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Abstract

We give a new bound for the number of recursive subdivisions in the Descartes method for polynomial
real root isolation. Our proof uses Ostrowski’s theory of normal power series from 1950 which has so far
been overlooked in the literature. We combine Ostrowski’s results with a theorem of Davenport from 1985
to obtain our bound. We also characterize normality of cubic polynomials by explicit conditions on their
roots and derive a generalization of one of Ostrowski’s theorems.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Polynomial real root isolation is the task of computing disjoint intervals, each containing a
single root, for all the real roots of a given univariate polynomial with real coefficients.Vincent
(1836) showed that polynomial real root isolation can be performed using a test based on the
Descartes Rule of Signs. The test evaluates a condition that implies that a given interval contains
a single root, and another condition that implies that the interval does not contain any roots. If
neither condition is satisfied, the interval is bisected and each subinterval is tested recursively. It
is not obvious that Vincent’s method terminates.

Collins and Akritas(1976) proposed a method with a much better worst-case computing time
than Vincent’s method. We will refer to the improved method as “Descartes method”. A study
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by Johnson(1998) shows thatthe Descartes method typicallyoutperforms Sturm’s method
and other methods for real root isolation. Johnson’s findings are confirmed in experiments
by Rouillier and Zimmermann(2001, Figures 2,3). Recent versions of the Descartes method
use floating point arithmetic (Johnson and Krandick, 1997; Collins et al., 2002; Rouillier and
Zimmermann, 2004), parallel computation (Decker and Krandick, 1999, 2001), or they minimize
space requirements (Rouillier and Zimmermann, 2004). Lane and Riesenfeld(1981) describe a
variation of the method that uses Bernstein bases.

We give a new bound (Theorem 28) for the number of recursive subdivisions in the Descartes
method. The bound also applies when Bernstein bases are used. Our proof uses Ostrowski’s
theory (Ostrowski, 1950) of normal power series which has so far been overlooked in the
literature. We combine Ostrowski’s results with a theorem ofDavenport (1985) to obtain our
bound. We also characterize normality of cubic polynomials by explicit conditions on their roots
and derive a generalization (Theorem 34) of one of Ostrowski’s theorems.

The history of termination proofs starts withVincent (1836). Alesina and Galuzzi(1998)
present Vincent’s original proof in modern mathematical language and provide extensive
historical information on related earlier andlater results. It seems that Vincent’s method
was forgotten until Uspensky (1948) modified Vincent’s proof and bounded the number of
recursive steps required by the method.Ostrowski (1950) used a result from his earlier
work (Ostrowski, 1939) to improve Uspensky’s bound. Ostrowski’s contribution, though
summarized inMathematical Reviews(Marden, 1951), was completely overlooked in later
literature until it became accessible through an electronic database (Alesina and Galuzzi,
1999). When Collins and Akritas(1976) improved Vincent’s algorithm they based their
analysis, later elaborated byCollins and Loos(1982), on Uspensky’s work.Collins and
Johnson(1989) improved the analysis significantly, but also their result is strictly weaker
than Ostrowski’s. Eventually, one of Ostrowski’s theorems, the presentTheorem 17, was
independently rediscovered byAlesina and Galuzzi(1998, Corollary 8.2). The authors gave a
concise and direct proof, but their approach cannot be used to prove the strongerTheorem 34of
this paper.

In Section 2we review the Descartes method. InSection 3we present Ostrowski’s theory
of normal power series and strengthen one ofhis results that links normality of polynomials
and termination of the Descartes method (Theorem 11). We also present Ostrowski’s sufficient
condition on the roots of a polynomial to guarantee normality (Theorem 16). We use these
results in Section 4to proveTheorem 23on the proximity of complex roots to those intervals
on which the Descartes method recurs. InSection 5we combineTheorem 23with Davenport’s
root separation theorem to obtain new bounds for the recursion tree of the Descartes method. In
Section 6we useTheorem 11to characterize the normal cubicpolynomials by explicit conditions
on their roots. We gauge the extent of the improvement by applying the Descartes method to
2.3 billion cubic polynomials. We use the new result to proveTheorem 34—thus strengthening
Theorem 17.

2. Review of the Descartes method

Definition 1. Let a = (a0, . . . , an) be a finite sequence of real numbers. Thenumber of sign
variations in a, var(a), is thenumber of pairs(i , j ) with 0 ≤ i < j ≤ n andai aj < 0 and
ai+1 = · · · = aj−1 = 0. Let A be the polynomiala0 + a1x + · · · + anxn. The number of
coefficient sign variationsin A, var(A), is var(a).
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Theorem 2 (Descartes Rule of Signs). For any non-zero real polynomial the number of
coefficient sign variations exceeds the number of positive real roots—counting multiplicities—by
a non-negative, even integer.

Proof. Let A(x) be a non-zero real polynomial. Ifxk is the highest power ofx that dividesA, the
polynomialA/xk has the same number of coefficient sign variations and positive real roots asA,
and its constant term is non-zero. Hence, we may assume that the constant term ofA is non-zero.
Let a0 be this constant term, letn be the degree ofA, and letan be the leading coefficient. Let
v = var(A), and letp be the number of positive real roots ofA, counting multiplicities.

To show thatv and p have the same parity we use an argument given byConkwright(1941).
Let z1, . . . , zn ∈ C be the roots ofA. Then

A(x) = an(x − z1) · · · (x − zn), (1)

and hencea0 = A(0) = (−1)nanz1 . . . zn. Sincethenon-real roots occur in complex conjugate
pairs, their product is positive. The product of the positive roots is likewise positive, no root is
zero sincea0 is non-zero, and the product of the negative real roots has the sign(−1)n−p. It
follows that the sign ofa0/an is (−1)p. Hencev and p have the same parity.

Gauss(1828) provesv ≥ p by showing that, for any non-zero real polynomialB(x) and any
positive real numbera,

var(B) < var((x − a) · B). (2)

So, in Eq. (1), every positive root ofA contributes at least one sign variation.
To show inequality (2) let B = bmxm + · · · + b0, let a > 0, and letC = (x − a)B =

cm+1xm+1 + · · · + c0. If var(B) > 0 let (i , j ) be an index pair that contributes to var(B). Then
0 ≤ i < j ≤ m andbi bj < 0 and either j = i + 1 orbi+1 = 0. If σ : R −→ {−1, 0, 1} denotes
the sign function then

σ(ci+1) = σ(bi − abi+1) = σ(bi ).

So, if (i1, j1), . . . , (i k, jk) are all the index pairs that contribute to var(B), and if 0≤ i1 < j1 ≤
· · · ≤ i k < jk ≤ m, then

var(ci1+1, . . . , cik+1, cm+1) = var(bi1, . . . , bik , bm) = var(B).

Now let i be the smallest index for whichbi �= 0. Then 0≤ i ≤ i1 andσ(ci ) = σ(−abi ) =
−σ(bi ) = −σ(bi1) = −σ(ci1+1), and so

var(C) ≥ var(ci , ci1+1, . . . , cik+1, cm+1) = 1+ var(B).

If var(B) = 0 then var(C) ≥ var(ci , cm+1) = var(−abi , bm) ≥ 1. �

Theorem 2is named after Descartes although he merely stated that there can be as many positive
real roots as there are coefficient sign variations (Descartes, 1954). Over time it became clear
that there are at least as many sign variations as there are positive roots; according toBartolozzi
and Franci(1993), the assertion was first stated and proved byGauss(1828). Some modern
authors (Albert, 1943; Wang, 2004) seem to be unaware of Gauss’s contribution.

Theorem 3. Let A be a non-zero real polynomial. Ifvar(A) = 0 then Adoes not have any
positive real root; if var(A) = 1 then A has exactly one positive real root.
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Definition 4. Let S be a subring ofR with 1 ∈ S. We define three polynomial transformations
S[x] −→ S[x]. Let A = anxn + · · · + a1x + a0 be an element ofS[x].
(1) Thehomothetic transformationof A is the polynomial

H (A) = anxn + 2an−1xn−1+ · · · + 2n−1a1x + 2na0.

(2) TheTaylorshift by1 of A is thepolynomial

T(A) = bnxn + · · · + b1x + b0

wherebk =∑n
j=k

( j
k

)
aj for k ∈ {0, . . . , n}.

(3) Thereciprocal transformationof A is the polynomial

R(A) = a0xn + · · · + an−1x + an.

Note thatR(A) = 0 if andonly if A = 0, and thatx | A implies R(A) = R(A/x).

The Descartes method can now be stated asAlgorithm 1.

Algorithm 1 (Descartes Method). This version is specialized toroot counting inI = (0, 1). The
algorithm can easily be modified to perform real root isolation.

int roots in I (A ∈ S[x], A �= 0, A squarefree,S⊂ R subring, 1∈ S)
d← var(T R(A));
if d ≤ 1 return d;
B← H (A); C← T(B);
if x |C m← 1; else m← 0; Note:m= 1⇐⇒ A(1/2) = 0.
return roots in I (B) +m+ roots in I (C);

To show thatAlgorithm 1 is partially correct we relate the roots of transformed real
polynomials to the roots of the untransformed polynomials. Since we want to use bijective
mappings we add the point∞ to C.

Definition 5. Let C = C ∪ {∞} be the Riemann sphere. We define three functionsC −→ C.

h(z)=
{

z/2, if z ∈ C ;
∞, if z= ∞.

t (z) =
{

z+ 1, if z ∈ C ;
∞, if z= ∞.

r (z) =



1/z, if z ∈ C− {0} ;
∞, if z= 0 ;
0, if z=∞.

The functionsh, t , andr are elements of the group ofMöbius transformations. These are all
functionsC −→ C given by

z �−→ az+ b

cz+ d
(3)

with a, b, c, d ∈ C andad− bc �= 0.Anderson(1999) explains how formula (3) handles division
by 0 and evaluation at∞. Also Carathéodory(1964) andHenrici (1974) discussthe properties
of Möbius transformations.
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Remark 6. Let A ∈ R[x], and letn = deg(A); we adopt the convention that deg(0) = 0 and
ldcf(0) = 0. Then, for allz ∈ C,

H (A)(z) = 2n A(h(z)),

T(A)(z) = A(t (z)),

R(A)(z) =
{

zn A(r (z)), if z �= 0;
ldcf(A), if z= 0.

So, for allz ∈ C,

T H(A)(z) = 2n A((h ◦ t)(z)),

T R(A)(z) =
{
(t (z))n A((r ◦ t)(z)), if z �= −1;
ldcf(A), if z= −1.

Remark 7. By Remark 6, the following statements hold for all polynomialsA ∈ R[x].
1. The functionh maps the roots ofH (A) one-to-one onto the roots ofA; in particular, the roots

of H (A) in (0, 1) correspond to the roots ofA in (0, 1/2).
2. The functiont maps the roots ofT(A) one-to-one onto the roots ofA.
3. The functionr maps the non-zero roots ofR(A) one-to-one onto the non-zero roots ofA; the

roots ofR(A) are non-zero unlessA = 0.
4. The functionh ◦ t maps the roots ofT H(A) one-to-one onto the roots ofA; in particular, the

roots ofT H(A) in (0, 1) correspond to the roots ofA in (1/2, 1).
5. The functionr ◦ t maps those roots ofT R(A) that are different from−1 one-to-one onto the

non-zero roots ofA; the roots ofT R(A) are different from−1 unlessA = 0. The positive
real roots ofT R(A) correspond to the roots ofA in (0, 1).

Theorem 8. Algorithm1 is partially correct.

Proof. Combine the observations (1), (4), and (5) of Remark 7with Theorem 3. �

3. Ostrowski’s theory

Definition 9. A powerseries

+∞∑
k=−∞

akzk

with non-negative real coefficients isnormal(Ostrowski, 1939) if

(1) a2
k ≥ ak−1ak+1 for all indicesk, and

(2) ah > 0 andaj > 0 for indicesh < j impliesah+1, . . . , aj−1 > 0.

In 1950, Ostrowski linked the normality of a polynomial and the Descartes rule. He stated
his result (Ostrowski, 1950, Lemma 1) for polynomials all of whose coefficients are positive.
Generalizing slightly we show inTheorem 11that it suffices to require that the leading coefficient
be positive.

Definition 10. A polynomial with real coefficients ispositive if its leading coefficient is positive.

Theorem 11. A positive polynomial A(x) is normal if and only ifvar((x − α)A(x)) = 1 for all
positive real numbersα.

Proof. (i) Let A(x) be positive and normal, and letα be a positive real number. There is a non-
negativeintegerm suchthat A(x) = B(x) · xm whereB(x) is normal and all the coefficients of
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B(x) are positive. LetB(x) = bnxn + · · · + b1x + b0. Then

bn−1

bn
≥ bn−2

bn−1
≥ · · · ≥ b0

b1

and hence

bn−1

bn
− α ≥ bn−2

bn−1
− α ≥ · · · ≥ b0

b1
− α.

Since alsobn > 0 and−αb0 < 0, the polynomial

(x − α)B(x) = bnxn+1+ bn

(
bn−1

bn
− α

)
xn + · · · + b1

(
b0

b1
− α

)
x − αb0

has exactly 1 coefficient sign variation. And so,

1= var((x − α)B(x)) = var((x − α)B(x) · xm) = var((x − α)A(x)).

(ii) Conversely, letA(x) be positive but not normal. There is a non-negative integerm such
that A = B(x) · xm whereB(x) has a non-zero constant term. Moreover, the polynomialB(x)

is positive and not normal—and hence non-constant. For any real numberα let C(α)(x) =
(x− α)B(x). Then var((x− α)A(x)) = var(C(α)(x)), and it suffices to find a positive numberα

such that var(C(α)(x)) �= 1.
Let B(x) = bnxn + · · · + b1x + b0. Then n ≥ 1 and bn > 0 and b0 �= 0. Let

C(α)(x) = c(α)
n+1xn+1+· · ·+c(α)

1 x+c(α)
0 . Thenc(α)

0 = −αb0, c(α)
k = bk−1− αbk for 1≤ k ≤ n,

andc(α)
n+1 = bn.

If var(B(x)) ≥ 2 chooseα so small that, for allk with 1 ≤ k ≤ n, the signs ofc(α)
k andbk−1

are equal wheneverbk−1 �= 0; then var(C(α)(x)) ≥ var(B(x)) ≥ 2.
If var(B(x)) = 1 the polynomialB(x) has exactly one positive real root by the Descartes

rule. So, for anyα > 0, the polynomialC(α)(x) has two positive real roots, and, again by the
Descartes rule, var(C(α)(x)) ≥ 2.

Finally, assume var(B(x)) = 0. Then, sincebn > 0, all the coefficients ofB(x) are non-
negative. If all the coefficients ofB(x) are positive, then, sinceB(x) is not normal, there is
an indexk with 1 ≤ k ≤ n − 1 such that 0< bk/bk+1 < bk−1/bk. Chooseα suchthat
bk/bk+1 < α < bk−1/bk. Now α > 0 andc(α)

n+1 = bn > 0, c(α)
k+1 = bk − αbk+1 < 0 and

c(α)
k = bk−1 − αbk > 0, and hence var(C(α)(x)) ≥ 2. If not all the coefficients ofB(x) are

positive, there is a zero-coefficient. Letbk be the zero-coefficient with the highest index; then
c(α)

k+1 < 0 for anypositiveα. Sinceb0 > 0 there isan index j < k suchthat bj+1 = 0 and

bj > 0; thenc(α)
j+1 > 0. Nowc(α)

0 < 0 implies var(C(α)(x)) ≥ 2 also in this case. �

By Theorem 11, the Descartes rule will reveal the existence of a single positive root of a positive
polynomial if the other rootsα1, . . . , αn−1 are such that(x − α1) · · · (x − αn−1) is a normal
polynomial.

Theorem 12. A positive linear polynomial is normal if and only if its root is negative or zero.

Proof. Let A be a positive linear polynomial, and letα ∈ R be its root. Then there is a positive
real numbera suchthat A(x) = a(x− α) = ax− aα. Now A is normal if and only if−aα ≥ 0,
that is, if and only if α ≤ 0. �
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Fig. 1. (a) A positive quadratic polynomial isnormal if and only if its roots are in the coneC. (b) If a polynomialA has
a simple root in the interval(0, 1) and no other real or non-real roots inC ∪ C then var(T R(A)) = 1. (c) The image of
C underr .

Definition 13. Let

C =
{
a+ ib

∣∣ a ≤ 0 and|b| ≤ |a|√3
}

.

For an illustration seeFig. 1(a); the cone contains its bordering rays and the vertex 0.

Theorem 14. A positive quadratic polynomial is normal if and only if its roots are elements of
the coneC.

Proof. Let A be a positive quadratic polynomial, and letc > 0 beits leading coefficient.
If the roots of A are complex conjugatesa + ib and a − ib with real numbersa, b then

A(x) = c(x− (a+ ib))(x− (a− ib)). Now A(x) = cx2− 2acx+ c
(
a2+ b2

)
is normal if and

only if −2ac≥ 0 andc(a2+ b2) ≥ 0 and(−2ac)2 ≥ c · c(a2+ b2), that is, ifand only ifa ≤ 0
and 4a2 ≥ a2+ b2, or, equivalently, if and only ifa± ib ∈ C.

Otherwise,the roots ofA are real numbersα andβ, and wehaveA(x) = c(x− α)(x − β) =
cx2 − c(α + β)x + cαβ. Now A is normal if and only if−c(α + β) ≥ 0 andcαβ ≥ 0 and
(−c(α + β))2 ≥ c · cαβ, that is, ifand only ifα + β ≤ 0 andαβ ≥ 0 and(α + β)2 ≥ αβ, or,
equivalently, if and only ifα, β ≤ 0. �

In Section 6we will characterize normal cubic polynomials. The “if”-direction ofTheorems 12
and14 can be generalized to polynomials of any degree using an earlier result of Ostrowski.
Ostrowski(1939) showed that the product of two normal series, if it exists, is normal. Later,
Ostrowski(1950) gave asimpler proof for the case of polynomials.

Theorem 15. The product of two normal polynomials is normal.

Proof. Let A = ∑m
h=0 ahxh and B = ∑n

j=0 bj x j be normal polynomials. Any normal

polynomial can be written asP · xk wherek is a non-negative integer andP is a normal
polynomial and all the coefficients ofP are positive. Hence it suffices to consider the case where
all the coefficients ofA andB are positive.

Let C = A · B = ∑m+n
k=0 ckxk. Write ck = ∑

h ahbk−h whereh andk range over the set
of all integers and allah with h /∈ {0, . . . , m}, all bj with j /∈ {0, . . . , n}, and all ck with
k /∈ {0, . . . , m+ n} are taken as zero. Clearly, all the coefficients ofC are positive; it remains to
show thatc2

k − ck−1ck+1 ≥ 0 for all k.
Using the following partition of the set of summation indices

{
(h, j ) ∈ Z

2
∣∣h > j

}
=

{
( j + 1, h− 1) ∈ Z

2
∣∣h ≤ j

}
∪

{
(h, h− 1) ∈ Z

2
}

we obtain, for any indexk,
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c2
k − ck−1ck+1

=
∑
h≤ j

ahaj bk−hbk− j +
∑
h> j

ahaj bk−hbk− j

−
∑
h≤ j

ahaj bk−h+1bk− j−1−
∑
h> j

ahaj bk−h+1bk− j−1

=
∑
h≤ j

ahaj bk−hbk− j +
∑
h≤ j

aj+1ah−1bk− j−1bk−h+1 +
∑

h

ahah−1bk−hbk−h+1

−
∑
h≤ j

ahaj bk−h+1bk− j−1−
∑
h≤ j

aj+1ah−1bk− j bk−h −
∑

h

ahah−1bk−h+1bk−h

=
∑
h≤ j

(ahaj − ah−1aj+1)(bk− j bk−h − bk− j−1bk−h+1),

that is,

c2
k − ck−1ck+1 =

∑
h≤ j

(ahaj − ah−1aj+1)(bk− j bk−h − bk− j−1bk−h+1). (4)

SinceA is normal anda0, . . . , am are positive, one has

am−1

am
≥ am−2

am−1
≥ · · · ≥ a0

a1
,

and henceahaj − ah−1aj+1 ≥ 0 for all h ≤ j ; the analogous statement holds for the
coefficients ofB. Hence each summand on the right-hand side of Eq. (4) is non-negative, and
thusc2

k − ck−1ck+1 ≥ 0 for all k. �

Theorem 16. If the roots of a positive polynomial are in the coneC then the polynomial is
normal.

Proof. Let A be a positive polynomial all of whose roots are elements of the coneC. The
complete factorization ofA over the field of real numbers is a product of linear and quadratic
factors. We may assume that all these factors are positive. Since all the roots are in the coneC,
Theorems 12and14 apply, and each factor is normal. Thus, byTheorem 15, the polynomialA
is normal. �

Of all the theorems in this section, we will invoke onlyTheorem 17in Sections 4and5.

Theorem 17. If the roots of a non-zero polynomial A(x) are in the coneC then var((x −
α)A(x)) = 1 for all positive real numbersα.

Proof. Let A be a non-zero polynomial and such that all of its roots are elements of the
coneC. If A is positive thenA is normal by Theorem 16, and henceTheorem 11implies
var((x − α)A(x)) = 1 for all positive α. If A is not positive then−A is positive and the
roots of−A are elements of the coneC. Hence, as before, var((x − α)(−A)(x)) = 1, but
var((x − α)(−A)(x)) = var((x − α)A(x)). �

4. Three circles

By Theorem 17, Algorithm 1will stop calling itself when it encounters a polynomialT R(A)

that has exactlyone positive root and whose other roots are elements of the coneC. We want to
state this condition in terms of the roots of the polynomialA. SinceA is non-zero,Remark 7(5)
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implies that the functionr ◦ t maps the roots ofT R(A) one-to-one onto the non-zero roots ofA.
But much more is true sincer ◦ t is a Möbius transformation.

Remark 18. Anderson(1999) reviews someproperties of Möbius transformations. These
transformations are homeomorphisms of the Riemann sphereC = C ∪ {∞} that map circles
in C to circles. In particular, circles and lines inC are mapped to circles and lines. To identify
the image of a given circle or lineK under a given Möbius transformation it suffices to select
three distinct points onK , to compute their images under the transformation, and to determine
the unique circle or lineL that containsthose images. The setsC − K and C − L each
have exactly two connected components. Each component ofC − K is mapped to a different
component ofC − L since Möbius transformations are homeomorphisms ofC. By applying
the transformation to a single point inC − K one can determine the image of each component
of C− K .

Definition 19. We define three circular disks.

C =
{
z ∈ C

∣∣∣ ∣∣∣z− (
1/2− i

√
3/6

)∣∣∣ <
√

3/3
}

,

C =
{
z ∈ C

∣∣∣
∣∣∣z− (

1/2+ i
√

3/6
)∣∣∣ <
√

3/3
}

,

C =
{
z ∈ C

∣∣∣ |z− 1/2| < 1/2
}

.

Remark 20. The Möbius transformationr ◦ t maps the coneC one-to-one ontoC− (C∪C) and
the half-plane{z ∈ C |Re(z) ≤ 0} one-to-one ontoC−C. Both statementscan be verified using
the method described inRemark 18.

Fig. 1(a) shows the coneC. Fig. 1(b) shows the boundaries of the open disksC andC. Fig. 1(c)
shows how the Möbius transformationr operates on the boundary ofC. If z traverses the
boundary ofC clockwise from 1 towards 0, the reciprocalr (z) traverses the ray{1−s+√3si | s≥
0} upwards starting at 1. Similarly, if z traverses the boundary ofC counterclockwise from 1
towards 0, the reciprocalr (z) traverses the ray{1− s − √3si | s ≥ 0} downwards starting at
1. The pointz = 0 is mapped tor (0) = ∞ /∈ C. Thusthe figure illustrates how the function
t−1 ◦ r = (r ◦ t)−1 mapsC− (C ∪ C) one-to-one ontoC.

Theorem 21 (Two-CircleTheorem). Let A be a realpolynomial with a single, simple root
in the interval (0, 1) and no other real or non-real roots in the open disks Cand C. Then
var(T R(A)) = 1.

Proof. Let A be as described. ThenA �= 0 and, byRemark 7(5), the roots ofB = T R(A) are
all different from−1. Therefore, the function(r ◦ t)−1 maps the non-zero roots ofA one-to-one
onto the roots ofB. Hence, B has a single, simple root in(r ◦ t)−1((0, 1)) = (0,∞), andits
other roots are in(r ◦ t)−1(C− (C∪C)) which equalsC by Remark 20. Now Theorem 17yields
var(B) = 1. �

The two-circle condition is not necessary for thetermination of the Descartes method. Indeed,
thepolynomialA = 32x3− 16x2+ 2x − 1 has the single, simple root 1/2 in the interval(0, 1),
the pair of complex conjugate roots±i /4 inside theopen disksC andC, and var(T R(A)) = 1.

Our two-circle theorem improves upon a two-circle theorem ofCollins andJohnson(1989).
They use the disks

D1 = {z ∈ C | |z| < 1} and D2 = {z ∈ C | |z− 1| < 1}
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Fig. 2. (a) Recursion tree forA = 27648x3−46080x2+25251x−4321. (b), (c) Triangles withcircumscribing disksC,
C. (d) Circumscribing disks for the intervals atthe leaf nodes of the tree in (a). Also shown are 1/3 and 2/3± i · 5/32,
the roots ofA.

instead ofC andC. But C ∪ C is a proper subset ofD1 ∪ D2, and the area ofC ∪ C is exactly
one-third of the area ofD1 ∪ D2. Indeed, the Möbius transformation

z �−→ i
√

3

3
z+

(1

2
− i

√
3

6

)

mapsD1 ∪ D2 ontoC ∪ C.
The following well-known theorem completes our converse ofTheorem 3.

Theorem 22. If a polynomial A does not have any roots in the open disk C thenvar(T R(A))=0.

Proof. Let A be as described. ThenA �= 0 and, byRemark 7(5), the roots ofB = T R(A) are
all different from−1. Therefore, the function(r ◦ t)−1 maps the non-zero roots ofA one-to-one
onto the roots ofB. But since the roots ofA are all inC−C, the roots ofB have non-positive real
parts byRemark 20. Hence, in the decomposition ofB into a product of a constant and monic
linear and quadratic factors, every linear factor is of the formx − α whereα ≤ 0, and every
quadratic factor is of the form(x− (a+ ib))(x− (a− ib)) = x2−2ax+ (a2+b2) wherea ≤ 0.
Since all the non-zero coefficients of all the linear and quadratic factors ofB have the same sign,
thenon-zero coefficients ofB all have the same sign.�

When we bound the recursion depth of the Descartes method we will useTheorem 23which
summarizes the preceding results.

Theorem 23. Let A be a realpolynomial withvar(T R(A)) ≥ 2. Then either the open disk C
contains at least two roots of A, or the interval(0, 1) contains exactly one real root and the
union of the open disks CandC contains a pair of complex conjugate roots.

Proof. If A has no root inC then var(T R(A)) = 0 by Theorem 22. Thus, A has at least one
root in C. If this is the only root inC, the root is real and it is, in fact, the only real root in the
interval (0, 1). ThenC ∪ C must contain a pair of complex conjugate roots because otherwise
var(T R(A)) = 1 byTheorem 21. �

5. Bounds for the recursion tree

For any input polynomialA the recursion tree ofAlgorithm 1is a full binary tree;Fig. 2shows
an example. With every node of the tree we associate a pair(B, I ) consisting of a polynomialB
and an intervalI . With the root of the tree we associate the pair(A, (0, 1)). If an internal node is
associated with the pair(B, I ) we associate one child with the pair(BL, I L) whereBL = H (B)

and I L is the open left half ofI , and we associate the other child with the pair(BR, IR) where
BR = T H(B) andIR is the open right half of I .

Remark 24. By Remark 7(1) and (4), the functionh maps the roots ofBL in (0, 1) onto the roots
of B in I L , and the functionh ◦ t maps the roots ofBR in (0, 1) onto the roots ofB in IR. Thus,
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there is a sequence of elements of{h, t} whose compositionm maps the roots ofB in (0, 1) onto
the roots of the input polynomialA in I . Whenm maps the interval(0, 1) onto the intervalI it
transforms at the same time the disksC, C andC of Section 4. Thesedisks are the circumscribing
disks of isosceles triangles with base(0, 1) and base angles 45◦, −60◦ and 60◦, respectively, as
shown inFig. 2. But h, t and, hence,m are Möbius transformations and thus preserve angles
(Anderson, 1999). Moreover, the transformationsh, t and, hence,m map straight lines inC onto
straight lines inC and circles inC onto circles inC. Therefore, the imagesm(C), m(C) and
m(C) are the circumscribing disks of the isosceles triangles with baseI and base angles 45◦,
−60◦ and 60◦, respectively.Fig. 2 shows the disks that are considered at the leaf nodes of a
particular recursion tree.

The depth of the recursion tree can be bounded using the root separation theorem ofMahler
(1964). To obtain a bound that also covers the width of the tree we use a generalization by
Davenport(1985) of Mahler’s theorem in a form due toJohnson(1998).

Definition 25. Let A = anxn + · · · + a1x + a0 be a non-zero polynomial of degreen with
complex coefficients and the complex rootsα1, . . . , αn. The Euclidean normof A is |A|2 =
(a2

n + · · · + a2
0)1/2, themeasure of A is M(A) = |an| ·∏n

i=1 max(1, |αi |), and thediscriminant
of A is D(A) = a2n−2

n
∏

i< j (αi − α j )
2.

Remark 26. A theorem of Landau (1905) implies M(A) ≤ |A|2. The inequality was
independently rediscovered more than once.Ostrowski(1961) summarizes its history and proves
a generalization.Mignotte(1974, 1982) gives a short elementary proof. The discriminantD(A)

is known to be a polynomial in the coefficients ofA (van der Waerden, 1949); henceD(A) ≥ 1
if A is a squarefree integer polynomial.

Theorem 27. Let A be a non-zero complex polynomial of degree n with the rootsα1, . . . , αn. Let
k be an integer,1≤ k ≤ n, and let(β1, . . . , βk) be a sequence of roots of A such that

βi �∈ {α1, . . . , αi } and |βi | ≤ |αi | for all i ∈ {1, . . . , k}.
Then

k∏
i=1

|αi − βi | ≥ 3k/2D(A)1/2M(A)−n+1n−k−n/2.

Proof. Johnson(1998). �

Theorem 28. Let A be a non-zero real polynomial of degree n, measure M, and discriminant D.
Let the integers h≥ 0 and k≥ 1 be such that k is the number of internal nodes of depth h in the
recursion tree ofAlgorithm1 with input A wheredepthis the distance from the root. Then

(1) k ≤ n, and
(2) 2(1−h)k > 3k D1/2M−n+1n−k−n/2.

Proof. Let I1 < · · · < Ik be the open subintervals of(0, 1) that are associated with the internal
nodes of depthh, and letA1, . . . , Ak be the corresponding polynomials. The intervals have width
2−h. For every indexi ∈ {1, . . . , k} let Ci , Ci andCi be the circumscribing disks of the isosceles
triangles with baseIi and base angles 45◦, −60◦ and 60◦, respectively. ByRemark 24the roots
of Ai in the disksC, C andC, correspond, respectively, to the roots ofA in the disksCi , Ci and
Ci . But the polynomialsAi are at internal nodes of the recursion tree, so var(T R(Ai )) ≥ 2, and
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Fig. 3. Adjacent intervals with coinciding roots. Here,j = i + 1. (a) |Ri | = 3 and|Rj | = 2. Note that|βi | ≤ |αi | and
|β j | ≤ |α j | andαi , βi ∈ Ci andα j , β j ∈ Ci . (b) |Ri | = 2 and|Rj | = 3. (c) |Ri | = 3 and|Rj | = 3. In Ci the root with
the smaller modulus is labeledβi and the other rootαi ; likewise forC j , β j andα j .

hence, byTheorem 23, either Ci contains at least two roots ofA, or Ii contains exactly one real
root of A andCi ∪ Ci contains a pair of complex conjugate roots ofA.

Assertion (1) holds since every diskCi contains at least one root ofA, and the disks
C1, . . . , Ck are pairwise disjoint.

Assertion(2) holds if A has amultiple root sinceD = 0 in thatcase. If all roots are simple,
define, for every indexi ∈ {1, . . . , k}, a setRi of roots of A in Ci ∪ Ci . If Ci contains at
least two roots ofA, let Ri = {s, t} wheres and t are either two arbitrary distinct real roots
in Ii or two arbitrary non-real complex conjugate roots inCi ; otherwise, let Ri = {r, s, t}
wherer is the unique real root inIi , ands andt are two arbitrary non-real complex conjugate
roots in Ci ∪ Ci . For notational convenience letR0 = Rk+1 = ∅. Note that, for all distinct
indicesi , j ∈ {1, . . . , k}, the intersection ofRi and Rj is either empty or it consists of two
non-real complex conjugate roots andj = i − 1 or j = i + 1. Moreover, ifRi ∩ Ri+1 �= ∅
then Ri−1 ∩ Ri = ∅ and Ri+1 ∩ Ri+2 = ∅. So, for all indices i ∈ {1, . . . , k}, the setRi is
either disjoint from all setsRj , j �= i , or there is exactly one setRj suchthat j �= i and
Ri ∩ Rj �= ∅.

Let i ∈ {1, . . . , k}. If Ri is disjoint from all setsRj , j �= i , select two distinct elements from
Ri that are both inCi or both inCi or both inCi , and label themαi andβi so that|βi | ≤ |αi |. If
there is exactly one setRj suchthat j �= i andRi ∩ Rj �= ∅ then selectαi , βi , α j , β j ∈ Ri ∪ Rj

as described inFig. 3 for the casej = i + 1. SinceRi ∩ Rj �= ∅, at least one of the setsRi and
Rj has 3 elements, and the figure shows how the roots are selected depending on whether only
Ri has 3 elements or onlyRj or bothRi andRj .

By construction, the selected rootsα1, . . . , αk and β1, . . . , βk not only satisfy βi �∈
{α1, . . . , αi } and|βi | ≤ |αi | for all i ∈ {1, . . . , k} but also,for all i ∈ {1, . . . , k}, both rootsαi

andβi are in one of the disksCi , Ci , Ci , or, if i > 1, in the diskCi−1, so|αi − βi | < 21−h/
√

3.
Now Theorem 27implies

2(1−h)k3−k/2 >

k∏
i=1

|αi − βi | ≥ 3k/2D1/2M−n+1n−k−n/2. �

Theorem 29. Let A be a non-zero squarefree integer polynomial of degree n≥ 2 with Euclidean
norm d. Let h and k be as inTheorem28, and letlog= log2. Then

(1) k ≤ n, and
(2) (h− 1)k < (n− 1) logd + (k+ n/2) logn− k log 3, and
(3) h ≤ (n− 1) logd + (n/2+ 1) logn− log 3.

Proof. Assertion(1) holds due to assertion(1) of Theorem 28. To show assertion(2), consider
assertion(2) of Theorem 28, apply Remark 26, take logarithms, and multiply by−1. To show
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assertion(3), consider assertion(2) and collect all terms involvingk on one side to obtain
k(h − 1 − logn + log 3) < (n − 1) logd + n/2 logn. If h − 1 − logn + log 3 < 0 then
assertion(3) clearly holds. If, on the other hand,h − 1− logn+ log 3≥ 0 thenk ≥ 1 implies
h − 1− logn + log 3 < (n − 1) logd + n/2 logn, andhence assertion(3) holds alsoin this
case. �

Remark 30. Theorem 29is stronger than an earlier result byKrandick (1995, Satz47), and the
proof is shorter. The theorem implies the dominance relationshk � n log(nd) andh � n log(nd)

which can be used in an asymptotic computing time analysis ofAlgorithm 1when the ringS of
coefficients isZ; thenotation� is due toCollins (1974).

6. Normal cubics

By Theorem 16any positive polynomial whose roots are in the coneC is normal. By
Theorems 12and 14 the converse holds for linear and quadratic polynomials. For cubic
polynomials, however, the converse is false. Indeed, the normal polynomialx3+5x2+16x+30
has roots−1± 3i /∈ C. Theorems 31and32 together completely characterize the normal cubic
polynomials.

Theorem 31. Let A be a positive polynomial all of whose roots are real. Then A is normal if and
only if the roots are all non-positive.

Proof. If the roots ofA are all non-positive thenTheorem 16implies thatA is normal. Otherwise,
A has a positive root. In this case, var((x − 1)A(x)) > 1 byTheorem 2, andA is not normal by
Theorem 11. �

Theorem 32. Let A be a positive cubic polynomial whose roots are a and b± ic where a, b, c
are real numbers. Then A is normal if and only if

a ≤ 0 and (5)

b ≤ 0 and (6)

c2− 3b2− 2ab− a2 ≤ 0 and (7)

c4+ 2b2c2+ 2abc2− a2c2+ b4+ 2ab3+ 3a2b2 ≥ 0. (8)

Proof. We may assume thatA is monic sinceA is normal if and only ifA/ldcf(A) is normal.
Hence,

A = (x − a) · (x − (b+ ic)) · (x − (b− ic))

and thus

A = x3+ a2x2+ a1x + a0

where

a2 = −a− 2b,

a1 = 2ab+ b2+ c2,

a0 = −ab2− ac2.



62 W.Krandick, K. Mehlhorn / Journal of Symbolic Computation 41 (2006) 49–66

Fig. 4. Fora = −1 thepoints (b, c) that satisfy (5)–(8) are precisely the points in the left half-plane (6) between the
two branches of the hyperbola (7) andoutside of the figure “8” (8). Fora = 0 the solution set coincides with the coneC
which is delimited by the curvec2− 3b2 = 0. The solutions of inequality (10) are precisely the points outside the circle.

By definition, A is normal if and only if all of the following hold.

a2 ≥ 0, (9)

a1 ≥ 0, (10)

a0 ≥ 0, (11)

a2
2 ≥ a1, (12)

a2
1 ≥ a2a0, (13)

a2 = 0 ⇒ a1 = a0 = 0, (14)

a1 = 0 ⇒ a0 = 0. (15)

Implication (15) is redundant since it follows from (13), (9) and (11). Also the implication
(a2 = 0⇒ a1 = 0) in (14) is redundant since it follows from (12) and (10). We note the pairwise
equivalence of (5) and (11), (7) and (12), and (8) and (13). We will show that the conjunction of
(5)–(8) is equivalent to the conjunction of (9)–(15).

Assume (5)–(8). Clearly, (5) and (6) imply (9) and (10). The pairwise equivalences yield (11),
(12) and (13). The implication (a2 = 0⇒ a0 = 0) in (14) holds sincea2 = 0 togetherwith (5)
and (6) impliesa = 0.

Assume now (9)–(15). The pairwise equivalences yield (5), (7), and (8). To complete the proof
we have to show (6). By (5) we havea ≤ 0. If a = 0 then (6) follows from (9), so we may assume
a < 0. Next observe that if(a, b, c) satisfies (9)–(15) then, for anyt > 0, (ta, tb, tc) satisfies
(9)–(15). So we may assumea = −1. Now (9) implies thatb ≤ 1/2, and we need to show that
b ≤ 0. Fig. 4 illustrates the situation. Ifb = 1/2 then, by (9), a2 = 0, hence, by (14), a0 = 0,
and thusa = 0, a contradiction. So,b < 1/2 and weneed to showb ≤ 0. Multiplying (7) and
(10), and combining the result with (8) we obtain the inequalities
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(c2− 3b2+ 2b− 1)(−2b+ b2+ c2) ≤ 0

≤ c4+ 2b2c2+ 2abc2− a2c2+ b4+ 2ab3+ 3a2b2.

Collecting all the terms on the left-hand side and factoring yields

−2b(2b− 1)((b− 1)2+ c2) ≤ 0,

so 0< b < 1/2 is impossible,and we haveb ≤ 0 as desired. �

Fig. 4supports the notion thatTheorem 32recognizes more normal cubics thanTheorem 16.
In an attempt to quantify the improvement we perform extensive experiments that use
Algorithm 1.

Definition 33. The max-norm of a complex polynomialA = anxn + · · · + a1x + a0 is
|A|∞ = max(|an|, . . . , |a0|).
Let m be a positive integer. The set of all normal cubic integer polynomials of max-normm can
be efficiently enumerated. For each such polynomialA,

A = a3x3+ a2x2+ a1x + a0,

we want todecide whether all of its roots are in the coneC. SinceA is cubic, eitherA has one
real root and two non-real complex conjugate roots, or all the roots ofA are real. In particular,
if A has amultiple root then all the roots ofA are real. Since all the coefficients ofA are non-
negative, all the real roots ofA are non-positive and, hence, inC. Using polynomial factorization
andAlgorithm 1we thus reduce the decision problem to the case whereA is irreducible and has
a single real rootα ∈ C. Theother roots ofA are the roots of the polynomial

B = A(x)/(x − α) = a3x2+ (a3α + a2)x + (a3α
2 + a2α + a1).

By Theorem 14, these roots are inC if andonly if B is normal. We decide the latter by performing
arithmetic inZ[α] on the coefficients ofB.

The computing time of the decision method can be reduced by a factor of about 3.5 by using
floating point computations instead of exact arithmetic. Indeed, we use the floating point interval
arithmetic techniques described byCollins et al.(2002), and we fall back to exact arithmetic
just in case the floating point results are inconclusive. In our experiments we representα by an
isolating interval of width 2−40, and we use standard double precision arithmetic (IEEE, 1985).
For all our inputs, the floating point method is inconclusive only in case the roots ofB lie on the
boundary ofC; this situation occurs whenB is normal and(a3α+a2)

2 = a3 · (a3α
2+a2α+a1).

Table 1shows that only about 57% of the 2, 353, 361, 850 normal cubic polynomials we
examined have all of their roots in the coneC. It seems reasonable to expect smaller ratios when
the experiment is carried out for polynomials of higher degrees. The table also shows that we
had to use exact arithmetic for relatively few polynomials.

We can now generalizeTheorem 17.

Theorem 34. Let A(x) be a non-zero polynomial such that A(x) = B(x) · C(x) where all the
roots of B(x) are in the coneC and C(x) is a product of cubic polynomials each of whose roots
are as described inTheorem32 then

var((x − α)A(x)) = 1 for all real α > 0.

Proof. Theorems 11, 15, 17and32. �
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Table 1
For anypositive integerm, let N(m) be the number of normal cubic integer polynomials with max-normm, and letC(m)

be the number of those normal cubic integer polynomials of max-normm that have all roots in the coneC
m N(m) C(m) C(m)/N(m) Boundary

100 780 708 445 288 .57036 122
200 6 232 898 3 558 002 .57084 277
300 21 019 770 12 004 290 .57110 453
400 49 814 320 28 450 698 .57113 640
500 97 252 440 55 564 678 .57134 807
600 168 075 834 96 011 988 .57124 996
700 266 842 438 152 459 384 .57135 1140
800 398 334 336 227 573 618 .57131 1355
900 567 119 096 324 020 078 .57134 1766

1000 777 890 010 444 469 060 .57138 1695

The ratios C(m)/N(m) are rounded to five decimal digits. The last column lists the number of polynomials that have
non-real roots on the boundary ofC.

It is easy to state higher-degree analogues ofTheorem 32. The analogous theorems result in
additional improvements ofTheorem 17, but it is not clear how the improvements can be used to
obtain better general bounds for the Descartes method.
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