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DE.09 The Heat Equation and the Wave
Equation
Basics

B.1) Riggingf[t] on [0, 2L] to get a pure sine fit off[t] on
[0, L]

OB.1.a)

When you go for a fast Fourier fit of a function on an interval [O,L]
you usually get a mixture of both Sines and Cosines:
Clear [f, t ]
fr_]=t2EDPS;
L=2m
Chop [ComplexExpand [FastFourierfit If, L, 4,1t 111
1.43827 -0.78213 Cos [t] -0.29451 Cos [2t ] - 0.243714 Cos [3t] -
0.593786 Sin [t ] - 0.265601 Sin [2t ] - 0.103904 Sin [3t]
But sometimes you get pure Cosines:
Clear [f,t ]
fll=t (t-1)2(@2-t);
L=2;
Chop [ComplexExpand [FastFourierfit f,L,6t 111
0.128729 +0.0781497 Cos [nt ] - 0.0802469 Cos [2 it ] - 0.0493827 Cos [3 st ] -
0.0349794 Cos [4 it ] -0.028767 Cos [5t]
Other times you get pure Sines:
Clear [f,t ]
fre_1=t (1-t) (2-t);
L=2;
Chop [ComplexExpand [FastFourierfit f,L,6,t 111
0.386895 Sin [t ] +0.0481125 Sin  [2 7t ] +0.0138889 Sin  [3 st ] +
0.00534584 Sin  [4 it | +0.00199435 Sin  [5 7t ]

The question here is:

How do you recognize when you are going to get a pure Sine fit?
OAnswer:

Look at plots of Sin[k 2 Pi/L t] on [0,L] like this:

L=3;

2 2 (2 2
sipots = Plot. [{sin 22, sin [ 220 sin [3(L"" 1}

{t, 0, L }, PlotStyle - {{Thickness [0.01 ], DeepPink }},
AxesLabel - {"t", "Sines" M

Embellish the plot a bit:
centerline =
Graphics [{Blue, Thickness  [0.01 ], Line [{{%, -1}, {%,1}}]}];

Show[sinplots, centerline 1,

Si nes

To get all the message, grab both plots and animate slowly.

To the right of the line, each sine plot is the negative mirror image of

its plot to the left of the line.

Functions that plot out the same way on [0,L] have fast Fourier fits on
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[0,L] composed of pure sines.
Look at the plot of this function f[t] on [0,L] for L = 2:

Clear [f, t ]
flt_1=t (1-t) (2-t);
L=2

fplot =Plot [f[t], {t0,L 1},
PlotStyle - {{Thickness [0.02 ], Blue }}, AxesLabel - {"t'"f [t1"},

Epilog - {Red, Thickness [0.01 ], Line [{{% -1}, {% 1 }}]}]
frt]

0.4
0.2

05 15 t
-0.2
-0.4

To the right of the center line, the plot of f[t] is the negative mirror
image of its plot to the left of the center line. This is why you can count
on the fast Fourier fit of f[t] on [0,L] to come out as a pure Sine fit.
Try it:

| Chop [ComplexExpand [FastFourierfit f,L.5t 111

0.386759 Sin [t ] +0.047806 Sin  [2 st ] +0.0133207 Sin (37t ] +
0.00431067 Sin  [4 it ]

] Chop[ComplexExpand [FastFourierfit If,L,10,t 111

0.387003 Sin [t ] +0.0483449 Sin (27t ] +0.0142834Sin  [37t] +
0.00597576 Sin  [4 71t ] +0.003Sin [5t ] +0.00166509 Sin (67t ] +
0.00096271 Sin  [7 7t | +0.000538834 Sin (8 7t | + 0.000243536 Sin (97t ]

Haw!

If you go with a different L, you'll probably lose the pure Sine fit:

] L =Random[Real, {3,4}]
3.86303
] Chop [ComplexExpand [FastFourierfit f,L,3,t 111

1.82802 +1.19949 Cos [1.62649t ] - 1.88963 Cos [3.25298t ] -
3.17459 Sin  [1.62649t ] - 1.67455 Sin [3.25298t ]

For this L, the pure Sine fit on [0,L] was lost!

If you look at the plot of f[t] on [0,L], then you'll see why:

Plot [frt1, {t0,L 1},
PlotStyle - {{Thickness [0.02 ], Blue }}, AxesLabel - {"t", "f [t1"y,

Epilog - {Red, Thickness [0.01 1, Line [{{% -1}, {% 1 }]]}]
frt)
1.5

1

0.5
3

For this new L, the plot of f[t] to the right of the center line is NOT the
negative mirror image of its plot to the left of the center line.
This is why the pure Sine fit was lost on [O,L].

oOB.1.b.i) Rigging f[t] on [0, 2 L] to get a pure Sine fit of f[t] on [0,L]

When Fourier first said he could do this, the skeptics laughed at him,
but you and Fourier get the last laugh here.

Look at this:
Clear [f,t ]
at 2
ft =1 Ci —
(3 =tCos [7-]

L=3;
fplot =Plot [f[t], {t0,L 1},
PlotStyle - {{Thickness [0.02 ], Blue }}, AxesLabel - {"t',"f [t]"},

Epilog - {Red, Thickness  [0.01 ], Line [{{% 0 } {—;— 2 }}]}]
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The plot tells you that that this particular function f[t] has no chance
of a pure Sine fit on this particular interval [0,L].
Stay with the same L, the same f[t] on [0,L] but rig f[t] on [L, 2 L] as
follows:

riggedf[t] = f[t] for & t<L and

riggedfiff =fl2L-t]forL<t& 2L
and look at some fast Fourier fits of riggedfft] on [0, 2L]

Clear [riggedf, t 1
riggedf [t_]1:=f[t]/;0 st <L;
riggedf [t_]1:=-f[2L-t]/;L <t s2L;

Chop [ComplexExpand [FastFourierfit [riggedf, 2L,3,t 111
. Tt . 2t
1.1547 Sin | 3 ] - 1.1547 sin [T]
| Chop [ComplexExpand [FastFourierfit [riggedf, 2L,51t 111
vosio2sin 1] -087ase7sin [22L] c0266701Sin [xt] ¢
. 4t
0.255195 Sin | 3 ]

| Chop [ComplexExpand [FastFourierfit
1.07466 Sin |

[riggedf, 2L,10,t 111

mt

2t
3

0.305288 Sin [4%‘] -0.105195 Sin |

] - 0.860184 Sin |

] +0.239901 Sin [t ] +
5t

| +0.0500932 Sin [2 7t ] -

0.0267998 Sin

The fast Fourier fits of riggedfft] on [0,2 L] are pure Sine fits!
Why did this happen?

OAnswer:

(724 ] coota3sazsin [ 221 ] 000636405 Sin (37t

Stay with the same L and take a gander at the plot of riggedf[t] on [0,
L]:

riggedfplot =
Plot [riggedf [t], {t 0,2L }, PlotStyle
PlotRange - All, AxesLabel

- {{Thickness [0.01 ], Blue }},
- {"t", "riggedf [t1"y,

Epiog - {Red, Line [{{Z=, -1}, {21 }])];

riggedf [t]

To the right of the center line, the plot of riggedf(t] is the negative
mirror image of its plot to the left of the center line.

This is why you can count on the fast Fourier fit of riggedf[t] on [0,2
L] to come out as a pure Sine fit.

The purpose of rigging f[t] in this way is to guarantee the pure sine fit
on [0, 2 L]

This will work for any L with L > 0 and any function f[t] with f[0] =

flL] = 0:

Try it:

oFunction 1:

Clear [f, t ]
L =4
flt_]1=6t (4-t)E";
{(f 01, f [L1}
{0,0}
Clear [riggedf, t ]
riggedf [t 1:=f[t]/;0 st <L;
riggedf [t_]:=-f[2L-t] /;L <t =2L;
Chop [ComplexExpand [FastFourierfit [riggedf, 2L, 3, t 111

L] +230086sin [ 71

410249 Sin [~
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oFunction 2:

Clear [f,t ]

L=1

flt_]=t2Sin[xt]Llog[l+t];

{f 01, f [L1}
{0,0}

Clear [riggedf, t 1

riggedf [t_1:=f[t]1/;0 st <L;

riggedf [t_1:=-f[2L-t]/;L <t s2L;

Chop [ComplexExpand [FastFourierfit [riggedf, 2L, 8, t 111
0.134146 Sin [t ] - 0.109275 Sin  [2 7t ] + 0.0377306 Sin  [3 7t ] -
0.0124079 Sin  [4 it ] +0.00623112 Sin  [5 7t ] - 0.00291276 Sin  [6 7t ] +
0.00128041 Sin  [7 rt ]

Clear [f,t ]

L=3;

frt_]=(E°3 -1) (t -3) Cos[t];

{f 01, f [L1}
{0,0}

Clear [riggedf, t 1

riggedf [t_1:=f[t]1/;0 st <L;

riggedf [t 1:=-f[2L-t]/;L <t s2L;

Chop [ComplexExpand [FastFourierfit [riggedf, 2L, 7, t 111

0055216 Sin [ %] < 0284584 Sin [ 221 - 0.0187675 Sin [t ] +
0.0149468 Sin [ 221 ] 4 000236841 Sin [ 221 ] . 000239598 Sin (27t ]
OB.1.b.ii)
Here is the plot of a function f[t] on an interval [O,L]:
Clear [f, t ]
fIt_]=04t (t-4)2E04;
L =4

fplot =Plot [f[t], {t 0, L 1}, PlotStyle
AxesLabel - {"t", "f

- {{Thickness [0.02 ], Blue }},
[t 1"}, DisplayFunction - Identity  1;

centerline = Graphics [{Red, Line [{{% 0 } {% 2 }}]}]

Show[fplot, centerline, DisplayFunction - $DisplayFunction 1;

1 2 3
Good, f[0] =f[L] = 0:
| «f 101, f (L1}
{0,0}

Here's the plot of riggedf[t] on [0,2 L] shown together with the plot of
f[t] on [O,L]:
Clear [riggedf, t 1
riggedf [t_1:=f[t]1/;0 st <L;
riggedf [t_1:=-f[2L-t]/;L <t s2L;
riggedfplot = Plot [riggedf [t1, {t,0,2L 1},
PlotStyle - {{Thickness [0.008 ], Red }}, PlotRange - All,
AxesLabel - {"t, "riggedf [t 1"}, DisplayFunction - Identity 1;

newcentetine = Graphics [ {Red, tine [({2. -2}, {52 }}]}]:

all = Show[fplot, riggedfplot, newcenterline,
AxesLabel - {"t",™ '}, PlotLabel -"f [t] and riggedf [t]",
DisplayFunction - $DisplayFunction 1;

f[t] and riggedf [t]

How does this plot signal a way of rigging a pure sine fit of f[t] on
[O.L]

OAnswer

Take another look:
] Show(all 1;
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f[t] and riggedf [t]

Not bad., but not great.
2
) You can increase the quality of the fit:
Clear [riggedsinefit 1
5 = it riggedsinefit [t1=
. Chop [ComplexExpand [FastFourierfit [riggedf, 2 L, 13,t 111
0.00916125 Sin [ 71 ]+ 00255927 sin [ 221 ] 0.05406335in [3ZL .
o 5 5 5
o162563sin [*7 ], 0313349Sin (rt)+01635a1sin [O1L] .

The plot tells you that:

]
8t

(Lot | +o01az01asin [ 271

0.0559637 Sin | +0.0291482 Sin |

-> f[t] and riggedf[t] run together for8t< L and 117t 12t
) . . 0.00906991 Sin  [2 7t ] +0.0045965 Sin [T] +0.00229929 Sin | 5 ]
-> riggedf[t] has a pure Sine fit on [0,2 L]. Plot [(f [t ], riggedsinefit 11 [LO.L 3.
To rig a pure sine fit of f[t] on [0,L], all you gotta do is to use the pure osye 2 i,,{tﬁifk”eﬁ. [002 1, Blue }, {Thickness [0.008 ], Red }},
sine fit of riggedf[t] on [0,2 L] to fit f[t] on [O,L]; 0.6
0.4
Go for it: 0-2 X
Clear [riggedsinefit ] g:zzt
riggedsinefit [t1= . .
Chop [ComplexExpand [FastFourierfit [riggedf, 2L,7,t 111 It doesn't get much better than this.
171sessin [ 70 < vo6788sin [ 71 ] vo33sarasin [27L] . OB.1.b.iv)
0.167432 Sin [t ] + 00694637 Sin [ > 7] + 00822314 Sin [22L Why is it a good idea to check whether
fitplot = Plot [{f [t ], riggedsinefit [t1}, {0 L 1}, f[O] = f[L] =0
PlotStyle - {{Thickness [0.02 1, Blue }, {Thickness [0.008 ], Red }}, before you go for a rigged Sine fit of f[t] on [O’L]’?
AxesLabel - {"t',™ }1;
25 OAnswer:
2 The rigged sine fit of f[t] on [0,L] comes from from a fast Fourier fit of
L5 riggedf[t] on [0,2L]. This means you are fitting with complex
1 exponentials
0.5 S
i 2 3 ! Consequently the sines involved in the rigged Sine fit are
Just as expected, a beautiful Sine fit of f[t] on [O,L]. Sin[%].
Math happens again. These functions are all zeroed outatt=0and t=L.
This forces all the rigged sine fitters of f[t] on [0,L] to be zeroed out at
OB.1.b.iii) t=0andatt=L.
Here's an interval [0,L] and a function f[t] resistant to a direct Sine on The upshot:
O.L]: If you expect a good rigged sine fit of f[t] on [0,L], you'll want
Clear [f,t ]
fIt_ 1 =E%8 Sin [xt]; f[0] = flL] = O.
L=5
fplot = Plot [f[t], {t O, L 3}, PlotStyle - {{Thickness [0.02 ], Blue }}, . . . i
AxesLabel - ('t""f [t]"}, DisplayFunction - ldentty 1; B.2) Fast Fourier Sine fit and the heat equation
centerline =
Graphics [{Red, Thickness [0.01 ], Line [{{% -1}, {l;- 11} a(x,Z) templx, t] = d;templx, t]
Show[fplot, centerline, DisplayFunction > $DisplayFunction  1; Fourier invented Fourier fit for
fit) the purpose of working on this very problem.
! OB.2.a.i)
0.5

Start with a heated wire L units long with the temperature allowed to
vary from position to position on the wire. Think of the wire as the
"0 interval O< x < L. At the start of the experiment, you instantly cool
o . S
Notice that f[0] = f[L] = O. the ends at x 0 and x= L and maintain these ends at temperature 0,

In spite of the lack of symmetry, rig a pure sine fit of f[i] on [0,L]. and you take pains to guarantee that the rest of the wire is perfectly

insulated.
BAnswer: At the start of this particular experiment, the temperature of the wire
Just do it: at position x (for Gz x < L = 5) is given by the following function
Clear [riggedf, t 1 startertem[)(]:
riggedf [t_]1:=f[t]1/;0 st <L, L=5;
riggedf [t_]1:=-f[2L-t]/;L <t s2L; Clear [startertemp, x 1
Clear [riggedsinefit 1 startertemp [Xx_1=3Abs[0.2x -Round[0.2X ]];
riggedsinefit [t 1= starterplot = Plot [startertemp  [X],
Chop [ComplexExpand [FastFourierfit [riggedf, 2 L, 6,t 111 {X, 0, L 1}, PlotStyle - {{Thickness [0.015 ], Blue }},
0.00595768 Sin [ 1] 4 0.01756125in [ 2% ] 0.0403026 sin [ 321 . Axeslabel - (", "starting temperature H
5 5 5 starting tenperature
0.133833 Sin [4%‘] +0.257565 Sin [t ] 14
1
fitplot = Plot [{f [t], riggedsinefit [t1y {LoL 3, 98
PlotStyle - {{Thickness [0.02 ], Blue }, {Thickness [0.008 ], Red }}, 8:‘21
AxesLabel - {"t","™ }1; 3 i 5 X

0 1 2
To fully understand this plot, look at this:

Clear [pointer ]
t pointer [x_]:=
Arrow [ {0, startertemp [x1}, Tail - {x, 0 }, VectorColor - Red];
Show [starterplot, pointer [311;

o0 ©oo0o
AN NAO
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starting tenperature Clear [tempplotter ]
%:g tempplotter [t1:=
L Plot [temp [x,t ], {x, 0, L }, PlotStyle - {{Thickness [0.01 ], Blue }},
0.8
§;§ PlotRange - {0, 1.5 }, AxesLabel - {"x"," temperature” },
. Sl 2 3 4 5 X . PlotLabel - N[t] "= t", AspectRatio -> %]
Think of the interval0, L] = [0, 5] as the wire. imejump = 1
The;} tip olf tr;ehpointer tells you the starting temperature (at tin@)t Table [tempplotter [t], {t 0,8, timejump  }1;
at the tail of the pointer. tenperature o
Your problem here is to come up with a function tempg that 1.4
estimates the temperature of the wire at position x at time t after the 1'j
experiment begins. 0.8
Do it. 0.6
oAnswer: gi‘zt
The functionstartertemfx] is ripe for a rigged Fourier Sine fit on 1 2 3 3 5 X
tenperature 1. -t
[0, L] because 14
startertemfx] = 0 forx = 0 andx = L: v
| (startertemp  [0], startertemp L1} 0.8
(0,0. } g.i
Rig startertemfx] for a pure sine fit o[0, L] and get a good sine fit of 0.2
. 1 2 3 i 5 X
startertemfx] on[O, L]: temperature 0 1
If none of this makes sense to you, then look at B.1) immediately above. 1.4
Clear [rigged ] 1.2
rigged [x_] :=startertemp [Xx] /;0 <X <L; 1
rigged [x_]:= -startertemp [2L-x] /;L <x=s2L; 0.8
n = 10; 0.6
Clear [riggedsinefit 1 0.4
riggedsinefit [x_1 = 0.2
Chop [ComplexExpand [FastFourierfit [rigged, 2L, n, x 111 1 2 3 4 5 X
12250 Sin [ 7] - 0145555 Sin [3%} +0065Sin [7x] - Ielnp;ra[ e 8-t
0.0377885 Sin [ =%] +00307526 Sin | 9 =] L2
1
fitplot = Plot [{startertemp  [x], riggedsinefit [x1}, {x,0,L }, 0.8
PlotStyle - {{Thickness [0.02 ], Blue }, {Thickness [0.008 ], Red }}, 0.6
AxesLabel - {"x","™ }1; 0.4
0.2
1 2 3 4 5 X
1421 tenperature 4. =t
1 1.4
o8 1.2
34 06
‘ 1 2 3 1 3 o6
That's a decent fit. 0.4
0.2
Now look at the rigged sine fit startertemfx]: ; 5 s ; - x
| riggedsinefit [x] tenperature 5. =t
12250 Sin [ 5] - 0.145565 Sin | 87X 1. 0068in [rx] - ig
00377885 Sin [ 12X ] . 00307526 Sin [ 22X ) L
5 0.8
Pick off the coefficients of the Eﬂﬁ"Lﬂ] terms: gj
Clear [A k] o: 2
A[k_1 : = Coefficient  [riggedsinefit [x1,Sin [(kPi /L) x]11; i 3 3 7 5 X
Table [A[k], {k 1,n }] temerature 6=t
{1.2259, 0, -0.145555, 0, 0.06, 0, -0.0377885, 0, 0.0307526, 0 ) 1‘21
The reason you run kfrom 1t nNisto pick up all the coefficients. 1
0.8
Now you're done because you can write détemgx, t]. 0.6
. 0.4
It's just: 0.2
feee——  ———
Clear [temp, X, t ] 1 2 3 ) 5 X
n 2 tenperature 7. -t
temp [x_, t_ ] =ZA[k]E‘(T> tsin [ (k n)x] 14
k=1 1.2
12250 = sin [ 2] - 0.1455565 E ~*E" sin [32X] . 006E "t Sin [nx] - 1
S 0.8
0.0377885 E ~“#* Sin [7%’(] +0.0307526 E ~“#" Sin [g%x] 0.6
0.4
Quite a slap in the face, but that's all there is to it. 0.2
X

If you want to understand why this works, then continue with the rest
of this Basic problem.

OB.2.a.ii) A Movie

Stay with the same situation as in part ii) immediately above and look
at this movie:
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tenperature 8. -t

1.4
1.2

oo oo
N RO ®

1 2 3 4 5 X

Grab all the plots and animate.
What does this movie depict?
OAnswer:

It depicts the the wire cooling down as time goes on.
This comes from the fact that the temperature at the ends of the wire
are maintained « throughout the experiment.

Another way of seeing what's happening is to take another look at the

formula fortemgx, t]:

] tempx, t 1

X 3 X

1.2250E ~=" Sin [?] - 0.145565 E ~“%" Sin |

]+0.06E 7"t sin [nx] -

+0.0307526 E & Sin |

0.0377885 E ~“#" Sin [lg—X] 9_75”‘_]

Those exponentials in the denominators are dritemgx, t] to 0 ast
gets large.

OB.2.a.iii)

Look at this:
Plot [ {startertemp [x],temp [X,0 1}, {x,0,L 1},
PlotStyle - {{Thickness [0.015 ], Blue }, {Thickness [0.008 ], Red }},
AxesLabel - {"x","™ }1;

OLeoe rr
NAO@ENA

This is a plot of startertenfyy and temfx, 0] forO<x < L.
Why is it totally natural to expect the this plot to come out they way it
did?

oPhysical Answer:

To begin with,

temgx, t]
estimates the temperature of the wire at posxiaft time units after
the experiment starts.
But

startertemfx]
measures the the temperature of the wire at posxtadrthe start (at
timet = 0). So it is natural that

temgx, 0] should estimatstartefx]

pretty well.
oOMath Answer:
Look at:
| tempix, t 1
12259E = sin [ 7] - 0145555 € =" Sin [——3’5”( | 0.06E "t Sin (rx] -
0.0377885 E ~**%* sin [ g" ] +0.0307526 E ~“#" sin [ 22X gx ]

When you put = 0, all the exponentials becorle

] temp [x,0 ]
. X . 37X .
1.2259Sin [ 7-] - 0145565 Sin - [ =2 ] +0.06 Sin  [X] -
00377885 Sin [ 12X ] .+ 00307526 Sin [ 22X )

This is the same as the rigged sine fistartefx]:

] riggedsinefit [x]

12250 Sin [ 755] - 0148555 Sin | Srx

] +0.06Sin [rx] -

0.0377885 Sin [ £ ] +0.0307526 Sin [g%x}

DE.09.B2

This is why the plots ctempXx, 0] andstartertemfx] share a lot of ink:

Plot [ {startertemp [x],temp [x,0 1}, {x,0,L },
PlotStyle - {{Thickness [0.015 ], Blue }, {Thickness [0.008 ], Red }},
AxesLabel - {"x",™ }1;

ooeoe kPr
[SENCTTRINES

1 2 3 ! 5 X

OB.2.a.iv) The heat equation explains where the exponentials come

from
In the parts above, you get tefrpt] by taking a rigged sine fit of
startertemfx]:
| riggedsinefit [x]
12250 Sin [ 7] - 0.145665 Sin [ng ] +0.065Sin [rx] -
0.0377885 Sin [ =] +0.0307526 Sin [9%’(]

And you get temfx, t] by inserting exponentials into each term of the
rigged sine fit:

| tempixt ]
12250 E = Sin [ 7] - 0145555 E ~*%" Sin | 37X 1, 006E ! Sin [rx] -
0.0377885 € ~“#* sin [ =] +0.0307526 E %" sin [9%’(}
Why do you insert those exponentials?
OAnswer

This is the central question.

Engineering studies have shown that after the appropriate unit
adjustments are made, the function temp[x,t] satisfies the partial
diffeerential equation known as the heat equation

O,z temix, t] = o temyx, t]

This is the same as D[templ[x,t], {x,2}] = D[temp[x.t], t];
in other words

the second derivative of temp[x,t[ with respect to x equals the first
derivative of templ[x,t] with respect to t.

with

- temgx, 0] = startertemfx]

and

- temdO, t] = 0 andtemdL, t] = O for allt's.

Lots of folks call this a by the name "Boundary Value Problem."
The key is the boundary conditions
temgdQo, t] = 0 andtemfdL, t] = O for allt's.
These match up well with the fact that
Sin[X2X] =0 forx=0and x = L
for all positive integers k. This suggests that for each fixed time t, you
can fit temp[x,t] with a rigged Sine fit like this:

Clear [approxtemp, t, X, u, L 1

n =6;

(kmxl
L

n
approxtemp [x_,t_ ] = Zu[t, k 158in [
i1

Sin [%] uft,1 ] +Sin [

4 X
L

[t,2 ]+Sin [3%)(] u

21Xy 3]~

Sin | ]u[t,4]+Sin[5fx]u[t,5]+Sin[67Tx

Juit 6 ]

There is nothing magic taking n = 6.
You can go with a bigger n or a smaller n.

The Fourier fit coefficientu[t, k] depend on t as well as k because you
expect a different rigged sine fit at different times t.
The heat equation says
D[temp[x,t],{X,2}] = D[temp[x,t],t].
Plug
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approxtemgx, t] = Z ult, k] Sin[ &2
k=1
into the heat equation and see that
n

6
Dt KI(AZ)? (-Sin &2 ) = 3" geult, ki Sinf £2x],
k=1 k=1
You can make this happen by setting

DIult, K], t] = —(X%)* ult, K] .
This is a big break in your favor because this is the exponential
differential equation and you know that this makes

ult, k] = A[k] E-C8)°t
where the real constant A[k] has yet to be determined.

You get a different constant for each k.
Substitute these u[t,k]'s into approxtemp(x,t] to get
n
approxtempx, t] = ZA[k] Bt Sin[&2x
k=1

Look at what happens for t = 0:

n
approxtemfx, 0] = ZA[k] Sin[ &0x
k=1

This is to fit the starting temperature, so you lift the A[K]'s from the
rigged sine fit of startertemp[x].
And now you see why you want to insert the exponentials.

0OB.2.b) A new one

Start with a heated wire L units long with the temperature allowed to
vary from position to position on the wire. Think of the wire as the
interval O< x < L. At the start of the experiment, you instantly cool

the ends at x =0 and x = L and maintain these ends at temperature (

and you take pains to guarantee that the rest of the wire is perfectly
insulated.
At the start of this particular experiment, the temperature of the wire
at position x (for & x <L = 3)is given by the following function
startertemp[x]:
L=3;
Clear [startertemp, x 1
startertemp  [x_] =0.2Sin [2x]? (x -3)?;
starterplot = Plot [startertemp [x1,
{x, 0, L 1}, PlotStyle - {{Thickness [0.01 ], Blue }},
AxesLabel - {"x", "starting temperature" }1;

starting tenperature
1

NS o

0.
0.
0.
0.

i 15 2 25 3°%

0.5
To fully understand this plot, look at this:

Clear [pointer ]
pointer [X_]:=
Arrow [ {0, startertemp [x]1}, Tail - {x, 0 }, VectorColor - Red];
Show[starterplot, pointer [1.7 11;
starting tenperature
1

0.
0.
0.
0.

NENCE)

05 1 15 2 2.5 3%

Think of the interval
[0.L]=[03]
as the wire.
The tip of the pointer tells you the starting temperature (at time t = 0)
at the tail of the pointer.

DE.09.B2

You now know how and understand how come up with a function
temp(x,t] that estimates the temperature of the wire at position x at
time t after the experiment begins.
Do it.
Make a good movie.

OAnswer:

This is a copy, paste and edit job on B.2.a.i and a.ii)
The function
startertemfx]
is ripe for a rigged Fourier Sine fit (0, L]because
startertemfx] = 0 forx = 0 andx = L:

| (startertemp  [0], startertemp  [L]}
{0,0}

Rig startertemp[x] for a pure sine fit on [0,L] and get a good sine fit of
startertemplt] on [O,L]:

If none of this makes sense to you, then look at B.1) immediately above.

Clear [rigged, X, t 1

rigged [x_] : = startertemp [X] 7;0 sxsL;

rigged [X_] : = -startertemp [2L-x] /;L <xs2L;
Clear [riggedsinefit 1

n =4

riggedsinefit [x_ 1=

Chop [ComplexExpand [FastFourierfit [rigged, 2L, n, x 111

0.30867 Sin [ 7] + 0.449966 Sin [27X] . 0389708 Sin (1)
fitplot = Plot [{startertemp  [x], riggedsinefit [XI}, {x,0,L 1},
PlotStyle - {{Thickness [0.02 1, Blue }, {Thickness [0.008 ], Red }},

AxesLabel - {"X","™ }1;

That's not a great fit. To improve the fit, raise n:

n = 10;
Clear [riggedsinefit 1
riggedsinefit [x_ 1=

Chop [ComplexExpand [FastFourierfit [rigged, 2L, n, x 111

0370448 Sin [ /%] + 0.393967 Sin [Z%X +0297019 Sin  [rrx] +
0.0662433 Sin | 4 ;‘X | - 0.0949962 Sin [ 5 ;‘X | -0.0612287 Sin  [2 71x] -
0.0280943 Sin | ! ’3“ | -0.0158073 Sin | 87x | -0.00656556 Sin  [3 7x]
fitplot = Plot [ {startertemp [x], riggedsinefit [X1}, {x,0,L 1},

PlotStyle - {{Thickness [0.02 ], Blue }, {Thickness [0.008 ], Red }},
AxesLabel - {"x","™ }1;
1
0.8
0.6
0.4
0.2

0.5 1 1.
That's a decent fit.

Now look at the rigged sine fit of startertep[x]:
| riggedsinefit [x1]

0370448 Sin [ 7] +0.393067 Sin | 27X 10297019 Sin  [rx] +
0.0662433 Sin [ 2 ’;x | - 0.0949962 Sin [5%’(] -0.0612287 Sin  [27X] -
7 X

0.0280943 Sin | [8rx

Pick off the coefficients of the Sin[(k Pi/L) x] terms:
Clear [A, k]

] - 0.0158073 Sin ] - 0.00656556 Sin  [3 71X]

A[k_1] : = Coefficient [riggedsinefit

[x], Sin [(—k%)l

coeffs =Table [A[k], {k, 1,n }]
{0.379448, 0.393967, 0.297019, 0.0662433,
-0.0280943, -0.0158073, -0.00656556,0 }

The reason you run k from 1 to n is to pick up all the coefficients.

-0.0949962, -0.0612287,

Now you're done because you can write down templ[x,t]:

Clear [temp, x,t ]
Length [coeffs ]

k
temp [x_,t_ 1= km

2
A[k] E*¢T) U gin [————
2 [——1
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0.379448 E ~%" Sin [ 22X ] + 0.393967 E ~ %" Sin |

21X
3 3

0297019 E ~"! Sin [7x] +0.0662433 E ~**+ Sin [4§X ] -
00949962 E 5" sin [ 22X] - 0.0612287E 4"t sin (2 71x] -
0.0280943 E ~“% Sin | 7g>< | 0.0158073 € -+ Sin [8%” )

0.00656556 E 27" Sin [3 1X]
Here's the movie:

Clear [tempplotter ]
tempplotter  [t_]:=
Plot [temp [x,t 1, {x,0,L }, PlotStyle - {{Thickness [0.01 ], Blue }},
PlotRange - {0, 1.2 }, AxesLabel - {"x"," temperature" },

1
PlotLabel - N[t]"= t", AspectRatio - ?];

timejump = 0.5;
Table [tempplotter [t1, {t 0,3, timejump }1;
tenperature

0
1
0.8
0.6
0.4
0.2
o5 1 15 2 25 3%
tenperature 0.5-t
1
0.8
0.6
0.4
0.2
05 1 15 2 25 37~
tenperature 1. -t
1
0.8
0.6
0.4
0.2
e ——
05 1 15 2 25 3%
tenperature 1.5-t
1
0.8
0.6
0.4
0.2
05 1 15 2 25 37
tenperature 2. -t
1
0.8
0.6
0.4
0.2
0.5 1 15 2 25 3%
tenperature 2.5-t
1
0.8
0.6
0.4
0.2
X
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tenperature 3.

1
0.8
0.6
0.4
0.2

0.5 1 15 2 25 37

Grab all the plots and animate.
After 3 time units, the temperature of the wire is approximately 0 from
end to end.

B.3) Fast Fourier Sine fit and the wave equation
d(x,2 position[x, t] = dy,2; position[x, t]

oOB.3.a.i)

Run this code before you start:

Clear [FastFourierfit, Fourierfitters, F, Fvalues, n, Kk,
jump, num, numtab, coeffs, t, L 1

jump [n_]1 = jump [n] = N[1/(2n)];

Fvalues [F_,L_,n_ ] :

N[Table [F[Lt], {t,0,1 - jump [n],jump [n]}11;

numtab [n_] := numtab [n] = Table [k, {k, 1,n }];

Fourierfitters [L,n_,t_ ] := Table [E*(2Pilkt /L),
{k, -n +1,n - 13}1;
coeffs [n_, list_ ] := Join [Reverse [Part [Fourier [list ], numtab [n]1]1],
Part [InverseFourier [list 1, Drop [numtab [n],1 111/
N[Sqrt [Length [list 111

FastFourierfit [F_,L_,n_t ] :=

Chop [Fourierfitters [L,n,t ].coeffs [n, Fvalues [F,L,n 111;
L:=Expand [aD[#1, {#2,2 }] + bD[#1,#2 ] + c#1]&

The ends of a guitar string are anchored at 0 and L on the x-axis and
the string is pulled to an initial position and then allowed to vibrate on
its own starting with initial velocity 0.

At the start of this particular experiment, the position of the wire at
position x (for 0< x < L = 5) is given by the following function
starterposition[x]:

L=5;

Clear [starterposition, x

starterposition [Xx_1 =0.7Abs [0.2x -Round[0.2x ]1;
starterplot = Plot [Stanerposition [x], {x,0,L },

PlotStyle - {{Thickness [0.01 ], Blue }}, PlotRange - All,
1
AspectRatio - 71- AxesLabel - {"x", "starting position” }];

starting position

003

(0]
0

coo
O N
GHUNULUT

1 2 3 G 5 X
Think of the curve as the the starting position of the guitar string.
To fully understand this plot, look at this:

Clear [pointer ]
pointer  [x_1] : = Graphics [

{Red, Thickness [0.01 ], Line [{{Xx, starterposition [X1}, {x, 0 3}}1}1;

Show[starterplot, pointer [211;
starting position

003

002

001

0.0

’ 1 2 3 i 5 X

The tip of the pointer tells you the starting position (at time t = 0) at
the tail of the pointer.
Your problem here is to come up with a function position[x,t] that
estimates the position of the guitar string at position x on the x-axis at
time t after the experiment begins.
Do it.
OAnswer:
| R
R
The function starterposition[x] is ripe for a rigged Fourier Sine fit on

[0,L] because starterposition[x] =0 for x =0 and x = L:

| {starterposition [0], starterposition [L1}
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{0,0. }
Rig starterposition[x] for a pure sine fit on [0,L] and get a good sine fit
of starterposition[x] on [0,L]:

If none of this makes sense to you, then look at B.1) immediately above.

Clear [rigged ]

rigged [x_] : = starterposition [x] /;0 sx=sL;

rigged [x_] : = -starterposition [2L-x] /;L <xs2L;
Clear [riggedsinefit 1
n =12,

riggedsinefit [X_]=

Chop [ComplexExpand [FastFourierfit [rigged, 2L, n, x 111

0285325 Sin [ 7] - 0.0331987 Sin | S7x

| +0.0131172 Sin [rnx] -

0.00772329 Sin [ 7 =] +0.00569515 Sin [ 9rx

. 11 X
] - 0.00494537 Sin [T]

[x1, riggedsinefit [X1}, {x,0,L },
- {{Thickness [0.02 ], Blue }, {Thickness [0.01 ], Red }},

fitplot = Plot [ {starterposition
PlotStyle

1
AspectRatio - T AxesLabel - {"x", ™ }]:

1 2 3 4 5
That's a great fit.

Now look at the rigged sine fit of starterposition[x]:

] riggedsinefit [x]
X
[2X)

0.285325 Sin -0.0331937 Sin

E £5] ~00131172 Sin - [ x] -
0.00772329 Sin | 71X

] +0.00569515 Sin

E 2] - 0.00494537 Sin [“T"X]

Pick off the coefficients of the Sin[(k Pi/L) x] terms:
Clear [A k1]

(k ) x

D))

A[k_1] : = Coefficient [riggedsinefit [x1, Sin [

coeffs =Table [A[k], {k,1,n }]

{0.285325, 0,  -0.0331937, 0, 0.0131172, O,
0.00569515, 0, -0.00494537, 0 }

The reason you run k from 1 to n is to pick up all the coefficients.

-0.00772329, 0,

Now you're done because you can write down approxposition[x,t]:

Clear [approxposition, X, t 1

Length [coeffs ]
k)t
= ALk _—
] § [k1 Cos|[ i ] sin [

k=1
it . TTX 3t
0.285325 Cos [?] Sin [?] - 0.0331937 Cos | =
0.0131172 Cos [xt] Sin [nx] - 0.00772329 Cos [”T“]

0.00569515 Cos [g%t} sin |

. (k ) x
approxposition  [x_, t —

]

sin [32X] .

%]

in |

11t

9 71X
5

Quite a slap in the face, but that's all there is to it.

If you want to understand why this works, then continue with the rest

| - 0.00494537 Cos |

of this Basic problem.

0OB.3.a.ii) A Movie

Stay with the same situation as in part a.i) immediately above and
look at this movie:
Clear [positionplotter 1
positionplotter [t_1:=Plot [approxposition [x,t 1,
{x, 0, L }, PlotStyle - {{Thickness [0.01 ], Blue 1}},
PlotRange - {-0.4, 0.4 1}, AxesLabel - {"x"," position" },

1
PlotLabel - N[t]"= t", AspectRatio > ?];

timej L
imejump = —;
3

Table [positionplotter
posi tion
0.4

[t1, {t 0, 2L, timejump }1

SIS
BN W

S
AW NP

DE.09.B3

posi tion 1. 66667 = t

© e e
SIS

=]
i
x

tion 3.33333- t

©oooogoooo
BNWAROA WN R

ition 5.

oooogoooo
BNWAOS WN R

tion 6.66667 - t

o oooge oo
P NWAOIA WN R

oo oee
A w N R

ition 8.33333 = t

tion 10. = t

o oooge oo
P NWAOIA WN R

o
S w N R

-0.
{- Graphics -, - Graphics -, - Graphics -, - Graphics -, - Graphics -,
- Graphics -, - Graphics -}
Grab all the plots and animate.
What does this movie depict?

OAnswer:
It depicts the vibration of the guitar string.

Notice that the string returns to its starting position after 2 L time units:

| positionplotter [01;
posi tion
0.4

©

3
0.2
1

1
2
-0.3
4
P

ositionplotter [2L1];
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goiitiun 10. = t
0.3
0.2
0.1

-0.1
-0.2
-0.3
-0.4

This oscillatory (periodic) behavior as time goes on comes from the
Cosines in position[x,t]:
] approxposition [x, t 1]

0285325 Cos [ /(-] sin [ 7] - 00331937 Cos [ 211 sin [ 27X

7 X
5 )
llnt]si [115n>(]

0.0131172 Cos [t ] Sin [rx] - 0.00772329 Cos |
9t

Sin [

7t
5

0.00569515 Cos |

sin [ 22X.] _ 0.00494537 Cos
5

OB.3.a.iii) The wave equation explains where the Cosines come from

You get position[x,t] by taking a rigged sine fit of starterposition[x]:
] riggedsinefit [x]
3x

0285325 Sin [ 7] - 0.0331937 Sin | ] +0.0131172 Sin [ x] -

0.00772329 Sin |

] +0.00569515 Sin |

7 = 9 =] - 0.00494537 Sin [7115” X]
And you get position[x,t] by inserting Cosines into each term of the
rigged sine fit:

] approxposition [xt 1

0285325 Cos [ 7] sin [ 2] - 00331937 Cos [ 271 sin [21X]

5 5 5
0.0131172 Cos [rt] Sin [xx] -0.00772329 Cos | 7;” ]'sin [ 7 ;X ]+
97t o 197X 1t o1l
0.00569515 Cos [ ~Z—] Sin [ =Z=] - 0.00494537 Cos [ =] sin [ =]

Why do you insert those Cosines?
oOAnswer

This is the central question.

Engineering studies have shown that after the appropriate unit
adjustments are made, the function position[x,t] satisfies the wave
equation
0,2 Positiorx, t] = 9y 2 positiorx, t].

This is the same as D[position[x,t], {x,2}] = D[position[x,t], {t,2}].
with
-> positiorx, 0] = starterpositiofx]
-> positior[ 0, t] = 0 andpositioriL, t] = 0 for all t's

Reason: The ends of the guitar string are attached at the ends.
and with
-> g¢positior[x, t] = 0fort=0.

Reason: you let the guitar string vibrate giving it initial velocity 0.

Lots of folks call this a partial differential equation.
The key is the boundary conditions
positiod 0, t] = 0 andpositiorfL, t] = 0.
These match up well with the fact that
Sin[£2%] =0 for x =0 and x = L
for all positive integers k. This suggests that for a fixed time t, you ca
fit position[x,t] with a rigged Sine fit like this:

Clear [approxposition, t, X, u, L 1
n=4;
- S o (k) x
approxposition [X,t_ 1= ) uftk 1Sin [T]
k=1
Sin [TX} urt, 1 7 +Sin [z%x] urt, 2 1 +Sin [m} ur, 3+
Sin [47”( Juit 4 )

There is nothing magic about setting n = 4. You can use higher or lower
n's

DE.09.B3

The Fourier fit coefficientu[t, k] depend on t as well as k because you
expect a different rigged sine fit at different times t.
The wave equation says

Oix,2; Positiorx, t] = 9y, 2 positiorx, t]

Plug

n

approxpositiofi, t] = Z ult, ki Sin[ &2
k=1
into both sides of thw wave equation and see that you want:
n

n
2 . T : b
Dot K ()™ (=SInEPE D= " g ult, kI Sin[ K22,
k=1 k=1
You can make this happen by setting

g2y Ult, K] = —(k,_—”)2 uft, K] .
This is the same as
By Ult, K1+ (X2)% urt, k1 = 0
This is a big break in your favor because this is the undamped unforce

oscillator:
Clear [u,t,A, Bk ]

uft_, k_ 1 =Afk] Cos| (k:)t ] +BIk1 Sin [ (k:)t ]
Alk] Cos[ XL 4 Bik sin K71

Here the real constants A[Kk] and B[k] have yet to be determined.
You get a different constant for each k.
Now look at the condition
dgpositiorfx, t] = 0fort= 0.
Because

n
approxpositiofx, t] = " ult, k] Sin 2],
k=1
you can achieve
at pOSitiOF[X, t] =0fort=0
by insisting that:
| (Geultk 1/.t »0) ==

kxB[k]
- ==0

This tells you to set B[k] = 0 so that u[t,k] becomes:
] uttk 1/.B[k]1-0
kot
A[k] Cos| T ]
Substitute
ult, kI = A[k] Cog &2
into approxposition[x,t] to get

n
approxpositiofx, t] = Z A[k] Cog ¥2X | Sin[ &nx1:
pact

Look at what happens fort = 0:

n
approxpositiofx, 0] = Z A[K] Cog &2 | Sinf £ |

k=1
n

= Z ALK] Sin[ &2

k=1
This is to fit the starting position, so you lift the A[k]'s from the rigged
sine fit of starterposition[x].

And now you see why you want to insert the Cosines.
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0OB.3.b) A new one Now you're done because you can write down approxposition[x,t]:
. . Cl ition, X, t
Activate this code: ear tapproxposttion, x & ]
- gth [coeffs ] (k ) t ) (k ) X
Clear [FastFourierfit, Fourierfitters, F, Fvalues, n, k, approxposition  [Xx_, t_ ] = > ALk] COS[T] Sin [ L ]
jump, num, numtab, coeffs, t, L 1 k=1
jump [n_] := jump [n] = N[1/(2n)]; 0.451469 Cos [ 1] sin [ 72X ] - 0.065733 Cos [t ] Sin [7x] -
Fvalues [F_, L ,n_ 1 := 3 3
N[Table [FLT1, 0,1 - jump [n],jump [n1}11; 00132391 Cos [ 2721 sin [ 22X ]

Here comes the movie:
numtab [n_] : = numtab [n] = Table [k, {k, 1,n }];

Clear [positionplotter 1
Fourierfitters [L,n,t ] := Table [EA(2Pilkt /L), positionplotter [t_1:=Plot [approxposition [xt 1,
{k, -n +1,n - 1}1; {x, 0, L 1}, PlotStyle - {{Thickness [0.01 ], Blue }},
coeffs [n_, list. ] := Join [Reverse [Part [Fourier [list ], numtab [n]1]], PlotRange - {-0.6, 0.6 1}, AxesLabel - {"x"," position" },

Part [InverseFourier [list 1, Drop [numtab [n], 1111/ PlotLabel NIt et A Rai 1 ]
] otLabel = t", AspectRatio - —1;
N[Sqrt [Length [list 171 - N[t] P 3
N L
FastFourierfit [FoL,n_,t  ]:= timejump = E;
Chop [Fourierfitters [L,n,t 1].coeffs [n, Fvalues [F,L,n 111;

Tabl iti | 2L, timej
L: =Expand [aD[#1, {#2,2 }] + bD[#1,#2 ] + c#1]& able [positionplotter [t1, {0, , timejump 11

. . R position
The ends of a guitar string are anchored at 0 and L on the x-axis and 0
the string is pulled to an initial position and then allowed to vibrate on 0.4
its own starting with initial velocity 0. 0.2
. . . . . 0.5 1 15 2 2.5 3 X
At the start of this partricular experiment, the position of the wire at -0.2
position x (for 0< x < L = 3) is given by the following function -0.4
starterposition[x]:
Loa: posi tion 1. =t
Clear [starterposition, x 1 0.4
starterposition [X_]=01x 2 (x-3)2; '
starterplot = Plot [starterposition [x1, 0.2
{x, 0, L 1}, PlotStyle - {{Thickness [0.01 ], Blue }}, X
AxesLabel - {"x", "starting position" 1 o2 0.5 1 15 2 25 3

starting position

§§ : -0.4
o5 1T 15225 3%

.Your problem here is to come up with a function posijtiot] that
estimates the position of the guitar string at position x on the x-axis at
time t after the experiment begins.

Do it. posi tion 2t
Make a good movie. o4
OAnswer: 0.2
The function starterposition[x] is ripe for a rigged Fourier Sine fit on e N x
[0,L] because starterposition[x] = 0 for x =0 and x = L: 02
-0.4
| {starterposition [0], starterposition [L1}
{0,0} posi tion 3. -t
Rig starterposition[x] for a pure sine fit on [0,L] and get a good sine fit o4
of starterposition][t] on [0,L]: 0.2
Clear [rigged ] .5 1 1.5 2 2.5 3 X
rigged [x_] : = starterposition [X] 7/;0 sx=sL; -0.2
rigged [x_] : = -starterposition [2L-x] /;L <xs2L; 04
Clear [riggedsinefit 1 e
n=7; o
riggedsinefit [X_1= post tion 4=t
Chop [ComplexExpand [FastFourierfit [rigged, 2L, n, x 111 04
0.451469 Sin [ 72X] - 0.065733 Sin [ x] - 0.0132391 Sin | 5 = 0.2
fitplot = Plot [ {starterposition [x1, riggedsinefit [X1}, {x,0,L }, X
PlotStyle - {{Thickness [0.02 ], Blue }, {Thickness [0.008 ], Red }}, 9.5 1 1.5 2 2.5
AxesLabel - {"x","™ }1; -0.2
Bé -0.4
: 05 1 15 2 25 X posi ti on 5=t
That's a great fit. 0.4
Now look at the rigged sine fit of starterposition[x]: 0.2
| riggedsinefit [x] 0.5 1 15 2 2.5 3
. JUX . . 57X 0.2
0.451469 Sin [ =~ | - 0.065733 Sin [ x] - 0.0132391 Sin [ 22> |
3 3 -0.4

Pick off the coefficients of thSin[(k%] terms:
Clear [A k]
A[k_] : = Coefficient [riggedsinefit [x], Sin [—(k—:)—x] I:

coeffs =Table [A[k], {k, 1,n }]
{0.451469, 0, -0.065733, 0, -0.0132391,0,0 }
The reason you run k from 1 to nis to pick up all the coefficients.
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posi tion 6.

0.5 1 1.5 2 2.5 3

{=- Graphics -, - Graphics -, - Graphics -, - Graphics -, - Graphics -,
- Graphics -, - Graphics -}

Hey Mr. Disney, look at that.

B.4) Fourier integral fit

Here's how you can use integrals to go after a Fourier fit on an interve
[O,L]:
Start with the function and its plot on [O,L]:

Clear [f,t ]
t

f [t = —;

[t1 2

L =4;

Plot [f [t], {t,0,L 1}, PlotStyle
AxesLabel - {"t","f [t1"}];

frt]

2

- {{Thickness [0.02 ], Blue 13},

1.5
1
0.5

t

) 1 2 3 4
To fit f[t] on [0,L] with Fourier Integral fit, you fit with combinations
k2t
- L
this way:
Clear [A, t ]
IOLf [ E»\k <3nn at .
L

ALk_] :=A[k] = N[

Clear [k, complexfitter ]
m=5;

1k @mt

m
complexfitter [t_1 = Chop[ Z Alk1ET T ]
k=-m

1. -0318311E ~*'7t ,0318311E *" -0.1591551E ~' ! 0159155 1E '”t -

31t

0.106103 |E ~#' "t 10106103 |E 7" -0.0795775E 2! 7t

0.07957751E 2' "' 0063662 1E ~#'"! . 0.0636621E 7"
Covert to combinations of Sine and Cosine waves.
Clear [realfitter, t 1
realfitter [t_ ] = Chop[ComplexExpand [complexfitter [t111
1 -063s625in [7]-0318318in [rt) -02122078in [32L] -
0.159155 Sin  [2 7t ] - 0.127324 Sin [S’T“]
Check out the fit with a plot:
Plot [{f [t 1, realfitter [t1}, {t O, L 1},
PlotStyle - {{Thickness [0.02 ], Blue }, {Thickness [0.01 ], Red }},
AxesLabel - {"t',"™ }1;
2
1.5
1
0.5
i 2 3 it

The periodic nature of the Fourier fit ruins the fit at the ends, but
inside [O,L], the fit is not bad.

OB.4.a)

How do you try to go after a better Fourier Integral fit?
OAnswer:

The same way you go after a better fast Fourier fit:
You increase n.
Try it:

DE.09.B3-B4

Clear [A,t ]

1k @mt

o] BT a

ALK_]:=A[k] = N[ i 1:
Clear [k, complexfitter 1
n =13;

Tk @mt

n
complexfitter [t_1 = Chop[ Z Alk1ETT]
k=-n

1. -0318311E ~#'7' . 0318311E %" -0.1591551E '”' +0.1591551E ' "t -
0.106103 |E ~#' 7 40106103 1E *7*“ -0.0795775E 2! "t .

51t

0.0795775 1E 2! "' _0.063662 |E ~#' ! +0.0636621E 7" -
0.0530516 |E 3! "' 4 0.0530516 |E 3! "' -0.0454728 1E ~#'7t .
0.0454728 |[E "7 -0.0397887 [E ~*' " 1 0.0397887 [E *' "t -
0.0353678 |[E ~#!”t ;00353678 |IE "7 -0.0318311E 5' "t .
0.031831 1E 5' 7! _0.02893731E ~%'”"! 1 0.0289373 |E 7
0.0265258 | E %' "t 4 0.0265258 | E ©' "t —0.0244854 |E ~F !t
0.0244854 1E 7

Clear [realfitter, t 1

realfitter [t_ 1 = Chop [ComplexExpand [complexfitter [t111]

1. -0.63662 Sin [%} -0.31831 Sin [t ] - 0.212207 Sin [73 ;‘ ]-
0.159155 Sin [2 7t ] - 0.127324 Sin

[7711

(225 -0106103sin (37t -
9t
(=51~

0.0909457 Sin 5

| -0.0795775 Sin  [4 st ] - 0.0707355 Sin

0.063662 Sin  [5t] - 0.0578745 Sin | MTM] - 0.0530516 Sin (67t ] -
. 13 1t
0.0489708 Sin [ ===
Check out the fit with a plot:
Plot [{f [t ], realfitter [t1}, {t O, L 13},
PlotStyle - {{Thickness [0.02 ], Blue }, {Thickness [0.01 ], Red }},
AxesLabel - {"t", ™ 2B

That's about as good as it can get. If f[0] had been the same as f[L],
then the trouble near the endpoints would have disappeared.
OB.4.b.i) The formula for the Fourier Integral coefficients

Ik 2n)t

Alkl= £ [fIIE-T dt
What's the idea behind the formula
1 (L _lk@nt
AK] = rfof[t]E T dt
as used above?
OAnswer:

The idea:
You go for the whole ball of wax in one gulp.

Given a function f[t] with period L, you go ahead and assume that ft]

can be written in a form like this:
m= 3;
Clear [k, f, complexfitter, A, L 1

k2 xt

m
complexfitter [t ]= Z A[k] E™T
k=-m

E oY A-3] + BTN A[-2] BTN A[S1] £ A[0] + EFTTA[L] ¢
E“.‘.l“.. A[2] +E.5.‘l.".!. A[S]

Once you go with the assumption that
f[t] = complexfitteft],
you gotta agree that
foL complexfitteft] E-* %>

Ip@mt

dt= [Jflt|E T at

no matter what p you go with.
Peek at what this tells you:

This might take a while.
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Clear [p,f ]

Ip_@mt

L
Table [{Expand [J complexfitter [t1E Tt —dt],
0

b @mt

L
" must be", j flt]E— T —dt }
o

(P, -m, my]
L
{{LA[-3], must be, J’ ESC f [t dt }o {LA[-2], must be,
o
L

L
JEﬂ%f[t]dn}, {LAC-1], must be, JEZ‘%f[t]cﬂt},
0 0

21 11

L L
{LA[0], must be, J frtydt}, {LA[L], must be, J E-r flt]dt},
0 0

L
{LA[2], must be, J E*CCftyat},
0

61t

L
{LA[3], must be, J E v frt]dt}}
0

Your eyes lead you to the formula

1k@mt

AKl = L [ E- T at
This is the formula that was used in part i) so successfully.

Explanation over.

0B.4.b.ii)

Not so fast.

Wasn't this supposed to be a math course?

You know very well that a false assumption like
f[t] = complexfitter[t]

can be used to explain anything.

How do you justify this false assumption?

OAnswer:
Good question.
The reason it works is that it is almost true.
Reason: For most functions f[t] with period L, only a bureaucratic
bean-counter armed with a good magnifying glass could ever tell the

difference between f[t] and the complexfitter you get with a very high
m.
Tryiton
f[t] = V1-Codrt]
Because the period Codrt] is 2, the period of f[t] is
L=2.

Clear [f,t,x ]

flt_]1=v1-Cos[nt];

L=2;

m= 6;

Clear [k, complexfitter, A 1

1k @mx

1
Alk_]:= N[f] Nintegrate  [f [x] E"" ¢

, {x,0,L 1}, AccuracyGoal -~ 3];

m
[t_1=Chop[ D' Ark] E*F2*]
k=-m

0.900316 -0.300105E ' "' ~0.300105 E ' "' - 0.0600211 E 2! 7t -

complexfitter

0.0600211 E 2' 7t _0,0257233 E 3! "t _0.0257233 E 3' "t -
0.0142907 E ~*' "' ~0.0142907 E *' "' - 0.0090941 E 5!t -
0.0090941 E 5' 7 ~0.00629592 E “®' "' - 0.00629592 E ©' "t
This time the A[k]'s are calculated with Nintegrate.
I Clear [realfitter, t ]
realfitter [t_ ] = Chop[ComplexExpand [complexfitter [t111]

0.900316 - 0.600211 Cos [nt ] -0.120042 Cos [2 7t ] - 0.0514466 Cos [3rt ] -
0.0285815 Cos [4 it ] -0.0181882 Cos [5t] - 0.0125918 Cos [6 st ]
Plot [{f [t ], realfitter [t1y, (4O, L 13,
PlotStyle - {{Thickness [0.02 ], Blue }, {Thickness [0.01 ], Red }},
AxesLabel - {"t",™ 1}, PlotRange - All ];

[l

© o o9
N A O o NS

o
o
=
=
[
Ny
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Tell that miserable bean counter to get out of your life.

oOB.4.c.i) The connection between fast Fourier Fit and Fourier
integral fit
Activate this code:

Clear [FastFourierfit, Fourierfitters,
F, Fvalues, n, k, jump, num, numtab, coeffs, t, L 1
1
jump [n_] : =jump [n] = N[z—]; Fvalues [F_, L_,n_ 1:=
n
N[Table [F[Lt], {t, 0,1 -jump [n],jump [N]}]];numtab [n_]: =
numtab [n] = Table [k, {k, 1, n }]; Fourierfitters [L,n,t J:=
Table [Eh‘nk' o {k, -n+1,n -1}];coeffs [n_ list. 1:=
1
N[VLength [list 1]
InverseFourier [list 1[Drop [numtab [n], 1 111)
FastFourierfit [F,L,n_,t 1:=
Chop [Fourierfitters [L,n,t ].coeffs [n, Fvalues [F, L n 111;
L: =Expand [a 82 #1 +b o #l +c#l]&

Go with f[t] =t (3 -t) on [0, I} with L = 3 and compare what you get

(Join [Reverse [Fourier [list ][numtab [n]]],

Clear [f,t ]
flt_]=t (3-t);
L=3;
Clear [A, t ]

J;)Lf [t E_\k 4Enn at
Ark_1:=Ark] =N[—L ];
Clear [k, complexintegralfitter 1
m=5;

Ik @mt ]

m
complexintegralfitter [t 1= Chop[ Z A[k] ETT

k=-m

15 - 0455945 E ~§! 7t _ 0455045 E “+° _0.113986 E %!/t -

0.113986 E = - 0.0506606 E ~2' "' - 0.0506606 E 2' "' - 0.0284966 E ~¥' 7! -
0.0284966 E “" - 0.0182378 E %' /! _0.0182378 E v""

n=m+1;

FastFourierfit If,L,nt 1
1.48958 - 0.466506 E ~%' 7' _ 0466506 E “¥ -0.125E “§'7t -

0.125E “5 - 0.0625E 2! 7t _0.0625E 2' 7! _0.0416667 E ~F' 7t _

81 100 5t

0.0416667 E *'v - 0.0334936 E ~ ¥ ' 7! _0.0334936 E -

They are almost the same.
Subtract them:
| Expand [complexintegralfitter [t ] - FastFourierfit f,L,nt 1]
0.0104167 +0.010561 E ~¥' 7! 4 0.010561 E *=* +0.0110137 E ~3'7t 4
0.0110137 E “~* 1+ 0.0118394 E 2! 7! ; 0.0118394 E 2! 7t , 0.0131701E ~5'7t 4

0.0131701 E *%* + 0.0152558 E ~ ¥ ' 7! . 0.0152558 E **

Puny coefficients reflecting how close the fast Fourier fit is to the
Fourier integral fit.
Try it again with a bigger m:

Clear [k, complexintegralfitter 1

m=10;

m
[t_1=Chop[ >’ A[K] S

k=-m

complexintegralfitter

n=m+1;
Expand [complexintegralfitter [t ] - FastFourierfit f,L,nt 1]
0.00309917 +0.00311185E ~¥' "' . 0.00311185 E “3* +

a1t

0.00315039 E ~ ' "t 4 0.00315039 E ¥ +0.00321633 E 2' "t
0.00321633 E 2! " +0.00331238 E %' ”! +0.00331238 E “7" +

0.00344268 E ~ %' "' . 0.00344268 E 5" +0.00361324 E 4! "' .
0.00361324 E 4! 7t 1000383251 E -5 ! 7t | 000383251 E “5 +
0.00411247 E ~%! 7! 1 0.00411247 E **5" . 0.00447017 E &' "t +

201 51

0.00447017 E ' 7t . 0.00493027 E ~¥ ! "t 1 0.00493027 E %"
How do you explain this striking similarity of the two Fourier fits?

OAnswer:

The fast Fourier fit tries to fit at equally spaced points on the plot of f[t]
on [0,L]. When you go with a high n in FastFourierfit[f,L,n,t], you are
fitting so many densely packed points that FastFourierfit[f,L,n,t] is
almost fitting all the points on the plot of f{t] on [O,L].

This nearly replicates the Fourier integral fit of f[t] on [0,L] because
the Fourier integral fit tries to fit the plot of f[t] all the points on the

plot of f[t] on [O,L].
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0OB.4.c.ii) Practicalities

Explain the following statement:

"Fast Fourier fit is almost always fast and practical; Fourier integral fit
is almost sometimes low and slow and sometimes impractical and
even impossible."

OAnswer:

The Achilles heel of the Fourier integral fit is the integral
Akl = L [t E-E at
that most be done to calculate the coefficients. It is possible to try to
calculate them with Nintegrate, but the highly oscillatory nature of
Ik@2mt

flt]E-— T
sometimes makes the integrals impractical for NIntegrate.

Fast Fourier fit carries none of this disappointing baggage.
It runs quickly and accurately - provided no impulses are around.

In their book, "Numerical Methods and Software" (Prentice-Hall,
1989),

David Kahner, Cleve Moler and Stephen Nash say

"Many knowledgeable people feel that [Tukey's fast Fourier fit] is
the single most important contribution to computing since

the advent of the stored programming concept.”

OB.4.c.iii)

Why do folks want to do Fourier integral fit?
O Calculational Answer:

If the professors demand that the students work by hand, then the
student has little choice between Fourier integral fit and fast Fourier fi

Reason:

Doing fast Fourier fit by hand is completely out of the question.

Doing integrals by hand is sometimes possible but hardly ever a gooc
use of your time.

OTheoretical Answer:
In theoretical situations, most good folks want to use the Fourier
integral fit because it gives them a specific formula to work with. But
after the theory is developed and calculations begin, then the same
folks go with fast Fourier fit.

B.5) Fourier integral fit and the heat equation

Start with a heated wire L units long with the temperature allowed to
vary from position to position on the wire. Think of the wire as the
interval 0< x < L. At the start of the experiment, you instantly cool
the ends at x =0 and x = L and maintain these ends at temperature (
and you take pains to guarantee that the rest of the wire is perfectly
insulated.

At the start of this particular experiment, the temperature of the wire
at position x (for & x < L = 5) is given by the following function
startertemp][x]:

L=5;
Clear [startertemp, x 1
startertemp [X_]1 =3Abs[0.2x -Round[0.2X 11;
starterplot = Plot [startertemp [x1,
{x, 0, L 1}, PlotStyle - {{Thickness [0.015 ], Blue }},
AxesLabel - {"x", "starting temperature" ;
starting tenperature

T 2 3 G 5 X
To fully understand this plot, look at this:

SIS
AR,

eooo rk
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Clear [pointer ]
pointer [X_]:=
Arrow [ {0, startertemp [x1}, Tail - {x, 0 }, VectorColor - Red];
Show [starterplot, pointer [311;
starti ng tenperature
1.4

o000 H
MDD,

i 5 X

0 1 2 3
Think of the interval [0,L] = [0,5] as the wire.
The tip of the pointer tells you the starting temperature (at time t = 0)
at the tail of the pointer.
Your problem here is to use Fourier Integral fit to come up with a
function temp[x,t] that estimates the temperature of the wire at
position x at time t after the experiment begins.
Do it.

OAnswer:
The function startertempl[x] is ripe for a rigged Fourier Sine fit on [0,L]
because

startertemp[x] =0 for x =0 and x = L:

| (startertemp  [0], startertemp  [L]}
{0,0. }

Rig startertemp[x] for a pure sine fit on [0,L] and get a goodFourier
integral sine fit of startertemp(x] on [O,L]:

If none of this makes sense to you, then look at B.1) immediately above.

Clear [rigged ]
rigged [x_] : = startertemp [X] 7;0 sxsL;
rigged [X_] : = -startertemp [2L-x]/;L <x=<2L;
Clear [A, t ]
A[K_1:=A[k] = (1L/ (2L)) Nintegrate  [rigged [x] BT, (x,0,2L M
Clear [k, complexfitter 1
m=5;
m Ik @2m) x
complexfitter [x_1 = Chop|[ Z ALK] ET7r ]
k=-m
0.607927 |E %' 7X _0.607927 |IE " - 0.0675475 1E %' 4
0.0675475 1E  *'s™ 1+ 0.0243171|E ' "% _0.02431711E ' "X
Covert to combinations of Sine and Cosine waves.
Clear [approxstartertemp, X 1
approxstartertemp [x_]1 = Chop[ComplexExpand [complexfitter [x111
121585 Sin [ /%] - 0.135005 Sin | 87X, 00486342 Sin X ]

Check out the fit with a plot:
The periodic nature of the Fourier fit ruins the fit at the ends, but
inside [0,L], the fit is not bad.

Plot [ {startertemp [x], approxstartertemp [X1}, {x,0,L },
PlotStyle - {{Thickness [0.02 ], Blue }, {Thickness [0.01 ], Red }},
AxesLabel - {"t',™ }1;

NROORNS

1 2 3 4 L

That's a decent fit.
Now look at the rigged sine fit of startertemp[x]:

| approxstartertemp [x1
121585 Sin [ %] - 0.135095 Sin [3%’(] +0.0486342 Sin (71X ]

Pick off the coefficients of the SHH”Lﬂ] terms:

Clear [A, k]

k
A[k_1] : = Coefficient [approxstartertemp [x], Sin [%]]
Table [A[k], {k, 1, m }]
{1.21585, 0, -0.135095, 0, 0.0486342 }

The reason you run k from 1 to nis to pick up all the coefficients.

Now you're done because you can write downapprox temp[x,t].
It's just:

Clear [temp, X, t ]

S ixy2 K
approxtemp [x_,t_ ] = ZA[k] {E'(T> Csin [ (k 7r) x ]]
i1
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121585E = Sin [ 7] - 0.135085 E =" Sin |

0.0486342 E 7' Sin [nx]
Tthat's all there is to it.

37X
5

DE.09 The Heat Equation
Oy 2 templx, t] = d;temp]x, t]
and the Wave Equation
O(x.2) POsition[x, t] = 9y » position[x, t]
Tutorials

T.1) Different starter temperatures on the left and right:
The general case of the heat equation

This problem is likely to leave you clueless unless you have some
experience with the Basics.

oT.1l.a.i)

Start with a heated wire L units long with the temperature allowed to
vary from position to position on the wire. Think of the wire as the
interval 0< x < L. At the start of the experiment, you apply apparatus
that maintains the temperatures at the end points of then wire. At the
start of this particular experiment, the temperature of the wire at
position x (for 0< x < L= 3) is given by the following function
startertemplt]:

L=3;

Clear [startertemp, x 1

startertemp [x_]=3Abs[0.25x -Round[0.25X ]] +1;

starterplot = Plot [startertemp [x], {x,0,L },
PlotStyle - {{Thickness [0.01 ], Blue }}, PlotRange - {0, 3},
AxesLabel - {"x", "starting temperature" 31

starting %enperalure

2.

1.

oo N o

0.
0.511.522.53%

To fully understand this plot, look at this:

Clear [pointer ]
pointer  [X_1 : = Arrow [ {0, startertemp [X1}, Tal - {x,0 }1;
Show[starterplot, pointer [1.211;

starting tenperature

2.

1.

QRN 0w

0.

Think of the interval [0,L] = [0, 3] as the wire.
The tip of the pointer tells you the starting temperature (at time t = 0)
at the tail of the pointer.
Your problem here is to come up with the function temp[x,t] that
estimates the temperature of the wire at position x at time t after the
experiment begins. This means that you are looking for a function
temp(x,t] satisfying the heat equation

Oix,2 tempx, t] = ditempx, t]
with
-> temgx, 0] a good approximation of starterteprpand
-> tempo, t] = startertemf0] and tempIL ,t] = startertenfip] for all
t's.
Do it.
Make a movie.

OAnswer:

DE.09.B5-T1

The function startertemp[x] is NOT ripe for a rigged Fourier Sine fit on
[0,L] because

startertemp[8]0 and startertemp[l# O .

| {startertemp [0], startertemp L1}
(1,175 1}

To see how to get around this little obstacle, look at the plot of
startertemp[x]:

] Show(starterplot 1;

starting tenperature

2.

1.

g R 0N oW

0.

Run a line through the endpoints of the plot.

Clear [line ]
(startertemp  [L] - startertemp  [0]) X

line [x_] = T

+ startertemp [0]

1+0.25x

Take a look:

Plot [ {startertemp [x],line [x]}, {x,0,L 3},
PlotStyle - {{Thickness [0.01 ], Blue }, {Thickness [0.01 ], Red }},
PlotRange - {0, 3 }, AxesLabel - {"x", "starting temperature" }1;

starting tenperature

2.

1

g 0N 0w

0.

Put

adjustedstartertemp[x] = startertemp(x] - line[x]
and plot:

Clear [adjustedstartertemp 1

adjustedstartertemp [X_1 = startertemp [x] -line [x];

Plot [adjustedstartertemp [x1,

{x, 0, L 3}, PlotStyle - {{Thickness [0.01 ], Blue }},
AxesLabel - {"x", "starting temperature" 1

starting tenperature
1

0.8
0.6
0.4
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05 1 15 2 25 3%

The function adjustedstartertemp[x] IS ripe for a rigged Fourier Sine fit
on [0,L] because

adjustedstarterteni@] = O andadjustedstartertenip] = 0.

| {adjustedstartertemp [0], adjustedstartertemp [L1}

{0,0. }
Rig adjustedstartertenpy] for a pure sine fit on [0,L] and get a good

sine fit ofadjustedstarterteni] on [O,L]:

Clear [rigged ]
rigged [x_] : = adjustedstartertemp
rigged [x_] : = -adjustedstartertemp
n =10;
Clear [riggedsinefit ]
riggedsinefit [X_ 1=

Chop [ComplexExpand [FastFourierfit

[x]1/,0 sxsL;
[2L-x]/;L <x=<2L;

[rigged, 2L, n, x 111

0.787364 Sin [%] - 0.195559 Sin [ 2 ;‘ X ] +0.00110072 Sin  [rx] +
0.0461653 Sin [ 4 2X]-003sin | 57X 1. 00025727 Sin (2 7X] +
0.0113915 Sin | 7 ;‘X | -0.0108981 Sin | 8 ;‘X | +0.00512782 Sin  [37X]
fitplot = Plot [ {adjustedstartertemp [x], riggedsinefit [x1}, {x,0,L },
PlotStyle - {{Thickness [0.02 ], Blue }, {Thickness [0.008 ], Red }},
AxesLabel - {"X","™ }1;
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That's a decent fit.

Now look at the rigged sine fit of startertep[x]:
| riggedsinefit [x]

0.787364 Sin [%] - 0.195559 Sin [ Z/T‘X] +0.00110072 Sin [ x] +
0.0461653 Sin [4%} ~0.03sin [27%] 00025727 Sin [27x] +
0.0113915 Sin | ! gx ] -0.0108981 Sin [S%X} +0.00512782 Sin  [3 71X

Pick off the coefficients of the Sin[(k Pi/L) x] terms:
Clear [A k1]
- . - . (k) x
A[k_] : = Coefficient [rlggedsmeflt [x], Sin [T] ];

coeffs = Table [A[k], {k,1,n }]
{0.787364, -0.195559, 0.00110072, 0.0461653, -0.03, 0.0025727,
0.0113915, -0.0108981, 0.00512782, O }

The reason you run k from 1 to n is to pick up all the coefficients.

Now you're done because you can write down temp[x,t]:

Clear [temp, x,t 1]

ul kx \2 (k ) x

temp [x_, t_ ] =line [x]+ Y A[k]E¢T) ! Sin [————

é [——]

1+025x +0.787364E 7 Sin [ 7] - 0195650 E 7" Sin [22X).
JE w0 o 14X
0.00110072 E Sin [7x] +0.0461653 E ~~ 5 Sin [T] -
0.03E ~®%" sin [5” ] +0.0025727 E ~47*t Sin [2 7x] +
00113015 € ~“¥* sin [ 12X ] 00108081 5" sin 82X,

0.00512782 E ! Sin [3 71x]

Notice the line term at the beginning.

Here comes a movie showing the approximate temperature along witl

the line function.

Clear [tempplotter ]
tempplotter  [t_]:=Plot [{temp[x, t ],line [x1}, {x,0,L },

PlotStyle - {{Thickness [0.01 ], Blue }, {Thickness [0.01 ], Red }},

PlotRange - {0, 3 },

AxesLabel - {"x"," temperature” }, PlotLabel ->N[t]"=t"1];
timejump = 1;
Table [tempplotter [t1, {t, 0,6, timejump }1
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- Graphics -, - Graphics -}
Grab all the plot and animate.

You are seeing the wire settle into its steady state temparature which &
point x with 0< x < L is given by:

| line [x]

1+0.25x

|
oT.l.a.i)

How does the heat equation explain why the little stunt with the line
works?

OAnswer:

Engineering studies have shown that after the appropriate unit

adjustments are made, the function temp[x,t] satisfies the heat equatio
Ox,2 temgx, t] = oitemgx, t]

with

-> temgx, 0] = startertemfx] and

->tempO, {] = startertemf0] andtemL, t] = startertemflL] for all t's.

OCheck out the heat equation D[temp[x.t], {x,2}] = D[temp[x,t], t]:

To do this, look at:

| tempixt ]

1.4025x +0787364E ~* Sin [ 7] - 0195550 E 7" Sin |

27X
3l
4 71X

.
+0.0025727 E 47t Sin [2 7x] +

0.00110072 E "' Sin [nx] + 0.0461653 E ~*% Sin |

0.03E 5" sin [ 22X ]

4

0.0113915 E 5+ Sin -0.0108981 E 5 Sin

(15 s [22X)

0.00512782 E 97! Sin [3 X]
Note the Sine terms. In the Basics, it was seen that the Sine terms wer
specially selected to solve the heat equation. So checking that temp[x,
satisies the heat equation reduces to checking that the first two terms c

temp[x,t] solve the heat equation. The first two terms are:

| line [x]
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1+0.25x
Check whether line[x] solves the heat equation
A line[x] = d;line[x]:

| (0x2,line [x1, & line [x]}
0,0}

This tells you that
Iz line[x] = d;line[x].
and explains why templx,t] solves the heat equation.

OCheck out temp[0,0] = startertemp[0] aednp[L,0] = startertemp[L]

| {startertemp  [O], temp [0, 0 ]}
(1,13
| (startertemp

(175,175 }
Perfecto.

[L],temp [L, O]}

OCheck out temp[x,0] = startertempl[x]

Plot [ {startertemp [x],temp [X,0 1}, {x,0,L 1},

PlotStyle - {{Thickness [0.015 ], Blue }, {Thickness [0.008 ], Red }},
AxesLabel - {"x","™ }1I;
2.4
2.2
2
1.8
1.6
1.4
1.2
0.5 1 15 2 25 3 *

Good enough. The slight discrepanies indicate that temp[x,t] does not
solve the original problem but does solve a problem virtually
indistinguishable from the original problem.

oT.1.a.i)

That idea of running a line connecting
{0, startertemp[0]} to {L, startertemp[L]}
looks like a really cheap trick.
Could you have run another curve through those points and gotten
good results?
OAnswer:
If you make the adjustment with any other function f[x] with
f[0] = startertemf0] andf[L] = startertemfL_], the issue is whether the

heat equation is solved. This boils down to checking

Check whether f[x] solves the heat equation
é\x,z, f[X] =0 f [x]:

Clear [f]
{0gx23f [X], o f [x]}
(f7[x]1,03

This tells you that to solve the heat equation you need

f'[x] = 0. This forces you to go with a line:

] DSolve [f”[x] ==0,f [x],x]
{({f [x] > C[1] +xC[2]}}

Not only was the line a cheap trick, it was the only possible adjustmer
that could have been made.

T.2) When the starter conditions are given by a data list

Activate this code:

Clear [FastFourierfit, Fourierfitters,
F, Fvalues, n, k, jump, num, numtab, coeffs, t, L 1

. . 1

jump [n_] :=jump [n] = N[E];

Fvalues [F_,L_,n_ 1:=N[Table [F[Lt], {t,0,1 ~-jump [n],jump [n]}1];
numtab [n_] : = numtab [n] = Table [k, {k,1,n }];

[L,n_t , {k, -n+l,n -1}

2mikt

]:=Table [E™T

Fourierfitters

DE.09.T1-T2

1:=Join [Reverse [Fourier [list ][numtab [n]]],

[list 1[Drop [numtab [n], 1 171 /N[V Length [list 1]
FastFourierfit [F,L.,n_t 1:=

Chop [Fourierfitters [L,n, t ].coeffs
L: =Expand [@a 02 }#1 + b 0 #1 +Cc#1]&

coeffs [n_, list_
InverseFourier

[n, Fvalues [F, L, n 111;

OT.2.a) Heat equation

Start with a heated wire L units long with the temperature allowed to
vary from position to position on the wire. Think of the wire as the
interval 0< x< L. At the start of the experiment, you instantly cool

the ends at x =0 and x = L and maintain these ends at temperature 0,
and you take pains to guarantee that the rest of the wire is perfectly
insulated.

At the start of this partricular experiment, the temperature of the wire
at position x (for & x < L = 4) is given by the following startertemp
data:

startertempdata = {{0.0,0.0 1}, {0.2,0.25 1},
{0.4,035 1}, {06,048 1}, {08,069 1}, {1.0,0.75 1},
{1.2,097 '}, {14,108 }, {16,123 }, {1.8,1.44 1}, {2.0,15 1},
{22,144 '}, {24,121 1}, {26,107 1}, {28,099 }, {3,075 1},
{3.2,0.70 '}, {34,049 1}, {36,032 1}, {38,024 }, {4,00 }};
starterdataplot =
ListPlot [startertempdata, PlotStyle - {PointSize [0.03 ], Red },
1
AspectRatio - > AxesLabel - {"x", "startertemp [x1" )]:
startertenmp(x]
1.4 e%e
1.2 ° °
1 ® ®e
0.8 ° °
0.6 . ° ° .
0.4
0.2; ® ° ®e
d 2 3 T

1
Your problem here is to come up with a function temp([x,t] that
estimates the temperature of the wire at position x at time t after the
experiment begins.
Do it.
Throw in a good movie.

OAnswer:

Take another look at the data:

| Show[starterdataplot 1;
startertenp[x]

1.
1.

N DO DR NS

eooo

Now put an interpolating function through these data:

Clear [startertemp 1]

startertemp [t_ 1 = Interpolation [startertempdata 1[t]
InterpolatingFunction [{{0.,4. }}, <>][t]
Take a look:
L=4
starterplot = Plot [startertemp [x1,

{x, 0, L 1}, PlotStyle - {{Thickness [0.01 ], Blue }},
AxesLabel - {"x", "starting temperature" }1;
starting tenperature

Cooo Rk
NAO RN

1 2 3 4
Check this plot against the data:

| both = Show[starterplot, starterdataplot 1;
starting tenperature

Cooo Rk
NRO RN

1 2 3 T

To fully understand the curve plot, look at this:
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Clear [pointer ] 0.0024899 Sin  [3 1 x] + 0.0280287 Sin [134—”] - 0.00570962 Sin [7’TX ]+
pointer [X_1]:=
Arrow [ {0, startertemp [x1}, Tail - {x, 0 }, VectorColor - Black 1; 0.0277904 Sin [is_”_x] -0.00285317 Sin  [4 s1x] - 0.0196747 Sin [&LX_] ¥
Show [both, pointer [1.711; 94 19 4
starting tenperature 0.00022326 Sin [ =] - 0.00924238 Sin [ =% |
1.4 . .. . .
12 Pick off the coefficients of the Sin[(k Pi/L) x] terms:
0.6 Clear [A, k]
0.
o.g A[k_1] : = Coefficient [riggedsinefit [x], Sin [@-]]
X
. . 1 2 3 . coeffs =Table [A[k], {k,1,n }]
Think of the interval [0,L] = [0,4] as the wire. {1.27682, 0.000394774,  -0.112577, 0.000224514, 0.0697904, 0.00732766,
. . . . -0.0199829, 0.00176336, 0.0309918, 0.001, -0.000031248, 0.0024899,
The tip of the pointer tells you the starting temperature (at time t = 0) i 0.0280287, _0.00570962, 0.0277904,  -0.00285317, 0.0196747,

0.00022326, -0.00924238,0 }
The reason you run k from 1 to nis to pick up all the coefficients.

the tail of the pointer.
The function startertemp(x] is ripe for a rigged Fourier Sine fit on [0,L]

Now you're done because you can write down temp[x,t]:
because startertemp[x] = 0 for x =0 and x = L:

Clear [temp, X, t ]

| {startertemp  [0], startertemp L1} il kx \2 (k ) x
- -(T) tgj
0.0, ) temp [x_, t_ ] = kZ='1‘A[k] E Sin [ C ]
Rig startertemp(x] for a pure sine fit on [0,L] and get a good sine fit of 127682 E ~ %" Sin [”TX] +0.000394774 E %" Sin [”TX] -
startertempl[t] on [0,L]: 0112577 € " sin [ 32X ] . 0000224514 € 1 Sin [rx) +
Clear Trigged 1 0.0697904 E - sin [ 27X ] . 000732766 E ~*%" sin [ 37X ] -
rigged [x_] : = startertemp [x]/;0 sxsL; 4 2
rigged [x_]:=-startetemp [2L-x] /L <x=s2L 0.0199820 E ~**%* sin [ 2] +0.00176336 E 47t Sin [27rx] +
n=4;
Clear [riggedsinefit ] 0.0300918 E ~%#* sin [ 27X ], 0001 E ~#F" sin [ 221X -
riggedsinefit [X_]= , 411 2
Chop [ComplexExpand [ FastFourierfit [rigged, 2L, n,x 111 0.000031248 E ~ % Sin | 4’”‘ ] +0.0024899 E 2"t Sin [3 7] +
. 7TX " 37X 2y 4921
128033 Sin [~ ] - 021967 Sin [ =] 0.0280287 E % sin | 1347rx ] - 000570062 E ~*+* sin [772n< ]+
fitplot = Plot [ {startertemp [x1, riggedsinefit [x1}, {x,0,L }, Cmsa 15 71X 162 .
PlotStyle - {{Thickness [0.02 ], Blue }, {Thickness [0.008 ], Red }}, 00277904 E ~% Sin [ =27~ ] - 000285317 E 1°7" " Sin [471x] -
Axestabel > (% 31 00196747 € ¥ sin [ 177X ] . 0.00022326 € ~*¢* sin [ 27X ] -
1.4
L2 0.00924238 E %" sin [ 191X |
0.8 .
0.6 Here comes a movie:
0.4
0.2 Clear [tempplotter ]
1 3 3 T tempplotter  [t_]:=

Plot [temp [x,t 1, {x,0,L }, PlotStyle - {{Thickness [0.01 ], Blue 1}},

That's not a great fit. Go for a better fit by increasing n: PlotRange —» {0, 15 . Axeslabel » (x", " temperature” N

Cl igged 1
ear [rigged 1 PlotLabel - N[t] "= t", AspectRatio - E]

rigged [x_] : = startertemp [x]1/;0 sxsL;
rigged [x_]:= -startertemp [2L-Xx] /;L <x=s2L; timejump = 1
n = 20; Table [tempplotter  [t], {t, O, 6, timejump }1]

Clear [riggedsinefit 1 tenperature

riggedsinefit [X_1= 1 2
Chop [ComplexExpand [FastFourierfit [rigged, 2L, n, x 111 1' N
127682 Sin [ 75| + 0.000394774 Sin [ 5] - 1
0.8
0.112577 Sin [%] +0.000224514 Sin  [7x] +0.0697904 Sin | 57X ]+ 0.6
0.4
0.00732766 Sin | 3%1} -0.0199829 Sin | 7_21] +0.00176336 Sin  [27X] + o2
00309918 sin [ 27X ] L0001 [27%] 0000031248 Sin [117X ] i 2 3 T
2 4 tenperature 1. -t
0.0024899 Sin  [3 ] +0.0280287 Sin | 134” | -0.00570962 Sin | ’ ’2”‘ |+ 1.4
1.2
0.0277904 Sin [1547”] -0.00285317 Sin  [4 7 x] - 0.0196747 Sin | 174” X7 . 1
. 9 x . 19 nx 0.8
0.00022326 Sin | | -0.00924238 sin - [ =] o6
fitplot = Plot [ {startertemp [x1, riggedsinefit [x1}, {x,0,L }, 0.4
PlotStyle - {{Thickness [0.02 ], Blue }, {Thickness [0.008 ], Red }}, 0.2
AxesLabel - {"x","™ }1; 1 2 3 X
1.4 tenperature 2. -t
1.2
1 1.4
0.8 1.2
0.6 1
0.4 0.8
0.2 0.6
‘ 1 2 3 T X 0.4
That's better. 0.2
. . . i 2 3 T
Now look at the rigged sine fit of startertep[x]: tenperature 3 -t
| riggedsinefit [x1 1.4
) X ) X 1.2
1.27682Sin [ ;=] +0.000394774 Sin [ =~ ] - 1
0.8
0.112577 Sin [BLX] +0.000224514 Sin [ x] + 0.0697904 Sin [?%X} + o6
0.00732766 Sin [ 2 2] - 0.0199829 Sin [%] +0.00176336 Sin (2 7X] + o
0.0309918 Sin [ 2 2] +0.001 Sin [572X ] 0000031248 sin [ 1L7X ] . i 3 3 T X

280



tenperature 4. -t

1.4
1.2

oo oo
N RO ®

tenperature 5.
1.4

oo oo
N Ao

tenperature 6.

1.4

oo o9
N A O ©

T 2 3 7 X

{- Graphics -, - Graphics -, - Graphics -, - Graphics -, - Graphics -,
- Graphics -, - Graphics -}

Those exponentials are cooling this wire fast.

OT.2.b) Wave equation

Activate this code:
Clear [FastFourierfit, Fourierfitters,
F, Fvalues, n, k, jump, num, numtab, coeffs, t, L 1
. . 1
jump [n_] :=jump [n] = N[E];
Fvalues [F_,L ,n_ 1:=N[Table [F[Lt], {t, 0,1 -jump[n],jump [n]1}1];
numtab [n_] : = numtab [n] = Table [k, {k, 1,n }1;
Fourierfitters [L,n_t_ 1:=Table [E“’L“ , {k, -n+1,n - l}];
coeffs [n_, list. ]:=Join [Reverse [Fourier [list ][numtab [n]1]],

[list ][Drop [numtab [n], 1 111 /N[V Length [list 1]

InverseFourier

FastFourierfit [F.L.,n,t ]:=
Chop [Fourierfitters [L,n,t ].coeffs [n, Fvalues [F, L, n 111;
L: =Expand [@a 022} #1l + b O #1 + c#1]&
The ends of a guitar string are anchored at 0 and L on the x-axis and
the string is pulled to an initial position and then allowed to vibrate on
its own starting with initial velocity 0.

At the start of this partricular experiment, the position of the wire at
position x (for 0< x < L = 4) is given by the following starterposition
data:
starterpositiondata = {{0.0,0.0 }, {02,025 1},
{0.4,035 }, {0.6,0.48 1}, {08,069 }, {10,075 },
{12,097 }, {14,108 1}, {16,123 1}, {18 144 }, {20,15 1},
{22,144 '}, {24,121 1}, {26,107 1}, {28,099 1}, {3,075 1},
{32,070 }, {34,049 1}, {36,032 1}, {38,024 }, {4,00 }};
starterdataplot =
ListPlot [starterpositiondata, PlotStyle - {PointSize [0.03 ], Red },
AspectRatio - % AxesLabel - {"x", "starterposition [x1" }];

starterposition[x]

1.4 °

=

S
N A OO N

Your problem here is to come up with a function position[x,t] that
estimates the position of the guitar string at position x on the x-axis at
time t after the experiment begins.

Do it.

Throw in a good movie.

OAnswer:

Take another look at the data:

] Show(starterdataplot 1;

DE.09.T2

starterposition[x]

1.4 L 4
1.2 ° °
1 °® ®e
0.8 ° °
06 . ° ° .
0.4
02fe° ®e
¢ i 2 3 T
Now put an interpolating function through these data:
Clear [starterposition 1
starterposition [t_ 1 = Interpolation [starterpositiondata 10t1]
InterpolatingFunction [{{0.,4. 1}, <>][t]
Take a look:
L=4
starterplot = Plot [starterposition [x1,
{x, 0, L 1}, PlotStyle - {{Thickness [0.01 ], Blue }},
AxesLabel - {"x", "starting position" 11
starting position
1.
1.2
1
0.8
0.6
0.4
0.2
1 2 3 5 X
Check this plot against the data:
| both = Show[starterplot, starterdataplot 1;
starting position
1.
1.2
1
0.8
0.6
0.4
0.2
¢ 1 2 3 T

To fully understand the curve plot, look at this:
Clear [pointer ]
pointer [x_1]:=
Arrow [ {0, startertemp [x1}, Tail - {x, 0 }, VectorColor - Black 1;
Show[both, pointer [2.85 11;

starting position

oooo kpr
N A O ORN

1 2 3 x

The function starterposition[x] is ripe for a rigged Fourier Sine fit on

[0,L] because starterposition[x] =0 for x =0 and x = L:

| {starterposition [0], starterposition [L1}

{0.,0. }
Rig starterposition[x] for a pure sine fit on [0,L] and get a good sine fit
of starterposition[t] on [O,L]:

Clear [rigged ]

rigged [x_] : = starterposition [x]1 /7,0 sx=sL;

rigged [x_] : = -starterposition [2L-x]/;L <xs2L;
Clear [riggedsinefit 1
n =18;

riggedsinefit [x_1=

Chop [ComplexExpand [FastFourierfit [rigged, 2L, n, x 111

i X . TTX
1.2771 Sin [T] +0.0004125 Sin [T] -
0.112591 Sin [%} +0.000257171 Sin  [7x] +0.0703317 Sin | 57x ]+
0.00720654 Sin | 37X ] -00191593 Sin [ 72X ], 000184198 Sin  [2 7 x] +
00319138 Sin [ 2 ZX ] +0.000188565 Sin [ 22X ;‘X ] +0.00454808 Sin [7114” ]+
0.00156063 Sin  [3 7rx] + 0.0182007 Sin [7134” ] - 0.00432241 sin | ’ ’2”( ]+
0.0171384 Sin [1‘?%*] - 0.00180089 Sin  [4 7 x] - 0.00760997 Sin [7174” X]
fitplot = Plot [ {starterposition [x], riggedsinefit X1}, {x,0,L },
PlotStyle - {{Thickness [0.02 1, Blue }, {Thickness [0.008 ], Red }},
AxesLabel - {"x","™ }I;
1.4
1.2
1
0.8
0.6
0.4
0.2
) 1 2 3 T
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That's a pretty good fit.

Now look at the rigged sine fit of starterposition[x]:
| riggedsinefit [x1

127718in [ ZX] +0.0004125 sin [ 5] -
0112501 sin [ 27X 0000257171 Sin  [1x] + 00703317 sin [ 27X ]
0.00720654 Sin | s ; X1 -00191593 Sin [ 7 X 1, 0.00184198 Sin  [27X] +
00319138 sin [ 27X ] - 0.000188565 Sin | 5%*] +000454808 Sin [ H1X ]
0.00156063 Sin  [3 7rx] + 0.0182007 Sin [1‘?%] -0.00432241 Sin | ! ’2”‘ ]+
0.0171384 Sin [1547’”‘} -0.00180089 Sin (4 7 x] - 0.00760997 Sin | 174” X

Pick off the coefficients of thSin[(k%] terms:

L

4
Clear [A k]

. . L (k 7) x

A[k_] : = Coefficient [riggedsinefit [x], Sin [———]]
coeffs =Table [A[k], {k, 1,n }]

{1.2771, 0.0004125, -0.112591, 0.000257171, 0.0703317, 0.00720654,
-0.0191593, 0.00184198, 0.0319138, 0.000188565, 0.00454808,
0.00156063, 0.0182007, -0.00432241, 0.0171384, -0.00180089,

-0.00760997, 0}
Now you're done because you can write down position[x,t]:

Clear [position, X, t 1
Length [coeffs ]
position  [x_,t_ ] = Z Ark] Cos[ﬂ] Sin [m]
k=1
t . . X
1.2771 Cos [ 2] sin [”T] +0.0004125 Cos [ 55— '] sin [5-]-
0.112591 Cos [3;” ] sin [3 ZX ] +0.000257171 Cos [t ] Sin [7x] +
57t 571 37t g o (37X
0.0703317 Cos [27—] sin [ 27 X ] +0.00720654 Cos | ] sin [=5=] -
0.01901593 Cos |~ Zt ] sin [ 7 Z ] +0.00184198 Cos [2 7t ] Sin [271X] +
9t 57t o (5%
0.0319138 Cos [=7=] Sin [27X ], 0.000188565 Cos | 5] sin [222]
0.00454808 Cos [ X171 | sin | 14” ] + 0.00156063 Cos [3t] Sin [37X] +
0.0182007 Cos | 134 'sin [ 23X ] 000432241 Cos [T2% ] sin [12X ]
0.0171384 Cos [ 211 | sin [ 127X 15 X.] ~0.00180089 Cos [4t] Sin [47X] -

000760997 Cos [ %] sin [1_7?’1}

That's all there is to it.
Here comes the movie:

Clear [positionplotter 1
positionplotter [t1:=
Plot [position [Xx,t 1, {x,0,L 1}, PlotStyle - {{Thickness [0.01 ], Blue }},
PlotRange - {-1.5,1.5 1}, AxesLabel - {"x"," position" 1

1
PlotLabel - N[t] "= t", AspectRatio - E];

timej L
imejump = —;
3

Table [positionplotter [t1, {t 0, 2L, timejump }1
posi tion

1.5 2

tion 1.33333 = t

ok oowm

=

. @
o ko

DE.09.T2

position 2. 66667 = t
1.5
1
0.5
1 2 3 e
-0.5
1
-1.5
posi tion 4, =t
1.5
1
0.5
1 2 3 X
-0.5
1
-1.50
position 5.33333 =t
1.5
1
0.5
1 2 3 T X
-0.5
-1
-1.5
position 6. 66667 = t
1.5
1
0.5
1 2 3 T
-0.5
-1
-1.5
posi tion 8. =t
1.5
1
0.5
1 2 3 X
-0.5
-1
-1.5
{- Graphics -, - Graphics -, - Graphics -, - Graphics -, - Graphics -,
- Graphics -, - Graphics -}

Grab all the plots and animate.

The Cosines in the formula for position[x,t] are responsible for the
periodic motion (waves) of the string:

| position [x,t ]

12771 Cos [ %] sin [ + 00004125 Cos [ 7] sin [ZX] -
0.112591 Cos [321 | sin [3—;’&] +0.000257171 Cos [t Sin [rx] +
00703317 Cos [ 27 sin [ 25 ] +0.00720654 Cos [ 27 %] sin [37X]
0.0191593 Cos | 72‘ ] sin [72 ] +0.00184198 Cos [2 7t ] Sin [27x] +
0.0319138 Cos | 92‘ ] sin [ 27X . 0.000188565 Cos [ 22 ] sin [szﬂ} +
0.00454808 Cos [ 114“ ] sin [ 114” ] +0.00156063 Cos [3 7t ] Sin [37x] +
0.0182007 Cos | 134’” ] sin | 134” ] - 0.00432241 Cos [7%‘] sin [ 7 ;‘X ]+
0.0171384 Cos | 154’“ ] sin | 154” ] - 0.00180089 Cos [4 7t ] Sin [471x] -
000760997 Cos [ X7/ ] sin [ 21X |
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DE.09 The Heat Equation
0,23 templx, t] = dstemp[x, t]
and the Wave Equation
0¢x.2) position[x, t] = 9y 2 position[x, t]

Give It a Try!

G.1) Pure Sine fits

0G.1.a.i)
Here's a function f[x] and its plot on [0,L] for L =2
Clear [f, x ]
f [X_] = 5 E—Random[ReaI, {051 }1x Sin [2 x1;
L=2m

Plot [f [x], {x, 0, L }, PlotStyle - {{Thickness [0.01 ], Brown }},
AxesLabel - {"x","f [x]"}1;

f[x]

3

2

1

1v 4 =10
1

Here's a fast Fourier fit of this function:
| Chop [ComplexExpand [FastFourierfit If,L,8x 111
0.330685 + 0.740269 Cos [x] + 0.148714 Cos [2x] - 0.422141 Cos [3X] -
0.268166 Cos [4x] - 0.18768 Cos [5x] - 0.148714 Cos [6X] -
0.130448 Cos [7x] +0.309308 Sin  [x] +1.10624 Sin  [2x] + 0.344108 Sin  [3x] +
0.103842 Sin  [4x] +0.0430098 Sin  [5x] +0.0199921 Sin  [6X] +
0.00820957 Sin  [7 X ]
Mixed Sines and Cosines.
How does the plot indicate why the fast Fourier fit of f[x] on [0,L] did
not turn out to be a pure sine fit?

0G.1.a.ii)
Here's a function f[x] and its plot on [O,L] for L = 3
Clear [f, x ]
fIx_1=x(x-15)% (x - 3);
L=3;

Plot [f [x], {x,0,L 1},
PlotStyle - {{Thickness [0.01 1, Brown }}, PlotRange -> All,
AxesLabel - {"x","f [X]"}1;

Here's a fast Fourier fit of this function:
| Chop [ComplexExpand [FastFourierfit If, L, 12, x 111

0.901849 sin [ 22X ] . 0670802 8in [ 22X ] .
0.229051 Sin [27x] + 0100747 Sin [ 87X 5 X ]+ 0.052185 Sin [7103” L

0.0299988 Sin  [4 71 x] +0.0184008 Sin [Lé‘ X] +0.011664 Sin [L; X

0.00737094 Sin  [6 tx] + 0.00436864 Sin +0.00203906 Sin

Pure Sine fit.
How does the plot indicate why the fast Fourier fit of f{x] on [0,L] did
turn out to be a pure sine fit?

0G.1.a.iii)

Look at this:
Clear [f, t ]
L =4
f[t_1=3Abs[05t -Round[0.5t ]1;
Chop [ComplexExpand [FastFourierfit If, L, 12, t 111
0.75 -0.622008 Cos [t ] -0.0833333 Cos [3t] - 0.0446582 Cos [5rt ]
Plot [f [t], {t,0,L 1}, PlotStyle - {{Thickness [0.01 ], VenetianRed }},
AxesLabel - {"t", "f [t1"3¥1;

[ 2037r>( ] [ 2237TX ]

DE.09.G1:G2

o000 kpk

t

) 1 2 3 4
How does the plot explain why the fast Fourier fit of f[t] on [0,L] is
not a pure sine fit?
Rig f[t] on [0,2 L] to get a pure sine fit of f[t] on [0,L]. Show off your
work with a plot.

O0G.l.a.iv)

Look at these:
Clear [f, t 1
L = 2Pj;
f[t 1 =Sin[12t];
Chop [ComplexExpand [FastFourierfit f,L, 6,t11]
Chop [ComplexExpand [FastFourierfit If,L, 14,t 111
Chop [ComplexExpand [FastFourierfit If,L, 20,t 111
Chop [ComplexExpand [FastFourierfit If, L, 200,t 111

0
1.Sin [12t ]
1.Sin [12t]
1.Sin [12t ]
Got any idea why that happened?
aTip:

If you're going to do a lot of plots, then you're doing too much.

The answer is staring at you from the screen.

G.2) Sine fit and the heat equation;
Sine fit and the wave equation

0G.2.a) Heat Equation

Start with a heated wire L units long with the temperature allowed to
vary from position to position on the wire. Think of the wire as the
interval 0< x < L. At the start of the experiment, you instantly cool

the ends at x =0 and x = L and maintain these ends at temperature 0,

and you take pains to guarantee that the rest of the wire is perfectly
insulated.

At the start of this partricular experiment, the temperature of the wire
at position x (for & x< L =5) is given by the following function
startertemp[x]:

In this problem, the starting temperature of the wire at x is jointly
proportional to the squares of the distance
of x from the endpoints of the wire.
L=5;
Clear [startertemp, X ]
startertemp  [x_] = 0.07 x 2 Sin [x]% (x -5)2;

starterplot = Plot [startertemp [x1,
{X, 0, L 1}, PlotStyle - {{Thickness [0.01 1, Blue }},
AxesLabel - {"x", "starting temperature" 11

starting tenperature

[
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To fully understand this plot, look at this:

Clear [pointer ]
pointer [x_1]:=

Arrow [ {0, startertemp [x1}, Tail - {x, 0 }, VectorColor -> Goldenrod ];
Show [starterplot, pointer [211;
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Think of the interval [0,L] = [0, 5] as the wire.
The tip of the pointer tells you the starting temperature (at time t = 0)
at the tail of the pointer.
Your problem here is to come up with the function temp[x,t] that
estimates the temperature of the wire at position x at time t after the
experiment begins.
This means that you are looking for a function temp[x,t] satisfying the
heat equation

Oix,2 temgx, t] = octemyx, t]
with
-> temp[x,0] a good approximation of startertemp[x] and
-> templ0,t] = startertemp[0] and temp][L ,t] = startertemp]L] for all
t's.
Do it.
Make a movie.

0G.2.a.ii)

Run your movie again to get your opinion about the answer of the
following question:

As time goes, on does any of the excess heat on the right warm up th
left?

0G.2.b.i) Wave Equation

The ends of a guitar string are anchored at 0 and L on the x-axis and
the string is pulled to an initial position and then allowed to vibrate on
its own starting with initial velocity 0.

At the start of this particular experiment, the position of the wire at
position x (for 0< x < L = 5) is given by the following function

starterposition[x]:
L =4
Clear [starterposition, x 1
starterposition [x_]=31 (0.25x -Round[0.25x 1)2;
starterplot = Plot [starterposition [x1, {x,0,L 1},
PlotStyle - {{Thickness [0.01 1, Blue }}, PlotRange - All,
AxesLabel - {"x", "starting position" 1

starting position
: JA M
Think of the curve as the the starting position of the guitar string.
To fully understand this plot, look at this:

Clear [pointer ]

pointer  [Xx_1] : = Arrow [
{0, starterposition

Show[starterplot, pointer
starting position

b

2 3 4

The tip of the pointer tells you the starting position (at time t = 0) at
the tail of the pointer.
Your problem here is to come up with the function position[x,t] that
estimates the position of the guitar string at position x on the x-axis at
time t after the experiment begins.
This means that you are looking for a function position[x,t] satisfying
the wave equation

Oix,2y positionx, t] = dy, 2 positiornx, t]
with
-> position[x,0] a good approximation of starterposition[x] and
-> position[0,t] = starterposition[0] and position[L ,t] =

[x]}, Tail - {x, 0 }, VectorColor
[231];

- CobaltGreen ]

DE.09.G2

starterposition[L] for all t's, and

-> g positiorx, t] /.t - 0= 0 for all x's

Do it.

Make a movie and explain what the movie dipicts.

Do you notice anything worth commenting on?
oTip:

Run your t from 0 to 2 L to reveal one complete oscillation of this
vibrating string.
O0G.2.c.i)

The ends of a guitar string are anchored at 0 and L on the x-axis and
the string is pulled to an initial position and then allowed to vibrate on
its own starting with initial velocity 0.

At the start of this particular experiment, the position of the wire at
position x (for 0< x < L = 2) is given by the following function
starterposition[x]:

L=2

Clear [starterposition, x 1

starterposition [X_] = Sin [7xx%];

starterplot = Plot [starterposition [x], {x,0,L },
PlotStyle - {{Thickness [0.01 ], Blue }}, PlotRange - All,
AxesLabel - {"x", "starting position" }1;

starting position
1

Think of the curve as the the starting position of the guitar string.
To fully understand this plot, look at this:

Clear [pointer ]
pointer [x_]:=

Arrow [ {0, starterposition [x]}, Taill - {x, 0 }, VectorColor - Magenta ]

Show [starterplot, pointer [0.6 11;

starting position
1

0.5

-0.5
-1

The tip of the pointer tells you the starting position (at time t = 0) at
the tail of the pointer.
Your problem here is to come up with the function position[x,t] that
estimates the position of the guitar string at position x on the x-axis at
time t after the experiment begins.
This means that you are looking for a function position[x,t] satisfying
the wave equation
O, 2 positionx, t] = 9y, positionx, t]
with
-> position[x,0] a good approximation of starterposition[x] and
-> position[0,t] = starterposition[0] and position[L ,t] =
starterposition[L] for all t's, and
-> D[position[x,t],t]/.t->0 = 0 for all x's
Do it.
Make a movie and explain what the movie depicts.
oTip:

Run your t from 0 to 2 L to reveal one complete oscillation of this
vibrating string.
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0G.2.c.ii)

Run your movie again to get your opinion about the answer of the
following question:

As time goes, on does any of the action on the right move over to the
left or does it stay where it started?

0G.2.c.iii)

If you did a good job with your movies in parts b) and c), then you ran
frames by plotting position[x,t] in increments of t running from 0 to 2
L.
The reason you did this was to plot one complete oscillation of the
string.
In both problems, position[x,t] was given by

n

positiofix, t] = ZA[k] Cog {21 sinf <X )
pag}

Use this formula to try to explain why you are guaranteed that the the
will be in its starting position whent=0,2L,41L,...

O0G.2.c.iv)

If you did a good job with your movies in parts b) and c), then you ran
frames by plotting position[x,t] in increments of t running from 0 to 2

The reason you did this was to plot one complete oscillation of the
string.
In both problems, position[x,t] was given by

n

positiotix, t] = ZA[k] Cog &2 ] sinf &2
P

Use this formula to try to explaina short string can be expected to
vibrate faster than a long string.

G.3) Different starting values on the left and right

0G.3.a) Heat Equation

Start with a heated wire L units long with the temperature allowed to
vary from position to position on the wire. Think of the wire as the
interval 0< x < L. At the start of the experiment, you apply apparatus
that maintains the temperatures at the end points of then wire. At the
start of this particular experiment, the temperature of the wire at
position x for 0< x < L = 4 is given by the following function
startertemplt]:

L =4;

Clear [startertemp, x 1

startertemp  [x_] =12 -05x -0.6Sin [2.7x ];

starterplot = Plot [startertemp  [Xx], {X,0,L 1},

PlotStyle - {{Thickness [0.01 ], Blue }}, PlotRange - All,
AxesLabel - {"x", "starting temperature" 31

starting tenperature

To fully understand this plot, look at this:

Clear [pointer ]

pointer [X_]:=

Arrow [ {0, startertemp [x1}, Tail - {x, 0 }, VectorColor - Red];
Show[starterplot, pointer [1.6 11;

starting tenperature

1

0.5

DE.09.G2-G3

Think of the interval [O,L] = [0, 4] as the wire.

The tip of the pointer tells you the starting temperature (at time t = 0)
at the tail of the pointer.

Your problem here is to come up with the function temp[x,t] that
estimates the temperature of the wire at position x at time t after the
experiment begins. This means that you are looking for a function
temp(x,t] satisfying the heat equation

Oix 21 temfx, t] = oitemgx, t]

with

-> temp[x,0] a good approximation of startertemp[x]

and

-> temp[0,t] = startertemp[0] and temp|L ,t] = startertemp][L] for all
t's.

Do it.

Make a movie.

Describe what the movie tells you.

Describe the steady state temperature of the wire?

0G.3.b.i)

The ends of a guitar string are anchored at the positions on the left anc
right shown below and the string is pulled to an initial position and
then allowed to vibrate on its own starting with initial velocity 0.

At the start of this particular experiment, the position of the wire at
position x (for 0< x < L = 4) is given by the following function
starterposition[x]:

L =4

Clear [starterposition, x 1

starterposition [x_1=-06 +05x +0.6Sin [xz]:
starterplot = Plot [starterposition [x1,

{x, 0, L 1}, PlotStyle - {{Thickness [0.01 ], Blue }},

PlotRange - All, AxesLabel - {"X", "starting position" }

Epilog - {{PointSize [0.04 ], Point [ {0, starterposition [01}1},
{PointSize [0.04 1, Point [{L, starterposition [L1}1}}1;

starting position
1.5

1

0.5

1 fad 3 4
-0.

The black dots indicate the points at which the string is anchored.
Think of the curve as the the starting position of the guitar string.
To fully understand this plot, look at this:

Clear [pointer ]

pointer  [x_1 : = Arrow [ {0, starterposition [x1},
Tail - {x, 0 }, VectorColor - CadmiumOrange 1;
Show [starterplot, pointer [2811;

starting position

1.5
1
0.5

1 b 3 4
-0.

The tip of the pointer tells you the starting position (at time t = 0) at
the tail of the pointer.
Your problem here is to come up with the function position[x,t] that
estimates the position of the guitar string at position x on the x-axis at
time t after the experiment begins.
This means that you are looking for a function position[x,t] satisfying
the wave equation

Ox,2 Positiorx, t] = 9y 2 positiornx, t]
with
-> position[x,0] a good approximation of starterposition[x] and
-> position[0,t] = starterposition[0] and position[L ,t] =
starterposition[L] for all t's, and
-> D[position[x,t],t]/.t->0 = 0 for all x's
Do it.
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Make a movie and explain what the movie dipicts.
Do you notice anything worth commenting on?
aTip:
This problem wasn't addressed in the Basics or Tutorials.
Don't panic. The first idea you come up with will probably work.

0G.3.b.ii)

How does the wave equation explain why the little stunt with the line
works?

G.4) The wave equation with starter position and starter
velocity

0G.4.a)

The ends of a guitar string are anchored at 0 and L on the x-axis .
At the start of this particular experiment, the position of the wire at
position x (for 0< x <L =5) is given by the following function

starterposition[x]:
L =4;
Clear [starterposition, x 1
starterposition [X_1=0;
starterplot = Plot [starterposition [x1, {x,0,L 1},
PlotStyle - {{Thickness [0.01 ], Blue }}, PlotRange - All,
AxesLabel - {"x", “starting position" 1
starting position
1
0.5
T z 3 7 x
-0.5

-1
This is not an error.

But the string is given a starting vertical velocity - different at
different x's:

Clear [startervelocity, x 1
startervelocity [Xx_1=03x (4-x)

03 (4-x)x

Your problem here is to come up with the function position[x,t] that
estimates the position of the guitar string at position x on the x-axis at
time t after the experiment begins.
This means that you are looking for a function position[x,t] satisfying
the wave equation

0,2 positionx, t] = 9y 2 positiorx, t]
with
-> D[position[x,t],t]/.t->0 a good approximation of startervelocity[x]
and
-> position[0,t] = starterposition[0] and position[L ,t] =
starterposition[L] for all t's, and
-> position[x,0] = 0 for all x's.
Make a movie.

OHeavy Tip:

Engineering studies have shown that after the appropriate unit
adjustments are made, the function position[x,t] satisfies the wave
equation

Oix,2 positiorx, t] = dy 2 positionx, t]
with
-> D[position[x,t],t]/.t->0 = startervelocity[x]
-> position[0,t] = 0 and position[L ,t] = O for all t's
because the ends of the guitar string are attached at the ends and
-> position[x,t] =0 fort=0
The key is the boundary conditions

position[0,t] = 0 and position[L ,t] = 0.

These match up well with the fact that

Sin(&2x]=0forx=0and x =L

DE.09.G3-G4

for all positive integers k. This suggests that for a fixed time t, you can
fit position[x,t] with a rigged Sine fit like this:

Clear [position, t, X, u, L 1
n=28§;

n
position  [x_, t_ ]=Zu[1,k 1Sin | (k")x]

1
Sin [%]u[t,l ] +Sin [fo}u[t,z ] +Sin [m]u[l,:’: 1+
Sin [4fx]u[t,4 ] +Sin [Sfx]u[t,S ] + Sin [m]u[t,tﬁi ]+
Sin[7ﬁx]u[t,7 ]+Sin[8nx]u[t,8]

L
There is nothing magic about setting n = 8.

The Fourier fit coefficients u[t,k] depend on t as well as k because you
expect a different rigged sine fit at different times t.
The wave equation says
Ox,2) positiorx, t] = dy 2 positionx, t].
Plug

n

positionx, t] = Z ult, k] Sinf &2x |
k=1

into the heat equation and see that
n

> ult, kI (52)? (- Sinf &2X )=

k=1
n

> DIult, kI, {t, 2)] Sin[ LX),
k=1
You can make this happen by setting

DIu[t.k1.{t,2}] =—(X2)* ult, kI.
This gives you
Oy ult, Kl + (k,_—”)2 ult, k] =0

This is a big break in your favor because this is the undamped unforce
oscillator:

ult, Kl = A[k] Cog &24] + B[k] Sin[ &2
Here the real constants A[K] and B[k] have yet to be determined.
You get a different constant for each k.
Now look at the condition
position[x,0] = 0

Because
n

positiorfx, ] = > ult, k] Sin[ £2X],
k=1
you can achieve

position[x,0] =0
by insisting that:
u[0,k]=0
This tells you to set A[k] = 0:

Substitute
ult,k] = B[K] Sin[(k Pi/L) t]
into position[x,t]
to get
n
positior{x, t] = Z BIk] Sin[ &2 ] Sin &mx

k=1
Look at what happens for t = O:
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n
positiorfx, ] = »" BIk] 0 Sin &pX] = 0.
k=1
Good.

Now the question remaining for you is how to use a rigged pure sine f
of the starting velocity to set the constants B[K].

Here is a pregnant clue:

To get the initial velocity,differentiate position[x,t] with respect to t
and get

n
> BIK] £ Cog ¥2t] Sinf £2x ),
k=1
and sett = 0; to get

approxstartervelocity[x]

n
> BIK] 4= sinf &0
k=1

0G.4.b)

The ends of a guitar string are anchored at 0 and L on the x-axis .
At the start of this particular experiment, the position of the wire at
position x (for 0< x < L = 4) is given by the following function

startertemp([x]:
L =4
Clear [starterposition, x 1
- . X2

starterposition [x_] =Sin [ (E) I:

starterplot = Plot [starterposition [xI, {x,0,L 1},
PlotStyle - {{Thickness [0.01 ], Blue }}, PlotRange - All,
AxesLabel - {"x", "starting position" 1

starting position

In addition, the string is given a starting velocity - different at
different x's:

Clear [startervelocity, x 1
startervelocity [Xx_1=03x (4-x)
03 (4-Xx)Xx

Your problem here is to come up with the function position[x,t] that
estimates the position of the guitar string at position x on the x-axis at
time t after the experiment begins.
This means that you are looking for a function position[x,t] satisfying
the wave equation
Ox.2) positionx, t] = 9y, positionx, t]

with
-> position[x,0] a good approximation of starterposition[x]
-> D[position[x,t],t]/.t->0 a good approximation of startervelocity[x]
and
-> position[0,t] = starterposition[0] and position[L ,t] =
starterposition[L] for all t's.
Make a movie.

oAnother Heavy Tip:

You can recycle your answer to part a) by using the old technique of
dividing and conquering.
Here's how it goes:

DE.09.G4-G5

OStep 1:
Come up with a function position1[x,t] satisfying
Oix,2 positionIx, t] = 9y 2 position]x, t]
with
-> position1[x,0] a good approximation of starterposition[x]
-> D[position1[x,t],f]/.t->0 =0 for & x< L
-> position1[0,t] = starterposition[0] and position1[L ,t] =
starterposition[L] for all t's.

You have done problems like this in G.3) above.

OStep 2:
Come up with a function position2[x,t] satisfying
Ox,2 pOsitiondx, t] = dy,z positiondx, t]
with
-> position2[x,0] =0 for & x<L
-> D[position2[x,t],t]/.t->0 a good approximation of startervelocity[X]
-> position2[0,t] = starterposition[0] and position2[L ,t] =
starterposition[L] for all t's.

You did this very problem in part a) immediately above.

OStep 3:

Go with position[x,t] = position1[x,t] + position2[x,t].

This will give you
0Oix,2 positiorx, t] = 9y 2 positionx, t]
with
- position[x,0]
= position1[x,0] + position2[x,0]
= a good approximation of starterposition[x] + 0
—  D[position[x,t],t]/.t->0
= D[position1[x,t],t]/.t->0 + D[position2[x,1],t]/.t->0
= 0 + a good approximation of startervelocity[x]
- position[0,t] = 0 + 0 = starterposition[0] and
position[L ,t] = 0 + O = starterposition[L] for all t's.

G.5) Pure Cosine fits

O0G.5.a.i)
Here's a function f[x] and its plot on [0,L] for L =2:
Clear [f, x ]
fIx_]1=3xSin [(1-x)%] (x - 2);
L=2

Plot [f [x], {x,0,L },
PlotStyle - {{Thickness [0.01 ], Brown }}, PlotRange -> All,
AxesLabel - {"x","f [X1"}1];
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f1x] Rig f[x] on [0, 2 L] so that Fourier fits of the resulting function on
o4 [0,2L] exhibit only Cosines and possibly a constant?
0.2
0.5 T 15 2 X
-0.2
0.4

You can tell at a glance that Fourier fits on [0,L] are all pure sine fits:

n = Random[Integer, {4, 16 }1;
Chop [ComplexExpand [FastFourierfit f,L, n,x11]

-0.348828 Sin [;x] -0.253942 Sin  [27X] -
0.0800457 Sin [3 71 x] - 0.0319527 Sin  [4 5 x] -0.0153182 Sin  [57X] -
0.00840115 Sin  [6 7 x] - 0.00505942 Sin  [7 7 x] - 0.00324873 Sin  [8 71X ] -
0.00217574 Sin [9 x] - 0.00149122 Sin  [10 7 x] - 0.00102486 Sin  [11 nx] -
0.000686094 Sin  [12 51 x] - 0.000422694 Sin  [13 s1x] - 0.000201747 Sin  [14 7 X]

Rerun a couple of times.

Now look at this plot of a function f[x] on [O,L] for L = 4:

Clear [f, x 1]
fIx_1=03 xSin [(2-x)%1 (4 - x);
L =4;

Plot [f [x], {x,0,L 1},
PlotStyle - {{Thickness [0.01 1, Brown }}, PlotRange -> All,
AxesLabel - {"x","f [x]"}1;

oooo

oo

heck out some Fourier fits on [0,L]
n = Random[Integer, {4, 16 }1;

Chop [ComplexExpand [FastFourierfit [f,L, n,x111
0.144927 - 0.0841849 Cos [%} - 0.340755 Cos [ x] +0.0313064 Cos [3—’2”‘_] +
57X

0.241748 Cos [2 7 x] +0.0762827 Cos |

7 X

] -0.0793501 Cos [3 7rx] -

0.0660752 Cos | | +0.0334295 Cos [4 7 x]

Rerun a couple of times.

No Sines. Just Cosines and a constant.

How does the shape of the plot for f[x] tip you off in advance that you
will get just Cosines and a constant?

0G.5.a.ii)

Here's a function f[x] and its plot on [0,L] for L = 3:
Clear [f, x ]
f[x_]= 06E %X Sin [27xx];
L=3;
Plot [f [x], {x,0,L 1},
PlotStyle - {{Thickness [0.01 1, Indigo }}, PlotRange -> All,
AxesLabel - {"x","f [x]"}1;

-0.4
If you know what you're doing, then you can telljust by looking at the
plot that Fourier fits of this function on [O,L] will exhibit both Sine
and Cosine terms.
Check this out:

n = Random[Integer, {4, 16 }1;

Chop [ComplexExpand [FastFourierfit f,L, n,x111

0.0246842 + 0.0555739 Cos | 2 g X ] +0.086205 Cos | 4 g X ]+
0.00983398 Cos [2 7 x] - 0.0658225 Cos [8%’(] - 0.032776 Cos [NT”] -
0.0213481 Cos (4 rx] - 0.0159766 Cos [MT”] - 0.0130848 Cos | 163” LI
0.0114677 Cos [6 x] - 0.0106338 Cos [QSL‘] +0.00416591 Sin | 2 g" ]+
0.0201758 Sin | 4 ;’X | +0.277575 Sin  [2 7 x] +0.0206015 Sin | 8 ’3T X ]+
0.00518941 Sin [NT”X] +0.00216989 Sin 4 7x] +0.00111077 Sin | 143” X |+
0.000617409 Sin [ET”] +0.000338796 Sin  [6 71x] + 0.000151704 Sin | 203” ]

Rerun a couple of times.

Now you get the chance to invent some mathematics.
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