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Abstract

Akritas had proposed an algorithm, which utilizes the continued fraction expansion
of real algebraic numbers, for isolating the real roots of a univariate polynomial. The
efficiency of the algorithm depends upon computing tight lower bounds on the smallest
positive root of a polynomial. The known complexity bounds for the algorithm rely
on the impractical assumption that it is possible to efficiently compute a lower bound
that is at a constant distance from the smallest positive root; without this assumption,
the worst case bounds are exponential. In this paper, we derive a polynomial worst
case bound on the algorithm without relying on the above mentioned assumption. In
particular, we show that for a square-free integer polynomial of degree n and coefficients
of bit-length L, the bit-complexity of the algorithm is Õ(n8L3), where Õ indicates that
we are omitting logarithmic factors.

1 Introduction

A fundamental task in computer algebra is real root isolation, i.e., given a polynomial
A(X) with real numbers as coefficients, compute disjoint intervals with rational endpoints
that contain exactly one real root of A(X), and together contain all the real roots of A(X).
In this paper, we assume A(X) is square free and has degree n.

Based upon the Descartes’ rule of signs (see Proposition 2.1 below), Vincent [Vin36]
proposed an algorithm for real root isolation that computes continued fraction expansion of
the real roots of the polynomial; see [AG98] for detailed historic information of the algorithm.
Given a polynomial A(X), the algorithm constructs a series of polynomials Ai(X) such that
Ai(X) :=Ai−1(X + 1), A0(X) :=A(X), until there is a root of Ai(X) in the unit interval;
from Ai(X) it then constructs a polynomial whose positive roots correspond with the roots
of Ai(X) in the unit interval and another polynomial whose positive roots correspond with
the roots of Ai(X) greater than one; the algorithm then recursively proceeds on these two
polynomials; it stops when the polynomial at a recursive call has zero or one sign variation
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(i.e., a change from positive to negative or vice versa) in its coefficients, and in the latter case
it outputs an isolating interval for the input polynomial A(X). Observe that the number
of Taylor shifts needed to compute Ai(X) from A(X) is equal to the floor of the smallest
positive root of A(X). Thus Vincent’s algorithm has an exponential worst case running time.

Two algorithms were proposed to overcome this drawback: the Descartes method by
Collins and Akritas [CA76] 1, and a modification of Vincent’s algorithm by Akritas [Akr78b].
The latter algorithm is based upon the idea that to obtain Ai(X) from Ai−1(X) we should
compute a lower bound b on the smallest positive root of Ai−1(X), and if b > 1 then perform
a Taylor shift on Ai−1(X) by b instead of by one, as done by Vincent. The algorithm by
Collins and Akritas, however, is substantially different from Vincent’s: their algorithm starts
with an interval containing all the real roots of the input polynomial; it then sub-divides
this interval into two equal parts and recursively searches for roots in each of these halves,
using Descartes’ rule of signs as a stopping criterion.

In practice, Akritas’ algorithm performs comparably with the Descartes method [ET06,
AS05]. But what is more interesting about the algorithm is that, unlike the Descartes
method, it utilizes the distribution of the real roots of the polynomial for isolating them;
the advantage of this approach is evident [ET06, Tab. 1] when isolating the real roots of
Mignotte’s polynomials [Mig81], where it is known [ESY06, Thm. 3.6] that the subdivision
approach of the Descartes method is not suitable. Another advantage of the algorithm is
that the approximations computed to the real roots are their continued fraction expansion,
which is the best one can expect for a given bit-size of the fraction (e.g., see [Yap00, p. 469]).
Moreover, combined with Lagrange’s method [AG98, Sec. 3], we easily obtain an algorithm
for real root approximation, i.e., given a polynomial, approximate its real roots to any desired
accuracy.

Despite these advantages of Akritas’ algorithm, there is a huge gap between the two
algorithms when it comes to understanding their worst case complexity. For the Descartes
method we know [Joh98, Kra95, ESY06, EMT06] that for an integer polynomial of degree

n with L-bit coefficients its worst case bit-complexity is Õ(n4L2), here Õ means we omit

logarithmic factors. On the other hand, Akritas has claimed an Õ(n5L3) bound on the worst
case bit-complexity of his algorithm, but his analysis has two drawbacks: first, he assumes
the ideal Positive Lower Bound (PLB) function, i.e., a function that can determine
whether a polynomial has positive real roots, and if there are such roots then returns a value
that is at a constant distance from the smallest positive root of the polynomial; and second,
as mentioned in [ET06], his analysis does not account for the increased coefficient size of
Ai(X) after performing Taylor shift on Ai−1(X). The latter drawback was partially resolved

by Emiris and Tsigaridas [ET06], who derived an Õ(n4L2) bound on the expected running
time of the algorithm, by using bounds by Khinchin [Khi97] on the expected bit-size of the
partial quotients appearing in the continued fraction expansion of a real number; however,
for bounding the size of the recursion tree of the algorithm, their analysis also assumed the
ideal PLB function. In practice we never use the ideal PLB function because of its prohibitive
cost (intuitively it is almost equivalent to doing real root isolation). Instead we use functions
that are based upon upper bounds on the absolute value of the roots of a polynomial, such

1It was proposed to overcome the exponential running time of Uspensky’s algorithm [Usp48], which is an
inefficient version of Vincent’s algorithm, see [Akr86].
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as those by Cauchy, Zassenhaus etc. (see Section 2 for details). These bounds have the two
advantages: they can be computed efficiently, and they provide a good lower bound on the
smallest positive root.

Thus the complexity analysis of Akritas’ algorithm in the current literature does not
correspond with the actual implementation of the algorithm. Moreover, given the similarity
between Akritas’ and Vincent’s algorithm, we may conclude that the former is also expo-
nential in the worst case, though we do not know of any example where such behaviour is
demonstrated.

In this paper we bridge the gap between the understanding of Akritas’ algorithm in theory
and practice, and in doing so provide the first polynomial bound on its worst case complexity.
More precisely, for a square-free integer polynomial of degree n and L-bit coefficients, we
derive a worst case bound of Õ(n8L3) on Akritas’ algorithm without assuming the ideal PLB

function. But if we make this assumption then we can improve the bound to Õ(n5L2). These
bounds are derived in Section 4 and are based upon a bound on the size of the recursion tree
of Akritas’ algorithm, which is derived in Section 3 and is applicable to polynomials with
real coefficients. The crucial component for bounding the size of the recursion tree of the
algorithm, without assuming the ideal PLB function, is the tightness of the lower bounds
on the positive real roots of the polynomial; this is the subject that we treat in Section 2,
where we also give the details of Akritas’ algorithm and criteria for its termination.

2 The Continued Fraction Algorithm

Given a polynomial A(X) = anXn + an−1X
n−1 + · · · + a0, ai ∈ R, let Var(A) represent the

number of sign changes (positive to negative and vice versa) in the sequence (an, an−1, . . . , a0).
One of the crucial components of Akritas’ algorithm is the Descartes’ rule of signs:

Proposition 2.1. Let A(X) be a polynomial with real coefficients. Then the number of
positive real roots of A(X) counted with multiplicities is smaller than Var(A) by a positive
even number.

See [KM06] for a proof with careful historic references. Since Var(A) exceeds the number
of positive roots by a positive even number, the Descartes’ rule of signs yields the exact
number of positive roots whenever Var(A) is 0 or 1.

The other component is a procedure PLB(A) that takes as input a polynomial A(X) and
returns a lower bound on the smallest positive root of A(X).

Given these two components, Akritas’ algorithm for isolating the real roots of a square-
free input polynomial Ain(X) uses a recursive procedure CF(A, M) that takes as input a
polynomial A(X) and a Möbius transformation M(X) = pX+q

rX+s
, where p, q, r, s ∈ N and

ps − rq 6= 0. With the transformation M(X) we can associate the interval IM that has
endpoints p/r and q/s. The relation among Ain(X), A(X) and M(X) is the following:

A(X) = (rX + s)nAin(M(X)). (1)

Given this relation, the procedure CF(A, M) returns a list of isolating intervals for the
roots of Ain(X) in IM . To isolate all the positive roots of Ain(X) initiate CF(A, M) with
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A(X) = Ain(X) and M(X) = X; to isolate the negative roots of Ain(X) initiate CF(A, M)
on A(X) :=Ain(−X) and M(X) = X and flip the signs of the intervals returned.

The procedure CF(A, M) is as follows:

Procedure CF(A, M)
Input: A square-free polynomial A(X) ∈ R[X] and a Möbius transformation
M(X) satisfying (∗).
Output: A list of isolating intervals for the roots of Ain(X) in IM .
1. If A(0) = 0 then

Output the interval [M(0), M(0)].
A(X) :=A(X)/X; return CF(A, M).

2. If Var(A) = 0 then return.
3. If Var(A) = 1 then

Output the interval IM and return.
4. b :=PLB(A).
5. If b > 1 then A(X) :=A(X + b) and M(X) := M(X + b).
6. AR(X) :=A(1 + X) and MR(X) :=M(1 + X).
7. CF(AR, MR).
8. If Var(AR) < Var(A) then
9. AL(X) :=(1 + X)nA

(
1

1+X

)
and ML(X) :=M

(
1

1+X

)
, n = deg(A).

10. If AL(0) = 0 then AL(X) :=AL(X)/X.
11. CF(AL, ML).

Some remarks on the procedure:

• By removing lines 4 and 5, we obtain Vincent’s algorithm for isolating positive roots.

• Line 8 avoids unnecessary computations of AL(X) since if Var(AR) = Var(A) then
from Budan’s theorem [Akr82] we know that there are no real roots of A(X) between
0 and b + 1. This test is missing in Uspensky’s formulation of the algorithm [Usp48,
p. 128] and was pointed out in [Akr86].

• Line 10 is necessary to avoid recounting; since AL(0) = 0 if and only if AR(0) = 0, the
root would have been already reported in the recursive call at line 7.

We now give the details of the positive lower bound function used in the algorithm above.

2.1 Lower Bounds on Roots

Given a polynomial A(X) =
∑n

i=0 aiX
i, a0 6= 0, one way to compute PLB(A) is to take the

inverse of an upper bound on the absolute values of the roots of the polynomial

R(A)(X) :=XnA(1/X)

. Thus the problem of computing lower bounds on the absolute value of the roots of a
polynomial A(X) is equivalent to deriving upper bounds on the absolute value of the roots
of the polynomial R(A)(X), and so we will focus on these latter bounds.
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For a polynomial A(X), let µ(A) denote the largest absolute value over all the roots of a
polynomial A(X). Zassenhaus has given the following upper bound on µ(A):

S(A) := 2 max
i=1,...,n

∣∣∣∣
an−i

an

∣∣∣∣
1/i

.

Van der Sluis [vdS70] showed that S(A) is at most twice the optimal bound amongst all
bounds based solely upon the absolute value of the coefficients; he also showed that

µ(A) < S(A) ≤ 2nµ(A). (2)

The proof for the lower bound on S(A) can be found, for instance, in [Yap00, Lem. 6.5,

p. 147]. The upper bound on S(A) will follow if we show for all 0 < i ≤ n that
∣∣∣an−i

an

∣∣∣
1/i

≤
nµ(A). Let α1, . . . , αn be the roots of A(X). Then we know that

∣∣∣∣
an−i

an

∣∣∣∣ ≤
∑

1≤j1<···<ji≤n

|αj1 · · ·αji
| ≤

(
n

i

)
µ(A)i.

Taking the i-th root on both sides, along with the observation that for 1 ≤ i ≤ n,
(

n
i

)1/i ≤(
ni

i!

)1/i

≤ n, proves the upper bound in (2).

Clearly, S(A) cannot be computed exactly in general. Instead, we use a procedure U(A),
similar to that suggested by Akritas [Akr89, p. 350], which computes an upper bound on
µ(A) when A(X) ∈ R[X].

Procedure U(A)
INPUT: An integer polynomial A(X) =

∑n
i=0 aix

i, ai ∈ R, an > 0.
OUTPUT: A power of two that is an upper bound on the roots of A(X).
1. q′ :=−∞.
2. For i from 1 to n do the following:

p := ⌊log |an−i|⌋ − ⌊log |an|⌋ − 1.
Let q = ⌊p/i⌋.
q′ :=max(q′, q + 2).

3. Return 2q′.

Remark 2.2. If A(X) is an integer polynomial with coefficients of bit-length L then the cost

of computing U(A) is Õ(nL), because the most expensive operation in the loop on Line 4 is
computing the floor of the coefficients which can be done in O(L) time; since the loop runs
n times we have the desired bound.

We have the following relation between U(A) and S(A):

Lemma 2.3.
U(A)

4
< S(A) < U(A).

5



Proof. See Appendix for the proof.

This lemma along with (2) yields us

µ(A) < U(A) < 8nµ(A). (3)

For a polynomial A(X), A(0) 6= 0, define

PLB(A) :=
1

U(R(A))
. (4)

Then from (3) we know that

1

8nµ(R(A))
< PLB(A) <

1

µ(R(A))
.

Let κ(A) denote the minimum of the absolute values of the roots of A(X); thus κ(A) > 0.
Then we have

κ(A)

8n
< PLB(A) < κ(A), (5)

since κ(A) = 1
µ(R(A))

.

In practice one can use bounds (such as [Kio86, Şte05]) that utilize the sign of the
coefficients and give a better estimate than S(A). For instance, Kioustelidis [Kio86] has
shown that the bound

K(A) := 2 max
ai<0

∣∣∣∣
ai

an

∣∣∣∣
1/(n−i)

,

where ai is a coefficient of A(X), is an upper bound on the largest positive root of A(X);
by definition we have K(A) ≤ S(A). We do not use this bound in our analysis because we
do not know a relation corresponding to (2) between K(A) and the largest positive root of
A(X). But such a relation seems unlikely to hold. Consider the situation when there is only
one negative root of A(X), which has the largest absolute value amongst all the roots of
A(X). Then the summation in

∣∣∣∣
aj

an

∣∣∣∣ =

∣∣∣∣∣∣

∑

1≤i1<···<in−j≤n

αi1 · · ·αin−j

∣∣∣∣∣∣
,

where α1, . . . , αn are the roots of A(X), will be dominated by the negative root. Thus, it
appears, that the best we can say is K(A) ≤ 2nµ(A). The same argument applies to the
bound by Ştefănescu [Şte05].

Hong [Hon98] has given bounds on the positive roots of a polynomial in more than one
variable. For univariate polynomials, his bound is

2 max
aj<0

min
ak>0,k>j

∣∣∣∣
aj

ak

∣∣∣∣
1/(k−j)

.

It is clear that this bound is an improvement over the bound by Kioustelidis. However,
again it is not obvious whether a relation similar to (2) holds between the largest positive
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root and the bound above. This is because Hong’s bound is on the absolute positiveness of
a polynomial, i.e., a bound such that the evaluation of the polynomial and all its derivatives
at any point larger than the bound is strictly positive. In case of univariate polynomials
this means Hong’s bound is an upper bound on the positive roots of the polynomial and
its derivatives. The difficulty in obtaining a tight relation suggested above is that the real
roots of the derivatives may be greater than the positive roots of the polynomial, as in the
polynomial 3X3 − 15X2 + 11X − 7 = 3(X − 1)(X − 2 + i/

√
3)(X − 2 − i/

√
3).

Now that we have all the details of the algorithm, we face the question of its termination.
To answer this question we need some notation from the theory of continued fractions; our
notation is borrowed from [Yap00, Ch. 15].

An ordinary continued fraction (also called simple continued fractions, or regular
continued fractions) is of the form

q0 +
1

q1 +
1

q2 +
1

q3 + · · ·

,

where qi ∈ N. For the ease of writing we express it as

[q0, q1, q2, . . . ].

If Pi/Qi denotes the finite continued fraction [q0, . . . , qi] then we have the following recurrence

Pi = Pi−2 + qiPi−1 and Qi = Qi−2 + qiQi−1, (6)

where P−1 := 0 and Q−1 := 1. Furthermore, with the finite continued fraction [q0, . . . , qi] = Pi

Qi

we can associate the Möbius transformation

M(X) :=
Pi−1 + PiX

Qi−1 + QiX
.

We denote by IM the interval with end points M(∞) = Pm/Qm and M(0) = Pi−1/Qi−1.
Since [q0, q1, . . . , qi] is an ordinary continued fraction, we know that [Yap00, p. 463]

|PiQi−1 − Pi−1Qi| = 1; (7)

thus the Möbius transformation associated with an ordinary continued fraction is unimodal.
Moreover, for any two numbers α, η ∈ C := C ∪∞, such that α = M(η), we have

η = −Pi−1 − Qi−1α

Pi − Qiα
. (8)

For a complex number z, let ℜ(z) represent its real part and ℑ(z) its imaginary part.
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2.2 Termination

Consider the recursion tree of the procedure CF(A, M) initiated with A(X) = Ain(X) ∈ R[X]
and M(X) = X, for a square-free polynomial Ain(X). The right child of any node in this
tree corresponds to the Taylor shift X → X + δ, δ ≥ 1, and the left child of the node
corresponds to the inverse transformation X → (X + 1)−1. A sequence of Taylor shifts
X → X0+δ0, X0 → X1+δ1, . . . , Xi−1 → Xi+δi can be thought of as a single Taylor shift X →
X +q, q =

∑i
j=0 δj. Moreover, a sequence of Taylor shifts by a total amount q followed by an

inverse transformation X → (X +1)−1 is the same as the transformation X → q+(1+X)−1.
Thus with each node in the recursion tree we can associate an ordinary continued fraction
[q0, q1, . . . , qm] = Pm/Qm, for some qi ∈ N, and hence the Möbius transformation (PmX +
Pm−1)/(QmX + Qm−1); note that the nodes on the right most path of the recursion tree are
associated with the continued fraction [q0], for some q0 ∈ N, and the Möbius transformation
X + q0, because there are no inverse transformations along the right most path. Based upon
the Möbius transformation (PmX + Pm−1)/(QmX + Qm−1) associated with a node in the
recursion tree, we can further associate the polynomial AM(X) :=(QmX+Qm−1)

nAin(PmX+
Pm−1) with the same node.

Vincent had stated that if m is large enough then AM(X) will exhibit at most one
sign variation. Uspensky [Usp48, p. 298] quantified this by showing the following: Let
Ain(X) ∈ R[X] be a square-free polynomial of degree n and ∆ be the smallest distance
between any pair of its roots; if m is such that

Fm−1
∆

2
> 1 and Fm−1Fm∆ > 1 + ǫ−1

n , (9)

where Fi is the i-th Fibonacci number and ǫn :=(1+1/n)1/(n−1) −1, then AM(X) exhibits at
most one sign variation 2. Ostrowski [Ost50] improved and simplified Uspensky’s criterion
(9) to FmFm−1∆ ≥

√
3. Similar criterion were derived by Alesina and Galuzzi [AG98, p. 246]

and Yap [Yap00, Thm. 14.5, p. 476]. We next derive a termination criterion that depends on
∆α, the shortest distance from a root α of A(X) to any another root of A(X). To describe this
result, following [ESY06], we associate three open discs in the complex plane with an open
interval J = (c, d): the disc CJ is bounded by the circle that has centre (c+d)/2, and radius
(d− c)/2; the disc CJ is bounded by the circle that has centre (c + d)/2+ i(

√
3/6)(d− c)/2,

and passes through the end-points of J ; and the disc CJ is bounded by the circle that has
centre (c + d)/2− i(

√
3/6)(d− c)/2, and passes through the end-points of J . In addition to

these three discs, following [KM06], we also define the cone

C :=
{
a + ib|a ≤ 0 and |b| ≤ |a|

√
3
}

.

We have the following key observation which is implicit in Ostrowski’s proof and is also
used by Alesina and Galuzzi [AG98, p. 249]:

Lemma 2.4. Let a, b, c, d ∈ R>0, I be an interval with unordered endpoints a
c
, b

d
, and define

the Möbius transformation M(z) := az+b
cz+d

. Then M−1(z) maps the closed region C − (CIM
∪

CIM
) bijectively on the cone C, and maps the open disc CIM

bijectively on the half plane
ℜ(z) > 0.

2Uspensky’s original proof incorrectly states Fm−1∆ >
1

2
. This was later corrected by Akritas [Akr78a].
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Proof. The proof follows by verifying the correspondence show in Figure 1.

a/c b/dI

∞

d/c

−d/c

CI

− d
2c

(1 + i
√

3)

− d
2c

(1 + i
√

3)

CI

CI

Figure 1: The effect of M−1(z) on the three circles

From Lemma 2.4 and from [KM06, Thm. 3.9] we know the following:

Theorem 2.5. Let A(X) be a square-free polynomial of degree n,

M(X) :=
PmX + Pm−1

QmX + Qm−1

and AM(X) :=(QmX +Qm−1)
nA(M(X)). If α is the only simple root of A(X) in the interval

IM and there are no other roots of A(X) in CIM
∪ CIM

then Var(AM) = 1.

The above theorem corresponds to the two-circle theorem in [KM06]. The corresponding
one-circle theorem, which again is a direct consequence of Lemma 2.4 and [KM06, Thm.
3.9], is the following :

Theorem 2.6. Let A(X) be a square-free polynomial of degree n,

M(X) :=
PmX + Pm−1

QmX + Qm−1

and AM(X) :=(QmX+Qm−1)
nA(M(X)). If CIM

does not contain any roots then Var(AM ) =
0.

3 The Size of the Recursion Tree

In this section we bound the number of nodes, #(T ), in the recursion tree T of the procedure
described in Section 2 initiated with a square-free polynomial Ain(X) ∈ R[X] of degree n
and the Möbius transformation X.

We partition the leaves of T into two types: type-0 leaves are those that declare the
absence of a real root and type-1 leaves are those that declare the presence of a real root.

Consider the tree T ′ obtained by pruning certain leaves from T : prune all the type-0
leaves that have either a non-leaf or a type-1 leaf as sibling; if two leaves are siblings of each
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other then arbitrarily prune one of them. Thus, #(T ′) < #(T ) ≤ 2#(T ′) and we bound
#(T ′).

Let U be the set of leaves of T ′. Recall from the beginning of Section 2.2 that with
each node in T ′ we can associate an ordinary continued fraction. In particular, for a leaf
u ∈ U let [q0, . . . , qm+1] = Pm+1/Qm+1 be the associated continued fraction and Iu := IMu

the corresponding interval. We can further associate with u a unique pair (αu, βu) of roots
of Ain(X). To do this we need to consider the parent v of u. Let the Möbius transformation
Mv(X) associated with v be

Mv(X) =
PmX + Pm−1 + Pmδv

QmX + Qm−1 + Qmδv
, (10)

for some δv ∈ N such that 1 ≤ δv < qm+1, and the interval associated with v be Iv := IMv
.

Since v is not a leaf we know that Var(AMv
) > 1. To each leaf u ∈ U we assign a unique

pair (αu, βu) of roots of Ain(X) as follows:

1. If u is a type-1 leaf then there is a unique root αu ∈ Iu. Since Var(AMv
) > 1, from

Theorem 2.5 we know that there must be a root in CIv
∪CIv

apart from αu; let βu be
one such root. Thus with each type-1 leaf we can associate a pair (αu, βu). Moreover,
this can be done in a unique manner. Suppose u′ is another type-1 leaf and v′ is its
parent then αu 6= αu′ . From [ESY06, Lem. 3.2] it is clear that we only need to consider
the case when Iv and Iv′ are adjacent to each other. Moreover, assume βu and βu

are the only non-real roots in CIv
∪ CIv

and CIv′
∪ CIv′

. Then it must be that either

βu ∈ CIv
∩CIv′

or βu ∈ CIv
∩CIv′

. In either case we can choose βu′ = βu distinct from
βu.

2. If u is a type-0 leaf then it had a type-0 leaf as its sibling in T . We consider two
sub-cases:

• If Iv does not contain a real root then we know from Theorem 2.6 that there must
be a pair of complex conjugate roots in CIv

. Let (αu, βu), βu :=αu, be one such
pair. The uniqueness of the pair is immediate since CIv

does not overlap with
CIv′

for the parent v′ of any other type-0 leaf.

• If Iv does contain a root then it must be the midpoint of the interval Iv; let αu

denote this root. From Theorem 2.5 we also know that there must be a pair of
complex conjugates (β, β) in CIv

∪CIv
; choose βu :=β. The pair is unique because

αu is unique.

We will bound the number of nodes in the path terminating at the leaf u by bounding the
number of inverse transformations X → 1/(X + 1) and Taylor shifts X → X + b, b ≥ 1.
Before we proceed further, we have two observations: first, because of the uniqueness of the
pair (αu, βu) it follows that the size of the set |U | ≤ n; and second, since αu, βu ∈ CIv

∩CIv

we know that

(Qm(Qm−1 + δvQm))−1 >

√
3

2
|αu − βu| >

1

2
|αu − βu|, (11)

where δv is defined as in (10).
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3.1 Bounding the Inverse Transformations

From (11) it follows that
|αu − βu| < 2(QmQm−1)

−1.

But from (6) we know that Qi is greater than the i + 1-th Fibonacci number; this implies
that Qi ≥ φi, where φ = (1 +

√
5)/2. Thus

φ2m−1 ≤ 2|αu − βu|−1

and hence

m ≤ 1

2
(1 + logφ 2 − logφ |αu − βu|). (12)

So the total number of inverse transformations in T ′ are bounded by

∑

u∈U

1

2
(1 + logφ 2 − logφ |αu − βu|) ≤ 2n +

∑

u∈U

logφ(|αu − βu|)−1. (13)

3.2 Bounding the Taylor Shifts

The purpose of the Taylor shifts in the procedure CF(A, M) was to compute the floor of the
smallest positive root of a polynomial. Using property (5) of the PLB(A) function (defined in
(4)) we will bound the number of Taylor shifts required to compute the floor of the smallest
positive root of some polynomial B(X) ∈ R[X]. Before we do so, we have the following
observation on the effect of shifts in the complex plane:

Lemma 3.1. If α, β ∈ C are such that |α| ≤ |β| and |α − δ| ≥ |β − δ|, for any positive real
number δ, then ℜ(β) ≥ ℜ(α).

Proof. |α − δ| ≥ |β − δ| implies

2δ(ℜ(β) − ℜ(α)) ≥ |β|2 − |α|2 ≥ 0.

Since δ is positive we have our result.

Intuitively, this lemma says if the origin is shifted to the right then only the complex
numbers to the right of the number α and in absolute value greater than α can possibly
become smaller than α in absolute value.

We introduce the following notation for convenience: for any x ∈ R≥0 let

logm (x) := log max(1, x).

We start with the following simple case:

Lemma 3.2. Let B1(X) ∈ R[X] be a polynomial all of whose roots are in the open half plane
ℜ(z) > 0. For i > 1 recursively define

Bi(X) :=Bi−1(X + δi−1)

11



where

δi−1 :=

{
PLB(Bi−1) + 1 if PLB(Bi−1) > 1

1 otherwise.

Let α1 denote a root of B1(X) with the smallest absolute value, and recursively let αi =
αi−1 − δi−1. Then ℜ(αi) ≤ 1 if i ≥ 2 + 8n + γnlogmℜ(α1).

Proof. See Appendix for proof.

We next extend this lemma to the case when the polynomial has roots with negative real
parts but zero is still not its root. To derive this result we introduce the following definition:

Definition 3.3. Let LP(B) denote the root of B(X) in ℜ(z) > 0 that has the smallest real
part and the smallest absolute value, and LN(B) denote the root of B(X) in ℜ(z) ≤ 0 that
has the largest real part and the smallest absolute value.

Lemma 3.4. Let B1(X) ∈ R[X], B1(0) 6= 0. Recursively define δi, and Bi(X) as in the
above lemma. Let α1 :=LP(B1), β1 :=LN(B1) and recursively define αi = αi−1 − δi−1 and
βi = βi−1 − δi−1. If

i = Ω

(
n + κnlogm

|α1|
|β1|

+ κnlogm |α1|
)

then ℜ(αi) ≤ 1, where
κn :=(log(8n + 1) − log 8n)−1. (14)

Proof. See Appendix for proof.

Based upon the above two lemmas we will bound the number of Taylor shifts from the
root of T ′ to the leaf u, with the associated continued fraction [q0, . . . , qm+1], by bounding the
number of Taylor shifts that compose each qi, i = 0, . . . , m + 1. Recall from the beginning
of this section the definitions of the two Möbius transformation Mu(X) and Mv(X), the
intervals Iu and Iv, and the pair (αu, βu) for a leaf u ∈ U . We further define the following
quantities:

Definition 3.5. For 0 ≤ i ≤ m + 1 let

1. Mi(X) :=[q0, . . . , qi, 1 + X] = PiX+Pi−1+Pi

QiX+Qi−1+Qi
;

2. Ai(X) :=(QiX + Qi−1 + Qi)
nAin(Mi(X)), i.e., the polynomial obtained by performing

the ith inverse transformation and on which we will perform a Taylor shift by the
amount qi+1;

3. ηi :=M−1
i (αu)

4. ri :=Pi/Qi, si :=
Pi+Pi−1

Qi+Qi−1

and

5. Ji := IMi
, i.e., the interval with endpoints ri and si.

12



By its definition Ji, for 0 ≤ i ≤ m, contains Iu and hence it follows from (11) that for
0 ≤ i ≤ m

(QiQi−1)
−1 ≥ |αu − βu|

2
. (15)

We now bound the number of Taylor shifts required to obtain qi+1. Let B1(X) :=Ai(X),
and recursively define the polynomials Bi(X) as in Lemma 3.2. Define the sequence of indices

1 = i0 ≤ i1 < i2 < · · · < iℓ, (16)

where the index ij is such that ℜ(LP(Bij)) is contained in the unit interval; if i < m the last
index iℓ is such that the real part of the root in Biℓ(X) corresponding to ηi is in the unit
interval; if i = m the index iℓ is such that the node that has Biℓ(X) as the corresponding
polynomial is the parent v of the leaf u. Clearly, ℓ ≤ n.

From Lemma 3.4 we know that

ij+1 − ij = O

(
n + κnlogm

|LP(B1+ij )|
|LN(B1+ij )|

+ κnlogm |LP(B1+ij )|
)

.

Summing this inequality for j = 0, . . . , ℓ − 1 < n we get that if

iℓ = O(n2) + O

(
ℓ−1∑

j=0

κnlogm
|LP(B1+ij )|
|LN(B1+ij )|

+ κnlogm |LP(B1+ij )|
)

(17)

then the real part of the root in Biℓ(X) that corresponds to ηi is in the unit interval, i.e.,
the number of Taylor shifts which constitute qi+1 are bounded by this bound.

The last term in the summation above is smaller than

κn

(
logm

|ηi|
|LN(B1+iℓ−1

)| + logm |ηi|
)

, (18)

because |LP(B1+iℓ−1
)| is smaller than |ηi|. We call this term the contribution of αu to qi+1.

Our aim now is to bound it primarily as a function of log |αu−βu|−1; the advantage becomes
evident when we try to sum the term over all u ∈ U , since then we can use the Davenport-
Mahler bound [ESY06, Thm. 3.1] to give an amortized bound on the

∑
u∈U log |αu − βu|−1.

The remaining terms in the summation in (17) are the contributions of different αu′ to qi+1,
where u′ ∈ U−{u} is such that η1+ij = M−1

i (αu′), and can be bounded in terms of |αu′−βu′ |.
Note that the contribution of αu to q0 is not accounted for, but this will be taken care of
later.

We next derive an upper bound on |ηi| and a lower bound on |LN(B1+iℓ−1
)|. In deriving

these bounds we will often require lower bounds on |α−P/Q|, where α is a root of a degree
n polynomial A(X) and P/Q is a fraction such that 0 < |α − P/Q| ≤ 1 and A(P/Q) 6= 0.
The lower bounds in the literature can be parametrized by some N ∈ R≥1 as follows:

|α − P/Q| ≥ C(A, N) · Q−N ; (19)

note that the lower bound holds for all conjugates of α. For example, in case of Liouville’s
inequality [Lio40] we have N = n; for Roth’s theorem [Rot55] we have N > 2; for Thue’s
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result [Thu09] we have N > 1 + n/2; and for Dyson’s result [Dys47] we have N >
√

2n.
However, explicit bounds on C(A, N) are known only for Liouville’s inequality.

In bounding |ηi| and |LN(B1+iℓ−1
)|, we need to consider two separate cases depending

upon whether Qi is zero or not. The situation Qi = 0 occurs only on the right-most path
of the tree T since there are no inverse transformations along this path. In bounding the
length of the right-most path we will also account for the contribution of αu to q0, for all
u ∈ U . The argument for bounding the length of the path is similar to the argument that
was used to derive the bound in (17) above.

Let B1(X) :=Ain(X) and recursively define Bi(X) as in Lemma 3.2. Define the sequence
of indices as in (16) and follow the same line of argument used to obtain (17), except now
we can replace |LP(B1+ij )| by |ηij |, the absolute value of some root of Ain(X) in ℜ(z) > 0.
Moreover, we know that |ηij | ≤ µ(Ain). To obtain a lower bound on |LN(B1+ij )| we observe
that LN(B1+ij ) = α− δ, where α is some root of Ain(X) and δ ∈ N is such that B1+ij (X) =
Ain(X + δ), and hence from (19) we get |LN(B1+ij )| ≥ C(Ain, N). Thus the length of the
right-most path in the tree T ′ is bounded by

κnn(logmµ(Ain) − logmC(Ain, N)). (20)

Assuming that Qi ≥ 1, we can show the following bounds (see Appendix for details):

log ηi ≤ −N log |αu − βu| − log C(Ain, N) + N + 1, (21)

− log |LN(B1+iℓ−1
)| = O(−N log |αu − βu| − log C(Ain, N) + log µ(Ain)). (22)

Note that we may safely assume that |LN(B1+iℓ−1
)| 6= 0 since if zero is a root of B1+iℓ−1

(X)
then in the procedure CF(A, M) we always divide the polynomial by X and remove this
degenerate case. Since both |αu − βu| and C(Ain, N) are smaller than one (see Lemma 3.9),
the bound in (22) dominates the bound in (21), and hence the term in (18) is bounded by

κnO(−N log |αu − βu| − log C(Ain, N) + log µ(Ain)).

Thus the total contribution of αu to each qi, i = 1, . . . , m + 1, is bounded by the sum of this
bound from i = 1, . . . , m + 1, i.e., by

m∑

i=1

κnO(−N log |αu − βu| − log C(Ain, N) + log µ(Ain)),

where m satisfies (12); to show the dependency of m on the choice of the leaf u, from now
on we write m as mu. Thus the total number of Taylor shifts along the path starting from
the root of the tree T ′ and terminating at the leaf u ∈ U , except the leaf of the right-most
path, is bounded by

mu∑

i=1

∑

u′∈U

κnO(−N log |αu′ − βu′ | − log C(Ain, N) + log µ(Ain)),

where u′ are the leaves to the left of u and that share a common ancestor with u. The total
number of Taylor shifts in the tree T ′ is obtained by summing the above bound for all u ∈ U
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and adding to it the bound in (20) on the length of the right-most path:

∑

u∈U

mu∑

i=1

∑

u′∈U

κnO(−N log |αu′ − βu′| − log C(Ain, N) + log µ(Ain)). (23)

Combined with the bound in (13) on the total number of inverse transformations in the tree
T ′, we get the following bound on the number of nodes in the tree T ′

#(T ′) = O(n +
∑

u∈U

logφ |αu − βu|−1)

+
∑

u∈U

mu∑

i=1

∑

u′∈U

κnO(−N log |αu′ − βu′ | − log C(Ain, N) + log µ(Ain)).
(24)

Recall from the beginning of this section that the number of nodes in the recursion tree T
of Akritas’ algorithm is Θ(#(T ′)), so the above bound applies to #(T ) as well.

3.3 Worst Case Size of the Tree

In order to derive a worst-case bound on the size of the tree T , from the bound given in
(24), we need to derive an upper bound on

∑
u∈U − log |αu − βu|. For this purpose we resort

to the Davenport-Mahler bound :

Proposition 3.6. Let A(X) = an

∏n
i=1(X−αi) be a square-free complex polynomial of degree

n. Let G = (V, E) be a directed graph whose nodes {v1, . . . , vk} are a subset of the roots of
A(X) such that

1. If (vi, vj) ∈ E then |vi| ≤ |vj|.

2. G is acyclic.

3. The in-degree of any node is at most 1.

If exactly m of the nodes have in-degree 1, then

∏

(vi,vj)∈E

|vi − vj| ≥
√
|discr(A)| · M(A)−(n−1) · (n/

√
3)−m · n−n/2.

See [ESY06] for a proof.

Remark 3.7. Let sep(A) be the minimum distance between two distinct roots of A(X). Then
we have

sep(A) ≥
√

discr(A)M(A)−(n−1) · (n/
√

3) · n−n/2.

Consider the graph G whose edge set is E1 ∪ E0, where E0 :={(αu, βu)}, u is a type-0
leaf and E1 :={(αu, βu)}, u is a type-1 leaf. We will show that G satisfies the conditions of
Proposition 3.6. First of all, for any u ∈ U we can reorder the pair (αu, βu) to ensure that
|αu| ≤ |βu| without affecting the summation

∑
u∈U − log |αu − βu|. We note that the graph

so obtained is similar to the graph described in the proof of [ESY06, Thm. 3.4]; thus after
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properly reordering the edges as was mentioned there we may directly apply Proposition 3.6
to G to obtain ∑

u∈U

− log |αu − βu| = O(B(Ain)), (25)

where
B(Ain) := O(n logM(Ain) + n log n − log discr(Ain)), (26)

M(Ain) is the Mahler measure of Ain(X) and discr(Ain) is its discriminant (see [Yap00,
Sec. 6.6, Sec. 4.5], [Mc99, Sec. 1.5, Sec. 2.1]). Based upon this bound we have the following:

Theorem 3.8. Let Ain(X) ∈ R[X] be a square-free polynomial of degree n and T be the
recursion tree of Akritas’ algorithm applied to Ain(X). The number of nodes in T is

nO(NB(Ain)
2 − nB(Ain) log C(Ain, N) + nB(Ain) log µ(Ain)),

where B(Ain) is defined in (26), C(Ain, N) is the constant involved in the inequality (19),
and µ(Ain) is the largest absolute value amongst all the roots of A(X).

Proof. Applying the bound in (25), along with the observation that |U | ≤ n, to (24) we get
that the size of the tree is bounded by

O(n + B(Ain)) +
∑

u∈U

mu∑

i=1

κnO(−NB(Ain) − n log C(Ain, N) + n log µ(Ain)).

From (12) we further get that the above bound is smaller than

κnO(−NB(Ain) − n log C(Ain, N) + n log µ(Ain))
∑

u∈U

1

2
(1 + logφ 2 − logφ 2|αu − βu|).

Again applying (25), we get that the size of the tree is bounded by

κnO(NB(Ain)
2 − nB(Ain) log C(Ain, N) + nB(Ain) log µ(Ain)).

From the observation that κn = Θ(n) (see its definition in (14), we get the desired result.

We will next give a specialization of the above theorem for integer polynomials, but for
achieving this we need to derive bounds on the quantities N and C(A, N) involved in (19).

Lemma 3.9. Let α be a root of an integer polynomial A(X) of degree n. Suppose P/Q ∈ Q,
Q > 0, is such that 0 < |α−P/Q| ≤ 1 and A(P/Q) 6= 0, then |α−P/Q| ≥ C(α) ·Q−n where

C(α) ≥ 2−n−log n−(n+1) log ‖A‖∞. (27)

Proof. See Appendix for proof.

We now have the desired specialization of the theorem above.

Corollary 3.10. Let A(X) be a square-free polynomial of degree n with integer coefficients
of magnitude less than 2L. The number of nodes in the recursion tree of Akritas’ algorithm
run on A(X) is Õ(n4L2).
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Proof. From Landau’s inequality (e.g., [Yap00, Lem. 4.14(i)]) and the estimate ‖A‖2 ≤√
n + 1‖A‖∞ we get

M(A) ≤ ‖A‖2 ≤
√

n + 1‖A‖∞ <
√

n + 12L.

Moreover, |discr(A)| ≥ 1 since A(X) is square-free and its coefficients are integers. From

these observations we conclude that B(A) = Õ(nL). Furthermore, from Cauchy’s bound
[Yap00, Cor. 6.8,p. 149] we know that µ(A) ≤ 2L. Plugging these bounds, along with the
bounds in Lemma 3.9, in Theorem 3.8, we obtain the desired result.

Remark 3.11. Notice that asymptotically the bounds in (21) and (22) are the same, so
even showing the tightness (as in (2)) of the bounds in [Kio86, Şte05, Hon98] does not
improve upon the complexity result in the above corollary, though it will definitely lead to a
simplification of the analysis.

How good is this bound? The answer depends upon the tightness of the bounds derived
on the number of inverse transformations and Taylor shifts. The bound derived on the
former, in (13), is perhaps the best one can expect, considering that the same bound holds
for root isolation using Sturm’s method [Dav85, DSY05] and for the Descartes method
[ESY06, EMT06]. The best possible scenario for the number of Taylor shifts is based upon
the ideal PLB function, which we recall is a function that can determine whether a polynomial
has positive real roots, and if there are such roots then returns a value that is at a constant
distance from the smallest positive root of the polynomial.

Lemma 3.12. For a square-free polynomial of degree n and integer coefficients of bit-length
L, the number of Taylor shift in the recursion tree of Akritas’ algorithm, if it uses the ideal
PLB function, is Õ(nL).

Proof. The total number of Taylor shifts required along a path is proportional to the number
of inverse transformations along the path, because between two consecutive inverse trans-
formations we only perform a constant number of Taylor shifts. Thus the total number of
Taylor shifts in the recursion tree is proportional to the number of inverse transformations
in the tree and hence the best possible bound on the size of the recursion tree is Õ(nL).

This shows that there is a huge gap to be overcome in the bound derived in Corollary 3.10.

4 The Bit-Complexity

In this section we derive the bit-complexity of Akritas’ algorithm for a square-free polynomial
Ain(X) such that ‖Ain‖∞ < 2L. To do this we will bound the worst-case complexity at any
node in the recursion tree; then along with Corollary 3.10 we have a bound on the bit-
complexity of the algorithm.

Recall from starting of Section 3 the definitions of the set U , and of the pair (αu, βu) for
any u ∈ U . Let

Mu(X) = [q0, . . . , qm+1, X] =
Pm+1X + Pm

Qm+1X + Qm
,
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Mi(X) = [q0, . . . , qi, X] =
PiX + Pi−1

QiX + Qi−1

,

Ai(X) = (QiX + Qi−1)
nA(Mi(X)), Li be such that ‖Ai‖∞ < 2Li, and bi the bit-length of qi

for i = 0, . . . , m + 1.
To construct Ai+1(X) from Ai(X) we need to construct a sequence of polynomials Bj(X),

1 ≤ j ≤ ℓ, such that B1(X) :=Ai(X) and for j > 1, Bj(X) :=Bj−1(X + δj−1), where

δj := 1 +

{
PLB(Bj−1) if PLB(Bj−1) > 1

0 otherwise.

Moreover, qi+1 =
∑ℓ−1

j=1 δj . The two most important operations in computing Bj(X) from
Bj−1(X) are computing PLB(Bj−1) and the Taylor shift by δj . We only focus on the latter
operation since its cost dominates the cost of computing the former operation, which we
know from Remark 2.2 is Õ(nLi). Since δj ≤ qi+1, for j < ℓ, the cost of computing each of
Taylor shifts, i.e., the cost of computing Bj(X) from Bj−1(X) for all j ≤ ℓ, is bounded by
the cost of computing Ai(X + qi+1); we bound this latter cost.

We know (see [Kra95]) that the computation of the Taylor shift can be arranged in
a triangle of depth n; at each depth the multiplication by qi+1 increases the bit-length
by bi+1, so the bit-length of the coefficients of Ai(X + qi+1) is bounded by Li + nbi+1.
Moreover, using the classical approach, Taylor shifts can be performed in O(n2) additions
[Kra95, JKR05, vzGG97]. Thus the cost of computing Ai(X + qi+1) is O(n2(Li + nbi+1)).
We further claim that Li = O(L + n

∑i
j=0 bj); this is straightforward from the observation

that Lj ≤ Lj−1 + nbj−1. Thus the bit-complexity of computing Ai(X + qi+1) is bounded by
O(n2(L + n

∑i+1
j=0 bj)), if we use the classical Taylor shift. We next bound

∑i+1
j=0 bj , i ≤ m.

We know that Qm = qmQm−1 + Qm−2; thus Qm ≥ qmQm−1, and recursively we get that
Qm ≥

∏m
j=1 qj . Moreover, from (15) and the worst-case separation bound (see Remark 3.7)

we know that log Qm = Õ(nL). Thus
∑m

j=0 bj = Õ(nL). The troublesome part is bounding

qm+1, since Qm+1 does not satisfy (15). However, we do know that qm+1 ≤ |M−1
m (αu)|, and

from (21) that

log |M−1
m (αu)| = O(−N log |αu − βu| − log C(Ain, N)).

But from Lemma 3.9 we have N = n and − log C(Ain, N) = Õ(nL), and from the separation

bound it follows that − log |αu − βu| = Õ(nL). Thus bm+1 = Õ(n2L) and hence
∑m+1

j=0 bj =

Õ(n2L).
So the worst-case bit-complexity at any node is asymptotically the same as computing

Am(X), which we know is Õ(n2(L + n
∑i+1

j=0 bj)) = Õ(n5L), when we use classical Taylor
shifts. Along with the result in Corollary 3.10 we get the following:

Theorem 4.1. Let A(X) be a square-free integer polynomial of degree n with integer coef-
ficients of magnitude less than 2L. Then the bit-complexity of isolating all the real roots of
A(X) using Akritas’ algorithm based upon classical Taylor shift is Õ(n9L3).

We can improve on the above bound by a factor of n using the fast Taylor shift [vzGG97].
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Theorem 4.2. Let A(X) be a square-free integer polynomial of degree n with integer coef-
ficients of magnitude less than 2L. Then the bit-complexity of isolating all the real roots of
A(X) using Akritas’ algorithm based upon a fast Taylor shift is Õ(n8L3).

Proof. The cost of computing Ai(X + qi+1) using the convolution method (method F in
[vzGG97]) is O(M(n2bi+1 + nLi)), where M(n) is the complexity of multiplying two n-bit
integers. From above we know that Li = O(L + n

∑i
j=0 bj), thus the cost is O(M(nL +

n2
∑i+1

j=0 bj)). Moreover, we also know that
∑m+1

j=0 bj = Õ(n2L). Assuming the Schönhage-
Strassen method and the Turing machine as the underlying computational model we have
M(n) = O(n log(n) log log(n)) = Õ(n). Hence the worst-case bit-complexity of a node is

Õ(n4L). Multiplying with the bound Õ(n4L2) (from Corollary 3.10) on the size of the tree
we get the complexity as mentioned in the theorem.

Remark 4.3. If we were to use the ideal PLB function then the worst case bit complexity of
Akritas’ algorithm is Õ(n5L2), since in this case the size of the tree is Õ(nL) (Lemma 3.12)

and we know that the worst case complexity of each node is Õ(n4L).

5 Conclusion and Future Work

The bound in Theorem 4.2 is not as impressive as the complexity of the Descartes method,
which we know (e.g., see [ESY06, Thm. 4.2]) is Õ(n4L2). This disparity arises because of
the difference between the bounds on the size of the recursion trees of the two algorithms:
whereas for the Descartes method the bound is Õ(nL), which is known to be almost tight,

the corresponding bound for Akritas’ algorithm is Õ(n4L2), as derived in Corollary 3.10.
This difference stems from the following reasons:

1. In our analysis we had to use Liouville’s inequality instead of Roth’s theorem, because
for the latter result we do not know any bounds on the constant C(A, N), even though
N = O(1). However, if we assume that the constant C(A, N) for Roth’s theorem is
the same as that in Lemma 3.9 then it follows that the size of the recursion tree of
Akritas’ algorithm is Õ(n3L2), the worst case complexity of a node in the recursion

tree is Õ(n3L), and hence the worst case complexity of the algorithm is Õ(n6L3);

note that under this assumption log qm+1 = Õ(nL) (instead of Õ(n2L)) as expected.
Moreover, if we additionally assume the ideal PLB function then we would get a worst
case complexity of Õ(n4L2), which matches the expected bound in [ET06] (also derived
under the same assumption) and the worst case complexity of the Descartes method.
The assumption that the constant C(A, N) in Roth’s theorem satisfies the same bound
as in Lemma 3.9 is reasonable since it is known that, barring finitely many rationals,
C(A, N) = 1 in (19). Thus the bound Õ(n6L3) is a more accurate statement on the
actual performance of Akritas’ algorithm than the bound in Theorem 4.2. But perhaps
we can improve the latter result by a factor of n if we use Roth’s theorem whenever
possible, and use Liouville’s inequality for those rationals that are exceptions to Roth’s
theorem, along with bounds [Sch95] on the number of these exceptions.

2. It is clear from above that even if we allow ourselves the liberty of using Roth’s theorem,
we do not achieve as tight a bound on the recursion tree as for the Descartes method.
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The bottleneck is bounding the number of Taylor shifts in the tree. Presently we
perceive two ways of improving our analysis:

• Show that the bounds described in Section 2 satisfy a tighter inequality compared
to the inequality, (2), satisfied by Zassenhaus’ bound.

• An alternative to performing a Taylor shift by b in step five of the procedure
CF(A, M) is to scale by b and shift by one; clearly this reduces the number of
steps needed to compute the floor of the smallest positive root of the polynomial,
but this is achieved at the cost of increasing the bit-size of the coefficients – this
trade-off needs to be explored further.

An interesting result is to show that the size of the recursion tree of Akritas’ algorithm
applied to Mignotte’s polynomial, Xn − 2(ax− 1)2, a ∈ N, is always smaller than the size of
the corresponding tree for the Descartes method. For instance, we observed that for a = 101
and n = 10, 20, 30, , . . . , 100, 200, . . . , 3000, 4000 the size of the recursion tree increases until a
certain point and thereafter remains the same. This holds for both SYNAPS [MPTT05], where
the implementation uses scaling in step five of CF(A, M), and for Core Library[YLP+04],
where the implementation is the procedure CF(A, M). We know that the size of the re-
cursion tree of the Descartes method applied to Mignotte’s polynomial is Ω(n log a). We

believe that the corresponding bound for Akritas’ algorithm is Õ(log a), which would ex-
plain our observation and substantiate its superior performance when applied to Mignotte’s
polynomials.

A likely direction to pursue is to modify Akritas’ algorithm so that its complexity bound
improves without affecting its efficiency in practice. One way to modify the algorithm is
to ensure that at each recursive level the width of the interval decreases by half 3. Even
though this direction is worth pursuing, it is not evident that it will perform better than the
current implementation in all scenarios, since subdivision is not always the right approach,
as is manifested in the case of Mignotte’s polynomials. However, this is a different direction
from our pursuit in this paper, namely to understand the worst case behaviour of the original
algorithm by Akritas.

Acknowledgements: The author is indebted to Prof. Chee Yap, Prof. Bernard Mourrain,
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Appendix: Proofs

Lemma 2.3.

U(A)

4
< S(A) < U(A).

Proof. Suppose S(A) = 2
(

|an−i|
|an|

)1/i

. Let p := ⌊log |an−i|⌋ − ⌊log |an|⌋ − 1, q = ⌊p/i⌋ and

r := p − q · i, 0 ≤ r < i. Then we know that

2p <
|an−i|
|an|

< 2p+2.

Taking the i-th root we get

2q <

( |an−i|
|an|

)1/i

< 2q+2,

since q ≤ p/i and (p + 2)/i = q + (r + 2)/i ≤ q + 2. But U(A) = 2q+2, and hence we get our
desired inequality.

Lemma 3.2. Let B1(X) ∈ R[X] be a polynomial all of whose roots are in the open half
plane ℜ(z) > 0. For i > 1 recursively define

Bi(X) :=Bi−1(X + δi−1)

where

δi−1 :=

{
PLB(Bi−1) + 1 if PLB(Bi−1) > 1

1 otherwise.
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Let α1 denote a root of B1(X) with the smallest absolute value, and recursively let αi =
αi−1 − δi−1. Then ℜ(αi) ≤ 1 if i ≥ 2 + 8n + γnlogmℜ(α1).

Proof. Let bi :=PLB(Bi), and βi be the root of Bi(X) with the smallest absolute value. Note
that βi may not be the same as αi, except initially. But there is still some relation between
the two, namely ℜ(αi) ≤ ℜ(βi), for i ≥ 1. The proof is by induction; the base case holds by
the definition of α1.

Suppose inductively ℜ(αi−1) ≤ ℜ(βi−1). Let β be the root of Bi−1(X) such that βi =
β − δi−1. Then we know by the definition of βi−1 that |βi−1| ≤ |β|. However, we also have

|βi| = |β − δi−1| ≤ |βi−1 − δi−1|.

Thus from Lemma 3.1 we know that ℜ(β) ≥ ℜ(βi−1) and hence

ℜ(βi) = ℜ(β) − δi−1 ≥ ℜ(βi−1) − δi−1 ≥ ℜ(αi−1) − δi−1 = ℜ(αi).

Since βi is the root of Bi(X) with the smallest absolute value, from (5) we know that
|βi|
8n

< bi < |βi|. Moreover, because ℜ(βi) ≥ ℜ(αi) we have bi > ℜ(αi)/8n. Let j be
the index such that ℜ(αi) > 8n for i < j. Then for i < j we know that bi > 1. Thus
ℜ(αi) = ℜ(αi−1) − bi−1 − 1 < ℜ(αi−1)(1 − 1

8n
) and recursively ℜ(αi) < ℜ(α)(1 − 1

8n
)i−1. So

ℜ(αj) ≤ 8n if ℜ(αj−1) ≤ 8n or if

j ≥ 2 + γnlogmℜ(α1).

For i ≥ j we know that ℜ(αi) ≤ 8n, because ℜ(αi) is monotonically decreasing. Thus if
i > j is such that i− j ≥ 8n then ℜ(αi) ≤ 1. Combining this lower bound on i− j with the
lower bound on j we get the result of the lemma.

Lemma 3.4. Let B1(X) ∈ R[X], B1(0) 6= 0, and recursively define δi, and Bi(X) as
in the above lemma. Let α1 := LP(B1), β1 := LN(B1) and recursively define αi = αi−1 − δi−1

and βi = βi−1 − δi−1. If

i = Ω

(
n + κnlogm

|α1|
|β1|

+ κnlogm |α1|
)

then ℜ(αi) ≤ 1, where
κn :=(log(8n + 1) − log 8n)−1. (28)

Proof. Let bi :=PLB(Bi). We assume that |β1| < |α1|, otherwise the bound in the lemma
trivially follows from the previous lemma. Let γi, denote the root of Bi(X) with the smallest
absolute value; by definition and our assumption that |β1| < |α1| we initially have γ1 = β1.
Let j be the first index i such that γi 6= βi. Then for i > j, ℜ(γi) ≥ ℜ(αi); this follows from
the fact that α1 = LP(B1) and from Lemma 3.1. Thus if i > j is such that

i − j > 1 + 8n + κnlogm |α1| > 1 + 8n + γnlogm |αi|
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then from Lemma 3.2 we are sure that ℜ(αi) ≤ 1. But if we choose j such that |βi| > |αi|,
for i > j, then γi 6= βi for i > j, because all the roots with negative real parts are to the left
of βi and in absolute value greater than |βi|. We next give a lower bound on j.

For i < j we have from (5)

bi >
|βi|
8n

. (29)

Assume that bi > 1, then we know that δi = bi + 1. Since βi+1 = βi − δi it follows that
ℑ(βi+1) = ℑ(βi) and hence

|βi+1| = |βi−1 − (bi + 1)| = = ((|ℜ(βi−1)| + bi + 1)2 + ℑ(βi−1)
2)

1

2

> (|ℜ(βi−1)|2 + b2
i + 1 + ℑ(βi−1)

2)
1

2

= (|βi−1|2 + b2
i + 1)

1

2 .

Applying the bound from (29) we get

|βi+1| > (|βi−1|2(1 + (8n)−2) + 1)
1

2 > |βi−1|(1 +
1

8n
),

because 2 < 8n for n ≥ 1, which is trivially true. Thus recursively we know that |βi+1| >
|β1|(1 + 1/8n)i. Hence if

j > 1 + 8n + κn log
|α1|
|β1|

(30)

then |βi| > |α1| ≥ |αi|, for i > j. From (29) it is clear that we need 8n shifts initially to
ensure bi > 1. These additional shifts, along with (30) and the bound on i− j above give us
the desired lower bound on i which ensures that ℜ(αi) ≤ 1.

Upper bound on |ηi|. Recall from Definition 3.5 that ηi = M−1
i (αu). Thus from (8) we

get

ηi =
Qi + Qi−1

Qi

|si − αu|
|ri − αu|

≤ Qi + Qi−1

Qi

|si − αu|
C(Ain, N)

QN
i ,

where the second inequality follows from (19). But

|si − αu| ≤
√

3|Ji| < 2(QiQi−1)
−1.

Thus
ηi < 2C(Ain, N)−1QN

i .

Moreover, from (15) we know that Qi ≤ 2|αu − βu|−1. Plugging this bound on Qi into the
bound on ηi we obtain

ηi < 2N+1|αu − βu|−NC(Ain, N)−1.

Taking logarithm on both sides we get

log ηi ≤ −N log |αu − βu| − log C(Ain, N) + N + 1.
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A lower bound on |LN(B1+iℓ−1
)|. We may safely assume that |LN(B1+iℓ−1

)| 6= 0 since if
zero is a root of B1+iℓ−1

(X) then in the procedure CF(A, M) we always divide the polynomial
by X and remove this degenerate case. We derive lower bounds for two cases: first, when the
root LN(B1+iℓ−1

) corresponds to a root of Ai(X) in ℜ(z) > 0, and second when LN(B1+iℓ−1
)

corresponds to a root of Ai(X) in ℜ(z) ≤ 0. Let γ be the root of Ain(X) that corresponds
to LN(B1+iℓ−1

). Then the first case is equivalent to saying that γ ∈ CJi
and the second to

the condition that γ 6∈ CJi
. We derive bounds on |LN(B1+iℓ−1

)| under these two conditions,
starting with the first.

1. In this case the polynomial B1+iℓ−1
(X) = Ai(X + δ), where δ is defined as

δ = 1 +

iℓ−1∑

j=1

1 +

{
PLB(Bj) if PLB(Bj) > 1

0 otherwise;
(31)

note that δ is a natural number since PLB(Bj) is a natural number if it is greater than
one. The transformation

M ′(X) :=
PiX + Pi−1 + Piδ

QiX + Qi−1 + Qiδ

describes the bijective correspondence between the roots of Ain(X) and of B1+iℓ−1
(X).

In particular,
γ = M ′(LN(B1+iℓ−1

))

and hence

|LN(B1+iℓ−1
)| = |M ′−1(γ)|

=

∣∣∣∣
Pi−1 + Piδ − (Qi−1 + Qiδ)γ

Pi − Qiγ

∣∣∣∣

=
δQi + Qi−1

|Pi − Qiγ|

∣∣∣∣γ − δPi + Pi−1

δQi + Qi−1

∣∣∣∣

(observe that δPi+Pi−1

δQi+Qi−1

= M ′(0)). From (19) we get

|LN(B1+iℓ−1
)| ≥ C(Ain, N)

|Pi − Qiγ|
(δQi + Qi−1)

−(N−1).

Since δQi ≥ Qi−1 we further get

|LN(B1+iℓ−1
)| ≥ C(Ain, N)

|Pi − Qiγ|
(2δQi)

−(N−1) ≥ C(Ain, N)2−N(δQi)
−(N−1),

where the last step follows from the fact that since γ ∈ CJi
, |Pi−Qiγ| ≤ (QiQi−1)

−1 ≤
1. But δ ≤ qi+1 < Qi+1, for i < m, and for i = m, δ ≤ δv, where δv is defined as in
(10); along with (15) and (11) it follows that δ, Qi < 2|αu − βu|−1. Thus

− log |LN(B1+iℓ−1
)| = O(−N log |αu − βu| − log C(Ain, N)). (32)
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2. If LN(B1+iℓ−1
) corresponds to a negative root of Ai(X) then from Lemma 3.1 we know

that LN(Bj), j = 1, . . . , 1+ iℓ−1, correspond to the same negative root of Ai(X). Thus
we derive a lower bound on |LN(B1)| = |LN(Ai)|. From (8) we know that

|LN(Ai)| =
Qi + Qi−1

Qi

|si − γ|
|ri − γ| ≥

1

Qi|ri − γ|C(Ain, N)(Qi + Qi−1)
1−N ,

where the last step follows by applying (19) to |si − γ|. Since γ is outside CJi
and

αu ∈ CJi
∪ CJi

, we have

|ri − γ| ≤ |γ − αu| + |αu − ri| ≤ |γ − αu| + 2(QiQi−1)
−1.

Thus

|LN(Ai)| ≥ Qi−1

Qi|γ − αu| + 2Q−1
i−1

C(Ain, N)Q−N
i−1

≥ 1

Qi(2 + |γ − αu|)
C(Ain, N)Q−N

i−1

≥ 1

2 + |γ − αu|
C(Ain, N)(QiQi−1)

−N .

From (11), and the fact that Iv ⊆ Ji, we know that QiQi−1|αu − βu| ≤ 2. Thus

|LN(Ai)| ≥
1

1 + |γ − αu|
C(Ain, N)(2|αu − βu|)N .

But from the definition of µ(Ain) we know that |γ −αu| ≤ 2µ(Ain), and hence we have

|LN(Ai)| ≥
1

2 + 2µ(Ain)
C(Ain, N)(2|αu − βu|)N

from which we obtain

− log |LN(Ai)| = O(−N log |αu − βu| − log C(Ain, N) + logm µ(Ain)). (33)

From (32) and (33) we may safely conclude that

− log |LN(B1+iℓ−1
)| = O(−N log |αu − βu| − log C(Ain, N) + log µ(Ain)). (34)

Lemma 3.9. Let α be a root of an integer polynomial A(X) of degree n. Suppose P/Q ∈
Q, Q > 0, is such that 0 < |α − P/Q| ≤ 1 and A(P/Q) 6= 0, then |α − P/Q| ≥ C(α) · Q−n

where
C(α) ≥ 2−n−log n−(n+1) log ‖A‖∞. (35)

Proof. From the mean value theorem we know that

|A(α) − A(P/Q)| = |A′(β)||α − P/Q|,
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where β = (1 − t)α + tP/Q, 0 ≤ t ≤ 1. But |A(P/Q)| ≥ Q−n, so

|α − P/Q| =

∣∣∣∣
A(P/Q)

A′(β)

∣∣∣∣ ≥ |A′(β)|−1Q−n.

Since |α− P/Q| ≤ 1 we know that |β| ≤ 1 + |α|. and hence it can be showed that |A′(β)| is
smaller than n‖A‖∞(1 + |α|)n. Using Cauchy’s upper bound [Yap00, Cor. 6.8,p. 149] on |α|
we get the bound on the constant C(α) mentioned in the lemma.
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