

Note on Vincent's Theorem

A. M. Ostrowski

The Annals of Mathematics, 2nd Ser., Vol. 52, No. 3. (Nov., 1950), pp. 702-707.

Stable URL:

http://links.jstor.org/sici?sici=0003-486X%28195011%292%3A52%3A3%3C702%3ANOVT%3E2.0.CO%3B2-Z

The Annals of Mathematics is currently published by Annals of Mathematics.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at <u>http://www.jstor.org/journals/annals.html</u>.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

NOTE ON VINCENT'S THEOREM*

By A. M. Ostrowski

(Received September 26, 1949)

1. In 1834 Vincent gave a new method for separating the real roots of an algebraic equation, which was based on the following extremely remarkable theorem¹:

If the equation

$$f(x) = A_0 x^n + \cdots + A_n = 0, \qquad A_0 \neq 0$$

with real coefficients and without multiple roots is transformed by the successive transformations

$$x = x_1 = a_1 + \frac{1}{x_2}, \quad x_2 = a_2 + \frac{1}{x_3}, \quad \cdots, \quad x_{\nu-1} = a_{\nu-1} + \frac{1}{x_{\nu}}$$

where a_1 , a_2 , \cdots , $a_{\nu-1}$ are ≥ 1 , into the equation

$$f_{\nu}(x_{\nu}) = A_{0}^{(\nu)}x_{\nu}^{n} + \cdots + A_{n}^{(\nu)} = 0,$$

then for a ν_0 the polynomial $f_{\nu}(x_{\nu})$ with $\nu > \nu_0$ presents at the most one variation of signs.²

2. Vincent's theorem and its proof contain no estimate of ν_0 . Such an estimate was given one year ago by Uspensky,³ who found a bound of ν_0 depending only on the smallest distance Δ between two roots of f(x). Uspensky makes use of Fibonacci's series N_{μ} :

$$1, 1, 2, 3, 5, 8 \cdots$$

determined by

$$N_1 = 1, \qquad N_2 = 1, \qquad N_3 = N_1 + N_2, \cdots, N_{\mu} = N_{\mu-1} + N_{\mu-2}, \cdots$$

and asserts that if for an integer m:

$$\Delta N_{m-1} > \frac{1}{2}, \quad \Delta N_{m-1} N_m > 1 + \frac{1}{\epsilon_n}, \quad \epsilon_n = \left(1 + \frac{1}{n}\right)^{1/(n-1)} - 1,$$

we can put $\nu_0 = m$.⁴

^{*} The preparation of this paper was sponsored (in part) by the Office of Naval Research. ¹ Vincent, *Mémoire sur la résolution des équations numériques*. Mém. Soc. R. des Sc. de Lille (1834), pp. 1-34; *Note sur la résolution des équations numériques*, J. des Math. p. et appl., vol. 1 (1836), pp. 341-372. The result was for the first time published in the 6th edition of Bourdon's Algèbre.

² Vincent supposes unnecessarily that a_0 , a_1 , \cdots , a_{r-1} are all > 1.

³ In Theory of Equations, 1948, pp. 298-303.

⁴ As a matter of fact Uspensky must use the first inequality with 2 instead of $\frac{1}{2}$. Further he assumes unnecessarily that a_1, a_2, \dots, a_{p-1} are positive *integers*.

3. In what follows we will show that this result can be improved. Uspensky's first condition can be dropped altogether, while his second condition can be replaced by

$$\Delta N_m N_{m-1} \geq \sqrt{3}.^5$$

The use of Fibonacci's series N_{μ} in this connection is based on the fact that N_{μ} is a lower bound for the denominator Q_{μ} of the μ^{th} convergent to the continued fraction

$$a_1+\frac{1}{a_2}+\cdots.$$

This follows at once from the law of convergents

$$Q_{\mu+1} = a_{\mu+1}Q_{\mu} + Q_{\mu-1}.$$

The complete enunciation of our result is given in Section 7 and the proof is contained in Sections 8, 9. The proof is based on three lemmas given in Sections 4-6, which appear to be of interest in themselves.

4. LEMMA 1. Let the coefficients a, of the polynomial

$$f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$$

be positive. Then the necessary and sufficient condition that the sequence of coefficients in the product $(x - \alpha)f(x)$ presents precisely one variation of signs for each positive α is that the n - 1 inequalities

(1)
$$a_{\nu}^2 \geq a_{\nu-1}a_{\nu+1}$$
 $(\nu = 1, 2, \cdots, n-1)$

are satisfied.⁶

PROOF. If (1) is satisfied, it follows that $\frac{a_r}{a_{r-1}} \ge \frac{a_{r+1}}{a_r}$ ($\nu = 1, 2, \dots, n-1$), and therefore for any positive α :

(2)
$$\frac{a_1}{a_0} - \alpha \ge \cdots \ge \frac{a_{\nu}}{a_{\nu-1}} - \alpha \ge \frac{a_{\nu+1}}{a_{\nu}} - \alpha \cdots \ge \frac{a_n}{a_{n-1}} - \alpha.$$

On the other hand we have identically

(3)

$$f(x)(x - \alpha) = a_0 x^{n+1} + a_0 \left(\frac{a_1}{a_0} - \alpha\right) x^n + a_1 \left(\frac{a_2}{a_1} - \alpha\right) x^{n-1} + \cdots + a_n \left(\frac{a_{n-1}}{a_{n-1}} - \alpha\right) x - \alpha a_n.$$

⁵ The limit $1 + 1/\epsilon_n$ given by Uspensky increases with growing *n* monotonically to ∞ and is $\ge 1 + 1/\epsilon_2 = 3$. Our limit $\sqrt{3}$ is therefore more advantageous than that of Uspensky for all $n \ge 2$.

⁶ In counting the number of variations of signs we observe the usual convention that all zeros are to be omitted.

A. M. OSTROWSKI

And it follows from (2) that the sequence of coefficients in this product has exactly one variation of signs.

Suppose that for certain k, 0 < k < n, the corresponding inequality (1) is not satisfied. Then we have

а.

*n*₂...

$$a_k^2 < a_{k-1}a_{k+1}, \quad \frac{a_k}{a_{k-1}} < \frac{a_{k+1}}{a_k}.$$

If α is a number from the open interval $\left(\frac{a_k}{a_{k-1}}, \frac{a_{k+1}}{a_k}\right)$, we have

$$\frac{a_k}{a_{k+1}} - \alpha < 0 < \frac{a_{k+1}}{a_k} - \alpha$$

and we see that the sequence of coefficients in (3) presents at least three variations of signs, namely, one between x^{n+1} and x^{n-k+1} , one between x^{n-k+1} and x^{n-k} , and one between x^{n-k} and $x^0 = 1$. Lemma 1 is thus proved.⁷

5. LEMMA 2. Let

$$f(x) = \sum_{\nu=0}^{n} a_{\nu} x^{n-\nu}, \qquad g(x) = \sum_{\mu=0}^{m} b_{\mu} x^{m-\mu}$$

be two polynomials with positive coefficients a_{\star} , b_{μ} satisfying the conditions

(4)
$$\begin{cases} a_{\nu}^{2} - a_{\nu-1}a_{\nu+1} \geq 0 & (\nu = 1, 2, \cdots, n-1) \\ b_{\mu}^{2} - b_{\mu-1}b_{\mu+1} \geq 0 & (\mu = 1, 2, \cdots, m-1) \end{cases}$$

Then the product

$$f(x)g(x) = \sum_{\kappa=0}^{n+m} c_{\kappa} x^{n+m-\kappa}$$

has the analogous property

(5) $c_{\kappa}^2 - c_{\kappa-1}c_{\kappa+1} \ge 0 \quad (\kappa = 1, 2, \cdots, n + m - 1).$

PROOF. This lemma is contained in a more general result concerning infinite series and published in 1939.⁸ Its proof follows at once from the identity

(6)
$$c_{\kappa}^{2} - c_{\kappa-1}c_{\kappa+1} = \sum_{\nu \geq \lambda} \qquad (a_{\nu}a_{\lambda} - a_{\nu+1}a_{\lambda-1})(b_{\kappa-\nu}b_{\kappa-\lambda} - b_{\kappa-\nu-1}b_{\kappa-\lambda+1}).$$

In this identity all a_{ν} with indices outside the range $\langle 0, n \rangle$ and all b_{μ} with indices outside the range $\langle 0, m \rangle$ are to be taken as zero. Each of the polynomials f(x), g(x) can be linear. In this case its coefficients are only subject to the condition of being positive.

704

⁷ This lemma can also be proved by using certain results given by D. André in Annales Scientifiques de l'Ecole Normale Supérieure (2) vol. 12 (1883), supplément, pp. 33-44.

⁸ A. Ostrowski, Note sur les produits de séries normales, Bulletin de la Société royale des Sciences de Liége (1939), pp. 458-468.

6. LEMMA 3. Suppose that the roots -x, of the real polynomial

(7)
$$f(x) = \sum_{r=0}^{n} a_{r} x^{n-r} = a_{0} \prod_{r=1}^{n} (x + x_{r}), \qquad a_{0} > 0$$

are contained in the sector with the angle 120° having the negative x-axis as bisector:

$$|\arg x_r| \leq \frac{\pi}{3}.$$

Then all a_r are positive, and for any $\alpha > 0$ the product $(x - \alpha)f(x)$ presents exactly one variation of signs.

PROOF. For real x_r , the corresponding linear factors $x + x_r$ are linear polynomials with non-negative coefficients. Let $-\xi \pm i\eta$ be a pair of conjugate roots among the x_r . Then the product of the corresponding linear factors is

$$x^2+2x\xi+\xi^2+\eta^2$$

and satisfies the inequality

$$(2\xi)^2 \ge (\xi^2 + \eta^2)$$

since by hypothesis $|\eta/\xi| \leq \sqrt{3} = \tan \pi/3$. We see that f(x) is the product of polynomials with positive coefficients which satisfy the conditions of Lemma 2. Therefore, conditions (1) of Lemma 1 are satisfied and our assertion follows from this lemma.

THEOREM. Let f(x) be a real polynomial of n^{th} degree with n distinct roots x_1, x_2, \dots, x_n , and put

(9)
$$\Delta = \min_{\substack{\nu \neq \mu \\ \nu \neq \mu}} |x_{\nu} - x_{\mu}|.$$

Let a_1, a_2, \cdots be an arbitrary sequence of positive numbers and for each $\nu = 1, 2, \cdots$

$$r_r = a_1 + \frac{1}{a_2} + = \frac{P_r}{Q_r}, \qquad Q_r > 0$$

 \cdot \cdot $+\frac{1}{a_r}$

the ν^{th} convergent of the corresponding continued fraction, where P_{ν} and Q_{ν} have the usual meaning. If for an index $m \geq 2$, we have

$$\Delta Q_m Q_{m-1} \ge \sqrt{3},$$

the polynomial

(12)
$$(Q_m \xi + Q_{m-1})^n f\left(\frac{P_m \xi + P_{m-1}}{Q_m \xi + Q_{m-1}}\right) = F(\xi)$$

presents at most one variation of signs.

A. M. OSTROWSKI

7. PROOF. If $a \pm ib$ is a pair of conjugate roots of f(x), then the corresponding roots of $F(\xi)$ are given by $\alpha \pm i\beta$ where

(13)
$$\alpha + i\beta = -\frac{P_{m-1} - (a+ib)Q_{m-1}}{P_m - (a+ib)Q_m},$$

and therefore

(14)
$$-\alpha = \frac{Q_{m-1}Q_m}{(P_m - aQ_m)^2 + b^2 Q_m^2} [b^2 + (r_m - a)(r_{m-1} - a)]$$

(15)
$$\beta = \frac{b(P_m Q_{m-1} - P_{m-1}Q_m)}{(P_m - aQ_m)^2 + b^2 Q_m^2} = \frac{\pm b}{(P_m - aQ_m)^2 + b^2 Q_m^2}.$$

Consider the bracketed expression in (14). If the product $(r_m - a)(r_{m-1} - a) \leq 0$, then a is situated between r_m and r_{m-1} , and it follows from the inequality relating the geometric and arithmetic means that

(16)
$$|(r_m - a)(r_{m-1} - a)| \leq \frac{(r_m - r_{m-1})^2}{4}.$$

On the other hand it follows from the properties of the convergents of continued fractions and from (11) that

(17)
$$|r_{m-1} - r_m| = \frac{1}{Q_m Q_{m-1}} \leq \frac{\Delta}{\sqrt{3}}$$

and therefore

(18)
$$|(r_m - a)(r_{m-1} - a)| \leq \frac{\Delta^2}{12}.$$

Furthermore, since by definition of Δ

(19)
$$2 |b| = |a + ib - (a - ib)| \ge \Delta,$$

(18) implies that $|(r_m - a)(r_{m-1} - a)| \leq \frac{b^2}{3}$,

(20)
$$b^2 + (r_m - a)(r_{m-1} - a) \ge \frac{2b^2}{3}$$

and this inequality is, of course, also true if $(r_m - a)(r_{m-1} - a)$ is positive. Therefore, we have $-\alpha > 0$ and

$$\left|\frac{\beta}{\alpha}\right| = \frac{|b|}{Q_{m-1}Q_m[b^2 + (r_m - a)(r_{m-1} - a)]}$$

Hence, in virtue of (11), (19) and (20)

(21)
$$\left|\frac{\beta}{\alpha}\right| = \frac{|b|}{Q_{m-1}Q_m[b^2 + (r_m - a)(r_{m-1} - a)]} \le \frac{\Delta |b| \cdot 2}{\sqrt{3} \cdot 2b^2} \le \sqrt{3},$$

and we see that the complex roots of $F(\xi)$ satisfy the conditions of Lemma 3.

706

8. On the other hand, if x_0 is a real root of f(x), we obtain for the corresponding root ξ_0 of $F(\xi)$ from (14) with b = 0

(22)
$$-\xi_0 = \frac{Q_{m-1}Q_m(r_m - x_0)(r_{m-1} - x_0)}{(P_m - x_0 Q_m)^2},$$

provided $x_0 \neq r_m$. This can only be negative if x_0 lies between r_m and r_{m-1} . But this interval cannot contain more than one root of f(x) as by (17) its length $|r_m - r_{m-1}|$ is $<\Delta$. Therefore, only one real root of $F(\xi)$ can be positive.

The same conclusion holds if one of the roots of f(x) is $=r_m$ since then all other real roots remain outside this interval.

If now $F(\xi)$ has no positive root, it presents by Lemma 3 no variations of signs. If on the other hand $F(\xi)$ has a positive root ξ_0 , then we have

$$F(\xi) = (\xi - \xi_0) F^*(\xi),$$

where the roots of $F^*(\xi)$ satisfy the conditions of Lemma 3. Then it follows from this lemma that $F(\xi)$ presents exactly one variation of signs.

Our theorem is proved.

UNIVERSITY OF BASLE (SWITZERLAND) NATIONAL BUREAU OF STANDARDS