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A little known theorem concerning the isolation of roots of polynomial
equations, published in 1836 by the French mathematician A. J. H. Vincent
is discussed. This theorem is of great importance because one (of the two)
isolation method derived from it turns out to be the fastest existing thus
far—if exact integer arithmetic algorithms are used. Certain compu-
tational results which offer an empirical comparison of the classical
methods are also presented.

1. INTRODUCTION

It is well known that in the beginning of the 19th century the attention
of the mathematicians had already focused on numerical methods for the
solution of the general equation of degree greater than four. During this
period Fourier conceived the idea to proceed in two steps; that is. first to
isolate the roots and then to approximate them to any desired degree of
accuracy. Approximation is a special topic in itself [13] and will not be
discussed in this paper; moreover, we will be concerncd only with real
roots.

Isolation of the real roots of a polynomial equation is the process of
finding real, disioint intervals such that each contains exactly one real root
and every real root is contained in some interval. In order to accomplish
this Sturm’s method is the only one widely known and used; it was deve-
loped in 1829 and is based on a theorem by Fourier, which is found in the
literature under the name Budan-Fourier, or, even, Budan!! [4], [11]. [18].
However. in 1834. another French mathematician, Alexandre Joseph
Hidulphe Vincent [12], [15]. also published a *‘note™ (of thirty pages) in
the Mémoires de la Societé rovale de Lille concerning the isolation (and
approximation) of the real roots of polynomial equations with numerical
coefficients. The same memorandum appeared two years later, with a few
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42 AN UNKNOWN THEOREM FOR ISOLATION OF ROOTS OF POLYNOMIALS

additions, under the title ““Note sur la résolution des équations numériques”’
in the October issue, 1836, of the Journal de M athématiques Pures et
Appliquées [17]. According to a footnote, the article was reprinted ““for the
benefit of the professors’. The main theorem in Vincent’s paper is based
on Budan’s proposition which is ignored by most of the existing literature,
mainly due to its equivalence with the one by Fourier [11], [14], [16], [18].
Nevertheless, the article and the method described therein were consigned
to oblivion for more than a century, although it seems that several people
had dealt with variations of this method.

We may attempt to explain the fact that Vincent’s theorem was for-
gotten by noting the careful manner in which he pays tribute to Sturm and
notes the ““beauty” and usefulness of Sturm’s celebrated theorem on the
location of the roots of the equations [6]. In 1834, the same year in which
Vincent first published his paper, Sturm published his work on second
order differential equations, known today as the Sturm-Liouville theory,
for which he received the “Grand Prix des Sciences Mathématiques’ from
the Académie des Sciences. Two years later, when Vincent’s paper was
reprinted, Sturm was elected in the Académie des Sciences. It is, therefore,
not surprising that Sturm’s method outshone all others. There is, however,
another possible reason that discouraged people from using Vincent's
theorem—and his method. As we mentioned above, Vincent’s theorem is
based on Budan’s proposition (1807), with the help of which we can
obtain, performing the substitutions x = x" 4 p and x = x" + ¢, an upper
bound on the number of the real roots that an equation has within the
interval (p, ¢) [4]. Using Budan’s theorem, Vincent performs transforma-
tions of the form x = y + 1 (or, equivalently, x «<— x + 1); however, in
order to obtain the coefficients of the transformed equation, he uses
Taylor’s expansion, a somewhat inefficient and cumbersome procedure. It
was only in the middle of our century that Uspensky simplified Vincent’s
method considerably by using the Ruffini-Horner method in order to
obtain the above mentioned coefficients [9].

So far as we have been able to determine, Vincent’s theorem is not
mentioned by any author with the exception of Uspensky [16] and
Obreschkoff [14]. Uspensky notes that even such a capital work as the
Enzyclopaedie der mathematischen Wissenschaften ignores it. This little
known theorem though, is the basis of two contrasting methods for the
isolation of the real roots of polynomial equations; the first, due to
Vincent, behaves exponentially, whereas, the second method, due to the
first author [2], has the best theoretical computing time bound achieved
thus far. Notice that the methods discussed in this paper have been imple-
mented in software systems for computerized algebra, using exact integer
arithmetic algorithms. '

In what follows we will present Vincent’s theorem and the propositions
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on which it is based. A short description of the two root isolation methods
will be given, together with some empirical results for comparison.

2. VINCENT’S THEOREM AND ITS EXTENSION

We begin with some preliminaries. As we know, most methods for the
isolation of the roots of polynomials with numerical coefficients rely on the
following rule:

CARDANO-DESCARTES RULE OF SIGNS [8]
Consider the polynomial

P(x) = cpx" + uyx™ ' + .. 4oyx + Co

with real coefficients. If v is the number of sign variations in the sequence
of coefficients ¢,, ¢,_y, . .., ¢y (zero coefficients are simply omitted) and p
is the number of positive roots of P(x), then

v—p=2A,
where A > 0 is an integer.

Notice that the above rule gives the exact number of roots only if there
is either one or no sign variation. In the first case there is one positive root,
whereas, in the second case there is no root. This observation will be used
in Vincent’s theorem.

As we mentioned in the Introduction, Vincent’s theorem is based on a
proposition by Budan which, to our knowledge, can be found only in [17].
(All the books on the theory of equations we have seen, [11], [14], [16], [18],
simply mention Fourier’s theorem and refer to jt as Budan-Fourier or even
Budan!! [11], [18].) Vincent renders Budan’s theorem as follows:

THEOREM | (BUDAN 1807). [f in an equation in x, P(x) = 0, we make
two transformations x = p + x' and x = q + x", where p and q are real
numbers such that p < q, then

(i) the transformed equation in x' = x — p cannot have fewer sign vari-
ations than the transformed equation in x" = x — g;

(#i) the number of real roots of the equation P(x) = 0 located between p
and q can never be more than the number of variations lost in pass-
ing from the transformed equation in x' = x — D to the transformed
equation in X" = x — gq;

(iif) when the first number is less than the second, the difference is alwvays
an even number.

At this point we would like to ask the reader to look up Fourier's
theorem in any text on the theory of equations, and to compare it with
Theorem 1; although they are equivalent, their statements are completely
different. Using Budan’s theorem, Vincent carries out consecutive trans-
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formations until the transformed equation presents one or 0O sign variation,
in which case the number of roots can be determined unambiguously. We
have the following:

THEOREM 2 (VINCENT 1836). If in a polynomial equation with rational
coefficients and without multiple roots one makes successive trensformations of
the form

| ” 1
ully gy X = g2 Frie ¥ =as+ >
where each ay, az, a3, . . . is any positive integer, then the resulting transform-

od equation has either zero or one sign variation. In the latter, the equation
has a single positive root represented by the continued fraction

1
a +

1
a2+a3+...

whereas in the former case there is no root.

The proof of this theorem can be found in Vincent’s original paper. The
negative roots are investigated by replacing x by —x in the original poly-
nomial and by investigating the positive roots of the transformed poly-
nomial. Vincent himself states ([17], p. 342) that Theorem 2 was hinted in
1827 by Fourier, who never did give any proof of it (or if he did, it was
never found).

The dependence of Vincent’s theorem on the one by Budan is easily

; . 1.
seen if each transformation of the form x = a; + 3 is replaced by the equi-
valent pair of transformations x = &; + y ¥y = % (Observe, also, that the

inversion, y' = 3}1—, is easily performed on a given polynomial by simply
inverting the order of its coefficients.)

Intuitively speaking, the purpose of the series of successive transforma-
tions of the form x = a; + yi’ performed on the equation P(x) = 0, is to

force one of its positive real roots in the internal (0, 1) and all other in
(1, w) or vice versa—excluding, of course, the case when 1 is a root. In the

N | : . .
first case, the subsequent substitution x < o will result in an equation

with only one real root in (0, o), whereas in the second case the same is
achieved with the subsequent substitution Xx < 1 4+ x. The question
naturally arises as to the maximum number of transformations of the form

1 . . ; . .
x=da; + 3 necessary to obtain this polynomial with at most one sign
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variation. Uspensky ([16] pp. 298-204) extended Vincent’s theorem in order
to obtain an answer to this question. His treatment, though, contains certain
errors, in the statement and the proof, which were corrected in [3]. In what
follows we give a new, corrected version of the extension of Vincent’s
theorem. (The proof can be found in [3], [16].)

THEOREM 3 (VINCENT-USPENSKY-AKRITAS). Let P(x) =0 be a poly-
nomial equation of degree n > 1, with rational coefficients and without multi-
ple roots, and let 4 > 0 be the smallest distance between any two of its roots.
Let m be the smallest index such that

Fur 5 > 1 and FiFpl > 1+ 2,
where Fy is the k-th member of the Fibonnacci sequence
b 2 2 3209, 8, 43,21 v s -

1/(n-1)
€y = (l - 1) —1
n

=i ez

and

Then the transformation

2+_ ()
S 1

1
A + =
+§

(which is equivalent to the series of successive transformations of the form

1. ; :
<, i=1,2,...,m)presented in the form of a continued fraction

3

with arbitrary, positive, integral elements ay, ay, ..., a,, transforms the

X=aq +

equation P(x) = 0 into the equation P(§) = 0, which has not more than one
sign variation in the sequence of its coefficients.

3. APPLICATIONS OF VINCENT'S THEOREM

Theorem 3 can be used in order to isolate the real roots of a polynomial
equation. The fact that it holds only for equations without multiple roots
does not restrict the generality, because in the opposite case all we have to

do is to express P(x) in the form P = [] Si, where each of the S;’s has only
i=1

single roots ([16], pp. 65-69). Each of these single roots is of multiplicity

i for the polynomial P(x) and thus we see that the above theorem can be

applied on the S;’s. So in the rest of this discussion it is assumed that

P(x) = 0 is without multiple roots.

From the statement of Theorem 3 we know that a transformation of
the form (1), with arbitrary, positive integer elements a,, a3, . . ., a, trans-
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forms P(x) = 0 into an equation P(§) = 0, which has at most one sign vari-
ation; this transformation can be also written as

Pné + Pr_y

X = mm— 741
Qm§ + Qm-l (
where P is the kth convergent to the continued fraction
k
1
a; + i
@y 4 ——
2 a3 + r—
Since the elements ay, a3, . . ., a, are arbitrary there is obviously an infinite

number of transformations of the form (1). However, with the help of
Budan’s theorem we can easily determine those that are of interest to us:
namely, there is a finite number of them (equal to the number of the
positive roots of P(x) = 0) which lead to an equation with exactly one sign

variation. Suppose that f"(f) = 0 is one of these equations; then from the
Cardano-Descartes rule of signs we know that it has one root in the interval

(0, o). If £ was the positive root, then the corresponding root X of P(x) = 0

could be easily obtained from (2). We only know though that ¢ lies in the
interval (0, o0); therefore, substituting £ in (2) once by 0 and once by « we

obtain for the positive root X its isolating interval whose unordered end-

and —=. In this fashion we can isolate all the positive roots

Qm-—l m

of P(x) = 0. If we subsequently replace x by —x in the original equation,
the negative roots become positive and, hence, they too can be isolated in
the way mentioned above. Thus we sce that we have a procedure for isolating
all the real roots of P(x) = 0.

points are =—

The calculation of the quantities @, a3, . . ., a,—for the transformations
of the form (1) which lead to an equation with exactly one sign variation—
constitutes the polynomial real root isolation procedure. Two methods
actually result, Vincent’s and the one developed by the first author, corres-
ponding to the two different ways in which the computation of the a,’s may
be performed; the difference between these two methods can be thought of
as being analogous to the difference between the integrals of Riemann and
Lebesgue (think of the addition).

Vincent’s method basically consists of computing a particular a; by a
series of unit incrementations; that is, @, <~ a; + 1, which corresponds to the
substitution x < x + 1. This ““brute force” approach results in a method
with an exponential behavior; that is, for big values of the a,’s this method
may take a long time (even years in a computer) in order to isolate the real
roots of an equation. Therefore, Vincent’s method is of little practical
importance. Examples of this approach can be found in Vincent’s paper
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[17], and in Uspensky’s book ([16]) pp. 129-137). The reader should notice
that in the preface of his book Uspensky claims that he himself invented
this method. A simple comparison with Vincent’s paper though makes clear
that what can be considered a contribution on Uspensky’s part is only the
fact that he used the Ruffini-Horner method in order to perform the trans-
formations x «<- x + 1, whereas, Vincent used Taylor’s expansion theorem
[7]. Moreover, Uspensky seems to ignore Budan’s theorem and, while
computing a particular g;, he performs, after each transformation x < x4 1,

the unnecessary transformation x <« something which Vincent avoids.

x+ 1
The exponential nature of Vincent's method motivated Collins and Akritas
te develop a new method with polynomial computing time bound [10];
this method, however, is based on a modified version of Vincent’s theorem

and does not take advantage of the continued fractions [5].

On the contrary, the method developed by the first author is an
aesthetically pleasing interpretation of Theorem 3. Basically it consists of
immediately computing a particular g; as the lower bound » on the values
of the positive roots of a polynomial; that is, g, <~ b which corresponds to
the substitution x < x 4 b performed on the particular polynomial under
consideration. It is obvious that this method is independent of how big the
values of the a;’s are. (An unsuccessful treatment of the big values of the
a;’s can be found in Uspensky’s book ([16] p. 136). In this discussion it is
assumed that b = | a, | where «; is the smallest positive root.) Since the
substitutions ¥ <= x + 1 and x < x + b can be performed in about the same
time [7], we can easily see that our method results in enormous savings of
computing time. It turns out that our method is the fastest existing for the
isolation of the real roots of a polynomial equation, when exact integer
arithmetic algorithms are used.

4. EMPIRICAL RESULTS AND CONCLUSIONS

In what follows we present two tables with the computation times in
seconds. They were obtained by using the SAC-1 computer algebra system
on the IBM S/370 Model 165 computer located at the Triangle Universities
Computation Center (North Carolina) [1]. Table 1 compares Sturm'’s
method with the one developed by the first author for randomly generated
polynomials of degrees 5-20; clearly, for this class of polynomials Sturm’s
method is completely out of the race. Table 2, on the contrary, compares
Vincent’s method with ours for polynomials of degree 5 with randomly
generated roots i.e. each polynomial is the product of 5 linear terms. In
this case the exponential nature of Vincent’s method is obvious.

We see, therefore, that based on the forgotten theorem of an unknown
French mathematician, contemporary of Sturm, we have been able to
develop a new method for the isolation of the real roots of polynomial
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TABLE 1

POLYNOMIALS WITH RANDOMLY
GENERATED COEFFICIENTS

Meihod Developed
Degree Sturm by the
First Author

5 2.05 .26
10 33.28 .46
15 156.40 .94
20 524.42 2.36

TABLE 2

POLYNOMIALS OF DEGREE 5 WITH
RANDOMLY GENERATED ROOTS

Roots are Method Developed
in the Vincent by the
interval First Author
(0, 10%) 45 .16
(0, 10%) 1.61 71
(0, 10%) 16.43 2.01
(0, 10%) 175.62 4.81

equations; this method by far surpasses not only Sturm’s but also all others

recently developed using exact integer arithmetic algorithms.

(1]

(3]

(41

(6]

REEERENCES

A. G. Akritas (1978), *Vincent's theorem in algebraic manipulation™,
Ph.D. thesis, Operations Research Program, North Carolina State

University, Raleigh, N.C.

(1978), “A new method for polynomial real root isolation™.
Proc. of the 16th annual southeast regional ACM conference,
Atlanta, Georgia, April 1978, 39-43 (this paper received the First

Prize in the Student Paper Competition).

(1978), *“A correction on a theorem by Uspensky™, Bulletin

of the Greek Mathematical Society, 19, 278-285.

(1979), “The two different ways of expressing the Budan-

Fourier theorem and their consequences’, In: 5th Vol. of lectures
given at the General Mathematical Seminar of the University of

Patras, 127-146 (in Greek).

(1979), ““On the solution of polynomial equations using conti-
nued fractions”, Information Processing Letters, 9, 182-184.
A. G. Akritas and S. D. Danielopoulos (1978), “On the forgotten
" theorem of Mr. Vincent, Historia Mathematica, 5, 427-435.

Ganita Bhdrari



ALKIVIADIS G. AKRITAS AND STYLIANOS D. DANIELOPOULOS 49

(7]
8]
(9]

[10]

(1]
[12]

[13]

L14]
[15]
[16]
[17]

(18]

L:

E

M.

N.

(1980), ““On the complexity of algorithms for the translation
of polynomials, Computing, 24, 51-60.

“A closer look at the rule of signs” (submitted for publi-
cation).

. Cajori (1911), “Horner’s method of approximation anticipated by

Ruffini”’, American Mathematical Society Bulletin, 17, 409-414.

. E. Collins and A. G. Akritas, “Polynomial real root isolation

using Descartes’ rule of signs™, Proc. of the 1976 ACM Symposium
on Symbolic and Algebraic Computation, Yorktown Heights,
New York, 272-275.

E. Dickson (1922), First Course in the Theory of Equations, J.
Wiley and Sons, New York.

K. Lloyd (1979), “On the forgotten Mr. Vincent”, Historia

Mathematica, 6, 448-450.

A. Nordgaard (1922), A historical survey of algebraic methods of
approximating the roots of numerical higher equations up to the

year 1819, Teachers College, Columbia University, New York.
Obreschkoff (1963), Verteilung und Berechnung der Nullstellen
reeler Polynome, VEB Deutscher Verlag der Wissenschaften, Berlin.

J. C. Poggendorff (1863), Biographisch-Literarisches Handworterbuch

i A

A.

L.

zur Geschichte der exacten Wissenschaften, J. A. Barth, Leipzig.

V. Uspensky (1948), Theory of Equations, McGraw-Hill Co.,
New York.

J. H. Vincent (1836), ““Sur la résolution des équations numéri-
ques”, Journal des Mathématiques Pures et Appliquées, 1, 341-372.

Weisner (1938), Introduction to the Theory of Equations, The
MacMillan Co., New York.



