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Abstract

We give a new bound for the number of recursive subdivisions in the Descartes method for polynomial
real root isolation. Our proof uses Ostrowski's theory of normal power series from 1950 which has so far
been overlooked in the literature. We combine Ossiiis results with a theorem of Davenport from 1985
to obtain our bound. We also afacterize normality ofubic polynomials by explicit conditions on their
roots and derive a generalization of one of Ostrowski’s theorems.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Pdynomial real root isolation is the task of cquting disjoint intervals, each containing a
single root, for all the real roots of a given univariate polynomial with real coefficiéfieent
(1836 showed that polynomial real root isolation can be performed using a test based on the
Descartes Rule of Signs. The test evaluates a condition that implies that a given interval contains
a sngle root, and another condition that implies that the interval does not contain any roots. If
nether condition is satisfied, the interval is bisedtand each subinterval is tested recursively. It
is not obvious that Vincent's method terminates.

Collins and Akritag1976 proposed a method with a much better worst-case computing time
than Vincent's method. We will refer to the improved method as “Descartes method”. A study
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by Johnson(1998 shows thatthe Descartes method typicalbutperforms Sturm’s method

and other methods for real root isolation. Johnson’s findings are confirmed in experiments
by Rouillier and Zimmermani{2001, Figures 2,3). Recent versions of the Descartes method
use floating point arithmeticl)hnson and Krandickl997 Collins et al, 2002 Rouillier and
Zimmermann2004), parallel computatiorecker and Krandickl999 2001), or they minimize

space requirementRuillier and Zimmerman2004). Lane and Riesenfel(l98]) desribe a
variation of the method that uses Bernstein bases.

We give a new boundTheorem 28for the number of recursive subdivisions in the Descartes
method. The bound also applies when Bernstein bases are used. Our proof uses Ostrowski's
theory Ostrowskj 1950 of normal power series which has so far been overlooked in the
literature. We combine Ostrowski’s results with a theorenbeafenport (1985 to obtain our
bound. We also characterize normality of cubicypammials by explicit conditions on their roots
and derive a generalizatiomifeorem 33 of one of Ostrowski's theorems.

The history of termination proofs starts wittincent (1836. Alesina and Galuzz{1998
present Vincent's original proof in modern mathematical language and provide extensive
historical information on related earlier ardter results. It seems that Vincent's method
was fogotten until Uspensky (1948 modified Vincent’s proof and bounded the number of
recursive steps required by the methddstrowski (1950 used a reult from his earlier
work (Ostrowskj 1939 to improve Uspensky’s bound. Ostrowski’s contribution, though
summarized inMathematical ReviewgMarden 1951), was completely overlooked in later
literature until it became accessblhrough an electronic databasAlésina and Galuzzi
1999. When Collins and Akritas(1976 improved Vincen's algorithm they based their
analysis, later elaborated b@ollins and Loos(1982, on Uspensky’'s work.Collins and
Johnson (1989 improved the aalysis significantly, but also their result is strictly weaker
than Ostrowski's. Eventually, one of Ostrowski’'s theorems, the presbabrem 17 was
independently rediscovered Byesina and Galuzz{1998 Comllary 8.2). The authors gave a
concise and direct proof, but their approach cannot be used to prove the stftiegeem 34bf
this paper.

In Section 2we review the Descartes method. Section 3we present Ostrowski’'s theory
of normal power series and strengthen onénisfresults that links normality of polynomials
and termination of the Descartes methdtiéorem 1). We also present Ostrowski’s sufficient
condition on the roots of a polyndal to guarantee normalityTheorem 1§ We use these
resuts in Section 4to prove Theorem 23on the proximity of complex roots to those intervals
on which the Descartes method recursSkttion 5we combineTheorem 23with Davenport’s
root separation theorem to obtain new bounds for the recursion tree of the Descartes method. In
Section 8ve useTheorem 110 characterize the normal culiolynomials by explicit conditions
on their roots. We gauge the extent of the improvement by applying the Descartes method to
2.3 hillion cubic polynomials. We use the new result to praigeorem 34—thus strengthening
Theorem 17

2. Review of the Descartes method

Definition 1. Leta = (ao, ..., a,) be a finite sequence of real numbers. Thnber of sign
variationsin a, varn@a), is thenumber of pairgi, j) with 0 <i < j < nandaaj < 0 and
g1 = --- = aj—1 = 0. Let A be the polynomiaby + aix + - - - + anx". The number of
coefficient sign variationm A, var(A), is vara).
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Theorem 2 (Descartes Ble of Signy For any non-zero real polynomial the number of
coefficient sign variations exceeds the numbgrasitive real roots—counting multiplicities—by
anon-negative, even integer.

Proof. Let A(x) be a non-zero real polynomial.xK is the highest power of that divides A, the
polynomialA/x¥ has the same number of coefficient sign variations and positive real ro8ts as
and its constant term is non-zero. Hence, we may assume that the constantfeismoh-zero.
Let ag be ths constant term, let be the degree of\, and leta, be the leading coefficient. Let
v = var(A), and letp be the number of positive real roots Af counting multiplicities.

To show that and p have the same parity we use an argument give@daykwright(1941).
Letz, ..., zn € C be the roots ofA. Then

AX) = 8n(X — 1) -+ (X — Zn), 1)

and hencey = A(0) = (—=1)"anz1 ... zy. Sincethenon-real roots occur in complex conjugate
pairs, their product is positive. The product of the positive roots is likewise positive, no root is
zero sinceqg is non-zero, and the product of the negative real roots has the(sigjf—P. It
follows that the sign ofp/an is (—1)P. Hercev and p have the sam paity.

Gausgq1828 provesv > p by showing that, for any non-zero real polynomiix) and any
positive real numbes,

var(B) < var((x — a) - B). (2

So, in Eq. 1), every positive root ofA contributes at least one sign variation.

To show inequality ) let B = bpx™ + --- + bp, leta > 0, and letC = (x — a)B =
CmytX™ L 4+ ... 4+ co. If var(B) > 0 let(i, j) be an index pair that contributes to ¢Bj. Then
0<i < j<mandbibj <Oandéherj=i+1orbj1;=0.Ifo :R— {-1,0, 1} denotes
the sign function then

o (Ciy1) =o(bi —abi11) = o).

So, if (i1, j1), ..., (ik, jk) are all the index pairs that contribute to 8y, and if 0< i1 < j1 <
-+- <k < jk £ m, then

var(Ci,+1, - - -, Cig+1. Cmy1) = varbi,, . .., by, bm) = var(B).

Now leti be the smbest index for whichb; # 0. Then 0< i < i ando(¢) = o(—aly) =
—o (b)) = —o(bj;) = —0(Ciy+1), and so

var(C) > var(ci, G, +1, - - -, Ciy+1, Cm+1) = 1+ var(B).
If var(B) = 0 then va(C) > var(c, cms1) = var(—aby, by) > 1. O

Theorem 2s named after Descartes although he merely stated that there can be as many positive
real roots as there are coefficient sign variatidbeqcartes1954). Over time it became clear

that there are at least as many sign vaoiagias there are positive roots; according#wtolozzi

and Franci(1993, the assertion was first stated and proved3auss(1828. Some modern
authors Albert, 1943 Wang 2004 seem to be unaware of Gauss’s contribution.

Theorem 3. Let A be a non-zero real polynomial. tfar(A) = 0 then Adoes not have any
postive real root; if var(A) = 1then A has exactly one positive real root.
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Definition 4. Let S be a subring oR with 1 € S. We define three polynomial transformations
S[X] — 9[X]. Let A = anx" + - .- + a1x + ag be an element of[x].

(1) Thehomothetic transformatioaf A is the polynomial
H(A) = anx" 4 2an_1x" 1 4. 4 2"y x + 2"ay.
(2) TheTaylorshift byl of A is the polynomial
T(A) = bpx" + -+ bix + b
whereby = Z?:k( |J( )aj fork € {0, ..., n}.
(3) Thereciprocal transformatiormf A is the polynomial
R(A) = aox" + - -+ + an_1X + an.
Note thatR(A) = 0 if andonly if A= 0, and thai | AimpliesR(A) = R(A/X).

The Descartes method can now be stateéllgsrithm 1

Algorithm 1 (Descartes Method)his verson is specialized tooot counting inl = (0, 1). The
algorithm can easily be modified to perform real root isolation.
int roots_in__| (A e S[x], A# 0, AsquarefreeS C R subring, 1€ )
d < var(T R(A));
ifd <1 returnd;
B <~ H(A);C « T(B);
if X|C m<«1;elsem <« 0; Noteem=1<= A(1/2) =0.
returnroots in_| (B) +m+roots in_| (C);

To show thatAlgorithm 1 is partially correct we relate the roots of transformed real
polynomials to the roots of the untransformed polynomials. Since we want to use bijective
mappings we add the poind to C.

Definition 5. Let C = C U {oo} be the Riemann sphere. We define three funct®rs—> C.

_Jz/2, ifzeC;
D=1, if z= .
z+1, ifzeC;
t@ = 00, if z=o0.

1/z, ifzeC—{0};
r(z =400, ifz=0;
0, if z=o0.

The functionsh, t, andr are elements of the group Mobius transformationsThese are all
functionsC — C given by
az+b
3
— cz+d @)
witha, b, ¢, d € Candad — bc # 0. Andersor(1999 explains how formulag) handles division

by 0 and evaluation afo. Also Carathéodory(1964 andHenrici (1974 discussthe properties
of Mdbius transformations.
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Remark 6. Let A € R[x], and letn = deg A); we aopt the convention that dg®) = 0 and
Idcf(0) = 0. Then, for allz € C,
H(A)(2) = 2"A(h(2)),
T(A (@) = At(2)),
_|"Ar (@), if z#£0;
RIN@ = {Idcf(A), it 2= 0.

So, forallz € C,
TH(A)(2) = 2"A((hot)(2)),

_ JE@)"Ar o )(2)), if z# -1
TRA® = {Idcf(A), if 2= 1.

Remark 7. By Remark 6 the following statements hold for all polynomialse R[x].

1. The functiorh maps the roots dfl (A) one-to-one onto the roots &, in patticular, the roots
of H(A) in (0, 1) correspond to the roots &in (0, 1/2).

2. The functiort maps the roots of (A) one-to-one onto the roots é.

3. The functiorr maps the non-zero roots 8( A) one-to-one onto the non-zero rootsAufthe
roots of R(A) are non-zero unles& = 0.

4. The functiorh ot maps the roots of H(A) one-to-one onto the roots &f, in paticular, the
roots of T H(A) in (0, 1) correspond to the roots & in (1/2, 1).

5. The functionr ot maps those roots df R(A) that are diferent from—21 one-to-one onto the
non-zero roots of\; the oots of T R(A) are different from—1 unlessA = 0. The positive
real roots ofT R(A) correspond to the roots &in (0, 1).

Theorem 8. Algorithm1is partially correct.
Proof. Combine he observationdlj, (4), and &) of Remark Avith Theorem 3 [

3. Ostrowski’stheory

Definition 9. A powerseries
+00
> ad
k=—o00

with non-negative real coefficientsri®rmal (Ostrowskj 1939 if

(1) a2 > ax_1ak+1 for all indicesk, and
(2) an > O anda; > Oforindicesh < j impliesany1,...,aj-1 > 0.

In 1950, Ostrowski linked the normality of a polynomial and the Descartes rule. He stated
his result Ostrowskj 1950 Lemma 1) for polynomials all of whose coefficients are positive.
Generalizing slightly we show ilfheorem 1%hat it suffices to require #i the leading coefficient

be positive.

Definition 10. A polynomial with real coefficients igostive if its leading coefficient is positive.

Theorem 11. A postive polynomial Ax) is normal if and only ifvar((x — «) A(x)) = 1 for all
postive real numbers.

Proof. (i) Let A(x) be positive and normal, and letbe a positive real number. There is a non-
negativentegerm suchthat A(x) = B(x) - x™ whereB(x) is normal and all the coefficients of
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B(x) are positive. LeB(X) = bpx" + - - - 4+ bix + bg. Then

bn—l bn—z bO
bn bn—l bl
and hence
bn—l —a > bn—2 g > > @—(x
bn - bn—l - - l3'1 ’

Since alsd, > 0 and—abg < 0, the polynomial

bn— b
(X—a)B(X):ann+1+bn( Bl—(x>xn+---+b1(b—0—(x>x—(xbo
n 1

has exactly 1 coefficient sign variation. And so,
1 = var((x — a) B(x)) = varn(x — ) B(x) - x™ = van(x — o) A(X)).

(i) Conversely, letA(x) be positive but not normal. There is a non-negative integsuch
that A = B(x) - xX™ whereB(x) has a non-zero constant term. Moreover, the polynoBya)
is positive and not normal—and hence non-constant. For any real numberC(®) (x) =
(x —a)B(x). Then vat(x — a) A(x)) = var(C®(x)), and it suffces to find a positive number
such that vaC® (x)) # 1.

Let B(X) = bpx" + --- + bgx + bg. Thenn > 1 andb, > 0 andby # O. Let
C@(x) = cg‘flxn+l+. . -+c(1"‘)x+cg"). Thencg)‘) = —aby, cl(("‘) =by_1— abcforl <k <n,

andcﬁl"fg1 = bn.

If var(B(x)) > 2 choosex so small that, for alk with 1 < k < n, the sgns ofcf("‘) andby_1
are equal whenevéx_1 # 0; then va(C@ (x)) > var(B(x)) > 2.

If var(B(x)) = 1 the polynomialB(x) has exactly one positive real root by the Descartes
rule. So, for anyx > 0, the polynomialC®)(x) has two positive real roots, and, again by the
Descartes rule, VeE® (x)) > 2.

Finally, assume v&B(x)) = 0. Then, sincéb, > 0, all the coefficients oB(x) are non-
negative. 1 all the coefficients ofB(x) are positive, then, sincB(x) is not normal, there is
an indexk with 1 < k < n — 1 such that O< by/bks1 < byx_1/bk. Choosea suchthat

bi/br1 < @ < b_1/bk. Nowa > 0 andcl®; = by > 0,¢; = bk — ab1 < 0 and

cf("‘) = bx_1 — abx > 0, and hence v&€@ (x)) > 2. If not all the coefficients oB(x) are
positive, there is a zero-coefficient. Liat be the zero-coefficient with the highest index; then

cf("jr)l < 0 for anypositivex. Sincebg > 0 there isan indexj < k suchthatbj,; = 0 and

bj > 0; thenc}‘j‘:1 > 0. Nowcc(,“) < 0 implies vaC® (x)) > 2 also in his case. [
By Theorem 11the Desartes rule will reveal the existence of a single positive root of a positive
polynomial if the other rootsq, ..., an—1 are such thatx — «a1) --- (X — ap—1) is anormal
polynomial.

Theorem 12. A postive linear polynomial is normal if and only if its root is negative or zero.

Proof. Let A be a positive linear polynomial, and lete R be its root. Then there is a positive
real numben suchthat A(x) = a(Xx — «) = ax — ae. Now A is normal if and only if—a« > 0,
thatis, ifand only ife < 0. O
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(@) (b) (c)

Fig. 1. (a) A positive quadratic polynomial iormal if and only if its roots are in the cowe (b) If a polynomial A has
a simple oot in the interval0, 1) and no other real or non-real roots@U C then vafT R(A)) = 1. (c) The image of
C underr.

Definition 13. Let
C= {a+ib|a§ 0 and|b| < |a|«/§}.
For anillustration sed~ig. 1(a); the cone contains its bordering rays and the vertex 0.

Theorem 14. A positive quadratic polynomial is normdl&nd only if its roots are elements of
the oneC.

Proof. Let A be a positive quadratic polynomial, and éet- 0 beits leading coefficient.

If the roots of A are complex conjugates + ib anda — ib with real numbersa, b then
A(X) = c(x — (a+ib))(x — (@a—ib)). Now A(x) = cx? — 2acx+ ¢ (a2 + b?) is normal if and
only if —2ac > 0 andc(a® + b?) > 0 and(—2ac)? > c- c(a® + b?), that is, ifand only ifa < 0
and 42 > a2 + b2, or, gquivalently, if and only ifa+ ib € C.

Otherwisethe mots of A are real numberg andg, and wehaveA(X) = ¢c(X — a)(X — B) =
cx? — c(a + B)X + caB. Now A is normal if and only if—c(e + ) > 0 andcep > 0 and
(—c(a + B))? > c- cap, that is, ifand only ife + 8 < 0 andaB > 0 and(« + ) > B, or,
equivalently, ifand only itv, 8 < 0. O

In Section 6we will characterize normal cubic polynomials. The “if"-directionTdfeorems 12

and 14 can be generalized to polynomials of any degree using an earlier result of Ostrowski.
Ostrowski(1939 showed that the product of two normal series, if it exists, is normal. Later,
Ostrowski(1950 gave asimpler proof for the case of polynomials.

Theorem 15. The product of two normal polynomials is normal.

Proof. Let A = Y[, anx" and B = Z?:O ijj be normal polynomials. Any normal
polynomial can be written a® - x* wherek is a non-negative integer an@ is a normal
polynomial and all the coefficients &f are positive. Hence it suffices to consider the case where
all the coefficients ofA andB are positive.

LetC = A- B = Y i oexX. Write ok = Y}, anbk_n whereh andk range over the set
of all integers and alb, with h ¢ {0,..., m}, all bj with j ¢ {0,...,n}, and allck with
k ¢ {0, ..., m+ n} are taken as zero. Clearly, all the coefficient€adre positive; it remains to

show thatc? — cx_1Ck4+1 > O for all k.
Using the following partition of the set of summation indices

{(h,j)ezz|h>j}={(j+1,h—1)ezz\h5j]u{(h,h—l)ezz]

we obtain, for any index,
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Cf — Ck—1Ck41
= anajbenbkj + ) anajbi nbij

h<j h>j
- Z anajbk—h+1bk—j-1 — Z anajbk—ht1bk—j—1
h<j h>j
= Z anajbyk_nbx—j + Z aj+18n-1bk—j-1bk—h+1 + Z anan_1bk—hbk_nht1
h<] h=j h
— > anajbknyabk-j1— Y ajy1an-1bk jbkon — Y anan-abk hyabkon
h<j h<j h
= Z(ahaj — an-18j4+1) (bk—jbk—h — bk—j_1bk—h+1),
h<j
that is,
2 _ ) . . .
Ci — Ck—1Ck41 = Z(ahaj — an—1aj+1) (bk—jbk—n — bk—j_1bk—h+1). 4)
h<j
SinceAis normal andgy, . . ., am are positive, one has
_am—l > 8m-2 >0 > @’
am am-1 ap

and henceana; — an—1aj4+1 > O for all h < j; the analogous statement holds for the
coefficients ofB. Hence each summand on the right-hand side of Exis(non-negative, and
thuscZ — ck_1Ck1 > O forallk. O

Theorem 16. If the roots of a positive polynomial are in the cofiehen the potnomial is
normal.

Proof. Let A be a positive polynomial all of whose roots are elements of the cbriehe
complete factorization oA over the field of real numbers is a product of linear and quadratic
factors. We may assumeahall these factors are positive. Since all the roots are in the €pne
Theorems 12nd14 apply, and each factor is normal. Thus, Byeorem 15the polynomialA

is normal. O

Of all the theorems in this section, we will invoke ofiiieorem 17n Sectons 4and5.

Theorem 17. If the roots of a non-zero polynomial (®) are in the coneC thenvar((x —
a)A(x)) = 1for all positive real numbera.

Proof. Let A be a non-zero polynomial and such that all of its roots are elements of the
coneC. If A is positive thenA is normal by Theorem 16 and henceTheorem 1limplies
var((x — a)A(x)) = 1 for all positive«. If A is not positive then—A is positive and the
roots of —A are elements of the con& Herce, as before, vafx — a)(—A)(X)) = 1, but
var(X — a)(—A)(X)) = var(x —a)AX)). O

4, Threecircles

By Theorem 17Algorithm 1will stop calling itself when it encounters a polynomiaR(A)
that has exactlpne positive root and whose other roots are elements of thetdie want to
state this condition in terms of the roots of the polynonAalSinceA is non-zeroRemark 15)
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implies that he functiornr ot maps the roots of R(A) one-to-one onto the non-zero rootsAf
But much nore is true since ot is a Mobius transformation.

Remark 18. Anderson (1999 reviews someproperties of Mobius transformations. These
transformatbns are homeomorphisms of the Riemann spliere C U {oo} that map circles

in C to circles. In particular, circles and lines @are mapped to circles and lines. To identify
the image of a given circle or lin& under a given Mobius transformation it suffices to select
three distinct points oK, to compute their images under the transformation, and to determine
the unique circle or lineL that containsthose images. The seS — K and C — L each
have exactly two connected components. Each componeit-ofK is mgped to a different
component ofC — L since Mibius transformations are homeomorphism&ofBy applying

the tranformation to a single point i€ — K one can determine the image of each component
of C — K.

Definition 19. We define lree circular disks.
c = [ze(C‘ ‘z— (1/2—iJ§/6)‘ < ﬁ/:s},
c = [ze c‘ ‘z— (1/2+if3/6)‘ < ﬁ/s},
c = [ze(C‘ Iz—1/2] < 1/2}.

Remark 20. The M6bius transformationo t maps the coné one-to-one ont& — (CUC) and
the half-plangz € C | Re(z) < 0} one-to-one ont@ — C. Both staementscan be verified using
the mehod described ilRemark 18

Fig. 1(a) shows the coné. Fig. 1(b) shows the boundaries of the open di€kandC. Fig. 1(c)
shows low the Mdbius transformatiom operates on the boundary &f. If z traverses the
boundary ofC clockwise from 1 towards 0, the reciprocék) traverses the rajl—s++/3si | s >

0} upwards startingtal. Sinilarly, if z traverses the boundary & counterclockwise from 1
towards 0, the reciprocalz) traverses the rayl — s — +/3si|s > 0} downwards garting at
1. The pointz = 0 is mgped tor (0) = oo ¢ C. Thusthe figure illustrates how the function
t~Lor = (r ot)"1 mapsC — (C U C) one-to-one ont@.

Theorem 21 (Two-CircleTheoren). Let A be a realpolynomial with a single, simple root
in the interval (0, 1) and no other real or non-real roots in the open disksa@d C. Then
var(T R(A)) = 1.

Proof. Let A be as described. Theh £ 0 and, byRemark 15), the roots ofB = T R(A) are
all different from—1. Therefore, the functio@r o t)~ maps the non-zero roots éfone-to-one
onto the roots oB. Herce, B has a single, simple root iff o t)~1((0, 1)) = (0, o), andits

other roots are iir ot)~1(C — (C UC)) which equal€’ by Remark 20Now Theorem 1%ields

var(B) =1. O

The two-circle condition is not necessary for tieemination of the Descartes method. Indeed,
the polynomial A = 32x3 — 16x2 + 2x — 1 has theisgle, simple root 12 in the interval0, 1),
the pair d complex conjugate roots:i /4 inside theopen disk<C andC, and vatT R(A)) = 1.

Our two-circle theorem improves upon a two-circle theorenCoflins andJohnson(1989.
They use the disks

Di={zeC||zl<1} and Do={zeC||z-1]| <1}
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'/}& %\C mé
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0| 1

INAT 0
(@ (b) © (d

Fig. 2. (a) Recursion tree fok = 27648 — 460802 4 25251 — 4321. (b), (c) Triangles witkircumscribing disk<,
C. (d) Circumscribing disks for the intervals thie leaf nodes of the tree in (a). Also shown af8 and 23 +i - 5/32,
the roots ofA.

instead ofC andC. But C U C is a poper subset oD; U D», and the area o U C is exactly
one-third of the area dD; U D». Indeed, the Mobius transformation
iv/3 1 .3
z2— 52+ (3-1%)
mapsD; U D, ontoC U C.
The following well-known theorem completes our conversg&loéorem 3

Theorem 22. If a polynomial A does not have any roots in the open disk C vheil R(A)) =0.

Proof. Let A be as described. Thel £ 0 and, by Remark 15), the roots ofB = T R(A) are
all different from—1. Therefore, the functiofr o t)~! maps the non-zero roots éfone-to-one
onto the roots 0B. But sihce the roots of are all inC— C, the 10ots ofB have non-positive real
parts byRemark 20 Hence, in the decomposition & into a product of a constant and monic
linear and quadratic factors, @&y linear factor is of the fornx — « wherea < 0, and every
quadratic factor is of the forrx — (a+ib))(x — (a—ib)) = x? — 2ax+ (a2 + b?) wherea < 0.
Since all the non-zero coefficients of all the linear and quadratic factdBdave the same sign,
the non-zero coefficients dB all have the same sign.OJ

When we bound the recursion depth of the Descartes method we willluserem 23which
summarizes the preceding results.

Theorem 23. Let A be a reapolynomial withvar(T R(A)) > 2. Then déher the open disk C
contains at least two roots gf A, or the intervd, 1) contains exactly one real root and the
union of the open disks @ndC contains a pair of complex conjugate roots.

Proof. If A has no root inC then varT R(A)) = 0 by Theorem 22 Thus, A has at least one
root in C. If this is the only root inC, the 0ot is real and it is, in fact, the only real root in the
interval (0, 1). ThenC U C must contain a pair of complexonjugate roots because otherwise
var(T R(A)) = 1 by Theorem 21 O

5. Bounds for therecursion tree

For any input polynomialA the recursion tree d&lgorithm 1is a full binary treefFig. 2shows
an example. With every node of the tree we associate g Bair) consisting of a polynomiaB
and an interval . With the root of the tree @ assocate the pailA, (0, 1)). If an internal node is
associated with the paiB, | ) we associate one child with the paB,, || ) whereB_ = H(B)
and| is the open left half of , and we asociate the other child with the paBgr, Ir) where
Br = TH(B) andlRg is the openight half of I .

Remark 24. By Remark 71) and @), the functionh maps the roots dB, in (0, 1) onto the roots
of B in I, and the finctionh o t maps the roots oBr in (0, 1) onto the roots oB in Ig. Thus,
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there is a sguence of elements ¢h, t} whose compositiom maps the roots oB in (0, 1) onto

the roots of the input polynomiah in 1. Whenm maps the interval0, 1) onto the interval it
transforms at the same time the di§ksC andC of Section 4 Thesedisks are tk circumsribing
disks of isosceles triangles with ba@e 1) and base angles 45-60° and 60, resgectively, as
shown inFig. 2 But h, t and, hencemn are Mdbius transformations and thus preserve angles
(Anderson1999. Moreover, the transformatiomst and, hencem map straght lines inC onto
straight lines inC and circles inC onto circles inC. Therdore, the imagesn(C), m(C) and
m(C) are the circumscribing disks of the isosceles triangles with bamed base angles 45
—60° and 60, respectively. Fig. 2 shows the disks that are considered at the leaf nodes of a
particular recursion tree.

The depth of the recursion tree can be bounded using the root separation thedeiraf
(1964. To obtain a bound that also covers the width of the tree we use a generalization by
Davenport(1989 of Mahler’s theorem in a form due tdohnson(1998.

Definition 25. Let A = apx" + --- + a1x + ap be a non-zero polynomial of degreewith
complex coefficients and the complex roets .. ., an. The Euclidean normof A is |Al2 =
@2+ - +a3)/2 themeasire of Ais M(A) = |an| - []{_; max(, |i|), and thediscriminant
of Ais D(A) = 3" 2[[_; (ai —aj)?.

Remark 26. A theorem of Landau (1905 implies M(A) < |Al2. The inequality was
independently rediscovered more than o@strowski(1961) summarizes its history and proves
a gereralization Mignotte (1974 1982 gives a hort elementary proof. The discriminabt A)

is known to be a polynomial in the coefficients Af(van der Verden1949; henceD(A) > 1

if Aisa qquarefree integer polynomial.

Theorem 27. Let A be a non-zero complex polynomial of degree n with the regts. ., ap. Let
k be anintegerl < k < n,and let(81, ..., Bk) be a sequence of roots of A such that

Bi €{a1,...,ai} and |Bi| < || foralli € {1,...,k}.
Then

k
[ 1o = il = 32DAYV2M(A) M Hin—n2,
i=1

Proof. Johnson(1998. O

Theorem 28. Let A be a non-zero real polynomial of degree n, measure M, and discriminant D.
Let the integers b= 0 and k> 1 be such that k is the number of internal nodes of depth h in the
recursion tree oflgorithm 1 with input A wheredepthis the distance frm the oot. Then

()k <n,and
(2) 2(17h)k -~ 3k D1/2M*”+1n*k*”/2.

Proof. LetI; < --- < I be the open subintervals @, 1) that are associated with the internal
nodes of depth, and letAq, ..., Ak be the corresponding polynomials. The intervals have width
27" Foreveyindexi € {1, ..., k} letC;, C; andC; be the rcumscribing disks of the isosceles
triangles with basé#; and base angles 45-60° and 60, respectively. ByRemark 24the oots

of Aj in the disksC, C andC, correspond, respectively, to the rootsAfn the disksCi, C; and

C;. But the polynomialsh; are at internal nodes of the recursion tree, SGV&(A;)) > 2, and
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Fig. 3. Adjacent intervals with coinciding roots. Heje= i + 1. (a)|Rj| = 3 and|R;| = 2. Note that8;| < |«;j| and
18j| < lejl ande;, i € Cj andaj, Bj € C;. (b) IRi| = 2 and|Rj| = 3. (¢)|R/| = 3and|R;| = 3. InCj the root with
the smaller modulus is labelegi and the other roat;; likewise forC, 8j ando;.

)

B

j

;
)

hence, byTheorem 23either C; contains at least two roots &, or |; contains exactly one real
root of A andC; U C; contains a pair of complex conjugate rootsfof

Assertion (1) holds since every disiC; contains at least one root o, and thke disks
Ci, ..., Ck are pairwise disjoint.

Assertion(2) holds if A has amultiple root sinceD = 0 in thatcase. If all roots are simple,

define, for every index € {1,...,k}, a setR of roots of A in C; U C;. If C; contains at
least two roots ofA, let Ry = {s,t} wheres andt are either two arbitrary distinct real roots
in l; or two arbitrary non-real complex conjugate rootsGry otherwse, letR = {r, s, t}

wherer is the ungue real root inlj, ands andt are two arbitrary non-real complex conjugate
roots inC; U C;. For notational convenience lé&®y = R¢;1 = #. Note hat, fa all distinct
indicesi, j € {1,...,k}, the intersection ofR, and R; is either empty or it consists of two
non-real complex conjugate roots apnd=i — 1 orj =i + 1. Moreover, ifR N Riy1 # ¢
thenR_1N R = dandR;1 N Ry2 = @. So, for d indicesi e {1,...,k}, the setR is
either disjoint from all setR;j, j # i, or there is e&ctly one setR; suchthatj # i and

R N R} # .

Leti € {1,...,k}. If R is disjoint from all setsR;, j # i, sekct two distinct elements from
R that are both irC; or both inC; or both inC;, and ldel thema; andg; so that|gj| < |aj|. If
there is exactly one s®; suchthatj # i andR N Rj # @ then selecty, B, «j, Bj € R UR;
as described ifrig. 3for the casej =i + 1. SinceR N R;j # ¢, at least one of the se® and
R; has 3 elements, and the figure shows how the roots are selected depending on whether only
R has 3 elements or onl; or bothR; andR;.

By construction, the selected roots, ..., ok and B1,..., Bk nhot only satisfy 8; ¢
{a1,...,ai}and|Bi| < |aj| foralli € {1,...,k} butalsoforalli € {1,...,Kk}, both rootsy;
andg; are in one of the disk§;, C;, Ci, or, ifi > 1, inthe diskCi_1, solai — Bi| < 21-"/4/3.
Now Theorem 27mplies

k

i=1
Theorem 29. Let A be a non-zero squarefree integer polynomial of degreezwith Euclidean
normd. Let h and k be as ifheoren8, and letlog = log,. Then
()k <n,and
(2)(h— Dk < (n—1)logd + (k+n/2)logn — klog 3, and
(3)h < (h—1)logd + (n/2+ 1) logn — log 3.
Proof. Assertion(1) holds due to assertiofl) of Theorem 28To show asertion(2), consider
assertion(2) of Theorem 28apply Remark 26 take logarithms, and multiply by1. To show
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assertion(3), consider asertion(2) and collect all terms involvink on one side to obtain
k(h — 1 —logn+1log3 < (n—1)logd + n/2logn. If h — 1 —logn 4 log3 < O then
assertion(3) clearly holds. If, on the other hanld,— 1 — logn + log 3 > 0 thenk > 1 implies
h—1-logn+log3 < (n— 1)logd + n/2logn, andhence assertio(B8) holds alsain this
case. [

Remark 30. Theorem 29s stronger than an earlier result B§randick (1995 Satz47), and the
proof is shorter. The theorem implies the dominance relatidns nlog(nd) andh < nlog(nd)
which can be used in an asymptotic computing time analystd @érithm 1when the ringS of
coefficients isZ; the notation< is due toCollins (1974).

6. Normal cubics

By Theorem 16any positive polynomial whose roots are in the cdahés normal. By
Theorems 12and 14 the mnverse holds for linear and quadratic polynomials. For cubic
polynomials, however, the converse is false. Indeed, the normal polynetrichx? + 16x + 30
has roots-1 + 3i ¢ C. Theorems 3-and32 together completely characterize the normal cubic
polynomials.

Theorem 31. Let A be a positive polynomial all of whose roots are real. Then A is normal if and
only if the roots are all non-positive.

Proof. If the roots ofA are all non-positive thefheorem 18mplies thatA is normal. Otherwise,
A has a positive root. In this case, ¥ar — 1) A(x)) > 1 by Theorem 2andA is not normal by
Theorem 11 [

Theorem 32. Let A be a positive cubic polynomial whose roots are a anflilc where a b, c
are real numbers. Then A is normal if and only if

a<0 and (5)

b<0 and (6)

c®—3b>—2ab—a%? <0 and (7)

c* + 202c? + 2ab& — a2c? + b* + 2ab® + 3ab? > 0. (8)

Proof. We may asume thatA is monic sinceA is normal if and only if A/ldcf(A) is normal.
Hence,

A=x—-a)-(X—(b+ic)) - (x—(b—ic))
and thus

A= x3 4+ ax?+ aix + ag
where

a =—a—2b,
a; = 2ab+ b? + ¢,
ag = —ab® — ac®.
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C

Fig. 4. Fora = —1 thepoints (b, ¢) that satisfy §)—(8) are pecisely the points in the left half-plané)(between the
two branches of the hyperbol@)(andoutside of the figure “8”§). Fora = 0 the soltion set coincides with the corn@
which is déimited by the curvec? — 302 = 0. The solutions of inequalitylQ) are pecisely the points outside the circle.

By definition, Ais normal if and only if all of the following hold.

a2 > 0, 9)
ap > 0, (10)
ao > 0, (11)
a3 > a, (12)
a? > aay, (13)
a=0=a =a =0, (14)
a;=0= ag=0. (15)

Implication (L5) is redundant since it follows from1@), (9) and (1). Also the mplication
(a2 = 0= a1 = 0) in (14) is redundant since it follows froni@) and (L0). We note the pairwise
equivalence off) and (1), (7) and (L2), and 8) and (3). We will show that the conjunction of
(5)—(8) is equivalent to the conjunction 0B§—(15).

Assume §)—(8). Clearly, 6) and @) imply (9) and (L0). The pairwise equivalences yielt1),
(12) and @3). The imgication (a; = 0 = ag = 0) in (14) holds sincea; = 0 togethemwith (5)
and @) impliesa = 0.

Assume now9)—(15). The pairwise equivalences yiels)( (7), and 8). To complee the proof
we have to showq). By (5) we havea < 0. If a = 0 then ) follows from (9), so we mg assume
a < 0. Next observe that ifa, b, ¢) satisfies 9)—(15) then, for anyt > 0, (ta, th, tc) satisfies
(9)-(15). So we may assunme= —1. Now () implies thatb < 1/2, and we need to show that
b < 0. Fig. 4illustrates the situation. Ib = 1/2 then, by 9), a = 0, hence, by14), ag = 0,
and thusa = 0, a contradiction. Sdy < 1/2 and weneed to shovb < 0. Multiplying (7) and
(10), and combining the result witt8) we obtain the inequalities



W.Krandick, K. Mehlhorn / Journal of Symbolic Computation 41 (2006) 49-66 63

(> =3 +2b—1)(—2b+b%*+¢? <0
< c* 4+ 20%c2 + 2abd — a%c? 4 b* + 2ab® + 3a%b?.
Collecting all the terms on the left-hand side and factoring yields
—2b(2b— 1)((b— )2 +¢c?) <0,
so0< b < 1/2isimpassible,and we havd < 0 as desed. [

Fig. 4 supports the notion thatheorem 32ecognizes more normal cubics thaneorem 16
In an attempt to quantify the improvement we perform extensive experiments that use
Algorithm 1

Definition 33. The maxnorm of a complex polynomialA = anx"™ + --- + a1x + ag is
|Aloo = max(|aal, . . ., [aol).

Let m be a positive integer. The set of all normal cubic integer polynomials of max-rocan
be efficiently enumerated. For each such polynoriial

A = agx® + apx? + a1x + ao,

we want todecide whether all of its roots are in the caheSinceA is cubic, eitherA has one

real root and two non-real complex conjugate roots, or all the roofs arfe real. In particular,
if A has amultiple root then all the roots oA are real. Since all the coefficients afare non-

negative, all the real roots & are non-positive and, hence,@nUsing polynomial factorization
andAlgorithm 1we thus reduce the decision problem to the case whdeeirreducible and has
a shgle real rootr € C. Theother roots ofA are the roots of the polynomial

B = AX)/(X — a) = agX® + (aza + a2)X + (agar® + axa + a1).

By Theorem 14these oots are irC if andonly if B is normal. We decide the latter by performing
arithmetic inZ[«] on the coefficients oB.

The computing time of the decision method can be reduced by a factor of abdut @sing
floating pont computations instead of exact arithmetic. Indeed, we use the floating point interval
arithmetic techniques described Byllins et al.(2002, and we fall back to exact arithmetic
just in case the floating point results areanclusive. In our experiments we represertily an
isolating interval of width 240, and we use standard double precision arithme&EE, 1985.

For all our inputs, the floating point method is inconclusive only in case the rodédiefon the
boundary of’; this stuation occurs whei is normal andaza + a2)2 = a3 - (aza? + axa +ay).

Table 1shows that only about 57% of the,353 361, 850 normal cubic polynomials we
examired have all of their roots in the code It seems reasonable to expect smaller ratios when
the experiment is carried out for polynomials of higher degrees. The table also shows that we
had to use exact arithmetic for relatively few polynomials.

We can now generaliz€heorem 17

Theorem 34. Let A(x) be a non-zero polynomial such thatX = B(x) - C(x) where all the
roots of Bx) are in the con& and C(x) is a product of cubic polynomials each of whose roots
are as described iTheorenB2then

var(x —a)AKx)) =1 forallreal @ > 0.

Proof. Theorems 1115,17and32. O
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Table 1

For anypositive integem, let N(m) be the number of normal cubic integer polynomials with max-norrand letC(m)
be the number of those normal cubic integer polynomials of max-motivat have all roots in the cor@

m N(m) C(m) C(m)/N(m) Boundary
100 780708 445288 .57036 122
200 6232898 3558002 .57084 277
300 21019770 12004 290 57110 453
400 49814 320 28450698 57113 640
500 97 252 440 55564678 57134 807
600 168075834 96011988 57124 996
700 266842438 152459384 57135 1140
800 398334 336 227573618 57131 1355
900 567119096 324020078 57134 1766

1000 777890010 444 469 060 .57138 1695

The rdios C(m)/N(m) are rounded to five decimal digits. The last column lists the number of polynomials that have
non-real roots on the boundary ©f

It is easy to state higher-degree analogue3toforem 32 The analogous theorems result in
additional improvements dfheorem 17but itis not clear howhe improvements can be used to
obtain better general bounds for the Descartes method.
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