Real, {-—— ——1}]};
then you know that both eigenvectors are pure swirlers and that all th Clear [x,y,t ]
trajectories will oscillate on ellipses centered{@n0}. f)'fﬁ' ][X'yy'[t‘ ]]) )
How do the formulas back this up? Chop [ComplexExpand [Expand [MatrixExp [At]. {xstarter, ystarter 1111
OAnswer: trajectoryplot =
ParametricPlot [{xX[t],y [t]}, {t O, endtime }, PlotStyle -
{{CadmiumOrange, Thickness  [0.015 ]}}, DisplayFunction - Identity 1;
starterpoint = {xstarter, ystarter };
starterplot =

Graphics [ {CadmiumOrange, PointSize [0.06 ], Point [starterpoint 131;

The formulas back this up. Show starterplot, trajectoryplot,

: H PlotRange - {{-ranger, ranger }, {-ranger, ranger }}, Axes - True,
For instance if AxesLabel - {"x","y" }, DisplayFunction - $DisplayFunction,
: : PlotLabel -
elgenvaluel] of AisO + 2.31 "Eigenvalues p +lgandp -1qg\Wn withp =0and g not 0" 1;
and xsolutionplot =

) . Plot [x [t1, {t O, endtime }, PlotStyle - {{Magenta, Thickness [0.01 1}3,
eigenvalug?] of Ais0 — 2.31,

then every trajectory Is given by the formula PlotLabel - "Corresponding x  [t] solution plot" I:
{x[t], yltl} ysolutionplot -
- c1 eigenvectd!l] E2'3 It + C2 eigenvectdﬂ] E72'3| t Plot [y [t1, {t O, endtime }, PlotStyle - {{Red, Thickness [0.01 1}},

1
AspectRatio - 7 AxesLabel - {"t","x [t]"},

1
AspectRatio - 3 AxesLabel - {"t","y [t]"},

X . . . PlotLabel - "Corresponding y  [t] solution plot" ];
The eXpOnentS involvinl = v -1 tell you that the tl‘aJeCtOI‘IeS are (-2.23211 Cos [1.41774t | - 0.758084 Sin [1.41774t |,

purely oscillatory. To see why look at: -2.5022 Cos [1.41774t | + 150324 Sin [1.41774t ]}

snvalues p + | g and p - |
Clear [t1]; thp:Oaang/q not 0

ComplexExpand [E>3't ]
Cos[2.3t ] +1Sin [23t ]
| complexExpand [E-23't ]

Cos[2.3t ] -1Sin [23t ]
This tells you that the ingredients in the formula are really 20
combinations 0Sin[2.31 andCo92.31]. -30

This explains why the trajectories must oscillate along ellipses center

at{0, 0} and why individual solutions are genuine sine and cosine

. 2 4 6
waves. -ZV \/ \
y

This is why the corresponding eigenvectors are called swirlers. . ICorresponding y(t] sol ution plot

The result: All trajectories oscillate arour{0, 0} in the same track, j;V : v ° {/
-3

and all solutions oscillate with constant amplitude.

Rerun several times.

Elliptical trajectories and corresponding sine wave solutions everytime.
See pure swirlers in action:
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0OB.5.a.v) Two sucking swirlers:
Eigenvaluesp + Igand p — g with p < 0 andq notO
guarantee{x[t], y[t]} is sucked tc{O, O} no matter what the
starting data on {x[0], y[O]} are.

If you find that the eigenvalues of A are of the form:
p+ Igand p- Iqwith p < 0 and g not 0
then you know that both eigenvectors are sucking swirlers and that al
the trajectories will spiral towar®, 0}, so that all solutions are
sucked to 0 no matter what the starting data are.
How do the formulas back this up?
OAnswer:

The formulas back this up.
For instance if

eigenvalugl] of Ais -2.7 + 4.21
and

eigenvalugl] of Ais -2.7 — 4.21,

then every trajectory is given by the formula
{X[t], y[t]} = C1eigenvectdd] E-27+420t 4 eigenvectdi2] EC27

The exponents involving
2.7+ 4.21and-2.7 - 4.21
tell you that the trajectories are suckeq0, 0} and are compelled to

spiral as they are sucked. To see why look at:

Clear [t]
ComplexExpand [E(-27 +421 )1t}

E27' Cos[4.2t ] +I1E 27! Sin [4.2t ]

Clear [t]
ComplexExpand [E(-27 421 )1ty
E27! Cos[4.2t ] -1E 27! Sin [4.2t ]

This tells you that the terms in the
formula
{X[t], y[t]} = C1 eigenvectdf] E-27+420t 4 eigenvectoi2] E2
are sucked t{0, 0} by the
E—2.7t

factors and they are compelled to oscillate (spiral) along the way by tt
Sin[4.2 1 andCod94.21]
factors.

The result: The trajectories spiral inf{0, 0}. And the solution plots
are damped sine waves.

See sucking swirlers in action:

Clear [x,y,t 1
linearsystem =

(X [t1,y [t1} == {-12x [t] + 15y [t], -23Xx [t] + 0.9y [t1});
ColumnForm [Thread [linearsystem 11

A= {{-12,15 3}, {-23,09 }};
MatrixForm  [A]

X' [t]==-12x [t]+15y [t]

Yy [t]==-23x [t]+09y [t]
-1.2 15

(—2.3 0.9 )

Check the eigenvalues of the coefficient meAix
Clear [eigenvalue ]
{eigenvalue [1], eigenvalue

{-0.15 +1.532161,

[2]} = Eigenvalues [A]
-0.15 -1.532161 }

The form is
p + I g with p < 0 andg notO.
This means that the eigenvectors are sucking swirlers. See some

DE.07.B5

random trajectories followed by individual corrersponding solution

plots:
ranger = 10;
{xstarter, ystarter } = {Random[Real, {-0.8ranger, 0.8 ranger 11,
Random[Real, {-0.8ranger, 0.8 ranger 31}
endtime = 15;

Clear [x,y,t ]

{xX[_ 1,y [t1} =
Chop [ComplexExpand [Expand [MatrixExp [At]. {xstarter, ystarter }111

= ParametricPlot

trajectoryplot [{x[t],y [t1}, {t O, endtime 1},

PlotStyle -> {{CadmiumOrange, Thickness  [0.015 ]}},
DisplayFunction -> Identity  1;
starterpoint = {xstarter, ystarter };
starterplot = Graphics [{Red, PointSize [0.06 ],

Point [starterpoint 1} 1;

Show [starterplot, trajectoryplot,
PlotRange -> {{-ranger, ranger }, {-ranger, ranger  }},
Axes -> True, AxesLabel => "Y'
DisplayFunction -> $DisplayFunction,
PlotLabel  ->
"Eigenvalues p

+1lgandp -1qg\n withp < 0 and q not 0" 1;

xsolutionplot =

Plot [x[t]1, {t O, endtime }, PlotStyle -> {{Magenta, Thickness [0.01 1}},
AspectRatio  -> 1/3, AxesLabel -> {"t","x [t]"},
PlotLabel  -> "Corresponding x [t]1 solution plot" 1;
ysolutionplot =
Plot [y[t]1, {t O, endtime }, PlotStyle -> {{Red, Thickness [0.01 1}},
AspectRatio  -> 1/3, AxesLabel -> {"t","y [t1"},
PlotLabel ~ -> "Corresponding y [t ] solution plot" 1;

{-1.73504 E *15' Cos[1.53216t ] -3.84513E 5! sin [1.53216t 1,
-5.14209 E 015! Cos[1.53216t ] - 0.919355E 015! Sin (153216t 1)

envalues p + 1 g and p - |
thp<0a1ng’qnul 0

X[t] corresponding x[t] solution plot

2

1

— t
N 0 1 a
-2
-3

Y4[1: Corresponding y[t] solution plot

2

i t
-2

4

Rerun a couple of times.

Inward spiralling trajectories and corresponding damped sine wave
solutions everytime.
As you can see, no matter what trajeci{x[t], y[t]} you ride,
{x[t], y[t]} is eventually sucked {0, 0}.
OB.5.a.vi) Two propelling swirlers:

Eigenvaluesp + Iqand p — Iqwith p > 0 andqg not 0

If you find that the eigenvalues of A are
p+ Iqand p- Igwithp > Oand gnotO
then you know that both eigenvectors are propelling swirlers and that
all the trajectories will spiral away frof@, 0}.
How do the formulas back this up?

OAnswer:
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The formulas back this up. Show[starterplot, trajectoryplot,
: : PlotRange -> {{-ranger, ranger }, {-ranger, ranger  }},
For instance If Axes -> True, AxesLabel => "Y',
H H DisplayFunction -> $DisplayFunction,
eigenvalugl] of Ais2.1 + 3.51 Piottabel
and "Eigenvalues p +lgandp -1qg\n withp > 0 and g not 0" 1;
eigenvalu(al] of Ais2.1+ 3.51, xsolutionplot = ) .
. ) . Plot [x[t], {t O, endtime }, PlotStyle -> {{Magenta, Thickness [0.01 1}3},
then every trajectory is given by the formula: AspectRatio  -> 1/3, AxesLabel -> {"t","x [t]"},
PlotLabel  -> "Corresponding x [t ] solution plot" 1;
— i (2.1+3.5t H (2.1-3! ysolutionplot =
{X[t]' y[t]] = Cl elgenvethﬂ'] E + elgenvethQ] E Plot [y[t], {t O, endtime }, PlotStyle -> {{Red, Thickness [0.01 ]}},
AspectRatio  -> 1/3, AxesLabel -> {"t","y [t]"},
) ) PlotLabel ~ -> "Corresponding y [t ] solution plot" 1;
The exponents involvin2.1 + 3.51 and2.1 - 3.51 tell you that the (8.90850 E O350 Cos(1.532161 | - 672665 E ©I5' Sin (153216t 1,
trajectories are propelled away fr0, 0} and are forced to spiral. To (06034838 £ 0'1:' Cos[153216¢ | - 13.8082 & 01t sin (153216t 1)
:nvalues p + q ani p -
see why look at: thp >0 gpdanot 0
Clear [t1; 123
ComplexExpand [E(?1+351 )1t 15
E?'t Cos[3.5t ] +IE%!! Sin [35t ]
Clear [t1; -
ComplexExpand [E(1-351)1 -100
E21' Cos[35t ]-1E2Lt Sin (351t ] ;23
This tells you that the terms in the GXOM Corresponding x[t] solution plot
40
formula B .
{X[t], y[t]} = C1eigenvectqd] E@350t 4 eigenvectof2] E&1 ol ‘4k 8 v 2t
are propelled away froi{0, 0} by the -40
)1t Y[t] corresponding y(t] solution plot
E 60
. . 40
factors and they are compelled to oscillate (spiral) by the 20
R t
. 4 8 12
Sin[3.5f andCog3.51] -2
factors. Rerun a couple of times.

The result: The trajectories spiral away frc{0, 0}.

Outward spiraling trajectories and corresponding increasingly excited

See propelling swirlers in action: sine wave solutions everytime.
Clear [x,y,t 1]
linearsystem = i i
e e (0% (1) + 15y (1], -23% (1] + 12y (11 DE.O7 Elgenyectors and Eigenvalues for
ColumnForm [Thread [linearsystem 1] |_|nea|’ Systems
A= {{-09,15 }, {-23,12 }}; :
MatrixForm  [A] Tutorials
X' [t] ==-09x [t]+15y [t]
y'[t]==-23x [t]+12y [t]
(53 1o ) T.1) The matrix exponential EAt:
Check the eigenvalues At A short cut to coming up with formulas
Clear [eigenvalue ] Here's a random coefficient matrix for a random linear system:

{eigenvalue [1], eigenvalue [2]} = Eigenvalues [A]

A = {{Rand Real, {-2,2 }], Rand Real, {-2,2 )
{0.15 +1.532161, 0.15 -1532161 } { {(Random(Real, { }1. Random [Real, { 1}

{Random[Real, {-2,2 }], Random [Real, {-2,2 }1}};

The form is Clear [x,y,t ]
linearsystem =
p + Iqwithp > 0 andg notO. (X It1y [t1) == A {X[t1,y [t1});
. . . . ColumnForm [Thread [linearsystem 11
This means that the eigenvectors are propelling swirlers. See some X' [t] == 1.61241x [t] - 1.65454y [t ]
. . . . y/[t] ==-1.32754x [t] +0.39924y [t]
random trajectories followed by corresponding individual solution ;
! y P 9 With random starter data ¢Rr[0], y[0]}:
pIOtS: | {xstarter, ystarter } = {Random[Real, {-2,2 }], Random [Real, {-2,2}]}
ranger = 200; {1.34492, 1.05138 }
{xstarter, ystarter } = {Random[Real, ({-ranger /8, ranger /8}], Formulas for the solution paix[t], y[t]} of this linear system with
Random[Real, {-ranger /8, ranger /8}1}; hi d N
endtime = 12: this starter data are:
Clear [Xx,y,t 1 Clear [eigenvector, eigenvalue 1,
{X[t_1,y[t]} = {eigenvalue [1], eigenvalue [2]} = Chop[Eigenvalues [A]];
Chop [ComplexExpand [Expand [MatrixExp [At]. {xstarter, ystarter 3111 {eigenvector  [1], eigenvector [2]1} = Chop[Eigenvectors  [A]];
Clear [x,vY, x1,yl, x2, y2,t, C1, C2 1
{x1[t_1,yl [t_1} = Chop[eigenvector [1] Exp [eigenvalue [1]t]];
trajectoryplot = ParametricPlot [{x[t1,y [t1}, {t O, endtime 1}, {X2[t_1,y2 [t_1} = Chop[eigenvector [2] Exp [eigenvalue [2]t]];
PlotStyle -> {{CadmiumOrange, Thickness  [0.015 1}}, X1,y [t 1}=Cl{x1[t],yl [t]}+C2{x2[t],y2 [t1};
DisplayFunction -> Identity 1; starter = {xstarter, ystarter }
starterequation = {x[0],y [0]} == starter;
starterpoint = {xstarter, ystarter }; Csols = Solve [starterequation 1;
starterplot = Graphics [{Red, PointSize [0.06 ], {X[t_1,y [t_1} = Chop[ComplexExpand [{x[t],y [t]1} /.Csols [1]1]
Point [starterpoint 111 (0.960882 E 0595553t (384039 E 26072t
1.28229 E 0995553t _ (0230904 E 26072t
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That's a lot of algebra.
Mathematica has an instruction involving a new idea called the matrix
exponential.
This instruction will reproduce this formula for you in one line of
typing.
Here you go:

Clear [x,y,t 1

X1,y [t ]} =
Chop [ComplexExpand [Expand [MatrixExp [At]. {xstarter, ystarter 31111

{0.960882 E 059553t 0.384039 E 26072
1.28229 E 0595553t _ 230904 E 26072t

Use it and love it.

T.2) Quick eigenvalue analysis

OT.2.a) Eigenvalues indicate sucking swirlers

The given linear system is:
Clear [x,y,t 1
linearsystem =
(X [ty [t1} ==
{05x [t] - 1.7y [t], 28x [t] - 23y [t1});
ColumnForm [Thread [linearsystem 1]
X' [t]==05x [t]-17y [t]
y'[t]==28x [t]-23y [t]

You read off the coefficient matrix A:
A= {{05 -171}, {28, -23}};
MatrixForm  [A]

05 -1.7
(28 -2.3 )

You askMathematicafor the eigenvalues of A:
I Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Chop[Eigenvalues [A]]
{-0.9 +1.673321, -0.9 -1.673321 }
What information about the trajectories do you get from this
calculation?

OAnswer:

Almost everything you want.
Take another look:

Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue

{-0.9 +1.673321,

[2]} = Chop[Eigenvalues [A]]
-0.9 -1.673321 }

The presence d = v -1 tells you both eigenvectors are swirlers. The
presence of the negative num-0.9 tells you that both eigenvectors
are also sucking swirlers.

The upshot:
The trajectories in this system spiral tow{0, 0}. No matter what the
starter data on solutioi{x[t], y[t]} of this system, you are guaranteed
that

X[t] - 0 andy[t] » 0 ast - o
but they wiggle a lot on their way.
In fact, you can know the essence of what are used to make up soluti
pairs{x[t], y[t]} just by looking at the eigenvalues.

For instance here's a formula {x[t], y[t]} starting at a random point.

{xstarter, ystarter
Clear [Xx,y,t 1]
X[t 1,y [t1}=
Chop [ComplexExpand [Expand [MatrixExp [At]. {xstarter, ystarter 3111

{1.16393 E %! Cos[1.67332t ] +1.33671E °°! Sin [1.67332t ],
-0.357201 E 09! Cos[1.67332t ] +2.24648 E %! Sin [1.67332t ]}

When you look at these formulas, you can tell almost everything you
need to know simply by looking at the eigenvalues of the coefficient

matrix A:
| Eigenvalues [A]

} = {Random[Real, {-3, 3 }], Random [Real, {-3,3}1};

DE.07.T1-T2

{-09 +1.673321, -09 -1.673321 }

OT.2.b) Eigenvalues that indicate two suckers

The given linear system is:
Clear [x,y,t ]
linearsystem =
(X [t],y [t]} ==
{-23x [t] + 0.7y [t], 1.8x [t] - 43y [t1});
ColumnForm [Thread [linearsystem 1]
X' [t] ==-23x [t]+07y [t]
y'[t]==18x [t] -43y [t]

You read off the coefficient matrix A:
A= {{-23,0.7 }, {18, -431};
MatrixForm  [A]

-23 07
( 1.8 -4.3 )

You askMathematiceaor the eigenvalues of A:

Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue

(-4.80333, -1.79667 }
What information about the trajectories do you get from this
calculation?

OAnswer:

[2]} = Chop[Eigenvalues [A]]

Almost everything you want.
Take another look:

Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue

(-4.80333, -1.79667 }
Both negative, with no imaginary component. The eigenvectors are

[2]} = Chop[Eigenvalues [A]]

both suckers.

The upshot:
The trajectories in this system hustle their buns to\{0, 0} and they
don't spiral.

No matter what the starter data on soluti{x[t], y[t]} of this system,
you are guaranteed that

X[t] > 0 andy[t] > 0ast—
but they don't wiggle much on their way.

In fact, you can know the essence of what are used to make up solutio
pairs {x[t], y[t]} just by looking at the eigenvalues.

For instance, here's a formula {x[t], y[t]} starting at a random point.
{xstarter, ystarter } =
{Random[Real, {-3, 3 }1, Random [Real, {-3,3 }1};Clear [x,y,t 1]

X1,y [t1}=
Chop [ComplexExpand [Expand [MatrixExp [At]. {xstarter, ystarter 3111

{-0.239257 E ~480333t 1 9429 p 179667

0.855626 E ~#80333t 1 39703  ~179667t
When you look at these formulas, you can tell almost everything you
need to know simply by looking at the eigenvalues of the coefficient

matrix A:

| Eigenvalues [A]
(-4.80333, -1.79667 }

OT.2.c) Eigenvalues that indicate a propeller and a sucker

The given linear system is:
Clear [x,y,t 1]
linearsystem =
({xX' [t1,y [t1} == {-05x [t] + 1.7y [t], 28x [t] - 23y [t]1});
ColumnForm [Thread [linearsystem 1]
X'[t]==-05x [t]+17y [t]
y'[t]==28x [t]-23y [t]

You read off the coefficient matrix A:
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A= {{-05,1.7 }, {28, -231}1};
MatrixForm  [A]
-05 1.7
( 2.8 -2.3 )

You askMathematicafor the eigenvalues of A:

Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Chop[Eigenvalues [A]]
{-3.76008, 0.960085 }
What information about the trajectories do you get from this
calculation?

OAnswer:
Almost everything you want.
Take another look:

Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Chop[Eigenvalues [A]]
{-3.76008, 0.960085 }

Mixed signs. One eigenvector is a sucker and the other is a propeller.

The upshot:

The trajectories in this system hustle their buns toward the line
determined by the propelling eigenvector which shows up as
eigenvectdr?] here:

Clear [eigenvector 1;
{eigenvector [1], eigenector [2]} = Chop[Eigenvectors  [A]]
{{-0.462371, 0.886687 }, {0.758608, 0.651548 }}

And they don't spiral.

You are guaranteed that all trajectories eventually try to merge with tr

line through{0, O} determined by the propelling eigenvector:
eigenvector[2].

There is an exception.
Any trajectory that starts on the line through {O, 0}

determined by the sucking eigenvector stays on that line
and eventually stalls at {0, O}

In fact, you can know the essence of what are used to make up soluti

pairs{x[t], y[t]} just by looking at the eigenvalues.

For instance, here's a formula {x[t], y[t]} starting at a random point.

{xstarter, ystarter } = {Random[Real, {-3,3 }], Random [Real, {-3,3}1};
Clear [x,y,t 1
X[ 1,y [L1}=
Chop [ComplexExpand [Expand [MatrixExp [At]. {xstarter, ystarter 3111
{xstarter, ystarter } = {Random[Real, {-3,3 }], Random [Real, {-3,3 }1};
(-0.442493 E 376008t _ 0497915 E 0-960085t

0.848567 E ~3760081  _ 0.427646 E 09600851
When you look at these formulas, you can tell aimost everything you
need to know simply by looking at the eigenvalues of the coefficient

matrix A:

] Eigenvalues [A]
{-3.76008, 0.960085 }

OT.2.d) Eigenvalues indicate propelling swirlers

The given linear system is:
Clear [x,y,t 1
linearsystem =
({X' [t1,y [t1} == {05X [t] + 6.7y [t], -2.8x [t] + 23y [t]1});
ColumnForm [Thread [linearsystem 1]
X' [t] ==05x [t] +6.7y [t]
y'[t] ==-28x [t]+23y [t]

You read off the coefficient matrix A:
A={{05 67 }, {-28,23 }};
MatrixForm  [A]

05 6.7
( -28 23 J

You askMathematicafor the eigenvalues of A:

Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Chop[Eigenvalues [A]]
{14 +4.236741, 1.4 -4.236741 }

DE.07.T2

What information about the trajectories do you get from this
calculation?

OAnswer:
Almost everything you want.
Take another look:

Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Chop[Eigenvalues [A]]
{14 +4.236741,1.4 -4.236741 }

The presence d = v -1 tells you both eigenvectors are swirlers. The
presence of the positive numt1.4
tells you that both eigenvectors are also propelling swirlers.

The upshot:

The trajectories in this system spiral away fi{0, 0}. No matter what
the starter data on solutio{x|[t], y[t]} of this system, you are
guaranteed that eventua{x[t], y[t]} will try to run off the screen with
increasingly wild oscillation.

In fact, you can know the essence of what are used to make up solutio
pairs{x[t], y[t]} just by looking at the eigenvalues.

For instance, here's a formula {x[t], y[t]} starting at a random
starting point.

{xstarter, ystarter
Clear [x,y,t 1]
X1,y [t1}=
Chop [ComplexExpand [Expand [MatrixExp [At]. {xstarter, ystarter 3111
{-0.592813 E *! Co0s[4.23674t | -3.25357 E '*! Sin [4.23674t ],
-2.13703 E *! Cos[4.23674t ] -0.0621814 E '*! Sin [4.23674t ]}

} = {Random[Real, {-3, 3 }], Random [Real, {-3,3 }1};

When you look at these formulas, you can tell almost everything you
need to know simply by looking at the eigenvalues of the coefficient

matrix A:

| Eigenvalues [A]
{14 +4.236741,1.4 -4.236741 }

OT.2.e) Eigenvalues that indicate pure swirlers

The given linear system is:
Clear [x,y,t 1]
linearsystem =
({x" [t],y [t]} == {05x [t] - 1.7y [t], 3.6x [t] - 05y [t1});
ColumnForm [Thread [linearsystem 1]
X' [t]==05x [t]-17y [t]
y'[t]==36x [t]-05y [t]
You read off the matrix A:
A= {{05, -171}, {36, -05}};
MatrixForm  [A]
05 -1.7
(3.6 -0.5 )

You askMathematicaor the eigenvalues of A:
Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Chop[Eigenvalues [A]]
{2.42281 1, -2.422811 }
What information about the trajectories do you get from this
calculation?

OAnswer:

Almost everything you want.
Take another look:

Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue  [2]} = Chop [Eigenvalues [A]]

{2.422811, -2.422811 }
The presence the loil = v -1 term tells you both eigenvectors are
pure swirlers.
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The upshot:
The trajectories in this system oscillate on ellipses centei{0, O}t

You should a little careful with this system because small errors in the
coefficients in the linear system might send you into eigenvalues such as

0.1+ 2.43land 0.1 — 2.430r
-0.1+ 2421and -0.1 - 2,421

both of which signal entirely different trajectory behavior.

In fact, you can know the essence of what are used to make up soluti
pairs{x[t], y[t]} just by looking at the eigenvalues.

For instance, here's a formula {x[t], y[t]} starting at a random point.

{xstarter, ystarter } = {Random[Real, {-3,3 }], Random [Real, {-3,3 }1};

Clear [x,y,t 1
X[t 1,y [L1}=
Chop [ComplexExpand [Expand [MatrixExp [At]. {xstarter, ystarter 3111

(-0.417604 Cos [2.42281t ] - 1.79127 Sin [2.42281t ],
2.43006 Cos [2.42281t | - 1.12201Sin [2.42281t |}

When you look at these formulas, you can tell almost everything you
need to know simply by looking at the eigenvalues of the coefficient

matrix A:

| Eigenvalues [A]

{0. +2.422811, 0. -2422811 }

OT.2.f) Eigenvalues that indicate two propellers

The given linear system is:

Clear [Xx,y,t 1]
linearsystem =
(X' [t1,y [t1} == {35x [t] - 04y [t], 0.6x [t] + 23y [t]});
ColumnForm [Thread [linearsystem 1]
X' [t] ==35x [t] -04y [t]
Yy [t]==06x [t]+23y [t]

You read off the matrix A:

I A={{35 -041}, {06,23 1},
MatrixForm  [A]

35 -04

(0.6 2.3 J

You askMathematicafor the eigenvalues of A:

Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Chop[Eigenvalues [A]]
{3.24641, 2.55359 }
What information about the trajectories do you get from this
calculation?
oAnswer:

Almost everything you want.
Take another look:

Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Chop[Eigenvalues [A]]
(3.24641, 2.55359  }

Both positive. The eigenvectors are both propellers.

The upshot:

The trajectories in this system hustle their buns off the screen and the
don't spiral.

Eventually all the trajectories will try to merge with the line through

{0, O} determined by the dominant propeller which shows up as
eigenvectdrl] in:

| {eigenvector  [1], eigenvector [2]} = Eigenvectors  [A]
{{0.844574, 0.535439 }, {0.389306, 0.921108 11

In fact, you can know the essence of what are used to make up soluti
pairs{x[t], y[t]} just by looking at the eigenvalues.

For instance, here's a formula {x[t], y[t]} starting at a random point.

DE.07.T2>T3

{xstarter, ystarter } = {Random[Real, {-3, 3 }], Random [Real, {-3,3 }1};

Clear [x,y,t ]
X[ 1,y [t1}=
Chop [ComplexExpand [Expand [MatrixExp [At]. {xstarter, ystarter 3111

(-0.257326 E 255959t 3.11004 E 324641t
-0.608839 E 25539t 1 97205 F 324641t

When you look at these formulas, you can tell almost everything you
need to know simply by looking at the eigenvalues of the coefficient

matrix A:

| Eigenvalues [A]
{3.24641, 2.55359 }

In fact, you can know the essence of what are used to mex[t] apd
y[t] just by looking at the eigenvalues.

T.3) Traces, determinants and the cheat sheet chart -
print it and put it in your wallet

oT.3.a.i)
Given a linear system with given numbers a, b, cand d:
Clear [x,y,t a b, c d 1
linearsystem =

(X' [t1,y [t1) == {ax[t] + by[t], cx [t] +dy[t]});
ColumnForm [Thread [linearsystem 1]

X' [t] ==ax[t]+by][t]

y[t]==cx[t]+dy[t]
Your response is to write down the coefficient matrix A for this
system:

A={{a,b}, {cd}}
MatrixForm  [A]
a b
(c d )
Now calculate the eigenvalues of A:

| Eigenvalues [A]

(La.a-

1
5 a2 +4bc-2ad+d?), 5(a+d+

aZ+4bc-2ad+d?)}

Two quantities stand out:
(a+ dandad- bc
Folks have special names for these quantities. They say
traceof A=a+ d
and
determinantof A= ad - bec.
| {trace =a+d, det =Det[A]}
{a+d, -bc+ad}
You can easily express the eigenvalues of A in terms of the trace of A
and the determinant of A:
ExpandAll [Eigenvalues [A]] ==

1 1
ExpandAll [{—2- (trace -« trace 2 - 4det ) (trace ++/trace 2 - 4det )}]

2

True
So the two eigenvalues of A are given by the formulas:
% (trace+ Vtrace — 4 de)
and

1 (trace— Vtracé — 4 det).

These formulas make it possible for you to calculate the eigenvalues
of a coefficient matrix with pencil and paper or with a cheap pocket
calculator.

Lots of reference books have charts, of the type you will see below,
that help you to see what kind of linear system you are dealing with
once you know the trace and the determinant.
In this problem, you will participate in building one of these charts.
To start building the chart, you go with trace and determinant axes and
then you plot the curve

trace- 4 determinant O:

trace 2
cutoff = Plot [T {trace, -5,51},

PlotStyle - {{Red, Thickness [0.01 ]}}, AxesLabel - {"trace", "det" 1,
PlotRange - {-6, 6 }, DisplayFunction - ldentity ];

cutofflabel = Graphics [
Text [FontForm ["trace 2-4 det == 0", {"Times", 10 }1, {3.0, -4.0 }11;
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pointer
Show[
cutoff, cutofflabel, pointer, DisplayFunction

=Amow [{2,1}-{30, -361}, Tal {30, -361];

- $DisplayFunction

And then you annote this cheat sheet plot as follows:
twosuckercutoff =

propswirllabel = Graphics [Text [FontForm [

" Two\n propelling \n swirlers", {"Times", 10 }1, {2,4}11;
pureswirlerlabel =
Graphics [Text [FontForm [" p\n u\n r ", {"Times", 12 }1, {0,7 }11;
suckswirlcutoff =
Graphics [ {Blue, Thickness [0.01 ], Line [{{0,0 1}, {0,6 }}1}1;

suckswirllabel = Graphics [Text [
FontForm ["Two\n sucking\n swirlers",

negdetcutoff =
Graphics [{Blue, Thickness  [0.01 ], Line [{{-5,013}, {50 }}1}1;
negdetlabel = Graphics [Text [FontForm [

"Pure sucker & pure propeller”,
pureswirlerlabel = Graphics [
Text [FontForm ["Two pure swirlers on the positive vertical axis",
{"Times", 10 }], {0,6.5 }11;
chart = Show[cutoff, cutofflabel, pointer, twosuckercutoff,
twosuckerlabel, twopropcutoff, twoproplabel, propswirlcutoff,
propswirllabel, suckswirlcutoff, suckswirllabel, negdetcutoff,
negdetlabel, pureswirlerlabel, DisplayFunction

{"Times", 10 }], {0, -151}11;

- $DisplayFunction

The chart is not to be memorized.
It is to be called up and used when you decide you want it.

Some folks even carry a copy of this chart in their wallets.
How do folks use this chart?
OAnswer:

Here it is for a sample linear system:

a = -14;
b = 0.9;
c = 04
d = -0.5;
A= {{ab}, {cd}};

Clear [x,y,t 1

ColumnForm [Thread [{x' [t],Y'
X' [t] ==-14x [t]+09y [t]
y' [t] ==04x [t] -05y [t]

You calculate

[t1} == A. {X[t],y [t1}]]

trace=a+d

and
determinant ad-bc

by hand. And then you plot the resulting point
{trace, determinaht

on the chart:

trace =a+d;
det =ad-bg;
chartpointpoint =
Graphics [ {Magenta, PointSize
Show[chart, chartpointpoint 1;

[0.04 ], Point [{trace, det }1}1;

1

Graphics [{Blue, Thickness [0.01 ], Line [{{-5,013}, {0,0 }}1}1;
twosuckerlabel = Graphics [

Text [FontForm [" Two pure \n suckers", {"Times", 10 }], {-4,11}11;
twopropcutoff =

Graphics [ {Blue, Thickness [0.01 ], Line [{{0,01}, {50 1}}1}1;
twoproplabel = Graphics [

Text [FontForm [" Two pure \n propellers”, {"Times", 10 }1, {4,1}11;
propswirlcutoff =

Graphics [{Blue, Thickness  [0.01 ], Line [{{0,0}, {0,6 }}1}1I;

{"Times", 10 }1, {-2,4}11;

1
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This tells you that the given linear system has two pure suckers.

trajectories hustle towar(0, O} as time goes on.

Another:
a = -14;
b = -3.0;
c = 21;
d = 1.4
A= {{a,b}, {c,d}};

Clear [x,y,t 1]

ColumnForm [Thread [{x' [t],VY'
trace = a + d;

det = ad - bgc;

chartpointpoint =

Graphics [ {HotPink, PointSize
Show[chart, chartpointpoint 1;

[t1} == A. {x[t],y [t1}]1]

[0.04 ], Point [{trace, det }1}1;

X'[t]==-14x [t]-3.y [t]
y[t]==21x [t]+14y [t]

This landed on the vertical axis. And this tells you that this linear

system has two pure swirlers. Solutions are sine waves.

Here is the same thing for some random linear systems:

X
y

a = Random[Real, {-2,2}];
b = Random[Real, {-2,2 }1;
¢ = Random[Real, {-2,2}];
d = Random[Real, {-2, 2 }];
A= {{ab} {cd}}

Clear [x,y,t ]

ColumnForm [Thread [{X' [t],Y'
trace = a + d;

det = ad - bg;

chartpointpoint =

Graphics [ {HotPink, PointSize [0.04 ], Point [{trace, det
Show[chart, chartpointpoint 1;

[t1} == A. {x[t],y [t]}]]

313D

[t] == -1.84464 X [t] +0.905562y [t]
“[t]=--0810281x [t]-1.04027y [t]

Rerun a few times.

Neat cheat sheet.

Print one up and put it in your wallet.

OT.3.a.ii)

Explain why the chart is correct.

OAnswer:

Select the ones you want.
Reading them all gets really tiresome.
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OTwo sucking swirlers explanation:

Here are some sample poiftrace, detthat plot out in the two
swirling sucker region of the chart:

Clear [trace, k ]
trace [k_]:=trace [k] = Random[Real, {-4, -0.1 }1;

samplepoints = Table [{trace [k],
2 2

w + Random[ReaI, {0, 5 - w}]} {k, 1, 100 )];

samplepointplot = ListPlot  [samplepoints,
PlotStyle - {Banana, PointSize [0.03 1}, DisplayFunction - Identity 1;
Show[samplepointplot, chart, PlotRange - All,
AxesLabel - {"trace", "det" }, DisplayFunction - $DisplayFunction 1;
det
Two puresNirIersorg e positive vertical axis,
Two Two
sucking 4 propelling

swirlers swirlers

trace’—4 det == 0
The two sucking whirlers region corresponds to the case that
trace of A< 0,
determinant of A> 0, and
(trace of A2 < 4 determinant of A.
Explanation:
The eigenvalues (A are

p+1g= 1 (trace+ Vtracé — 4 det)

and

p-lq= 1 (trace- Vtrac& — 4 det).
Because

det>0
and

trace — 4 det< 0,
you seeq is not0. This gives you the whirl.
Becaus¢race< 0, you see thep < 0. This gives you the suck.
OTwo pure swirlers explanation:

Here are some sample poiftrace, detthat plot out in the two pure

swirler region of the chart:
samplepoints = Table [{0, Random [Real, {0, 6 }1}, {k, 1,10 }1;

samplepointplot = ListPlot  [samplepoints,
PlotStyle - {Green, PointSize [0.04 1}, DisplayFunction - Identity 1;
Show[samplepointplot, chart, PlotRange - All,
AxesLabel - {"trace", "det" }, DisplayFunction - $DisplayFunction 1,

det
Two pure swirlers ondhe positive vertical axis,
Two Two
sucking 4 propelling
swirlers swirlers

The two pure swirler region corresponds to the case that
trace of A= 0,

and
determinant of A> 0.

Explanation:

The eigenvalues (A are
p+1q= 1 (trrace+ Virace - 4 det)

and

p-1q= 1 (trace- Vtrac& — 4 det).

DE.07.T3

Because

trace= 0,

p+lg= 1 (0+V0-4dey
and

p-lg=%(0-V0-4det.
And becausdet > 0,

p+1g= 1 (0+21+vAbsdef)
and

p-1g=3(0-21+vAbsdef)

This gives you the swirl. Becaup = 0, there is no suck or propel.
oTwo propelling swirlers explanation:

Here are some sample poiftrace, detthat plot out in the two

propelling swirlers region of the chart:
Clear [trace, k 1];trace [k_]:=trace [k] = Random[Real, {0.1,4 }1;

samplepoints = Table [{trace [k1,
trace [k]2 trace [k]2
Tace [kI°, Random[Real, {0,5 - ————-4[ ! }H} k1,100 3]
samplepointplot = ListPlot  [samplepoints, PlotStyle -
{Goldenrod, PointSize [0.03 ]}, DisplayFunction - Identity 1;
Show[samplepointplot, chart, PlotRange - All,
AxesLabel - {"trace", "det" }, DisplayFunction - $DisplayFunction 1;

det
Two pure swirlers orb[ le positive vertical axis
Two Two
sucking 4 propelling
swirlers swirlers

trace—4 det ==

The two propelling whirlers region corresponds to the case that
trace of A> 0,
determinant of A> 0, and
(trace of A2 < 4 determinant of A.
Explanation:
The eigenvalues A are
p+1q= 1 (trace+ Viracé - 4 de)
and

p-1q= % (trace- Vtrac& — 4 det).

Because
trac& — 4 det< 0,
you segq is not0. This gives you the whirl.
Becausetrace> 0, you see thep > 0. This gives you the propulsion.

OTwo pure suckers explanation:

Here are some sample poiftrace, detthat plot out in the two pure
sucker region of the chart:

Clear [trace, k 1]
trace [k_]:=trace [k] = Random[Real, {-5, -0.3 }1; samplepoints =

t k12
Table [{trace k1, Random [Real, {0, iCeTu—}] } {k, 1, 100 )];
samplepointplot = ListPlot  [samplepoints, PlotStyle -
{ManganeseBlue, PointSize [0.03 ]}, DisplayFunction - |dentity 1;
Show[samplepointplot, chart, PlotRange - All,

DisplayFunction - $DisplayFunction 1;
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Two pure swirlers orbl e positive vertical axis

Two
propelling
swirlers

Two
sucking 4
swirlers

Two pure
propellers

trace? -4 det ==

The two pure suckers region corresponds to the case that
trace of A< O,
determinant of A> 0, and
(trace of A% > 4 determinant of A.

Explanation:

The eigenvalues (A are

 (trace— Vtrace — 4 det)
and

3 (trace+ Vtrace — 4 det).

Because

trac€ — 4 det> 0,
you see that neither eigenvalue involl = v'=1. So there is no whirl.
Becausedet> 0, you are guaranteed that

0 < Vtrace - 4 det< Vtracé = —trace.

Remember trace< 0 in this case.

This guarantees that both eigenvalues

 (trace— Vtracé€ — 4 det) < 0

1 (trace+ Vtrac@ — 4 det) < 0.

The upshot: Both eigenvalues are negative. And so the linear system
has two pure suckers.

OTwo pure propellers explanation:

Here are some sample poiftrace, detthat plot out in the two pure
propeller region of the chart:

Clear [trace, k ]

trace [k_]:=trace [k] = Random[Real, {0.3,5 }];samplepoints =

trace [k]2

— 1} k1100 3];

samplepointplot = ListPlot  [samplepoints, PlotStyle -
{MediumTurquoise, PointSize [0.03 ]}, DisplayFunction

Show[samplepointplot, chart, PlotRange - All,

DisplayFunction - $DisplayFunction 1;

Two pure swirlers onel e positive vertical axis

Table [{trace k], Random [Real, {0,

- Identity ];

Two Two
sucking 4 propelling
swirlers swirlers

2
Two pure Two pure

suckers propellers
-2 =2 Z 3
Pure sud<e_r §< pure propel |

-4 trace?—4 det == 0
The two pure propellers region corresponds to case that
trace of A> 0,
determinant of A> 0, and
(trace of A% > 4 determinant of A.
Explanation:

The eigenvalues (A are

3 (trace— Vtrace — 4 de)

and

DE.07.T3

1 (trace+ Vtrace — 4 de)

Because

tracé — 4 det> 0,
you see that neither eigenvalue involl = v/—1. So there is no whirl.
Becausedet> 0, you are guaranteed that

0 < Vtrace — 4 det< Vtrace = trace.

Remember trace > 0 in this case.

This guarantees that both eigenvalues

1 (trace- Viracé — 4 det) > 0

1 (trace+ Virace - 4 det) > 0.
The upshot: Both eigenvalues are positive. And so this linear system
has two pure propellers.

OOne pure propeller and one pure sucker explanation:

Here are some sample poiftrace, detthat plot out in the the one
pure propeller and one pure sucker region of the chart:

Clear [trace, k 1]

trace [k_]:=trace [k] = Random[Real, {-5,5 }1;
samplepoints = Table [{trace [k], Random [Real, {-4,0 }1}, {k, 1,100 }1;
samplepointplot = ListPlot  [samplepoints, PlotStyle -

{WarmGray, PointSize = [0.03 ]}, DisplayFunction - Identity ];
Show[samplepointplot, chart, PlotRange - All,

DisplayFunction - $DisplayFunction 1;

Two pure swirlers orht e positive vertical axis

Two
sucking 4
swirlers

Two
propelling
swirlers

Two pure
suckers

é °9 0’
l'l.o'.’\’:”:kﬂ
°.:00. s 0%,

Two pure
propellers

The one pure propeller and one pure sucker region corresponds to the
case that

determinant of A< 0.
Explanation:

The eigenvalues (A are

 (trace— Vtrace — 4 def)

and

 (trace+ Vtrace — 4 def).

Becausedet< 0, you are gauanteed that
trac& — 4 det> 0,
so that neither eigenvalue involu = v'=1. So there is no whirl.
Also becausdet< 0, you are guaranteed that
Vtrac@ — 4 det> Vtrac@ = Abgftracd.
This tells you thaA has one negative eigenvalue - namely

1 (trace— Vtrace — 4 det).

This guarantees one pure sucker.

And because the other eigenvalue
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1 (trace+ Vtrace — 4 det)

is automatically positive, this guarantees one pure propeller.

T.4) How do you pronounce the words "eigenvector” and
"eigenvalue"?
What about the algebra behind calculating them?

oT.4.a)
How do you pronounce the words "eigenvector" and "eigenvalue"?
OAnswer:
The words "eigenvector" and "eigenvalue" are bastardized words.
"Eigen" comes from German, "vector" and "value" come from
English. You pronounce "eigen" as if it were German and you
pronouce "vector" and "value" as usual.
"Eigen" is pronounced | - gen with a hard g as in "garden" or "geezer,
not the soft g as in "general" or "genetics."
The German word "eigen" corresponds to the English word "own."

0OT.4.b.i) Calculating eigenvalues and eigenvectors.

Here is a matrix:
I A={{17,06 1}, {-1.3, -311}};
MatrixForm  [A]
1.7 06
( -1.3 -31 )
Here'sMathematicss calculation of the eigenvalues of A:
| Eigenvalues [A]
(-2.93159, 1.53159  }
Here'sMathematicss calculation of the eigenvectors of A:
| Eigenvectors  [A]

({-0.128472, 0.991713 }, (0.962794, -0.270238 }}

What's the algebra behind calculating eigenvectors and eigenvalues?
OAnswer:

Designate the unknown eigenvector by
{xeigenvect, yeigenvegt
and designate the eigenvalue attached to this unknown eigenvector b
the name eigenval.
The algebraic relationship is
A. {xeigenvect, yeigenvect eigenvalxeigenvect, yeigenvelct

This is the algebra definition of eigenvector and eigenvalue.

Clear [xeigvect, yeigvect, eigenval 1;
eigenequation =
A. {xeigvect, yeigvect } == eigenval {xeigvect, yeigvect };
ColumnForm [Thread [eigenequation 1]
1.7 xeigvect + 0.6 yeigvect == eigenval xeigvect
-1.3 xeigvect - 3.1 yeigvect == eigenval yeigvect

There are three unknowns here, but only two equations.

To nail down all three unknowns, you need one more equation. This
extra equation will try to mak{xeigenvect, yeigenvecinto a unit
vector:

2

I extraequation +yeigvect 2 ==1

2

= Xxeigvect

xeigvect 2 +yeigvect 2 ==1
Now solve the three equations:
| Solve [{eigenequation, extraequation }1
{{eigenval - -2.93159, xeigvect - -0.128472, yeigvect - 0.991713 },
{eigenval - -2.93159, xeigvect - 0.128472, yeigvect - -0.991713 },
{eigenval - 1.53159, xeigvect - -0.962794, yeigvect - 0.270238 1},

{eigenval - 1.53159, xeigvect

Compare:

] Eigenvalues [A]
{-2.93159, 1.53159 }
| Eigenvectors  [A]

- 0.962794, yeigvect - -0.270238 }}

DE.07.T3-T4
{{-0.128472,0.991713 }, {0.962794, -0.270238 }}
Perfect.
An algebraic mess by hand, but easy by machine.
The output seems to confirm that when you go with decimal entries in
A, thenMathematicaspits out unit eigenvectors.

Try another:

A= {{5.22,0.64 1}, {0.71,959 }};
MatrixForm  [A]
5.22 0.64
( 0.71 9.59 )
Clear [xeigvect, yeigvect, eigenval 1;
eigenequation =
A. {xeigvect, yeigvect } == eigenval {xeigvect, yeigvect };
ColumnForm [Thread [eigenequation 1]
5.22 xeigvect + 0.64 yeigvect == eigenval xeigvect
0.71 xeigvect +9.59 yeigvect == eigenval yeigvect

+yeigvect 2 ==

| extraequation 2

2

= xeigvect
xeigvect 2 + yeigvect 2 ==1
| Solve [{eigenequation, extraequation 3}

{{eigenval - 5.11838, xeigvect - -0.987628, yeigvect - 0.156815 },
{eigenval - 5.11838, xeigvect - 0.987628, yeigvect - -0.156815 },
{eigenval - 9.69162, xeigvect - -0.141681, yeigvect - -0.989912 3},

{eigenval - 9.69162, xeigvect

Compare:

| Eigenvalues [A]

(9.69162, 5.11838 )

] Eigenvectors  [A]

({-0.141681, -0.989912 }, {-0.987628, 0.156815 }}

Pity those poor devils in outdated courses who spend a lot of their time

5 0.141681, yeigvect - 0.989912 }}

solving for eigenvectors and eigenvalues by pencil and paper.

OT.4.b.ii)

Look at this calculation of the eigenvectors and eigenvalues of this
matrix:

A= {{3.24,264 }, {-2.84,429 1}};

MatrixForm  [A]

Clear [xeigvect, yeigvect, eigenval 1;

eigenequation =

A. {xeigvect, yeigvect } == eigenval {xeigvect, yeigvect }

ColumnForm [Thread [eigenequation 1]

324 264
(—2.84 4.29
3.24 xeigvect
-2.84 xeigvect

| extraequation
2

+ 2.64 yeigvect
+4.29 yeigvect
2

== eigenval xeigvect
== eigenval yeigvect

+yeigvect 2 ==

= xeigvect
xeigvect 2 + yeigvect 2 ==1
| Solve [ {eigenequation, extraequation }1

{{eigenval - 3.765 -2.68737 I, xeigvect - -1.11585 -1.10669 1,
yeigvect - -1.34845 +0.915791 }, {eigenval - 3.765 -2.68737]1,
xeigvect - 1.11585 + 1.10669 I, yeigvect - 1.34845 -0.915791 1},

{eigenval - 3.765 + 2.68737 |, xeigvect - -1.11585 + 1.10669 I,
yeigvect - -1.34845 -0.915791 1}, {eigenval - 3.765 +2.68737 I,
xeigvect - 1.11585 - 1.106609 I, yeigvect - 1.34845 +0.915791 }}

Compare:

| Eigenvalues [A]

{3.765 +2.68737 1, 3.765 -2.687371 }
The eigenvalues check.

] Eigenvectors  [A]

{{0.133079 - 0.681206 |, 0.719895 +0.1 3,

{0.133079 +0.681206 I, 0.719895 +0.1 33

The eigenvectors don't check.
What gives?
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OAnswer:
Mathematicehas done the algebra slightly differently than shown
above. This will happen anytime the number
I=v-1
pops up. Both calculations are correct and equally reliable.

aT.4.b.iii)

Should you worry about the calculation of eigenvectors and
eigenvalues by hand?

OAnswer:

Only if a professor requires you to.
Or if you enjoy self-inflicted pain.
The cheat sheet problem above gives as easy a hand path as there is

T.5) When you get only one eigenvector, go with
approximate formulas

This is in the never-never land of math pathology.

oT.5.a.i)
When you come across this linear system:

Clear [x,y,t 1
originalsystem = ({X' [t1,y [t1} == {1.2x [t], 1.2x [t] + 12y [t]});
ColumnForm [Thread [originalsystem 11

X' [t]==12x [t]

y'[t]==12x [t]+12y [t]
you immediately write down the coefficient matrix:
A={{1.2,0 }, {1.2,1.2 }};
MatrixForm  [A]
1.2 0
( 1.2 1.2 )

You askMathematicafor the eigenvectors and eigenvalues of A:

Clear [eigenvector 1;
{eigenvector [1], eigenvector [2]} = Chop[Eigenvectors  [A]]

{{0, -1. 3}, {0, 1. }}
Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue  [2]} = Chop [Eigenvalues [A]]

(12,12
This is a problem because the two calculated eigenvectors are in fact
just one eigenvector.

Reason: They point in opposite directions.

Take a look:
Clear [Field, x,y ]
Field [x_,y_1=A.{xYy };
{xlow, xhigh } = {-15, 15 };
{ylow, yhigh } = {-15, 15 };
X xhigh - xlow
jump = ——————;

12
flowplot = Table [Arrow [Field [x,y 1, Tail - {xVy },
VectorColor - Blue, ScaleFactor - 0.25, HeadSize - 151,
{x, xlow, xhigh, jump }, {y, ylow, yhigh, jump 138
scaler = 15;
sizer =4;
eigenplot = {Arrow [eigenvector [1], Tail - {0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer ],
Arrow [-eigenvector  [1], Tail - {0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [eigenvector [2], Taill - {0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1],
Arrow [-eigenvector  [2], Tail - {0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1};

originalflow =
Show[flowplot, eigenplot, Axes - True, AxesLabel - "X Y,
PlotRange - All, PlotLabel - "Original Flow" 1;

Origindl Flow

Just one eigenvector.
But there seems to be a phantom swirler at work here.

DE.07.T4-T5

Use the cheat sheet chart and the idea of approximation to get an idea
about why this happened.

OAnswer:
trace 2
cutoff = Plot [T {trace, -5,5},

PlotStyle - {{Red, Thickness [0.01 ]}}, AxesLabel - {"trace", "det" 1

PlotRange - {-6, 6 }, DisplayFunction - |dentity ];
cutofflabel = Graphics [

Text [FontForm ["trace 2- 4 det == 0", {"Times", 10 }], {3.0, -4.0 }11;
pointer = Arrow [{2,1}-{3.0, -3.61}, Tal - {3.0, -3.61}1;
twosuckercutoff =

Graphics [ {Blue, Thickness [0.01 ], Line [{{-5,01}, {O0,0}}1}1;
twosuckerlabel = Graphics [

Text [FontForm [" Two pure \n suckers", {"Times", 10 }1, {-4,1}11;
twopropcutoff =

Graphics [ {Blue, Thickness [0.01 ], Line [{{0,01}, {5,013}}1}1;
twoproplabel = Graphics [

Text [FontForm [" Two pure \n propellers”, {"Times", 10 }1, {4, 11}11];
propswirlcutoff =

Graphics [ {Blue, Thickness [0.01 ], Line [{{0,0}, {0,6 }}1}1;
propswirllabel = Graphics [Text [FontForm [

" Two\n propelling \n swirlers", {"Times", 10 }1, {2,4}11;
pureswirlerlabel =

Graphics [Text [FontForm [" p\n u\n r ", {"Times", 12 }1, {0,7 }11;

suckswirlcutoff =
Graphics [ {Blue, Thickness [0.01 ], Line [{{0,0 1}, {0,61}}1}1;

suckswirllabel = Graphics [Text [

FontForm ["Two\n sucking\n swirlers”, {"Times", 10 }], {-2,4}1];
negdetcutoff =
Graphics [ {Blue, Thickness [0.01 ], Line [{{-5 01}, {5 0}}1}1;
negdetlabel = Graphics [Text [FontForm [

"Pure sucker & pure propeller", {"Times", 10 }1, {0, -15 }11;
pureswirlerlabel = Graphics [

Text [FontForm ["Two pure swirlers on the positive vertical axis",
{"Times", 10 }], {0,6.5 }11;
chart = Show/[cutoff, cutofflabel, pointer, twosuckercutoff,
twosuckerlabel, twopropcutoff, twoproplabel, propswirlcutoff,
propswirllabel, suckswirlcutoff, suckswirllabel, negdetcutoff,
negdetlabel, pureswirlerlabel, DisplayFunction - $DisplayFunction 1;

Calculate the trace and the determinant of the given coefficient matrix

A and plot{trace, deton the chart:

{{a;b}, {c,d}} = A
Clear [x,y,t 1]
ColumnForm [Thread [{X' [t],y [t1} == A. {x[t],y [t1}]]
trace = a + d;
det = ad - bgc;
chartpointpoint =
Graphics [ {Magenta, PointSize [0.04 ], Point [{trace, det }1}1;
Show[chart, chartpointpoint 1;
X' [t] ==12x [t]
y[t]==12x [t]+12y [t]

det

Two

Now you can see why the the flow plot came out the way it did. The
given linear system is on the border between having two swirling
propellers and two pure propellers. The swirl you see in the flow come:
from the influence of the propelling swirlers from nearby linear
systems.

You can tweak the given linear system slightly to get a nearby linear
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system with two propelling swirlers.

Here's how:

tweaker = {{0, -Random[Real, {0, 0.01 }]}, {0, 0 }};
tweakedA = A + tweaker;
MatrixForm  [tweakedA ]
1.2 -0.00682929
( 1.2 1.2 )

Compare with the original coefficient matr A:

] MatrixForm  [A]
1.2 0
( 1.2 1.2 )

A andtweakedA are almost the same.

Compare the original system with the system resulting tweakedA:

ColumnForm [Thread [{x' [t],y" [t1} == A. {X[t],y [t]}]]
ColumnForm [Thread [{x' [t],Y [t]} == tweakedA. {x[t],y [t]}]]
X'[t]==12x [t]

y'[t]==12x [t]+12y [t]
X'[t]==12x [t]-0.00682929y |[t]
y'[t]==12x [t]+12y [t]

The two linear systems are almost the same.
Check the eigenvalues tweakedA:

| Eigenvalues [tweakedA ]
{1.2 +0.09052711, 1.2 -0.09052711 }

Propelling swirlers. That gives you a pretty good idea of why you saw
the swirl in the original flow.

oT.5.a.ii)

Stay with the same set-up as in part i).
You are out of luck if you want to come up with formulas for
trajectories for the original linear system:

Clear [x,y,t 1
ColumnForm [Thread [originalsystem 11

X/ [t]==12x [t]
y [t]==12x [t]+12y [t]

Reason: The coefficient matrix for this system doesn't have two
genuinely different eigenvectors.

But you can do the next best thing, you can come up with high quality
approximate formulas for the trajectories.

How?

oAnswer:

This answer should come as no surprise.

Take the tweaked linear system:

] ColumnForm [Thread [{X' [t],y' [t]} == tweakedA.
X'[t]==12x [t] -0.00682929y [t ]
y'[t]==12x [t]+12y [t]

This nearby system has everything you need to calculate solution

X[l y [t1}11

formulas:
Eigenvalues [tweakedA ]
Chop [Eigenvectors  [tweakedA ]]
{1.2 +0.09052711, 1.2 -0.0905271 1 }
{{0.0752255 |, 0.997167 }, {-0.0752255 |, 0.997167 I

If you want a high quality approximate formula for a trajectory in the
original linear system starting at the sample starting point

{x[0], y[O]} = {-0.2, 0.9
you go after the formula for the solution of the tweaked system with

the same starting point and plot:

{xstarter, ystarter } = {Random[Real, {-2,2 }], Random [Real, {-2,2 }1};
Clear [eigenvector, eigenvalue 1;

{eigenvalue [1], eigenvalue [2]1} = Chop [Eigenvalues [tweakedA 11;
{eigenvector  [1], eigenvector [2]} = Chop [Eigenvectors  [tweakedA 17;
Clear [X,y, approxx, approxy, x1, y1, x2, y2, t, C1, C2 1

{x1[t_1,yl [t_]1} =Chop[eigenvector [1] Exp [eigenvalue [1]t]];
{X2[t_1,y2 [t_1]1} = Chop[eigenvector [2] Exp [eigenvalue [2]t]];

XTI 1,y [t 1y =Cl{x1[t], yl [t]}+C2{x2[t],y2 [t]};

starter = {xstarter, ystarter };
starterequation = {x[0],y [0]} == starter;
Csols = Solve [starterequation 1;

{approxx [t_1], approxy [t_1]} =
Chop [ComplexExpand [{x[t],y [t]} /.Csols [1]]1]

DE.07.T5-T6

endtime = 2.5;
approxtrajectoryplot =

ParametricPlot [{approxx [t1, approxy [t1}, {t O, endtime }, PlotStyle -

{{Thickness [0.015 ], CadmiumOrange }}, DisplayFunction - Identity 1;
starterplot =
Graphics [{Red, PointSize  [0.04 ], Point [ {xstarter, ystarter 3131

Show[approxtrajectoryplot, originalflow, starterplot,
PlotRange - {{xlow -5, xhigh +5}, {ylow -5, yhigh +5}},
DisplayFunction - $DisplayFunction 1;
{-0.264077 E 2! Co0s[0.0905271t ] +0.0340089 E 12! Sin [0.0905271t ],
~0.450811 E 2! Co0s[0.0905271t ] -3.50052 E 12! Sin [0.0905271t ]}

g

Rerun a couple of times.
These are all approximations and very good ones at that!
Reason: They go with the flow very well.

oT.5.a.iii)

Is it humanly possible to come up with exact formulas for trajectories
for the original linear system above?

OAnswer:
Yes, with great algebraic agony.
If you're really driven to see how to do it, you can consult Boyce and
DePrima’s print book "Elementary Differential Equations and
Boundary Value Problems," 5th Edition, Wiley, New York, 1992.
Look in section 7.7.

OT.5.a.iv)
But isn't an exact formula always better than an approximation?

OAnswer:
Not necessarily.
Often approximate formulas are very much as legitimate as exact
formulas.
Reason:
The constants in linear systems usually come from experimental
measurements which have built-in errors.

Look at the linear system studied above:
Clear [x,y,t 1]
ColumnForm [Thread [{X' [t],y [t1} == A. {x[t],y [t]1}]]
X' [t] ==12x [t]
y[t]==12x [t]+12y [t]
When you approximated this linear system with:
| ColumnForm [Thread [{X' [t],y [t]1} == tweakedA. {x[t],y [t]}]]
X' [t]==12x [t]-0.00682929y [t ]
y[t]==12x [t]+12y [t]
you went with a linear system that could have resulted from more

precise measurements of the constants.

T.6) The complex exponential and Euler's formula
ECP+IOt = EPY(Coqqt] + I Sin[qt])

Some of this may be review for some of you.

OT.6.a.i)

Look at these partial expansions of
Co$x], Sinx]Jand E
in powers of x:
| cosexpansion = Normal [Series [Cos[x], {x, 0,8 }11]
x? x* x5 x8
2 24 720 T 20320
| sinexpansion = Normal [Series [Sin [Xx], {X,0,8 }11]

1-
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6 120 5040
] eexpansion = Normal [Series [E*, {x, 0,8 }1]

X —

X2 )(3 XA X5 XB X7 XE
LeXe 36 24 T 120 720 T 5040 © 40320
Notice that the terms in the expansion of
=3
seem to have been lifted from the expansions of
Co§x] and Sinx].
Use complex numbers to explain this phenomenom.

OAnswer:
Activate the complex (imaginary) numkl = v -1:
1
|

l?
1

Now replacex by (Ix) in the expansion oE*:

] Normal [Series [E*, {x,0,10 }1]1/.X =1Ix

x?2 Ix3% x* I1x%>  x® Ix 7 x8 I1x° x10
1+1x - 5=

2 6 24 "120 720 5040 ' 40320 ' 362880 3628800
Embedded in this is the expansiorCogx]:
] Normal [Series [Cos[x], {X, 0,10 }1]
X2 X4 X6 XB XlO

1= % " %24~ 730 * 20320 ~ 3628800

You can also selztimes the expansion Sin[x]:

| Expand [| Normal [Series [Sin [x], {X,0,10 }]11]
Ix3+lx5ilx7+ 1x°
6 120 5040 362880

Ix -

In fact:

k = Random[Integer, {15, 20 }1;
Normal [Series [E*, {x,0,k }11/.x ->Ix

pox X IXE o ax S X8 x T X8 Ix S xd
2 6 24 120 720 5040 40320 362880 3628800
I x 11 X12 |Xl3 x14 |X15
39016800 « 479001600 ~ 6227020800 87178291200 1307674368000
X16 I x 17 XlS
20022789888000 © 355687428096000  6402373705728000
I x 19 X20
121645100408832000 ' 2432902008176640000
Normal [Series [Cos[x], {X,0,k }1]+
Expand [I Normal [Series [Sin [x], {X, 0,k }111
PTTRE SN E S SR L SO E. A S b SO St
2 6 24 120 720 5040 40320 362880 3628800
|X11 X12 |X13 X14 |X15
39916800 479001600 ~ 6227020800 87178291200 1307674368000
xls I x 17 xlS
2022789888000  355687428096000  6402373705728000
I x 19 XZO
121645100408832000 ' 2432902008176640000
aT.6.a.ii)
Euler's formula
BX = Cogx] + | Sin[x]
is so basic that it is programmed ilathematica
Clear [x]
ComplexExpand [E'* ]
Cos[x] +1Sin [x]
What's the story behind this basic formula?
OAnswer:
You have already seen the whole story.
When you take the expansion of
EX
in powers oix and changi to (I x), you get the expansion of
Cogx]
plus| times the expansion of
Sin[x]
in powers oix.

DE.07.T6

That's why the whole world agrees that
E'X = Cogx] + | Sin[x].

oT.6.a.iii)
For a real number x, you are pretty confident about calculating E
But if z=x + |y is a complex number, then how can you make sense
of
E = Ex+|y

OAnswer:
Just write
z=XxX+1ly
and use normal laws of exponents:
EZ=EX*Y = EXE'Y = EX(Cody] + | Sin[y])
So
Ex+!Y = EX(Cody] +1Sin[y])
Not much to it.

And Mathematicaagrees:

Clear [x,VY ]
ComplexExpand [EX*!Y ]
E* Cos[y] + |E* Sin [y]

OT.6.a.iv)

Here's a linear system:
A = {{-02, -131}, {09, 04 }};
Clear [x,y,t ]
linearsystem =
(X" [t],y [t1} == A. {x[t],y [t1});

ColumnForm [Thread [linearsystem 1]

X' [t] ==-02x [t]-13y [t]

y'[t] ==09x [t] +04y [t]

With random starter data ¢Rr[0], y[0]}:

| {xstarter, ystarter } = {Random[Real, {-2, 2 }], Random [Real, {-2,2 }1}
(-1.0692, 1.14798  }

Here's its solution formula in complex exponential notation:

Clear [eigenvector, eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Chop[Eigenvalues [A]];
{eigenvector  [1], eigenvector [2]1} = Chop [Eigenvectors  [A]];

Clear [x,vy, x1,yl, x2,y2,t, C1, C2 1

{x1[t_71,yl [t_1]1} = Chop[eigenvector [1] Exp [eigenvalue [1]t]];
{X2[t_1,y2 [t_1} = Chop[eigenvector [2] Exp [eigenvalue [2]t]1];
XML 1,y [t 1y=CL{x1[t],yl [t]}+C2{x2[t],y2 [t1};

starter = {xstarter, ystarter };
starterequation = {x[0],y [0]} == starter;
Csols = Solve [starterequation 1;

{X[t_1,y [t_1}={x[t],y [t]1} /. Csols [1]
{(-0.5346 -0.5636931 ) E(01-1030231 )t _
(0.5346 - 0.563693 | ) E(0-1+1.039231 )t
(0.57399 - 0.297281 1 ) E(0-1-1039231 Ht
(057399 +0.297281 | ) E(01 1039231 )ty
How do you put this in real form showing off the sines and cosines
which are embedded in this complex exponential?

OAnswer:

Take another look ¢x[t], y[t]}:

| ity it

{(-0.5346 - 0.563693 | ) E(01-1039231 )t _
(0.5346 - 0.563693 | ) E(O-1+1.039231 )t
(057399 -0.2972811 ) E(01-1.039231 Ht
(057399 +0.2972811 ) E(0-1 1039231 )ty

Let Mathematicahit this complex formula with Euler's formula
Ea+!b = EaCogb] + | E2Sin[b]:
] Chop[ComplexExpand [{x[t],y [t1}]]

{-1.0692 E %' Co0s[1.03923t ] -1.12739E *'! Sin [1.03923t ],
1.14798 E %' Co0s[1.03923t ] - 0.594561 E ®'! Sin [1.03923t ]}

There you go.
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OT.6.a.v)

Here's the derivative with respect to t of
ft] = EP+1Ot;

Clear [f,p,q, t ]

fr]=rlot,

o]

EPt (pelq)
Explain where this comes from.
OAnswer:

Let Mathematicahit the formula forf[t] = EP+'®t with Euler's
formula
E2+!0 = EaCogb] + | E2Sinfb]:

] ComplexExpand [f [t]1]
EP' Cos[qt] +IEP! Sin [qt ]

Differentiate with respect tt:

| Expand [8; (EP! Cos[qt]) +1 & (EP! Sin [qt])]

EP' pCos[qt]+IEP! qCos[qt] +IEP! pSin [qt]-EP! qSin [qt]
Compare:

| complexExpand [E®*t (p+1q)]

EP' pCos[qt] +IEP! qCosiqt] +IEP! pSin [qt] -EP' qSin [qt]
This is the same as:

I frt)
EPIOt (peiq)

DE.O7 Eigenvectors and Eigenvalues for
Linear Systems
Give Ita Try!

G.1) Eigenvalue-trajectory analysis*

0G.1.a) Six linear systems
Below are six linear systems for you to analyze as indicated.

OG.1.a.i) Linear system 1

Here's a linear system:
Clear [Xx,y,t 1
linearsystem =
(X [t1,y [t1} == {-12x [t] + 15y [t], -23x [t] + 0.3y [t]})

{X'[t],y [t]}=={-12x [t]+15y [t], -23x [t] +03y [t]}

Here it is in slightly better form:

] ColumnForm [Thread [linearsystem 1]
X' [t] ==-12x [t]+15y [t]
y' [t] ==-23x [t]+03y [t]

You read off the coefficient matrix A:

I A= {{?, 7}, {(?, ?}}
MatrixForm  [A]
Move right in and replace the

?'s with the correct numbers.

Now you can use this matrix to write the given linear system in this
compact way:

Clear [Xx,y,t 1
matrixlinearsystem = ({X' [t],y [t1} == A. {X[t],y [t]});
ColumnForm [Thread [matrixlinearsystem 11

X' [t]==-02x [t]-13y [t]

y' [t]==09x [t] +04y [t]
Here are six starter points:

Clear [starter 1;
starter [1] = {20, -20};
starter [2] = {10, -10};

DE.07.T6-G1

starter [3] = {5, -5};
starter  [4] = {-5,5 };
starter [5] = {-10, 10 };
starter [6] = {-20, 20 };
starterplot = Show[Table [

Graphics [{Red, PointSize  [0.03 ], Point [starter [j 11}], {, 1,6 }1,
PlotRange - {{-40,40 }, {-22,22 }}, Axes - True,
AxesLabel - {"X","y" }1;

y
] 20
® 10
]
-40 -30 -20 -10 10 20 30 40*
]
10 ]
-20 °

Here are plots of parts of the trajectories in this system starting at the
plotted starter points:

Clear [trajectory 1; trajectory [k,t 1:=
Chop [ComplexExpand [Expand [MatrixExp [At ] .starter [k1111;

Clear [trajectoryplot, trajectoryplots, endtime 1
trajectoryplot [k_, endtime_ ]:=
ParametricPlot [Evaluate [trajectory [k,t 11, {t O, endtime 3},
PlotRange - All, PlotStyle - {{Thickness [0.015 ], CadmiumOrange }},
AxesLabel - {"x [t]1","y [t1"},
PlotLabel - endtime" = endtime", DisplayFunction - |dentity 1;

trajectoryplots [endtime_ ] : =
Table [trajectoryplot [k, endtime ], {k, 1,6 }I;

(trajectorystory [endtime_ ] : = Show[trajectoryplots [endtime ],
starterplot, DisplayFunction - $DisplayFunction 1)
trajectorystory [1.7 1;

1.7 Y éhdtine
20

See more:
] trajectorystory [8.0 1;

8. =Yehdtine

Here are the calculations of the eigenvalues and eigenvectors of your
coefficient matrix A above:

Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Chop[Eigenvalues [A]]

{0.1 +1.039231,0.1 -1.039231 }

Clear [eigenvector 1;
{eigenvector  [1], eigenvector [2]1} = Chop[Eigenvectors  [A]]

{{0.768706, -0.177394 -0.614511 }, {0.768706, -0.177394 +0.614511 }}
Write up the information you get from these calculations and discuss
how this information meshes with the trajectory plots above.

Identify which of the eigenvectors are propellers, suckers, pure
whirlers, propelling whirlers or sucking whirlers.

Describe how the the specific numbers involved in these eigenvalues
enable you to predict in advance how all the trajectories look.

Is this system stable in the sense thétif], y[t]} are any two
solutions of this linear system, then
{x[t], y[t]} » {0, O} as t> o ?

0G.1.a.ii) Linear system 2

Here's a linear system:
Clear [Xx,y,t 1
linearsystem = ({X [ty [t1} =
{-02x [t] + 01y [t], 02x [t] - 0.4y [t]})
{(X'[t],y [t]}==(-02x [t]+01ly [t],02x [t]-04y [t]}
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Here it is in slightly better form:

] ColumnForm [Thread [linearsystem 1]
X' [t]==-02x [t]+0.1ly [t]
y' [t]==02x [t] -04y [t]

You read off the coefficient matrix A:
A= {{-02,01 1}, {02, -04}};
MatrixForm  [A]

-02 01
( 02 -04 )

Now you can use this matrix to write the given linear system in this
compact way:

Clear [x,y,t 1

matrixlinearsystem = ({(X' [t],y [t1} == A. {X[t],y [t]});
ColumnForm [Thread [matrixlinearsystem 11

X' [t] ==-02x [t]+0.1y [t]

y' [t]==02x [t] -04y [t]

Here are six starter points:

Clear [starter 1;

starter  [1] = {20, 20 };

starter  [2] = {20, -20};

starter  [3] = {-10, 20 };

starter [4] = {-10, -20};

starter [5] = {30, 0 };

starter [6] = {-30,0 };

starterplot = Show[Table [

Graphics [{Red, PointSize  [0.03 ], Point [starter [j11}], {j,1,6 }I,

PlotRange - {{-40,40 }, {-22, 22 }}, Axes - True,
AxesLabel - {"x","y" }1;

y
e 20 °
10
° o M
-40 -30 -20 -10 10 20 30 40
10
®-20 °

Here are plots of parts of the trajectories in this system starting at the
plotted starter points shown with scaled eigenvectors of A:

Clear [trajectory 1; trajectory [k, t_ 1:=
Chop [ComplexExpand [Expand [MatrixExp [At].starter [k1111:

Clear [trajectoryplot, trajectoryplots, endtime 1
trajectoryplot [k_, endtime_ 1:=
ParametricPlot [Evaluate [trajectory [k,t 11, {t O, endtime 3},
PlotRange - All, PlotStyle - {{Thickness [0.01 ], CadmiumOrange }},
AxesLabel - {"x [t1", "y [t]1"},
PlotLabel - endtime" = endtime", DisplayFunction - Identity 1;
trajectoryplots [endtime_ ] : =
Table [trajectoryplot [k, endtime ], {k, 1,6 }];Clear [eigenvector ]
{eigenvector [1], eigenvector [2]} = Eigenvectors  [A]; scaler = 20;
sizer = 4; eigenplot = {Arrow [eigenvector [1], Tal - {0,0},
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [-eigenvector [1], Tail - {0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [eigenvector [2], Tail - {0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [-eigenvector  [2], Tail - {0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1};

trajectorystory [endtime_ ] : = Show[trajectoryplots [endtime 1,
starterplot, eigenplot, DisplayFunction - $DisplayFunction 1;
trajectorystory 1.2 1;
1.2 Yéhitime
\ 20 /
0

—ﬁ\—zo 1o 0 20\3'0”‘]

RN

See more:
] trajectorystory [351;
3.5 Y éntitime
20
0

-9?\20 ) ho x(t]
{- 10
-20
See more:
] trajectorystory [551;
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5.5 Y éhdti me
20

And more:
] trajectorystory [2071;

20 = Ydidt i me
20

Grab the plots and align and animate.

Here are calculations of the eigenvalues and eigenvectors of your
coefficient matrix A above:

Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue
{-0.473205, -0.126795 }
Clear [eigenvector 1;
{eigenvector  [1], eigenvector [2]1} = Chop [Eigenvectors  [A]]
{{-0.343724, 0.939071  }, {0.806898, 0.59069 }}
Write up the information you get from these calculations and discuss
how this information meshes with the trajectory plots above.

[2]} = Chop[Eigenvalues [A]]

Identify which of the eigenvectors are propellers, suckers, pure
whirlers, propelling whirlers or sucking whirlers.

Which is dominant?

Describe how the the specific numbers involved in these eigenvalues
enable you to predict in advance how all the trajectories look.

Is this system stable in the sense th&t[if], y[t]} are any two
solutions of this linear system, then
{X[t], y[t]} - {0, Ot as t—> 0 ?

0G.1.a.iii) Linear system 3

Here's a linear system:
Clear [x,y,t 1]
linearsystem =
({X' [t1,y [t1} == {-50x [t] + L5y [t], -23x [t] + 50y [t]})
X'[t],y [t]}=={-5x [t]+15y [t], -23x [t]+5.y [t]}
Here it is in slightly better form:
| ColumnForm [Thread [linearsystem 11
X' [t] ==-5.x [t]+15y [t]
yIt]==-23x [t]+5y [t]
You read off the coefficient matrix A:
A= {{-515 }, {-23,50 1}};
MatrixForm  [A]
-5 15
(—2.3 5. )

Now you can use this matrix to write the given linear system in this
compact way:

Clear [x,y,t ]

matrixlinearsystem = ({X' [t1,y [t1} == A. {X[t1,y [t1});
ColumnForm [Thread [matrixlinearsystem 11

X' [t] ==-5x [t]+15y [t]

y'[t]==-23x [t]+5.y [t]

Here are six starter points:

Clear [starter 1];

starter [1] = {-50, 0 };

starter [2] = {-25,0 };

starter [3] = {-2,0 };

starter [4] = {5,0 };

starter [5] = {20, 0 };

starter [6] = {50, 0 };

starterplot = Show[Table [

Graphics [{Red, PointSize  [0.03 ], Point [starter [j11}1, {j, 1,6 }I,

PlotRange - {{-50,50 }, {-26, 26 }}, Axes - True,
AxesLabel - {"X","y" }1;
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Here are plots of parts of the trajectories in this system starting at the
plotted starter points shown with scaled eigenvectors of A:

Clear [trajectory 1; trajectory [k,t 1:=
Chop [ComplexExpand [Expand [MatrixExp [At].starter [k1111;
Clear [trajectoryplot, trajectoryplots, endtime 1
trajectoryplot [k_, endtime_ ]:=
ParametricPlot [Evaluate [trajectory [k, t 11, {t O, endtime }
PlotRange - All, PlotStyle - {{Thickness [0.01 ], CadmiumOrange }},
AxesLabel - {"x [t]1", "y [t1"},
PlotLabel - endtime" = endtime", DisplayFunction
trajectoryplots [endtime_ ] : =
Table [trajectoryplot [k, endtime 1, {k, 1,6 }1;

- Identity 1;

Clear [eigenvector ]
{eigenvector  [1], eigenvector [2]} = Eigenvectors  [A]; scaler = 180;
sizer = 40; eigenplot = {Arrow [eigenvector [1], Tail - {0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [-eigenvector [1], Tail - {0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [eigenvector [2], Tail - {0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [-eigenvector  [2], Tail - {0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1};

trajectorystory [endtime_ ] : =
Show [trajectoryplots [endtime 1], starterplot, eigenplot,
PlotRange - {{-1.2scaler, 1.2 scaler }, {-1.2 scaler, 1.2 scaler 1},
DisplayFunction - $DisplayFunction 1;
trajectorystory [041;

0.4 =y éndtine

See more:
] trajectorystory [0.51;

0.5 =y éndtinme
200

] trajectorystory [1.01;

1. =ydhdtine
200

Grab the plots and animate.

Here are calculations of the eigenvalues and eigenvectors of your
coefficient matrix A above:
Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue
(4.6422, -4.6422 }
Clear [eigenvector 1;
{eigenvector  [1], eigenvector [2]} = Chop [Eigenvectors  [A]]
{{-0.153717, -0.988115 }, {-0.97271, -0.232025 }}

[2]} = Chop [Eigenvalues [A]]

DE.07.G1

Write up the information you get from these calculations and discuss
how this information meshes with the trajectory plots above.

Identify which of the eigenvectors are propellers, suckers, pure
whirlers, propelling whirlers or sucking whirlers.

Which is dominant?

Describe how the the specific numbers involved in these eigenvalues
enable you to predict in advance how all the trajectories look.

For this linear system, you can use the entries in one of the
eigenvectors to calculate the limiting ratio
ylt]

X ast- o

for any solution paiftx[t], y[t]} (other than one of the straight line
trajectories) .
Do it.

OG.1.a.iv) Linear system 4

Here's a linear system:
Clear [x,y,t ]
linearsystem =
({X' [t1,y [t1} == {12x [t] + 14y [t], -33x [t] + 05y [t]})
(X'[t],y [t]}=={12x [t]+14y [t], -33x [t]+05y [t]}
Here it is in slightly better form:
| ColumnForm [Thread [linearsystem 1]
X' [t]==12x [t]+14y [t]
y' [t] ==-33x [t] +05y [t]
You read off the coefficient matrix A:
A= {{12,14 1}, {-33,05 1}};
MatrixForm  [A]
1.2 14
( -3.3 05 )
Now you can use this matrix to write the given linear system in this
compact way:

Clear [x,y,t 1]

matrixlinearsystem = ({X [t1],y [t1} == A. {X[t],y [t1});
ColumnForm [Thread [matrixlinearsystem 11

X' [t]==12x [t]+14y [t]

y’ [t] ==-33x [t] +05y [t]

Here are six starter points:

Clear [starter ];

starter [1] = {20, -20};
starter [2] = {10, -10};
starter [3]1 = {5, -5};
starter [4] = {-5,5 };
starter  [5] = {-10, 10 };
starter [6] = {-20, 20 };
starterplot = Show[Table [

Graphics [{Red, PointSize ~ [0.03 ], Point [starter [j 11}1, {i,1, 6 }I,
PlotRange - {{-40,40 }, {-22,22 }}, Axes - True,
AxesLabel - {"X","y" }1;

y
° 20
® 10
°
-40 -30 -20 -10 .10 20 30 40%
10 °
-20 °

Here are plots of parts of the trajectories in this system starting at the
plotted starter points:
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Clear [trajectory 1:
trajectory [kt 1:=
Chop [ComplexExpand [Expand [MatrixExp [At].starter [k1111;

Clear [trajectoryplot, trajectoryplots, endtime 1
trajectoryplot [k_, endtime_ 1:=
ParametricPlot [Evaluate [trajectory [k, t 11, {t O, endtime 1
PlotRange - All, PlotStyle - {{Thickness [0.01 ], CadmiumOrange }},
AxesLabel - {"x [t1","y [t1"},
PlotLabel - endtime" = endtime", DisplayFunction - Identity 1;
trajectoryplots [endtime_ ] : =
Table [trajectoryplot [k, endtime 1, {k, 1,6 }1;
trajectorystory [endtime_ ] : = Show[trajectoryplots [endtime 1,

starterplot, PlotRange - {{-200, 200 }, {-200, 200 }},
DisplayFunction - $DisplayFunction 1;
trajectorystory [0.7 1;

0. 72:&/0&1111 ime

-5
-100
-150
-200

See more:
] trajectorystory [1.21;

See more:
] trajectorystory [1.7 1;

And more:
] trajectorystory [2.6 1;

And more:
] trajectorystory [3.7 1;

Align and animate.

Here are calculations of the eigenvalues and eigenvectors of your
coefficient matrix A above:
Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Chop[Eigenvalues [A]]
{0.85 +2.120731, 0.85 -2.120731 }

Clear [eigenvector 1;
{eigenvector  [1], eigenvector [2]} = Chop[Eigenvectors  [A]]

{{-0.0888714 - 0.538493 I, 0.837931 }, {-0.0888714 + 0.538493 1, 0.837931 1}

DE.07.G1

Write up the information you get from these calculations and discuss
how this information meshes with the trajectory plots above.

Identify which of the eigenvectors are propellers, suckers, pure
whirlers, propelling whirlers or sucking whirlers.

Describe how the the specific numbers involved in these eigenvalues
enable you to predict in advance how all the trajectories look.

Describe what happens to trajectofeid], y[t]} whent gets large.
OG.1..a.v) Linear system 5

Here's a linear system:
Clear [Xx,y,t 1
linearsystem =
({X'[t1,y [t1} == {06x [t] - 0.2y [t], -03x [t] + 0.8y [t]})
{X[t],y [t]}==1{06x [t] -02y [t], -0.3x [t]+08y [t]}
Here it is in slightly better form:
] ColumnForm [Thread [linearsystem 1]
X' [t] ==06x [t]-02y [t]
y'[t] ==-03x [t] +08y [t]
You read off the coefficient matrix A:
A= {{06, -021}, {-03,08 1}};
MatrixForm  [A]
0.6 -0.2
( -0.3 038 )
Now you can use this matrix to write the given linear system in this
compact way:

Clear [x,y,t ]
matrixlinearsystem = ({X [t],y [t1} == A. {X[t],y [t1});
ColumnForm [Thread [matrixlinearsystem 11
X [t]==06x [t]-02y [t]
y'[t]==-03x [t]+0.8y [t]
Here are six starter points:
starter [1] = {200000, 0 };
starter  [2] = {100000, 0 };
starter  [3] = {-100000, 0 };
starter  [4] = {-200000, O };
starter  [5] = {0, 200000 };
starter [6] = {0, -200000 };
starterplot = Show[Table [

Graphics [{Red, PointSize  [0.03 ], Point
PlotRange - All, Axes - True, AxesLabel

(11131, .1,6 11,
12N

Here are plots of parts of the trajectories in this system starting at the
plotted starter points:
Clear [trajectory 1
trajectory [k,t 1:=
Chop [ComplexExpand [Expand [MatrixExp [At].starter [k1111;
Clear [trajectoryplot, trajectoryplots, endtime 1

trajectoryplot [k_, endtime_ ]:=
ParametricPlot [Evaluate [trajectory [k,t 11, {t O, endtime 3},
PlotRange - All, PlotStyle - {{Thickness [0.01 ], CadmiumOrange }},
AxesLabel - {"x [t]1","y [t1"},
PlotLabel - endtime" = endtime", DisplayFunction - Identity 1;

trajectoryplots [endtime_ ] : =

Table [trajectoryplot [k, endtime 1, {k, 1,6 }1;

Clear [eigenvector 1;

{eigenvector  [1], eigenvector [2]1} = Chop [Eigenvectors  [A]];
scaler = 300000;

sizer = 40000;

eigenplot = {Arrow [eigenvector [1], Tail - {0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [-eigenvector [1], Tail - {0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1,

Arrow [eigenvector [2], Tail - {0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [-eigenvector [2], Tail - {0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1};
trajectorystory [endtime_ ]: =
Show [trajectoryplots [endtime ], starterplot,
eigenplot, PlotRange - {{-scaler, scaler }, {-scaler, scaler 3
DisplayFunction - $DisplayFunction 1;
trajectorystory [151];
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scaler = 3000000;
sizer = 400000;
eigenplot = {Arrow [eigenvector [1], Tail - {0, 0},

VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [-eigenvector  [1], Tail - {0,0 },

VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1],
Arrow [eigenvector [2], Taill - {0,0 },

VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [-eigenvector  [2], Tail - {0,0 },

VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1};

trajectorystory [61;

X,
- 34D Px18x10
- 141

-3x10°

scaler = 30000000;
sizer = 4000000;
eigenplot = {Arrow [eigenvector [1], Tail - {0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1],
Arrow [-eigenvector [1], Tail - {0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [eigenvector [2], Tail - {0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1],
Arrow [-eigenvector  [2], Tail - {0,0},
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1};
trajectorystory [127;

12 = yghdti e
><10q

-3x107

Here are the eigenvalues and eigenvectors of your coefficient matrix
A above:

Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Chop[Eigenvalues [A]]

{0.964575, 0.435425 }

Clear [eigenvector 1;
{eigenvector [1], eigenvector [2]1} = Chop [Eigenvectors  [A]]

{{0.480965, -0.87674 }, {-0.772178, -0.635406 }}
Write up the information you get from these calculations and discuss
how this information meshes with the trajectory plots above.

Identify which of the eigenvectors are propellers, suckers, pure
whirlers, propelling whirlers or sucking whirlers.

Which is dominant?

Describe how the the specific numbers involved in these eigenvalues
enable you to predict in advance how all the trajectories look.

For this linear system, you can use the entries in one of the
eigenvectors to calculate the limiting ratio

% as t- o
for any solution paiftx[t], y[t]} (other than one of the straight line
trajectories) .

Do it.

0G.1.a.vi) Linear system 6
Here's yet another linear system:

DE.07.G1

Clear [x,y,t 1]
linearsystem =
({X' [t1,y [t1} == {-14x [t] - 08y [t], 0.7x [t] + 04y [t]})
{X'[t],y [t]}=={-14x [t]-08y [t],07x [t]+04y [t]}
Here it is in slightly better form:
| ColumnForm [Thread [linearsystem 1]
X'[t] ==-14x [t]-08y [t]
Yy [t]==07x [t] +04y [t]
You read off the coefficient matrix A:
A= {{-14, -081}, {0.7,04 }};
MatrixForm  [A]
-14 -038
( 07 04 )
Now you can use this matrix to write the given linear system in this
compact way:
Clear [x,y,t ]

matrixlinearsystem = ({X' [t],y [t1} == A. {X[t1,y [t1});
ColumnForm [Thread [matrixlinearsystem 11
X' [t] ==-14x [t]-08y [t]

y'[t] ==07x [t] +04y [t]
Here are six starter points:
Clear [starter 1];

starter [1] = {20, 0 };
starter [2] = {10, 0 };
starter  [3] = {-10,0 };
starter [4] = {-20,0 };
starter  [5] = {0, 20 };
starter [6] = {0, -20};
starterplot = Show[Table [

Graphics [ {Red, PointSize [0.03 ], Point [starter [j11}1, {j,1,6 1}1,
PlotRange - {{-40, 40 }, {-22, 22 }}, Axes - True,
AxesLabel - {"X","y" }1;
y

Here are plots of parts of the trajectories in this system starting at the
plotted starter points shown with scaled eigenvectors:

Clear [trajectory 1;
trajectory k.t 1:=
Chop [ComplexExpand [Expand [MatrixExp [A't].starter [k1111;
Clear [trajectoryplot, trajectoryplots, endtime 1
trajectoryplot [k_, endtime_ ]:=
ParametricPlot [Evaluate [trajectory [k,t 11, {t, O, endtime },
PlotRange - All, PlotStyle - {{Thickness [0.01 ], CadmiumOrange }},
AxesLabel - {"x [t]1","y [t1"},
PlotLabel - endtime " = endtime", DisplayFunction - Identity 1;
trajectoryplots [endtime_ ]: =
Table [trajectoryplot [k, endtime ], {k, 1,6 }I;
Clear [eigenvector ]
{eigenvector  [1], eigenvector [2]1} = Eigenvectors  [A];
scaler = 25;
sizer = 6;
eigenplot = {Arrow [eigenvector [1], Tail - {0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [-eigenvector [1], Tail - {0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [eigenvector [2], Tail - {0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [-eigenvector [2], Taill - {0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1};

trajectorystory [endtime_ ]: =
Show [trajectoryplots [endtime ], starterplot, eigenplot,
PlotRange - {{-1.5scaler, 1.5 scaler }, {-1.5scaler, 1.5 scaler 3N

DisplayFunction - $DisplayFunction 1;
trajectorystory [0.4 1;

0.4 =y éhiiti me

See more:
] trajectorystory [11;
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And more:
] trajectorystory [31;
3= efdtime
30
N
i\
T30 2030 X[t
-1
-20
-30
] trajectorystory [10071;
100 =y éndit i me
Ry
30 2v30 X[t
-1
-20
-30
] trajectorystory [5007;
500 -y énilt i me
Y

30 2530 X[t
-1
-20

-30

That's no error.
The trajectories do stall right where you see them.

Here are the eigenvalues and eigenvectors of your coefficient matrix
A above:
I Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue
(-1.,0 }
I Clear [eigenvector 1;
{eigenvector  [1], eigenvector [2]} = Chop[Eigenvectors  [A]]
{{-0.894427, 0.447214 }, {0.496139, -0.868243 }}
Write up the information you get from these calculations and discuss

how this information meshes with the trajectory plots above.

[2]} = Chop[Eigenvalues [A]]

Identify which of the eigenvectors are propellers, suckers, pure
whirlers, propelling whirlers, sucking whirlers or none of these.

Which seems to be dominant?

Describe how the the specific numbers involved in these eigenvalues
enable you to predict in advance how all the trajectories look.

For this linear system, you can use the enties in one of the
eigenvectors to calculate the limiting ratio

ylt]
ﬁ as t- oo

for any solution paitx[t], y[t]}.
Do it.

G.2) Matrix nuts and eigen bolts

0G.2.a)

Here's a matrix

Clear [A, a b, c d Xy ]
A={{05,30 1}, {-1.0,04 1}
MatrixForm  [A]
05 3.

( -1. 04 )

Here's a vector.
] (xy}={20 -30}

DE.07.G1:G2

(2., -3.}
Here's the matrix (dot) multiplying the vector.

| A xy)
(-8, -32)

Account for the way this turned out.
Would you say that Alx, y} is a vector or a number?

0G.2.b.i) Visual evidence about eigenvalues and eigenvectors

Here's a matrix A:

A= {{09, -03}, {-04,13 1}};
MatrixForm  [A]
09 -03

( -04 13 )

Here are its unit eigenvectors shown with a random unit vector:

Clear [eigenvector ]

{eigenvector [1], eigenvector

s = Random[Real, {0, N [27x]}];

randomvector = {Cos[s], Sin [S1};

ranger = 1.5;

before = Show[Arrow [eigenvector [1], Taill - {0, 0 }, VectorColor
Arrow [eigenvector  [2], Tail - {0, 0 }, VectorColor - Blue ],
Arrow [randomvector, Tail - {0, 0 }, VectorColor - Blue ],
Axes - True, PlotRange - {{-ranger, ranger }, {-ranger, ranger 38
AxesLabel - {"X","y" }1;

[2]} = Eigenvectors  [A];

- Blue ],

If you don't see three distinct clear vectors, then rerun.

Here's what you get when you multiply all three plotted vectors by the
matrix ~ A:

A={{09, -031}, {-04,13 }};after = Show[
Arrow [A. eigenvector [1], Tail - {0, 0 }, VectorColor
Arrow [A . eigenvector [2], Tail - {0, 0 }, VectorColor
Arrow [A.randomvector, Tail - {0, 0 }, VectorColor
PlotRange - {{-ranger, ranger }, {-ranger, ranger
AxesLabel - {"x","y" 1}, PlotLabel - "After"  1;

- VenetianRed ],
- VenetianRed 1,
- VenetianRed 1,
}}, Axes - True,

IAfSV er

Grab both plots, align and animate.
Here are both plots:
] Show(before, after, PlotLabel

e

- "Both" 1;

-1.5
Describe how this plot reveals which two of the original vectors are
the eigenvectors of  A.
Describe how this plot reveals that both eigenvalues of A are positive
with one eigenvalue smaller than 1 and the other eigenvalue bigger
than 1.

0G.2.b.ii)

Here's a new matrix A:

A= {{11, -07}, {07, -08}};
MatrixForm  [A]

1.1 -0.7

(0.7 —OAB)

Here are its unit eigenvectors shown with a random unit vector:
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Clear [eigenvector ]

{eigenvector  [1], eigenvector [2]} = Eigenvectors  [A];

s = Random[Real, {0, N [2x]}];

randomvector = {Cos[s], Sin [S]};

ranger =1.7;

before = Show[Arrow [eigenvector [1], Tail - {0, O }, VectorColor - Blue 1,
Arrow [eigenvector [2], Taill - {0, 0 }, VectorColor - Blue 1,
Arrow [randomvector, Tail - {0, 0 }, VectorColor - Blue ],

Axes - True, PlotRange

- {{-ranger, ranger
AxesLabel - {"x", "y"

}, PlotLabel

}, {-ranger, ranger 1)
- "Before" 1;

BefYore

If you don't see three distinct clear vectors, then rerun.

Here's what you get when you multiply all three plotted vectors by the

matrix A:
A={{11, -0713}, {07, -0.8 }};after = Show|
Arrow [A . eigenvector [1], Tail - {0, O }, VectorColor

- VenetianRed 1],
- VenetianRed 1,
- VenetianRed 1,
}}, Axes - True,

Arrow [A . eigenvector [2], Tail
Arrow [A.randomvector, Tail
PlotRange - {{-ranger, ranger
AxesLabel - {"x", "y"

Afver

- {0, 0 }, VectorColor
- {0, 0 }, VectorColor
}, {-ranger, ranger
}, PlotLabel - "After"  1;

Grab both plots and animate.
Here are both plots:

| Show [before, after, PlotLabel - "Both" 1;

Describe how this plot reveals which two of the original vectors are
the eigenvectors of A.

Describe how this plot reveals that one of the eigenvalues is positive
and that the other is negative.

Describe how this plot reveals that the positive eigenvalue is less thar
1.

0G.2.c.i)

Here's a new matrix A:
A= ({1425 -0.129904 }, {-0.129904, 1.275 }};
MatrixForm  [A]

1.425 -0.129904
( -0.129904 1.275 )

Here is a bunch of color-coded unit vectors:
Clear [vectorcolor, t 1
vectorcolor [t_ 1 = RGBColor [0.5 (Cos[t] +1),0.5
unitvector [t_]1={Cos[t],Sin [t]};
before = Show[Table [Arrow [unitvector

(Sin [t]+1),05 1;

[t], Tail - {0,01},

VectorColor - vectorcolor [ti11, {t, 0,2 %}] Axes - True,

AxesLabel - {"x", "y"

}, PlotRange
PlotLabel

- "Before" ];

5 {(-15,15 }, {-1515 }},

DE.07.G2

-1.5

Here are the same vectors after they have been multiplied by A.

A= {{1.425, -0.129904 }, {-0.129904, 1.275 }};
after = Show[Table [Arrow [A.unitvector [t], Tail - {0,0},
VectorColor - vectorcolor  [t1], {0,2 = %}] Axes - True,
AxesLabel - {"x","y" }, PlotRange - {{-15,15 1}, {-15,15 }},
PlotLabel - "After" ];
]ﬁfs\ler

In this plot, A. unitvecto(t] is the same color
as unitvectoft] in the first plot.
Grab, align and animate slowly.
Here are both plots together:
] Show[before, after, PlotLabel

Bat h
1.5’

- "Both" 1;

In this plot, you see enough information to pick out the two

eigenvectors of A and their negatives. Say how you made the
identification.

0G.2.c.ii)

Here's a linear system:

Clear [Xx,y,t 1
linearsystem =
({X [t1,y [t]} == {05x [t] + 0.867y [t], 0.867x
ColumnForm [Thread [linearsystem 1]

X' [t]==05x [t]+0.867y [t]

y’ [t] ==0.867x [t]-05y [t]

You read off the coefficient matrix A and use it to give a flow plot for
this linear system:

[t1 -05y [t1});

A= {{05, 0.867

}. {0.867, -051};
scalefactor = 0.25;
flowvectors =
Table [Arrow [scalefactor A. {X,y }, Tail - {x,y }, VectorColor - Blue,
: 6 6
ScaleFactor - 1, HeadSize 031, {x, -3,3, E} {y, -3,3 E}]
flowplot = Show [flowvectors, Axes - True, AxesLabel - YL
Now look at these rotating lines:
Clear [rotor,s ]
rotor [s_] = Graphics [{Magenta, Thickness [0.01 1,
Line [{-3 {Cos[s], Sin [s]},3 {Cos[s], Sin [S1}}1}];
11 7 b
Table [Show(flowplot, rotor [s], Axes »True 1, {s,0, = E}]

217



DE.07.G2

Grab and animate.
In two of these frames, the rine is running along eigenvectors of the
coefficient matrix.
Copy and paste those two frames below and say a word about how
you came to your conclusion.

0G.2.c.iii)

Here's a selction of points on the unit circle:
{slow, shigh } = {0, 2 =};
. T
Jump = rx
Clear [point, pointcolor, s 1
point [s_] = {Cos[s], Sin [S]};
pointcolor [s_1 = RGBColor [0.5 (Cos[s] +1),05 (Sin [s]+1),05 1;
pointplot =
Table [Graphics [ {pointcolor [s]1, PointSize  [0.03 ], Point [point [S]]1}],
{s, slow, shigh, jump 1
Show [ pointplot, Axes - True, AxesLabel B S A Y

. .

-1
Here's another linear system:
Clear [x,y,t 1
linearsystem =
(X [ty [t1) ==
{-15x [t] + 0.207107y [t],1.20711x [t] - 1.5y [t1});
ColumnForm [Thread [linearsystem 1]
X' [t] ==-15x [t]+0.207107y [t]
y'[t]==120711x [t]-15y [t]

You read off the coefficient matrix A and plot the trajectories that
start at each of the plotted points above:

A= {{-15, 0207107 }, {1.20711, -1.5}};

endtime = 3;

Clear [x,y,s,t 1]

Clear [trajectory 1

trajectory [s.t 1:=

Chop [ComplexExpand [Expand [MatrixExp [At].point [s]111];

Clear [trajectoryplot, trajectoryplots 1
trajectoryplot [s_1 : = ParametricPlot [Evaluate [trajectory [s.t 11,
{t, 0, endtime }, PlotRange - All, PlotStyle ->

{{Thickness [0.01 ], pointcolor [S1}}, AxesLabel - {"x [t1". "y [t]"},
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PlotLabel - endtime" = endtime", DisplayFunction - Identity 1;
trajectoryplots = Table [trajectoryplot [s1, {s, slow, shigh, jump 11,
Show/[trajectoryplots, pointplot, DisplayFunction - $DisplayFunction 1;

When you look at this plot, you can see that four trajectories that

started on eigenvectors of A and their negatives. Say how you spotte(

them.

G.3) Eigenvalues in the formulas

0G.3.a.)

Here's a new linear system:
Clear [Xx,y,t 1
linearsystem =
({X' [t1,y [t1} == {-01x [t] + 1.75y [t], -3.0x [t] - 0.1y [t]});
ColumnForm [Thread [linearsystem 11
X [t]==-01x [t]+175y [t]
y'[t]==-3.x[t]-01ly [t]
The coefficient matrix for this linear system is:
A= {{-01,175 }, {-3.0, -0.1}};
MatrixForm  [A]
-0.1 1.75
( -3. -01 )

Here is the formula for a trajectory starting at a random pajri:

A= {{-0.1,175 1}, {-3.0, -0.1}};

starter = {Random[Real, {-6,6 }], Random [Real, {-6,6 }1};

Clear [x,y,t 1

{X[t_1,y [t_1} = Chop[ComplexExpand [Expand [MatrixExp [At].starter 111
(-3.46 E 0!t C0s[2.29129t ] +0.157637 E %! Sin [2.29129t ],

0.206396 E 91! Co0s[2.29129t ] +4.5302E %'t Sin [2.29129t ]}

You can read the eigenvalues of A directly off this formula.
Do it.

0G.3.a.ii)

Stay with the same linear system as in part i):
Clear [x,y,t 1]
linearsystem =
({X [t1,y [t1} == {-01x [t] + 175y [t], -3.0x [t] - O.ly [t]});
ColumnForm [Thread [linearsystem 11
X [t] 0.1x [t]+1.75y [t]
y'[t] [t]-01y [t]
The coefficient matrix for this linear system is:
A={{-0.1,175 }, {-30, -011}};
MatrixForm  [A]
-01 175
( -3. -01 J

Here are formulas for two trajectories starting at two random points:

A={{-01,175 }, {-3.0, -0.11}};
starterl = {Random[Real, {-6, 6 }], Random [Real,
starter2 =

{-6,6}1}
{Random[Real, {-6,6 }], Random [Real, {-6,6 }1};

Chop [ComplexExpand [Expand [MatrixExp [At] .starterl 111
Chop [ComplexExpand [Expand [MatrixExp [At] .starter2 111

(-4.46458 E 01! Co0s[2.29129t ] +3.07426 E O'! Sin [2.29129t ],
402515 E 01! Co0s[2.29129t | +5.8455E 01! Sin [2.29129t ]}
(2.38629 E %1! C0s[2.29129t ] - 4.2018E °'! Sin [2.29129t ],
-5.50145 E 1! Co0s[2.29129t ] -3.12439E %! Sin [2.29129t ]}
Your job is to explain why some (but not all) of the numerical
constants are the same in both formulas.
Do it.

0G.3.b.i)

Here's a linear system:
Clear [Xx,y,t 1]
linearsystem =
(X' [t1,y [t1} == {-15x [t] + 03y [t], 06x [t] - 0.5y [t]});
ColumnForm [Thread [linearsystem 1]
X' [t]==-15x [t]+03y [t]
y'[t]==06x [t] -05y [t]

DE.07.G2-G3

The coefficient matrix for this linear system is:

| A={{-1503 1}, {06, -05}};
MatrixForm  [A]

-15 03
( 0.6 -0.5 )

Intent on seeing the greater scheme of things, you look at the flow
with the eigenvectors:

Clear [eigenvector 1;
{eigenvector  [1], eigenvector [2]1} = Chop [Eigenvectors  [A]];

Clear [Field ]
Field [x_,y_1=A.{XYy };
scalefactor =0.2;

flowplot = Table [Arrow [Field [x,y 1, Taill - {x,y },
VectorColor - Blue, ScaleFactor - 0.2, HeadSize - 0.15 ],
X, -2,2,025 }, {y, -2,2,025 }I;
scaler =2.0;
sizer =0.4;
eigenplot = {Arrow [eigenvector [1], Tail - {0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer ],
Arrow [-eigenvector [1], Tail - {0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [eigenvector [2], Tail - {0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [-eigenvector [2], Tail - {0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1};
revealer =
Show[flowplot, eigenplot, Axes

S\
2

PR Y
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- True, AxesLabel - {"x","y" }1;
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Take a look at the eigenvalues and eigenvectors of the coefficient
matrix A:
Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Chop[Eigenvalues [A]]
{-1.65574, -0.344256 }

Clear [eigenvector 1;
{eigenvector [1], eigenvector [2]} = Chop [Eigenvectors  [A]]
{{-0.887527, 0.460756  }, {-0.251247, -0.967923 }}
Use what you see to parameterize straight line trajectories starting at
the tips of each calculated eigenvector.

0G.3.b.ii)

Stay with the same linear system as in part i) immediately above.

Formulas for the solutiondtf and yft] resulting from starter data
0] = —-1.7and y0] = -1.8

are:

starter = {-1.7, -1.8 };

Clear [x,y,t 1]

{X[t_1,y [t_1} = Chop[ComplexExpand [Expand [MatrixExp [At].starter 11]
{-1.08637 E "16%574t _ 0613627 E 034426t |

0.563986 E 195574t _ 23399 E 03442561

Reproduce this formula using only the following information:
- the eigenvectors of A

- the eigenvalues of A

- {x[0], ylOl} = {-1.7,-1.8}.

0G.3.c.i)

Here's a new linear system:
Clear [x,y,t 1]
linearsystem =
(X [t],y [t]1} == {-05x [t] + 15y [t], -1.7x [t] + 0.1y [t]});
ColumnForm [Thread [linearsystem 1]
X [t] ==-05x [t]+15y [t]
y'[t]==-17x [t]+01ly [t]
The coefficient matrix for this linear system is:
A= {{-05,15 1}, {-1.7,01 }};
MatrixForm  [A]
-05 15
( -17 01 )

Intent on seeing the greater scheme of things, you look at the flow.

A= {{-0515 }, {-17,01 1}};
Clear [Field ]
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Field [x_,y_ 1=A.{xy }
scalefactor =02;
flowplot = Table [Arrow [Field [x,y 1, Tail - {x ¥y },
VectorColor - Blue, ScaleFactor - 0.2, HeadSize - 0.15 ],
{X, -2,2,025 }, {y, -2,2,025 }I;
revealer = Show[flowplot, Axes - True, AxesLabel - YO L

Take a look at the eigenvalues and eigenvectors of the coefficient
matrix A:

Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Chop[Eigenvalues [A]]
{-0.2 +1.56844 I, -0.2 -1.568441 }
Clear [eigenvector 1;
{eigenvector  [1], eigenvector [2]} = Chop[Eigenvectors  [A]]
{{0.128624 - 0.672463 I, 0.728869 }, {0.128624 +0.672463 1, 0.728869 1)
How is the presence o v —1 in the eigenvalues reflected by the
behavior of the flow?

0G.3.c.ii)

Stay with the same linear system as in part i) immediately above.
Formulas for the solutiongt} and yft] resulting from starter data
X0]=1.9and y0] =0
are:
starter = {1.9,0 };
Clear [Xx,y,t 1
{X[t_1,y [t 1} = Chop[ComplexExpand [Expand [MatrixExp [At].starter ]]1]
{19E 02! Cos[1.56844t ] -0.363419 E 2! Sin [1.56844t ],
-2.05937 E 2! Sin [1.56844t ]}
Reproduce this formula using only the following information:
- the eigenvectors of A
- the eigenvalues of A

- {x[0], y[0l} = {1.9, O.

0G.3.d) Calculus Cal screws up again

The characters Bright Bridget and Calculus Cal are based on real people.

If you've been around C&M for a while, then you remember the
infamous lab pest, Calculus Cal. Poor Cal is always a couple of brick
short of a load in everything. His hair is not quite combed, he sprays
you with little bits of saliva when he talks to you, and there is often a
hint of a questionable odor about him.

But Cal thinks he is really a slick dude who is good at math and
science and likes to show off. Everybody else knows that Cal is just
an information sink - what goes in does not come out.

One day Bright Bridget is working away at DiffE¢fgathematicaand,
much to her revulsion, Calculus Cal sits down at the computer next to
her. Cal begins to work on the problem of coming up with formulas
and using them to plot some sample trajectories for the following
linear system:

Clear [x,y,t 1

linearsystem =

({x [t],y" [t1} == {0.2x [t] - 04y [t], -12x [t] + 03y [t]});
ColumnForm [Thread [linearsystem 11

X' [t] ==02x [t] -04y [t]
y' [t] ==-12x [t]+03y [t]
Cal correctly reads off the right matrix:
A= {{02, -041}, {-1.2,03 1}};
MatrixForm  [A]
0.2 -0.4
( -1.2 03 )

And Cal uses this matrix to write the given linear system in this
compact way:

Clear [x,y,t 1
matrixlinearsystem = ({X [t1,Y [t1} == A. {X[t1,y [t1});
ColumnForm [Thread [matrixlinearsystem 11
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X' [t] ==02x [t] -04y [t]
y'[t]==-12x [t]+03y [t]

And he plots the flow with eigenvectors:

A= ({02, -041}, {-12,03 }};

Clear [eigenvector 1;

{eigenvector [1], eigenvector [2]1} = Chop [Eigenvectors  [A]]
{{0.473228, -0.88094 }, {-0.527258, -0.849705 }}

Clear [Field ]
Field [x_,y_ 1=A.{XYy };
scalefactor = 0.35;

flowplot = Table [Arrow [Field [x,y 1, Tall - {x,y },
VectorColor - Blue, ScaleFactor - 0.3, HeadSize - 0.15 ],
{x, -2,2,025 }, {y, -2,2,025 1}];

scaler =2.5;

sizer =0.6;

eigenflowplot

= Show[flowplot, Arrow [eigenvector [1], Tail - {0,0 },

VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [-eigenvector [1], Tail - {0,0 },

VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer ],
Arrow [eigenvector [2], Tail - {0,0 },

VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1],

Arrow [-eigenvector  [2], Taill - {0, 0 }, VectorColor - Red,
ScaleFactor - scaler, HeadSize - sizer ], Axes - True,
AxesLabel - {"X","y" }1;

-3
At this point, Bridget is getting a little uneasy because Cal has done
everything right so far.
Meanwhile, knowing that the trajectories along the eigenvectors are
straight lines, Cal parameterizes them as straight lines and checks:
Clear [x1,yl, x2,y2,t 1
{x1[t_71,yl [t_1]} = teigenvector [11
{0.473228 t, -0.88094t }
| x2[t_1,y2 [t ]} =teigenvector  [2]
{-0.527258 t, -0.849705t }

endtime = 3;
straighttrajl =
ParametricPlot [{x1[t],yl [t1}, {t O, endtime }, PlotStyle -
{{CadmiumOrange, Thickness  [0.02 ]}}, DisplayFunction - Identity 1;
straighttraj2 =

ParametricPlot [{x2[t],y2 [t]1}, {t O, endtime }, PlotStyle -

{{Thickness [0.02 ], CadmiumOrange }}, DisplayFunction - Identity 1;
Show[eigenflowplot, straighttrajl, straighttraj2, PlotRange - All,
DisplayFunction

- $DisplayFunction 1;

-3

Cal smiles in satisfaction. He ghinks he has nailed those straight line
trajectories!

Looking at Cal's computer, Bridget also smiles, thinking "This is

going to be fun because Cal's on the verge of another screw-up."

She saves her file and settles back to enjoy the fun as Cal tries to plot
a what he thinks is a sample trajectory:

Clear [x, VY ]
XTI 1,y [t 1} =12 {x1[t],yl [t]}-08 {x2[t],y2 [t]1};

trajectoryplot =
ParametricPlot [{X[t],y [t1}, {t O, endtime }, PlotStyle -
{{Thickness [0.02 ], CadmiumOrange }}, DisplayFunction - Identity ];
Show[

eigenflowplot, trajectoryplot, DisplayFunction - $DisplayFunction 1;
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Bridget bursts out in laughter.
Cal is bewildered. He looks at Bridget and says, "I did everything
right; it says in the Basics that every trajectpdif], y[t]} is a
combination of the two straight line trajectories like this:

{xIt], y[t]} = CL{x1[t], y1[t]} + C2{x2[t], y2[t]}.
But my sample trajectory does not go with the flow. What's wrong?"
Bridget says, "You made a big mistake, you silly dork."

Your job is to step in and take Bridget's role, telling Cal where he
screwed up and how to fix it.

G.4) Eigenvalues signal speed of swirl and suck

0G.4.a.i)

Here's a linear system:
Clear [x,y,t 1
linearsystem1 =
({xX' [t1,y [t]1} == {-01x [t] - 6.75y [t], 3.0x [t] - 0.1y [t]});
ColumnForm [Thread [linearsysteml 11
X'[t] ==-01x [t]-6.75y [t]
y'[t]==3.x [t]-01ly [t]
The coefficient matrix for this linear system is:
Al= {{-0.1, -6.75}, {3.0, -0.1}};
MatrixForm  [Al]
-0.1 -6.75
( 3. -0.1 )

Here is the plot of a trajectory of this system starting at a random
point:

Al = {{-0.1, -6.75}, {3.0, -0.1}};
endtime = 15;
starter = {Random[Real, {-4, 4 }], Random [Real, {-4,4 }1};

Clear [x1,yl,t 1;
(XLt 1,y1 [t_]}=
Chop [ComplexExpand [Expand [MatrixExp [Alt ] .starter 111;

trajectoryplotl =
ParametricPlot [{x1[t],yl [t1}, {t O, endtime 3}, PlotStyle -

{{CadmiumOrange, Thickness [0.01 ]1}}, AxesLabel - {"x","y" 1},
PlotRange - All, Epilog
y

- {Red, PointSize  [0.03 ], Point [starter 1}1;

Here are the exact formulas for this solution pair:

| oty ity

(3.18067 E %! Cos[45t ] -5.81132E %!t Sin [45t ],

3.87422 E 0! Cos[4.5t ] +212045E ' Sin (45t ]}
Here are the eigenvalues of the coefficient matrix:

] Eigenvalues [A1l]

(-0.1 +451, -01 -451 }
Discuss how the eigenvalues of A show up in the formulas for the
solutions.

Discuss how the eigenvalues of A signal that ALL trajectories in this
linear system spiral in and eventually stall{6n0}.

Discuss how this tells you that iftkand \it] solve this linear system,
then both k] and yft] oscillate above 0 and below 0 like this:
xplot = Plot [x1[t], {t 0,0.7endtime 3},

PlotStyle - {{Magenta, Thickness  [0.01 ]}}, AxesLabel - {"t","x [t]"},
1

AspectRato @-» ————
GoldenRatio

, PlotLabel > "x [t] plot" ];
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yplot =Plot [yl[t], {t 0, 0.7endtime 1
PlotStyle - {{Red, Thickness [0.01 ]}}, AxesLabel - {"t","y [t1"3,
1
GoldenRatio
ylt] y[t] plot

AspectRatio - , PlotLabel -"y [t] plot" ];

-2

-4
0G.4.a.ii)
Here is yet another linear system:
Clear [x,y,t 1]
linearsystem2 =
(X [t1,y [t1} == {-05x [t] - 45y [t], 20x [t] - 0.5y [t]});
ColumnForm [Thread [linearsystem2 1]
X' [t] ==-05x [t]-45y [t]
Y [t]==2.x [t]-05y [t]
The coefficient matrix for this linear system is:
A2 = {{-05, -451}, {20, -051}};
MatrixForm  [A2]
-05 -45
( 2. -0.5 )
Here are the formulas for the solution of this system starting at the
same point as the trajectory in part i) started and run for the same
endtime as the trajectory in part i):
| A2 = {{-0.5, -451}, {20, -051}};

Clear [x2,y2,t ]

{X2[t_1,y2 [t 1} =
Chop [ComplexExpand [Expand [MatrixExp [A2t ] .starter 111;
trajectoryplot2 = ParametricPlot [{x2[t],y2 [t1}, {t O, endtime },
PlotStyle - {{Blue, Thickness [0.01 ]}}, AxesLabel - {"x","y" '},
PlotRange - All, Epilog - {Red, PointSize  [0.03 ], Point [starter 1}];

See both trajectories together:

Show/[trajectoryplotl, trajectoryplot2,
DisplayFunction - $DisplayFunction 1;

Notice that trajectory?2 is sucked{{®, 0} quite a bit more rapidly than
trajectory2.
Look at the eigenvalues of the coefficient matrix corresponding to
trajectoryl:

] Eigenvalues [A1]

{(-0.1 +451, -01 -451 }
Look at the eigenvalues of the coefficient matrix corresponding to
trajectory2:

| Eigenvalues [A2]

{-05 +3.1, -05 -3.1 }

Use the eigenvalue information you have to explain this:

When you start a trajectory in linearsystem1 (with coefficient matrix
A1) and start another trajectory in linearsystem2 (with coefficient
matrix A2) at the same point, then your trajectory in linearsystem2 is

221



guaranteed to be sucked towaf@s0} quite a bit more rapidly than
your trajectory in linearsystem1.

0G.4.a.iii)

Keep everything the same as in part ii) and look at the two trajectory
plots - one for each of the two linear systems:

Show[trajectoryplotl, trajectoryplot2,
DisplayFunction

- $DisplayFunction 1;

Although trajectory? is sucked {0, 0} faster than trajectoryl, you
can see that trajectoryl oscillates quite a bit more more rapidly than
trajectory2.
Look at the eigenvalues of the coefficient matrix corresponding to
trajectoryl:

] Eigenvalues [A1]

{-0.1 +451, -01 -451I }
Look at the eigenvalues of the coefficient matrix corresponding to
trajectory2:

] Eigenvalues [A2]

{-05 +3.1, -05 -3.1 }
Use what you see to explain why it was guaranteed that trajectoryl
oscillates more rapidly than trajectory?.

0G.4.b)

Here are two linear systems:

Clear [Xx,y,t 1

linearsysteml1 =

({x [t],y [t]} == {05x [t] - 3.0y [t], 6.8x [t] - 04y [t]});
ColumnForm [Thread [linearsysteml 11

X' [t] ==05x [t]-3.y [t]
y'[t]==68x [t]-04y [t]
Clear [Xx,y,t 1
linearsystem2 =
({X [t1,y" [t1} == {14x [t] - 20y [t], 58x [t] - 04y [t]1});
ColumnForm [Thread [linearsystem2 1]

X' [t]==14x [t]-2.y [t]
y'[t]==58x [t]-04y [t]
Write down the coefficient matrices A1 and A2 for these systems and
useMathematicao calculate their eigenvalues.
— Use the eigenvalue information to explain how you know that
trajectories in both linear systems are spirals propelled away from
{0, O}.
- Use the eigenvalue information to answer the next two questions:
1) When you start a trajectory in linearsystem1 and start
another trajectory in linearsystem?2 at the same point, which of the twc
trajectories will be propelled away frof), 0} faster?
2) When you start a trajectory in linearsysteml and start
another trajectory in linearsystem2 at the same point, which of the twc
trajectories will oscillate the more rapidly?

G.5) Analyzing the effect of resistance in simple parallel
electrical circuits*

0G.5.a.i)

You don't have to understand the
electrical jargon to be able to do this problem.

You are fortunate enough to have your own computer set-up right in
your dorm room. One night, Brian, the EE student who lives across
the hall comes in and says, "Part of my EE 250 homework for
tomorrow is to analyze the effect of varying the size of the resistance
on the current in a simple parallel electrical circuit. | don't have a clue
about where to start."

At first, you think, "I'm scared because I'm a life science major and |
don't know anything about electrical circuits." But you don't let on.
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Instead, you say, "Let me see that EE 250 textbook." In the book you
see that in a simple parallel electrical circuit, the main measurements
are

A{t] = voltage drop across the capacitor and

Mt] = currentthrough the inductor
Reading on, you spot that these measurements are related through the
linear system

_ oy
X[tl= ¢

t t
it = - 2¢ - %¢

where L, C, R are given positive numbers with

L = inductance

C = capacitance, and

R= resistance.
You say, "Brian, | don't even know what those words mean, but |
think | can help you." You type:

Clear [x,y,t L, R, C 1
linearsystem =

(X [t1,y [t1} == {y[tl/L -x[t1/c -y[t1/(Rc)});
ColumnForm [Thread [linearsystem 1]

X [t] == L{tL
V[t) < - E -t

You say that the coefficient matrix for this linear system is:
Clear [A];

AL R e 1= ({0 T} {5 -==)

MatrixForm  [A[L, R, ¢ 1]
55

Now you ask Brian, "Is it OK to go with & 0.8, L = 5.0, and to go
with starter dat4x[0], y[0]} = {2.1, 1.0?"

Eagerly, he says, "Sure!"
You enter C= 0.8, L = 5.0 and then look at the eigenvalues of
A[L, R, C] for R running from 0.2 to 8.0 in increments of 0.4:

c =0.8;

L =5.0;

Clear [R];

ColumnForm [Table [{R, Eigenvalues
{0.2, {-6.20974, -0.0402593 }}
(0.6, {-1.95549, -0.127845 }}

(1., (-1, -025}}

(1.4, {-0.446429 +0.225171,
{1.8, {-0.347222 +0.3597731,
{2.2, {-0.284091 +0.4114521,
{2.6, {-0.240385 +0.4384241,
{3., {-0.208333 + 0.45453 1,
{3.4, {-0.183824 +0.4649831,
{3.8, {-0.164474 +0.4721741,
{4.2, {-0.14881 +0.477342],
{4.6, {-0.13587 +0.481185]1, -0.13587 -0.4811851 }}

(5., {-0.125 +0.4841231, -0.125 -0.4841231 }}

{5.4, {-0.115741 -+ 0.486421, -0.115741 -0.486421 }}
(6.8, {-0.107759 +0.488251, -0.107759 -0.488251 }}
{6.2, {-0.100806 +0.4897331, -0.100806 - 0.4897331 }}
{6.6, {-0.094697 + 0.490951 1, -0.094697 -0.4909511 }}
{7., {-0.0892857 +0.4919631, -0.0892857 -0.491963! }}
{7.4, {-0.0844595 +0.4928151, -0.0844595 -0.4928151 }}
{7.8, {-0.0801282 +0.493538 I, -0.0801282 -0.4935381 }}

You say that the current functiofitywill plot out a lot differently for
the smaller positive resistance measurements R than for larger
resistance measurements but it seems thagets large, jf] - 0, no
matter what R you go with.

What is it about the output immediately above that gave you these
ideas?

What do you mean?

0G.5.a.ii)

Now you ask Brian whether he is interested in what happens when the
resistance measurement R is very big? He replies," | never thought
about that. What do you think?"

You say, "Let's see."”

[AIL R ¢ 11}, {R, 02,80,04  }1]

-0.446429 -0.225171 }}
-0.347222 - 0.3597731 }}
-0.284091 - 0.4114521 }}
-0.240385 - 0.438424 1 3}

-0.208333 - 0.454531 }}
-0.183824 -0.4649831 }}
-0.164474 -0.4721741 }}
-0.14881 -0.4773421 }}
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c = 0.8;
L = 5.0;
Clear [R];
Table [{R, Eigenvalues [A[L,R,c 11}, {R, 10, 1010,50 }]

{{10, {-0.0625 +0.4960781, -0.0625 -0.4960781 }},
{60, {-0.0104167 +0.499891 1, -0.0104167 -0.4998911 1},
{110, {-0.00568182 + 0.499968 I, -0.00568182 -0.499968 1 }},
{160, {-0.00390625 +0.4999851, -0.00390625 -0.499985! }},
{210, {-0.00297619 +0.4999911, -0.00297619 -0.4999911 }},
{260, {-0.00240385 + 0.499994 I, -0.00240385 -0.4999941 }},
{310, {-0.00201613 + 0.499996 I, -0.00201613 -0.499996 | }},
{360, {-0.00173611 + 0.499997 I, -0.00173611 -0.499997 1 }},
{410, {-0.00152439 + 0.499998 I, -0.00152439 -0.4999981 }},
{460, {-0.0013587 + 0.499998 I, -0.0013587 -0.4999981 1},
{510, {-0.00122549 + 0.499998 I, -0.00122549 -0.4999981 }},
{560, {-0.00111607 + 0.499999 I, -0.00111607 -0.4999991 }},
{610, {-0.00102459 + 0.499999 I, -0.00102459 -0.499999 1 1}1},
{660, {-0.00094697 +0.4999991, -0.00094697 -0.4999991 }},
{710, {-0.000880282 +0.4999991, -0.000880282 -0.4999991! }},
{760, {-0.000822368 -+ 0.499999 I, -0.000822368 - 0.4999991 }},
{810, {-0.000771605 + 0.499999 I, -0.000771605 - 0.4999991 }},
{860, {-0.000726744 +0.4999991, -0.000726744 -0.4999991 }},
{910, {-0.000686813 +0.51, -0.000686813 -0.51 }},
{960, {-0.000651042 +0.51, -0.000651042 -0.51 }},
{1010, {-0.000618812 +0.51, -0.000618812 -051 }}}

You say that when you go with very large R's, the plots of the
corresponding current functionftlydon't change much as you change
R.

What is it about the output immediately above that gives you this idea
What do you mean?

G.6) Sensitivity to errors in the starter data

0G.6.a.i) Suckers and propellers

When you come across this linear system
X[t] = 1.6 Xt] + 2.2y(t]
ylt] = 0.9Xt] — 0.8t],

you immediately write down this matrix:

A={{1.6,22 1}, {09, -08}};
MatrixForm  [A]

16 22
(0.9 —0.8)

You askMathematicafor the eigenvectors and eigenvalues of A:

I Clear [eigenvector 1;
{eigenvector  [1], eigenvector [2]} = Eigenvectors  [A]

({0.959098, 0.283075 }, {-0.58509, 0.810968 }}

I Clear [eigenvalue 1;

{eigenvalue [1], eigenvalue [2]} = Eigenvalues [A]

(2.24932, -1.44932 }
And you note that eigenvecfaf is a propeller, but eigenvectat is a
sucker.
Now you look at the flow with the eigenvectors:

Clear [Field ]

Field [x_,y_1=A.{xy }

flowplot = Table [Arrow [Field [x,y ], Tal - {xy},
VectorColor - Blue, ScaleFactor - 0.25, HeadSize - 0.4 1,

6 6
s o) s
scaler =4.0;
sizer =1;
eigenplot = {Arrow [eigenvector [1], Tail - {0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1],
Arrow [-eigenvector [1], Tail - {0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [eigenvector [2], Taill - {0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1],
Arrow [-eigenvector  [2], Tail - {0,0},
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1};
Show[flowplot, eigenplot, Axes - True, AxesLabel - {"X","y" 1}1;

You can spot a lot of possible starter pofstarterx, startetyat
which corresponding solutiorg[t], y[t]} to the given linear system
X[t] = 1.6 Xt] + 2.2)ft]
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ylt] = 0.9Xt] — 0.8ft],
with ¥0] = starterx and 0] = startery
will change tremendously when you change the starter data
{starterx, starteny
just a wee little bit. Folks say that these are the points
{starterx, startefyat which the linear system is very sensitive to errors
in the starter data.
Where are these poinfstarterx, startefy?

0G.6.a.ii)

Do you expect the same thing to happen any time you go with a linear
system
XL yTth = A {X[t], yit
with one sucker and one propeller?
Explain your reply.

O0G.6.b.i) Two suckers

When you come across this linear system
X[t] = —1.3Xt] + 0.6)[t]
ylt] = 0.3Xt] — 0.6t],
you immediately write down this matrix:
A= {{-13,06 1}, {0.3, -06}};
| MatrixForm  [A]
-1.3 0.6
( 0.3 -0.6 )

And you proceed just as above, finding the eigenvectors and their
eigenvalues:
| Clear [eigenvector 1;
{eigenvector [1], eigenvector [2]} = Eigenvectors  [A]
{{-0.948683, 0.316228 }, {-0.5547, -0.83205 }}
| Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Eigenvalues [A]
(-15, -0.4}
You note that both eigenvectors are suckers and you look at the flow
with the eigenvectors:

Clear [Field ]
Field [x_,y_1=A.{xVy};

flowplot = Table [Arrow [Field [x,y 1, Tail - {xy },
VectorColor - Blue, ScaleFactor - 0.25, HeadSize - 0.25 ],

6 6
fo-aa b aa
scaler =3.0;
sizer =0.7;
eigenplot = {Arrow [eigenvector [1], Tail - {0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [-eigenvector [1], Tail - {0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [eigenvector [2], Tail - {0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1],
Arrow [-eigenvector [2], Taill - {0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1};
Show [flowplot, eigenplot, Axes - True, AxesLabel - YOG

Do you see any starter poirjgarterx, startefyat which solutions
{x[t], y[t]} to the given linear system witfi0O§ = starterx and
y[0] = startery

are very sensitive to small errors in the starter data?

If so, where are these points?

0G.6.b.ii)

Do you expect the same thing to happen any time you go with a linear
system
{XTtL yTth = A X[, ylth
with two suckers?
Explain your reply.
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0G.6.c.i) Two propellers

When you come across this linear system
xX[t] 0.7 Xt] + 0.1ft]
y[t] = —=0.1Xt] + 1.2Ht],
you immediately write down this matrix:
I A={{0.7,01 3}, {-0.1,1.2 13};
MatrixForm  [A]
0.7 0.1
(70.1 1.2 )
And you proceed just as above, finding the eigenvectors and their
eigenvalues:
I Clear [eigenvector 1;
{eigenvector [1], eigenvector [2]} = Eigenvectors  [A]
{{-0.20431, -0.978906 }, {-0.978906, -0.20431 }}
I Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Eigenvalues [A]
{1.17913, 0.720871 }
You note that both eigenvectors are propellers and you look at the
flow with the eigenvectors:
Clear [Field ]
Field [x_,y_1=A.{xYy };
flowplot = Table [Arrow [Field [x,y 1, Tail - {x,y }, VectorColor - Blue,

ScaleFactor - 0.4, HeadSize -0.3 1], {x, -3,3, {52—} {y. -3.3, IE;—}]

scaler =4.0;
sizer =1;
eigenplot = {Arrow [eigenvector [1], Tail - {0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [-eigenvector  [1], Tail - {0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1],
Arrow [eigenvector [2], Tail - {0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [-eigenvector  [2], Tail - {0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1};
Show[flowplot, eigenplot, Axes - True, AxesLabel - {"X","y" 1}I;

=g

Do you see any starter poirjigarterx, startefyat which
corresponding solutionx[t], y[t]} to the given linear system with
x[0] = starterx and 0] = startery
are very sensitive to small errors in the starter data?
If so, where are these points?

aTip:

These points are right in front of your nose.
0G.6.c.ii)

Do you expect the same thing to happen any time you go with a linea

system

{XTt], YTt = A {x[t], yIth
with two propellers?
Explain your reply.

O0G.6.d.i) Sucking whirlers

When you come across this linear system
X[t] = 0.4Xt] + —2.2)ft]
ylt] = 3.1Xt] - 1.8t],
you immediately write down this matrix:
A= {{04, -221}, {31, -181}};
I MatrixForm  [A]
04 -22
(31 -1.8 J
And you proceed just as above, finding the eigenvectors and their
eigenvalues:

Clear [eigenvector 1;
{eigenvector  [1], eigenvector  [2]} = Chop [Eigenvectors  [A]]
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{{0.271378 +0.584336 |, 0.764791 }, {0.271378 - 0.584336 1, 0.764791 1)
Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Eigenvalues [A]
{-0.7 +2.368541, -0.7 -2.368541 }
Uh-oh.
You note that-0.7 is negative and say there is a suck, and you note
the 2.36854 | term and say there is a swirl. This tells you that the
trajectories move on spirals headed tow@rd}.
And then you look at the flow:

Clear [Field ]
Field [x_,y_ 1=A.{Xy };
flowplot = Table [Arrow [Field [x,y ], Tail - {x,y }, VectorColor - Blue,
6 6
ScaleFactor - 0.2, HeadSize -031, {x -3,3, E} {y, -3.3, E}]

Show [ flowplot, Axes - True, AxesLabel - {"x","y" }I;

Do you see any starter poirfigarterx, startefyat which solutions
{x[t], y[t]} to the given linear system witfi0§ = starterx and
y[0] = startery

are very sensitive to small errors in the starter data?

If so, where are these points?

0G.6.d.ii)

Do you expect the same thing to happen any time you go with a linear

system
{XTtL yTth = A X[, ylth
and you find that the eigenvalues of A are
p+ lgandp-Iq
with p < 0 and q not 0?
Explain your reply.

OG.6.d.iii) The damped oscillator

Here is the differential equation of the oscillator:

Clear [t,b,c,y ]
oscillatordiffeq =y”[t]1+by’ [t]+cy[t] ==
Cy([t]+by [t]+y"[t] ==

To rework this second order differential equation into a system of two

first order differential equations, you put

X =yt
and then replace[y] by Xt] and replace yt] by xTt]:
Clear [x]

ColumnForm [Thread [{new = (y' [t] == X[t]),
oscillatordiffeq /oy [t ->x[tl,y" [t ->x [t1}}11

y'[t] ==x[t]
bx[t]+cy[t]+x [t]==0

Clean this up:
Clear [m,n, x,y,t ]

mx_,y_1=-bx-cy;
nix_,y_ 1=x
linsystem = {x' [t],y" [t]} == {M[X[t],y [t1],n[x[t],y [t1]};
ColumnForm [Thread [linsystem 1]
X [t] ==-bx[t]-cy[t]
y'[t] ==x[t]
] ColumnForm [Thread [linsystem 1]
X'[t] ==-bx[t]-cy[t]
y'[t] ==x[t]

The matrix for this system is:

A= {{-b, -c}, {1,01}}
MatrixForm  [A]

-b -c

(1 o]

Its eigenvalues are:

Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue [2]} = Eigenvalues [A]

{% (-b-+b2-4¢c),

Why do you think folks say that the oscillator is damped if
b>0andB - 4c < 0?
When you have a damped oscillator
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yltl + by[t] + cyt] = 0
(withb > 0and B — 4¢ < 0), you get different solutiongty
depending on what starter dgy0], y'[0]} you go with.
Do you expect these solutions to be very sensitive to small errors in
the starter data?
Explain yourself.

G.7) Using the cheat sheet chart to see why folks say that
linear systems with two pure swirlers

are structurally unstable but that other linear systems
are not structurally unstable

0G.7.a.i)

Here's a linear system whose trajectories oscillate on ellipses:
Clear [Xx,y,t 1
linearsystem =
(X' [t1,y [t1} == {-12x [t] + 15y [t], -23x [t] + 12y [t1});
ColumnForm [Thread [linearsystem 11
A= {{-12,15 1}, {-23,12 }};
MatrixForm  [A]
X' [t]==-12x [t]+15y [t]
y'[t] ==-23x [t]+12y [t]
( -1.2 15 )
-23 12
Check the eigenvalues of the coefficient matrix A:
Clear [eigenvalue ]
{eigenvalue [1], eigenvalue [2]} = Eigenvalues [A]
{0. +1.417741, 0. -1.417741 }
The form is p+ 1 g with
p= 0and g+ 0.
This means that the eigenvectors are pure whirlers (no suck and no
propel).
The result: The trajectories oscillate abffyt0} on ellipses. And the
solution plots are sine waves.

See some trajectories followed by the corresponding individual
solution plots:

A= {{-12,15 }, {-23,12 1}};
ranger = 30;
ranger ranger

{xstarter, ystarter } = {Random[ReaI, {— > , > }]
ranger ranger
Random|Real, {- ) )
[Real, {2 =
Clear [x,y,t 1
X[ 1,y [t1}=
Chop [ComplexExpand [Expand [MatrixExp [At]. {xstarter, ystarter 3111

endtime = 40;
trajectoryplot =
ParametricPlot [{x[t],y [t]}, {t O, endtime }, PlotStyle -
{{CadmiumOrange, Thickness  [0.01 ]}}, DisplayFunction - Identity 1;
starterpoint = {xstarter, ystarter Y
starterplot = Graphics [{Red, PointSize  [0.06 ], Point [starterpoint 1}1;
Show[starterplot, trajectoryplot,
PlotRange - {{-ranger, ranger }, {-ranger, ranger }}, Axes - True,
AxesLabel - {"x","y" '}, DisplayFunction - $DisplayFunction 1;
(-5.81826 Cos [1.41774t ] -8.29199 Sin [1.41774t ],
-12.4919 Cos [1.41774t ] -1.13439 Sin [1.41774t ]}

-30
Now take the coefficient matrix A and build in some random noise
like this and compare:
h = 0.049;
radomnoise = {{Random[Real, {-h, h }], Random [Real, {-h, h }1},
{Random[Real, {-h, h }1, Random [Real, {-h,h }1}};
noisyA = A + radomnoise;
MatrixForm  [noisyA ]
MatrixForm  [A]
-1.21275 1.48826
( -2.32605 1.15308 )
-1.2 15
{ -23 12 )

DE.07.G6-G7

NoisyA is guaranteed to round off nicely to A.
But now look at a trajectory for the linear system
{(X[t], yTtl} = noisyA .{x[t], y[t]}
compared to the trajectory for the linear system
Xt YTt = A XL, yith
as plotted above.
Both trajectories have the same starting point.
radomnoise = {{Random[Real, {-h, h }], Random [Real, {-h, h }1},
{Random[Real, {-h, h }], Random [Real, {-h,h }1}};
noisyA = A + radomnoise;
Clear [noisyx, noisyy, t 1
{noisyx [t_1, noisyy [t_1} =Chop[
ComplexExpand [Expand [MatrixExp [noisyAt 1. {xstarter, ystarter 3111
noisytrajectoryplot =
ParametricPlot [{noisyx [t1, noisyy [t]}, {t, O, endtime 1},
PlotStyle - {{Blue, Thickness [0.01 ]}}, DisplayFunction - Identity 1;
Show [starterplot, noisytrajectoryplot, trajectoryplot,
PlotRange - {{-ranger, ranger  }, {-ranger, ranger }}, Axes - True,
AxesLabel - {"x","y" 1}, DisplayFunction - $DisplayFunction 1;
{-5.81826 E 0018021t Cos(1.4494t | - 8.36293 E O018OBL sin (14494t |,
~12.4919 E 00180251t 05114494t | - 1.05912 E 00180251t gin (14494t 1}

The original trajectory is orange. The noisy trajectory is blue.
Rerun at least seven times.

Each time you rerun, you get a different nOisyAWhich rounds off to A.
Describe what you see.
Comment on the statement:
- Even though the eigenvectors of A are pure swirlers and noisyA
rounds off to A,

it is quite unlikely that the eigenvectors of noisyA are pure swirlers.

0G.7.a.i)

One of the goals of mathematics is to explain why things work out the
way they do.

To this end, take a look at the cheat sheet chart from one of the
Tutorials.

trace ?
cutoff = Plot [—4—— {trace, -5,5},

PlotStyle - {{Red, Thickness [0.01 ]}}, AxesLabel - {"trace", "det" }.

PlotRange - {-6, 6 }, DisplayFunction - |dentity ];
cutofflabel = Graphics [

Text [FontForm ["trace 2_4 det ==0", {"Times", 10 }1, {3.0, -4.0 }11;
pointer = Arrow [{2,1}-{3.0, -3.61}, Tal - {3.0, -3.61}1;
twosuckercutoff =

Graphics [ {Blue, Thickness [0.01 ], Line [{{-5,01}, {O0,0}}1}1;
twosuckerlabel = Graphics [

Text [FontForm [" Two pure \n suckers", {"Times", 10 }1, {-4,11}1];
twopropcutoff =

Graphics [ {Blue, Thickness [0.01 ], Line [{{0,0 3}, {50 13}}1}1;
twoproplabel = Graphics [

Text [FontForm [" Two pure \n propellers”, {"Times", 10 }]1, {4,11}1];
propswirlcutoff =

Graphics [ {Blue, Thickness [0.01 ], Line [{{0,0 1}, {0,6 }}1}1;
propswirllabel = Graphics [Text [FontForm [

" Two\n propelling \n swirlers", {"Times", 10 }1, {2,4 }11;
pureswirlerlabel =
Graphics [Text [FontForm [" p\n u\n r ", {"Times", 12 }1, {0,7 }11;
suckswirlcutoff =
Graphics [ {Blue, Thickness [0.01 ], Line [{{0,0 1}, {0,6 }}1}1;
suckswirllabel = Graphics [Text [

FontForm ["Two\n sucking\n swirlers”, {"Times", 10 }], {-2,4}1];
negdetcutoff =
Graphics [ {Blue, Thickness [0.01 ], Line [{{-5 01}, {5 013}}1}1;
negdetlabel = Graphics [Text [FontForm [

"Pure sucker & pure propeller", {"Times", 10 }1, {0, -15 }11;
pureswirlerlabel = Graphics [

Text [FontForm [“Two pure swirlers on the positive vertical axis",

{"Times", 10 }1, {0,6.5 }11;
chart = Show([cutoff, cutofflabel, pointer, twosuckercutoff,

twosuckerlabel, twopropcutoff, twoproplabel, propswirlcutoff,

propswirllabel, suckswirlcutoff, suckswirllabel, negdetcutoff,

negdetlabel, pureswirlerlabel, DisplayFunction - $DisplayFunction 1;
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re sucker, 3

- 8
-6

Given a coefficient matrix:
Clear [a, b,c,d ]
A= {{ab}, (¢ d}};
MatrixForm  [A]
ab
(c d )
The part of the chart corresponding to two pure swirlers is
trace=a+d=0
and
det=ad- bc > 0.

Try to use this information to explain:
If you start with any coefficient matrix A whose eigenvectors are pure
swirlers, and you make the slightest random error in entering A, then
the resulting coefficient matrix is all but guaranteed to have
eigenvectors that are sucking swirlers or propelling swirlers.
Some DiffEq pros say that
linear systems with two pure swirlers are "structurally instable."

0G.7.b) Most other linear systems are not structurally unstable

Given a coefficient matrix:
Clear [a, b, c,d ]
A={{a b}, {cd}}
MatrixForm  [A]
a b
(c d )
The part of the chart corresponding to two pure swirlers is
trace=a+d=0
and
det=ad- bc > 0.

] show[chart 7;

Use the chart to explain:

When you start with a coefficient matrix A and piwace, deton the
chart and land comfortably inside any of the generous regions (other
than pure swirlers) labeled on the chart, then very slight random error
in entering the matrix are not likely to result in changing the character
of the resulting linear system.

0G.7.c)

Take another look at the chart:
] Show[chart 7;

If you are given a linear system whose coefficient matrix has

trace< 0 and det= O,
then use the chart to say what wildly different things can happen whei
very slight random errors are made when you enter the matrix.

DE.07.G%-G8

G.8) Life Sciences:
Reservoir Models for drug metabolization

Lots of folks deal with the hot issue of models for drug
metabolization. The simplest models for these systems are two
compartment models such as this one:

Clear [box, color ]
box [a_, color_ ]:=
Graphics [ {color, Line [{{a[l] -1, a [2] -1}, {a[l] -1, a [2] + 1},
{a[ll +1,a [2] +1}, {a[ll+1 a [2] -1}, {a[ll-1,a [2]1-1}}1}]
generalmodel = Show[box [{0, O }, GreenDark 1,

box [{4, 0 }, Red ], Arrow [{2,0},Tail -»{1, %}]

1
Arrow [{-2,0 }, Tail - {3, -?}],Arrow [{0, -1}, Tail - {4, -1},

VectorColor - RGBColor [0.6, 0.5, 0.1 11, Arrow  [{0, -1},
Tail - {0, -1}, VectorColor - Brown ], AspectRatio - Automatic,

Epiog - {Text [0 {2 =}].Tex [H2, {2 -2},

15 3 1 3
Text |"k3", —, -—1}]|, Text ["k4", — ==l
o (2 2ypren e (2 -2y
Text ["Gastro -\n Intestinal", {0,0 }1, Text ["Blood", {4,0 }1}];
k1
>
>
Gastro-
Intestinal B ood
<
<€
k2
k4 k3

The arrows indicate that the amount leaving or entering each reservoir
(depending on the direction of the arrow)
is proportional to the amount in the reservoir.

Agree that

- X[t] measures the amount of the substance in the gastro-intestinal
tract

- y[t] measures the amount of the substance in the blioé units

after the substance has been ingested into the gastro-intestinal track.

In the case that k3 0 and k4= 0, you get this simplified model:
Show[box [{0, 0 }, GreenDark 1,

. 1
box [{4, 0 }, Red ], Arrow [(2,0 }, Tail -»{l, E}]
Arrow [{-2,0}, Tail - {3, -%}] AspectRatio - Automatic,

Epilog -»{Text ["kl”, {2, —j—}],Text ["k2”, {2, -;—}]

Text ["Gastro -\n Intestinal”, {0,0 }]1, Text ["Blood", {4,0}1}]:

k1

>
>
Gastro-

I ntestinal Bl ood

- k2
The corresponding linear system is
x[t] = —kLx[t] + k2 y[t]
ylt] k1 x[t] — k2 y[t].

This is the same as the chemical model that
you'll find in the problem on when an eigenvalue is 0.

This simplified model isn't realistic because it doesn't allow for
elimination through urination or defecation. This following diagram
sets up the model for elimination through urination.

urinemodel = Show[box [{0, O }, GreenDark 1, box [{4,0 }, Red ],

’ 1
Arrow [{2, 0}, Tail - {1, ?} VectorColor - Blue ],

1
Arrow [(-2, 0}, Tail - {3, -?} VectorColor - Blue ] Arrow [{0, -1},

Tail - {4, -1}, VectorColor - RGBColor [0.6, 0.5, 0.1 11,
AspectRatio - Automatic, Epilog -
3 3 15 3
{Text ["k1, {2, I}], Text ['k2', {2, _X}]’ Text ['k3", {-4—, _;}],

Text ["Gastro -\n Intestinal”,

{0,031, Text ["Blood", {4, 0 }1}];
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k1
Ga -
" ntost nal Bl ood
‘ k2
k3
0G.8.a.i)
Write down the linear system resulting from this diagram.
0G.8.a.ii)
Stay with the model:
| Show[urinemodel, AspectRatio - Automatic ];
k1
Gastro-
I il I'egti nal Bl ood
‘ k2
k3

Go with specific the specific numbers
kl= 0.5, k2= 0.5, and k3=0.6

Find formulas for #&] and \it] given starting data
X{0] = 5 (milligrams) and §0] = O.

Plot Xt] and yft] and give the limiting values oft{ and \it] ast goes
to infinity.

0G.8.a.iii)
For the same model, change the constants to
kl= 0.1, k2= 0.2, and k3=0.03.
Find formulas for §&] and \[t] given starting data
X[0] = 5 (milligrams) and {0] = 0.
Plot and discuss what you see.
0G.8.a.iv)

For the same model, play with positive constants k1, k2, and k3 of
your own choice. Solve, plot and discuss what you see.

G.9) Life Sciences:
Propellers, suckers, population models and the ultimate
sex ratio

0G.9.a)

Here's a linear system of differential equations:

Clear [Xx,y,t 1]

linearsystem =

({X [t],y [t]1} == {-0.26x [t] + 090y [t], 0.07x [t] + 0.06y [t1});
ColumnForm [Thread [linearsystem 1]

X' [t] ==-0.26x [t]+09y [t]
Yy [t]==0.07x [t]+0.06y [t]

Here are six starter points:

Clear [starter ]

starter [1] = {20, -20};

starter [2] = {10, -10};

starter  [3] = {5, -5};

starter [4] = {-5,5 };

starter  [5] = {-10, 10 };

starter  [6] = {-20, 20 };

starterplot = Show[Table [

Graphics [{Red, PointSize [0.03 1, Point [starter [j11}], {j, 1,6 }I,

PlotRange - {{-40,40 }, {-22, 22 }}, Axes - True,
AxesLabel - {"x","y" }1;

DE.07.G8G9

y
] 20
® 10
]
-40 -30 -20 -10 10 20 30 40*
]

-10 ]
-20 °

Here are plots of the trajectories in this linear system starting at the
plotted points for the first 3 time units shown with scaled versions of
the eigenvectors of the coefficient matrix:

A= {{-0.26,09 1}, {007,006 1}};
Clear [trajectory 1;
trajectory k.t 1:=
Chop [ComplexExpand [Expand [MatrixExp [A't].starter [k1111;
Clear [trajectoryplot, trajectoryplots, endtime 1
trajectoryplot [k_, endtime_ ]:=
ParametricPlot [Evaluate [trajectory [k, t 11, {t, O, endtime },
PlotRange - All, PlotStyle - {{Thickness [0.01 ], CadmiumOrange }},
AxesLabel - {"x [t]1", "y [t]1"},
PlotLabel - endtime" = endtime", DisplayFunction - Identity 1;
trajectoryplots [endtime_ ] : =
Table [trajectoryplot [k, endtime 1, {k, 1,6 }I;
Clear [eigenvalue ]
{eigenvalue [1], eigenvalue [2]} = Eigenvalues [A];
Clear [eigenvector ]
{eigenvector [1], eigenvector [2]} = Eigenvectors  [A];
scaler = 100;
sizer = 20;
eigenplot = {Arrow [eigenvector [1], Tail - {0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [-eigenvector [1], Tail - {0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [eigenvector [2], Tail - {0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [-eigenvector [2], Taill - {0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1};

trajectorystory [endtime_ ]: =
Show[trajectoryplots [endtime ], starterplot, eigenplot,
scaler scaler
PlotRange - {{-scaler, scaler  }, {- TR > 1}
. 1 ) ) .
AspectRatio - > DisplayFunction - $DisplayFunction ];
trajectorystory [1.7 1;
1.7 Yehdtine
40
26—
100 -75 -50 -25 .5-:: 75 1o0% [t
N . ) e
-20—@
-40

See more of the trajectories:
] trajectorystory [41;
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4 = ¥hdtime
40
20—
L
100 75 -50 -25 .;-o 75 100% (!
]
T ani—e
-40
] trajectorystory [61;
6 - %hdtine
40
peers
10078 T80 - 25 .;-o 75 100* [t
1%
e
-40
] trajectorystory [91;
9 - %hidtime
40
oz
100 -75 <50 -25 .;-o 75 100* !
%
—e
-40
] trajectorystory [151;
15 - Yéhdt i me
40
paers
-100 -75 -50 -25 .;-o 75 100* [t
%
[ —o
-40

Grab and animate the plots slowly.

The linear system is:

Clear [Xx,y,t 1]
ColumnForm [Thread [linearsystem 11

X' [t] ==-026x [t]+09y [t]
Yy [t]==007x [t]+0.06y [t]

The coefficient matrix A for this system is:
A={{-0.26,09 1}, {0.07,0.06 1}};

MatrixForm  [A]
-0.26 0.9
( 0.07 0.06 )

The eigenvalues of A:
Clear [eigenvalue ]
{eigenvalue [1], eigenvalue

{-0.397658, 0.197658 }

The eigenvectors of A:
Clear [eigenvector ]
{eigenvector  [1], eigenvector [2]} = Eigenvectors  [A]

{{-0.988504, 0.151194 }, ({-0.891373, -0.453271 }}
A propeller and a sucker. You have enough information to be able to

predict the limiting ratio% ast gets large for any trajectory that does
not start on the line throudh, O} determined by the sucking
eigenvector.

Do it.
0G.9.b)

Imagine that you are given a linear system with one propeller and one
sucker (no swirl). Explain how you can use eigenvalue and
eigenvector information to calculate the ultimate limiting ratio

ylt]

mas - oo,

0G.9.c.i) Linear population models

[2]} = Eigenvalues [A]

This problem was adapted from original research articles by
Leo Goodman (Biometrics 9,1953) and
David G. Kendall (Journal of the Royal Statistical Society B.11, 1949).
Both articles appear in the book Mathematical Demography
(Springer-Verlag Biomathematics Series Volume 6) edited by top-notch
population biologists David Smith and Nathan Keyfitz
(Springer-Verlag, New York, 1977).

Agree that femal¢] measures the population of females and that

malgt] measures the population of malg®ars after a given
reference year. One linear model for this setup is

DE.07.G9

mal€t] = — dm maldt] + bm(maldt] + femaldt])
femalgt] = — df femaldt] + bf (maldt] + femaldt]).

In this model, bm, bf, dm, and dfre positive numbers.

bm measures the instantaneous percentage birth rate of males,
bf measures the instantaneous percentage birth rate of females,
dMmeasures the instantaneous percentage death rate of males;
df measures the instantaneous percentage death rate of females.
This model assumes that the instantaneous percentage growth rates of
both the male and female populations are proportional to
the whole population (male{t] + female[t]).

The matrix for this linear population model is:
Clear [dm, bf, dm, df ]
A= {{-dm+bm, bm}, {bf, bf -df }};
MatrixForm  [A]

( bm-dm bm

bf bf - df
Check:
Clear [male, female, t 1
popmodel = {male' [t], female’ [t]} == A. {male [t], female [t]1};
ColumnForm [Thread [popmodel 1]
male’ [t ] == bm female [t ] + (bm-dm) male [t ]
female "[t] == (bf -df ) female [t] +bfmale [t]
This checks.

When you go with bm= bf and dm= df, so that males and females
are equally likely to be born and equally likely to die, then you get
| ColumnForm [Thread [popmodel /. {bm-> bf, dm ->df }1]

male’ [t ] == bffemale [t ] + (bf -df ) male [t]
female " [t] == (bf -df ) female [t] +bfmale [t]
And:

| Eigenvalues [A/. {bm- bf, dm - df }]
{2bf -df, -df}
| Eigenvectors [A/. {bm- bf, dm - df}]
(L1}, (-L,1}
When you go with
bm= bf and dm= df,
and you go with

2 bf> df,
which eigenvector is the propellor?
oTip:

Remember thebm, bf, dm, andf are all positive.

0G.9.c.ii)

Explain:
When you go with
bm= bf and dm= df,
and you go with
2bf> df,
then this model predicts that both sexes prosper, growing
approximately exponentially, with ultimate sex ratio

maldt]
Temaiaty 1 as to oo,

So that any huge initial excess of males or females disappears over the
course of time regardless of starting data.

0G.9.c.iii)
Explain:
When you go with
bm= bf and dm= df,
and you go with
2bf< df,
then this model predicts that both sexes are headed towards extinction
in the sense that
malgt] - 0 and femalg] > 0 as t> .

0G.9.d.i) When females are population dominant

From an article by evolutionary biologist Jared Diamond of the UCLA
Medical School writing in the magazine Natural History (September, 1994):

"Herds of wild horses consist of one stallion and
up to a half dozen mares. . ."

In certain populations, the females are population dominant in the
sense that the growth of the populations of both sexes depends only ol
the number of females. Examples are the wild horse population and
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pure-bred dog populations in which very few males are allowed to
breed (the top-winning males, sometimes called "matador studs")
while females are bred almost indiscriminantly.

Discuss why an appropriate linear population model for a female
population dominant society is

malgt] = — dm malgt] + bm femalét]
femalgt] = — df femaldt] + bf femaldt].
0G.9.d.ii)

Go with the linear population model for a female population dominant
society:

malgt] = — dm malgt] + bm femalét]
femalgt] = — df femaldt] + bf femaldt].

Set up the matrix:

Clear [dm, bf, dm, df ]
A= {{-dm, bm}, {0, bf -df }};
MatrixForm  [A]
-dm bm
( 0 bf -df )
Check:
Clear [male, female, t 1
linpopmodel = {male' [t], female’ [t]} == A. {male [t], female [t]};
ColumnForm [Thread [linpopmodel 1]
male ' [t ] == bm female [t ] - dm male [t ]
female "[t] == (bf -df) female [t]

Now do as you are compelled:
Clear [eigenvalue ]
{eigenvalue [1], eigenvalue

{bf -df, -dm}
I Clear [eigenvector ]
{eigenvector [1], eigenvector

[2]1} = Eigenvalues [A]

[2]} = Eigenvectors  [A]
(or—aram 1) 10))
If bf > df, then which eigenvector is the propeller?
How do you know that if bf> df, then this model predicts that the

both male and female populations eventually grow approximately
exponentially and the ultimate sex ratio

maldt] bm
femaldt] (dm+ bf — df)
Does this allow for the possibility that the males population begins to
fade out because very few of them are needed to sustain the overall
populations?
aTip:

asto o ?

Remember thebm, bf, dm,ancdf are all positive.

0G.9.d.iii)

Imagine that you are a big shot in a facist female population dominant
society and imagine that you can control the size of dm (percentage
death rate of males) chemically or otherwise. How would you set dm
in terms of bf, df and bm to guarantee that the ultimate sex ratio

maldt]
femaldt] - last> o?

0G.9.d.iv)

Look again at the linear population model for a female population
dominant society:

malgt] = — dm malgt] + bm femalét]

femaldt] = — df femaldt] + bf femaldt].
Set up the matrix:

Clear [dm, bf, dm, df ]
A= {{-dm, bm}, {0, bf -df}};
MatrixForm  [A]

( —-dm bm )

0 bf -df
Check:
Clear [male, female, t 1
linpopmodel = {male' [t], female' [t]} == A. {male[t], female [t]};
ColumnForm [Thread [linpopmodel 1]
male ' [t ] == bm female [t ] - dm male [t ]
female " [t ] == (bf -df ) female [t]

Now do as you are compelled:

Clear [eigenvalue ]
{eigenvalue [1], eigenvalue
{bf -df, -dm}

What does the model predict if bf df?

[2]} = Eigenvalues [A]

DE.07.G$-G10

G.10) Chemistry:
When an eigenvalue i0: It happens in chemistry!

0G.10.a.i)

When you come across this linear system
X[t] = —=0.75Xt] + 0.25y(t]
y[t] = 0.75Xt] — 0.25\t],
you immediately write down this matrix:
A= {{-0.75,025 1}, {075 -0.25}};
MatrixForm  [A]
-0.75 0.25
( 0.75 -0.25 J
You check it out:
Clear [x,y,t ]
linearsystem = ({X [t],y [t1} == A. {X[t],y [t1});
ColumnForm [Thread [linearsystem 1]
X'[t] ==-075x [t]+0.25y [t]
y' [t] ==075x [t]-025y [t]
You askMathematicaor the eigenvectors and eigenvalues of A:
Clear [eigenvector 1;
{eigenvector [1], eigenvector [2]} = Eigenvectors  [A]
{{-0.707107, 0.707107  }, {-0.316228, -0.948683 }}
Clear [eigenvalue 1;
{eigenvalue [1], eigenvalue
{(-1,0 3
And you note that eigenveciaf is a sucker, but eigenvectay is
neither a sucker nor a propeller. You might not have seen anything
like this before, so you look at the flow with the eigenvectors:
Clear [Field ]
Field [x,y_ 1=A.{Xy };
flowplot = Table [Arrow [Field [x,y 1, Tal - {XVy},
VectorColor - Blue, ScaleFactor - 0.25, HeadSize

6 6
fo-aa b aa
scaler =3.5;
sizer =1.2;
eigenplot = {Arrow [eigenvector

[2]} = Chop [Eigenvalues [A]]

-»031],

[1], Tal - {0,0 3},

VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer
Arrow [-eigenvector [1], Taill - {0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer
Arrow [eigenvector [2], Tail - {0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [-eigenvector [2], Taill - {0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1};
labels = {Graphics [Text ["eigenvector [11", 0.5 scaler eigenvector [1111,
Graphics [Text [“"eigenvector [2]", 0.5 scaler eigenvector [2111}:
Show[flowplot, eigenplot, labels, Axes - True, AxesLabel - {"X","y" }1I;

NVESAA
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Describe the trajectories.
What is the relation of eigenvectd} to the trajectories?
What is the relation of eigenveci®} to the trajectories?
What happens when you go with starter data
{starterx, startefy= eigenvectdi2]?
0G.10.a.ii) The ultimate ratio %
Continue with the same linear system as in part i) above.
When you think about it, you'll realize that no matter what trajectory
{x[t], y[t]} you go with, you'll find that the trajectory stalls on a certain
line through{0, 0O}.
How does this fact allow you to look at the eigenvectors:
| eigenvector [1]
{-0.707107, 0.707107 }
| eigenvector [2]
{-0.316228, -0.948683 }
And then immediately type the ultimate limiting ratio

ylt]
X as t-» o ?

for large t
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G.10.b.i) Chemistry

DiffEq& Mathematica thanks chemist Justin Gallivan of
California Institute of Technology for suggesting this problem.
This problem is very similar to the problem in part a) above.
Given quantities of two reactants X and Y are mixed together.
Agree that ] measures amount of X at time t units after the reaction
begins. And agree thafty measures the amount of Y at time t units
after the reaction begins.
In the reaction under study here,
X[t] = — k1 x[t] + k2 y[t]
y[t] = KkLx[t] — k2 y[t].
where k1 and k2 are positive reaction rates.

How does this linear system signal that at all titnes
At] + ylt] = x[0] + y[O]
where X0] is the amount of X mixed in and0} is the amount of Y
mixed in at the beginning?
aTip:
Look at the linear system
X'[t] = = KL X[t] + k2y][t]
y'[t] K1x[t] - k2ylt]
and see what happens when you x'[t]landy'[t].

0G.10.b.ii) The ultimate ratio of Y to X

Given quantities of two reactants X and Y are mixed together. Agree
that t] measures amount of X at time t units after the reaction begins
And agree that[fmeasures the amount of Y at time t units after the
reaction begins. In the reaction under study here,

X[t] = — k1 x[t] + k2 y[t]

y[t] = KkLx[t] — k2 y[t].
where k1 and k2 are positive reaction rates.

This linear system reflects the fact that X reacts with Y to produce
more Y and Y reacts with X to produce more X. Both reactions are
reversible.

Look at the eigenvalues and eigenvectors of the cleared cofficient
matrix:

Clear [Kk1, k2 ]
A= {{-k1, k2 }, {k1, -k2}};
Eigenvalues [A]

(0, K1 -k2}

| Eigenvectors  [A]

(1) 1)
The question here is:
What is the ultimate ratio Y to X as t goes to infinity.

Does it depend on the starting valug9]»and y0]?

G.11) Electrical Engineering:
Using the cheat sheet chart to help to analyze
electrical circuits

O0G.11.a.i) Using the chart to help to analyze an electrical circuit

You don't have to understand the
electrical jargon to be able to handle this problem

Here's that cheat sheet chart from the Tutorials:

DE.07.G16-G11

trace 2

cutoff = Plot [ e {trace, -5,5},

PlotStyle - {{Red, Thickness [0.01 ]}}, AxesLabel - {"trace", "det" }

PlotRange - {-6, 6 }, DisplayFunction - |dentity ];
cutofflabel = Graphics [

Text [FontForm ["trace 2-4 det == 0", {"Times", 10 }], {3.0, -4.0 }11;
pointer = Arrow [{2,1} - {3.0, -3.6}, Tal - {3.0, -3.61}1;
twosuckercutoff =

Graphics [ {Blue, Thickness [0.01 ], Line [{{-5,01}, {O0,0}}1}1;

twosuckerlabel = Graphics [

Text [FontForm [" Two pure \n suckers", {"Times", 10 }], {-4,1}1];
twopropcutoff =

Graphics [ {Blue, Thickness [0.01 ], Line [{{0,0 1}, {50 3}}1}1;
twoproplabel = Graphics [

Text [FontForm [" Two pure \n propellers”,
propswirlcutoff =
Graphics [ {Blue, Thickness [0.01 ], Line [{{0,0 1}, {0,6 }}1}1;
propswirllabel = Graphics [Text [FontForm [

" Two\n propelling \n swirlers", {"Times", 10 }1, {2,4}1];

pureswirlerlabel =
Graphics [Text [FontForm [" p\n u\n r ",
suckswirlcutoff =
Graphics [ {Blue, Thickness [0.01 ], Line [{{0,0}, {0,6 }}1}1;
suckswirllabel = Graphics [Text [

FontForm ["Two\n sucking\n swirlers”,

{"Times", 10 }1, {4, 1}11;

{"Times", 12 }], {0,7 }11;

{"Times", 10 }], {-2,4 }11;

negdetcutoff =
Graphics [ {Blue, Thickness [0.01 ], Line [{{-501}, {5 01}}1}1;
negdetlabel = Graphics [Text [FontForm [

"Pure sucker & pure propeller", {"Times", 10 }1, {0, -1.5}11;

pureswirlerlabel = Graphics [
Text [FontForm ["Two pure swirlers on the positive vertical axis",
{"Times", 10 }1, {0, 6.5 }11;
chart = Show([cutoff, cutofflabel, pointer, twosuckercutoff,
twosuckerlabel, twopropcutoff, twoproplabel, propswirlcutoff,
propswirllabel, suckswirlcutoff, suckswirllabel, negdetcutoff,
negdetlabel, pureswirlerlabel, DisplayFunction

- $DisplayFunction 1;

In a simple parallel electrical circuit, the main measurements are
At] = voltage drop across the capacitor and
\it] = current through the inductor
These measurements are related through the linear system
- oy
Xt = A
_ Xt _ it
y[t] - cap cap res . .
where L, cap and res are given postive humbers with
L = inductance
cap= capacitance, and
res= resistance.
Clear [x,V,t, L, res, cap 1
linearsystem =
(X [t1,y [t1} == {y[t1/L, -x[t]1/cap - y[t]1/ (rescap )});
ColumnForm [Thread [linearsystem 11

X [t] == XL
’ t t
y[t] == - ><cap ~ TCapres

The right matrix for this linear system is:
Clear [a, b,c,d ]

1
{{a, b}, {c,d1r}={{o f}‘ {-

A={{a,b}, {c,d}}
MatrixForm  [A]

1
0 T

1 1

138

cap cap res

1 1
cap capres
Calculate the trace of A and the determinant of A
] trace =a+d
o1
cap res
| determinant =ad-bc
1
capL
Because L, cap and res are all positive, this tells you that
trace< 0 and determinant O.
Look at the cheat sheet.
] Show([chart 1;
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Use it to predict the limiting values agets large of
A{t] = voltage drop across the capacitor and
\it] = currentthrough the inductance
regardless of starter data pi0], y[0]}.

0G.11.b)

This is a continuation of part i).
Look at the chart:
] Show[chart 1;

Take another look at the trace and the determinant calculated in part
] trace =a+d
P S
cap res
| determinant = Det [A]
1
cap L
When you change the resistance, you change the trace but not the
determinant.
When you go with fixed L and cap numbers, then in what way are
plots of the currentnt[y] for very big (positive) resistance numbers
fundamentally different from plots of the currefit]yfor very small

(positive) resistance numbers?

What would you do to the resistance number do to try to make the plc

of y[t] oscillate above and below 0?

What would you do to the resistance number do to try to make the plc

of y[t] decay exponentially to 0?

G.12) 3D and 4D linear systems

Here's a sample3 matrix A:
A=
{{-0.18, -0.27, -0.23}, {-0.27,0.36, -0.32}, {-0.23, -0.32,0.13 }};
MatrixForm  [A]
-0.18 -0.27 -0.23
-027 036  -032
-023 -032 0.3
And the 3D linear system based on it:
Clear [Xx,y,z,t ]
linearsystem =

(X' [t],y [t1,Z [t1} == A. {X[t],y [t],Z [t1});
ColumnForm [Thread [linearsystem 11

X[t
Yyt
z'[t]
You can calculate the eigenvectors of th2 Goefficient matrix A:
Clear [eigenvector, eigenvalue 1;

{eigenvector  [1], eigenvector [2], eigenvector [31} =
Chop [Eigenvectors  [A]]

{{0.143821, -0.848382, 0.509475 }, {0.751258, 0.428709, 0.501816 I8
{0.644148, -0.310576, -0.699011 }}

And the eigenvalues:
I Clear [eigenvector, eigenvalue 1;
{eigenvalue [1], eigenvalue [2], eigenvalue [3]} = Chop[Eigenvalues [A]]
{0.59794, -0.487709, 0.19977 }
Eigenvectofl] and eigenvect8] are pure propellers with
eigenvectdrl] dominant.
Eigenvectof2] is a pure sucker.
See a scaled plot:

DE.07.G15:G12

scaler =10;
sizer =2.0;
Clear [eigenvector 1;
{eigenvector [1],
eigenvector  [2], eigenvector [3]} = Chop[Eigenvectors  [A]];
threeDeigenplot = {Arrow [eigenvector [1], Tall - {0,0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1],
Arrow [-eigenvector [1], Tail - {0,0,0 },
VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [eigenvector [2], Tail - {0,0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [-eigenvector [2], Tal - {0,0,0 },
VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [eigenvector [3], Tail - {0,0,0 },
VectorColor - Green, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [-eigenvector [3], Tail - {0,0,0 },
VectorColor - Green, ScaleFactor - scaler, HeadSize - sizer 1};
Show[threeDeigenplot, Axes3D [51, Axes - True,
AxesLabel - {"x","y", "z" }, ViewPoint - CMView, Boxed - False ];

The dominant propeller is plotted in red.
The weak propeller is plotted in green.
The pure sucker is plotted in blue.
You can adapt the2 code to D and get formulas for the solution of
this 3D system starting at
{x[0], ylOl, Z[0]} = {6.1,-10.2,-14.9
by going with three (instead of two) straight line solutions on the
eigenvectors and adapting accordingly:
{xstarter, ystarter, zstarter } = {6.1, -10.2, -149};
Clear [eigenvector, eigenvalue 1;
{eigenvalue [1], eigenvalue [2], eigenvalue [3]} = Chop [Eigenvalues [A]];
{eigenvector [1],
eigenvector  [2], eigenvector [3]1} = Chop[Eigenvectors  [A]];
Clear [x,V, z, x1, yl, z1, x2, y2, z2, X3, y3, z3, t, C1, C2, C3 1
{x1[t_1,yl [t_1,zLl [t_1} = Chop[eigenvector [1] E®genvalie (1]t

{X2[t_1,y2 [t_1,2z2 [t 1]} = Chop[eigenvector [2] E®igenvalie (2]t .

{x3[t_1,y3 [t 1,23 [t_1} = Chop[eigenvector [3] Eeigenvalue [31t .

X[ 1,y [t1,z[t_1y=Cl{x1[t],yl [t], z1 [t]1}+
C2{x2[t],y2 [t],22 [t]}+C3{x3[t],y3 [t],23 [t]};

starter = {xstarter, ystarter, zstarter Y
starterequation = {x[0],y [0], z [0]} == starter;
Csols = Solve [starterequation 1;

X[l y[t1,z[t]1}=
Chop [ComplexExpand [{x[t],y [t]1,z [t]} /.Csols [1]11]

{75.45956 E -0.487709 t +11.2806 E 0.19977t +0.278958 E 0.59794 t ,
_3.11552 E -0.487709t 5.43893 E 019977t  _ 1.64554 E 0.59794 t ,
_3.64681 E -0.487709t 12.2414 E 0.19977t +0.98819 E 0.59794 t }

Compare with the eigenvalues of A:
| Eigenvalues [A]
{0.59794, -0.487709, 0.19977 )
Just the way you expect.
See the trajectory along with the eigenvectors:

Clear [trajectoryplot, trajectorystory, endtime 1

starterplot = Graphics3D [ {PointSize [0.03 ], Point [starter ]}1;
scaler = 40;

sizer =8;

threeDeigenplot = {Arrow [eigenvector [1], Tall - {0,0,0 },

VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1],
Arrow [-eigenvector [1], Tail - {0,0,0 },

VectorColor - Red, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [eigenvector [2], Tal - {0,0,0 },

VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [-eigenvector [2], Tal - {0,0,0 },

VectorColor - Blue, ScaleFactor - scaler, HeadSize - sizer 1,
Arrow [eigenvector [3], Tal - {0,0,0 },

VectorColor - Green, ScaleFactor - scaler, HeadSize - sizer 1],
Arrow [-eigenvector [3], Tail - {0,0,0 },

VectorColor - Green, ScaleFactor - scaler, HeadSize - sizer 1};

trajectoryplot [endtime_ ] : =
ParametricPlot3D [Evaluate [{x[t],y [t1,z [t1}],
{t, 0, endtime }, DisplayFunction - Identity 1;
trajectorystory [endtime_ ] : =
Show [trajectoryplot [endtime 1], starterplot, threeDeigenplot,
Axes - True, AxesLabel - XY, }, ViewPoint - CMView,
Boxed - False, DisplayFunction - $DisplayFunction 1;
trajectorystory [31;
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Influenced by that weak propeller (green).
See more:
] trajectorystory [51;

X

Now the dominant propeller's influence is taking over.
See more:

scaler = 2000;

sizer = 400;

threeDeigenplot =

{Arrow [eigenvector [1], Tal -> {0,0,0 1},

10

y
See that trajectory try to move over and run with the dominant
propeller.

0G.12.a)

Here is a sample3 matrix A:
I A= {{-0.15 -0.65,0.75 }, {0.85,0.31,043 3}, {-0.51,0.70,05  }};
MatrixForm  [A]
-0.15 -0.65 0.75
0.85 031 043
\-0.51 0.7 0.5

And the 3D linear system based on it:
Clear [Xx, Y,z t ]
linearsystem =
({ [t],y [t1,Z [t]} == A. {x[t],y [t],Z [t]});
ColumnForm [Thread [linearsystem 11
X [t]==-015x [t]-0.65y [t] +0.752 [t]
y'[t]==0.85x [t]+03Lly [t]+0432Z [t]
z/[t] ==-051x [t]+0.7y [t]+05z [t]

You can calculate the eigenvectors of thi3 Batrix:

Clear [eigenvector, eigenvalue 1;
{eigenvector [1], eigenvector [2], eigenvector [31} =
Chop [Eigenvectors  [A]]
{{0.700838, -0.0634825 -0.539821, -0.0733127 +0.4560881 1},
{0.700838, -0.0634825 +0.53982 I, -0.0733127 - 0.4560881 1},
{0.133858, 0.638164, 0.758174 I

And the eigenvalues of thisCBmatrix:

Clear [eigenvector, eigenvalue 1;
{eigenvalue [1], eigenvalue [2], eigenvalue [3]} = Chop[Eigenvalues [A]]
{-0.169578 +0.988743 1, -0.169578 - 0.988743 1, 0.999156 }

VectorColor -> Red, ScaleFactor -> scaler, HeadSize -> sizer 1,
Arrow [-eigenvector [1], Tal -> {0,0,0 1},

VectorColor -> Red, ScaleFactor -> scaler, HeadSize -> sizer 1],
Arrow [eigenvector  [2], Tail ->{0,0,0 },

VectorColor -> Blue, ScaleFactor -> scaler, HeadSize -> sizer ],
Arrow [ -eigenvector [2], Tal ->{0,0,0 },

VectorColor -> Blue, ScaleFactor -> scaler, HeadSize -> sizer 1,
Arrow [eigenvector  [3], Tail ->{0,0,0 },

VectorColor  -> Green, ScaleFactor -> scaler, HeadSize -> sizer 1,
Arrow [-eigenvector [3], Tal -> {0,0,0 },

VectorColor -> Green, ScaleFactor -> scaler, HeadSize -> sizer 1};;

trajectorystory [1271;

DE.07.G12

Use what you see to describe how trajectories in this linear system
plot out.

Show off your description with a good plot.

0G.12.b.i)
Here's a sample@ matrix:
A= {{0.195, 0.8235, -0.392, -0.308 }, {-0.500, -0.864,0.260, 0.428 },
{0.787, -0.135, -0.675, -0.777 }, {-0.120, -0.857, 0.683, -0.545 }3};

MatrixForm  [A]

0.195 0.8235 -0.392 -0.308
-0.5 -0.864 0.26 0.428
0.787 -0.135 -0.675 -0.777
-0.12 -0.857 0.683 -0.545

And the 4D linear system based on it:
Clear [Xx,y, 2z, w,t 1
linearsystem =

({x [t1,y [t],Z [t],w [t]} == A. {x[t],y [t],Zz [t],W[t]});
ColumnForm [Thread [linearsystem 1]

X' [t]==-0.308w [t]+0.195x [t]+0.8235y [t]-0.392z [t]
Y/ [t] ==0428w [t] -05x [t]-0.864y [t]+0.26z [t]
z/[t] == -0.777w [t ] +0.787x [t] -0.135y [t] -0.6752 [t ]
W[t]==-0545w [t]-0.12x [t]-0.857y [t]+0.6832 [t]

You can calculate the eigenvectors of th2 doefficient matrix A:
Clear [eigenvector, eigenvalue 1;

{eigenvector [1], eigenvector [2], eigenvector [31, eigenvector [4]} =
Chop [Eigenvectors  [A]]

{{0.214209 +0.3275551, -0.292508 - 0.1883131,
0.626608, 0.127607 - 0.562921 }, {0.214209 - 0.327555 I,
-0.292508 +0.188313 1, 0.626608, 0.127607 +0.562921 },
{0.411078, -0.465618, -0.563164, 0.545033 1,
{-0.73714, 0.0557527, -0.296352, -0.604725 }}
And the eigenvalues:
Clear [eigenvector, eigenvalue 1;

{eigenvalue [1], eigenvalue [2],éigenvalue [3], eigenvalue  [4]} =
Chop [Eigenvalues [A]]

{-0.501175 +1.151, -0.501175 -1.151, -0.609097, -0.277553 }
Does this information lead you to believe that all trajectories in this
4D linear system
{x[t], y[t], z[t], w[t]} » {0,0,0,Q as t> x ?

If so, why?
If not, why?

0G.12.b.ii)
Stay with the sameR linear system as in part i).
Copy, paste and edit the code fdd 8near systems given above to

produce formula$x(t], y[t], z[t], w[t]} for the trajectory that starts at
{x[0], y[0Q], Z[0], w[0]} = {3.2, 0.5,-6.8, 4.3.

0G.12.c)

If someone were to hand you ®7inear system, do you think you
could handle it?

Explain your response.
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