Exact Algorithms for the
Implementation of Cauchy’s Rule

ALKIVIADIS G. AKRITAS

University of Kansas, Department of Computer Science, Lawrence, Kansas
66045, USA

Cauchy’s hittle known rule for computing a lower (or upper) bound on the values of the
positive roots of 4 polynomial equation has proven to be of grest importance; namcly it
constituies an indispensable and crucial part of the fasiest method existing for the isolation
of the real roots of an equation, a method which was recenthy developed by the author of
this article. o this paper efficient, exact (nfinite precision) wlgorithins, atong with then
computing tme analysis, are presented for the implementation of this important rule.

KEY WORDS: Analysis of (exact) algorithms, polynomial real root isolation, root bounds.
Cauchy’s (extended) rule, Vincent's theorem.

C.R. CATEGORIES: 5.11, 3.15

1. INTRODUCTION

Recently, in Uspensky's Theory of Equations [7]. Vincent's forgotten
theorem of 1836 was discovered by the author of this puper and it formed
the subject of his Ph.D. thesis [2], [5], [9]. An extended version of this
important theorem is the folowing:

THEOREM (Vincent-Uspensky-Akritas). Let P(x)=0 he o polynomial
equation of degree n> 1, with rational cocfficients and withowt multiple
roots, and let A>0 be the smallest distunce benween any two of iis rools.
Let m be the smallest index such that

A . . o
,,,_,7>1 and 1',“_]i',”A>1'r..

F .

where Fyis the kth member of the fibonacci sequence
1,1,2,3,5,8,13, 21,...

323
KM D

324 A G, ARRITAN

and

a1

/ 1
::"-——*kl+) S
n

Then the transformation

1
X=u, + -+
ts

o

m &

(which is equiralent to the series of suceessive transformiations of the jorin X
=g+ 15 i=120..m) presented in the form of & continued fraction witl
arbitrary, positive, integral elements daydye. oty (ransforms the equation

Pix)=0 into the equation P(E)=0, which has wot more than one sign
cariation in the sequence of its coefficients.

The above theorem {(whose proof can be found in [4]) can be used in
order to isolate the real roots of w polynomial cquation, The culeulation of
the quantities dyds, .. t,--for the rransformations of the form (1) which
lead 1o an equation with exactly one sign variation constitutes the
polynomial real root isolation procedure. Two methods actually resuly
Vincent's and ours, corresponding to the two different ways in which the
computation of the gs may be performed: the difference between these
two methods can be thought of as being analogous 1o the difference
between the integrals of Riemann and Lebesgue.

Vincent's method basically consists of computing a particular 4 by «
series of unit incrementations; that 18, tpe=d L which corresponds to the
substitution x«—x+ 1. This “brute foree” approach resulis o method
with an exponential behavior, and hence, of very liutde practical
importance. Examples of this approach can be found in Vincent's paper
{91 and in Uspensky's book [7].

Our method, on the contrary, is an aesthetically pleasing interpretation
of the Vincent-Uspensky-Akritas theorem. Basically it consists of
immediately computing a particular g; as the lower pound h on the values
of the positive roots of & polynomial: that is, a;+-h, which corresponds to
the substitution xex+ b performed on the particular polynomial under
consideration. In this discussion it is assumed that b=]2,). the greatest
integer < a, where a, is the smallest positive root. (More details on these
two methods can be found elsewhere [2], (31

ALGORITHMS FOR CAUCHY'S RULLE 325

From the preceeding paragraph we see that our method crucially
depends on the ability to compute the lower bound b on the values of the
positive roots of a polynomial equation. (Observe that this is equivalent to
the computation of the upper bound on the values of the positive roots of
an equation, because if @< 1/b, where & is any positive root of P(1/x)=0,
then b <a for any positive root o of P(x)=0). As [ar as we have been able
to determine, the only efficient rule existing in the literature for the
computation of the lower bound b on the values of the positive roots of
an equation is that of Cauchy; this rule is little known and-to our
knowledge—it can be found only in Obreschkolf's book ([6], pp. 50-51).
Note that in our method we have made the assumption that b=[z];
however, the computed bound b will be <[a,] so that in general more
than one application of Cauchy’s rule is necessary in order to compute
L.

In the next section we present Cauchy’s rule along with its extension,
which provides an upper bound on the absolute values of the roots of
P{x)=0. A discussion is also included as to how these two rules should he
best implemented.

In the third and last section we first introduce the appropriate data
structures for our algorithms. Subsequently, we present the algorithms,
along with their computing time analysis, for the implementation of
Cauchy's rule. As the title of the paper indicates, with the help of these
algorithms the computations are performed exactly, ie. without any
round-off errors, since we use infinite precision integer arithmelic.

2. MATHEMATICAL BACKGROUND

In this section Cauchy’s rule along with its extension is stated and proved.
Both rules are stated in the way they are encountered in the literature;
that is, the computed number is an upper bound. Subsequently, a
discussion follows on how these two rules are best implemented.

Cauchy's Rule Llet P(x)=x"+c,.,x" '+ ...4¢,x+¢,=0 be an
integral, monic polynomial equation of positive degree n, with ¢,_, <0 for
al least one k, 1<k<n, and let A be the number of its negative
coefficients. Then
b= max |ic,-,|'*
15kgn
€3 <0

is an upper bound on the values of the positive roots of P(x)=0.
Proof From the way b is defined we conclude that

bk;llcn~k|

326 A. G. AKRITAS

for cach k such that ¢, ., <0; for these Ks the Jast mequality is also
written as

bz b

Cpo k|b"

Summing over all the appropriate k's we obtain

n

T hn 5 . n—k
bz 2 Z l(“_kb ,
k=1
Cua 0
or
n
2 Y oot
k=1
Cp- <0

From the last incquality we conclude that, if we substitute b for x in (x)
=0, the first term, i.e., b", will be greater than or cqual to the sum of the
absolute values of all the negative cocfficients. Therefore, P(x) >0 for all x

>p 0O

Remark Actually, the above proof is valid even il the cocflicients of
P{x) are real. However, since we are interested in doing exuct
computations we take them to be integers.

As we mentioned before, Cauchy’s rule is not widely known, and to the
best of our knowledge, it appears only in Obreschkofl’s book [6]. This
ruic can be extended so that the computed number is an upper bound on
the absoluie values of ali the roots of P(x)=0.

Extended Cauchy’s Rule Let P(x)=x"+c, X" '+ ...+, x+¢o=0 be
an integral, monic polynomiul equation of positive degree n, with ¢, #0
for at least one k, 1 £ k<n Then if

B=2 max |e,_,|'"*
12ksEn

and P(x)=0, it follows that |a| <B.

Proof if P(0)=0, then obviously 0<B, so assume 20 and P(z)=0.
Then clearly

n—1

a"=y (—c)ak

k=0

(V9]
2
~J

ALGORITHMS FOR CAUCHY'S RULL

from which it follows that

n—=1

lrxlug
k=

dividing through by fa}" we obtain
n-~1 n

£ 2 fallfr= 2

k=0

:ki:x (_Ia—i[’_M>A gk.‘i <2lil)k

B___ B_ n+ B
20a] \2js s

h

pd

|
W_]..__E_A*..<1 y
2}1! '_’}y,
In other words, we have
B _B
2faf 2ol

from which it {ollows that

l<-1—3- or |o<B. U

lo

For both rules mentioned above, when the polynomial is not monic, then
obviously each ¢, is divided by c,.

Now it might be thought that the above mentioned rules require u great
amount of computation, since it secms that the calculation of kth roots is
needed. However, this is not so as we will immediately see. Moreover, van
der Sluis proved a theorem ([8], Theorem 2.7) from which we conclude
that (the extended) Cauchy’s Rule is not only nearly optimal, but also a
good approximation from above can be easily obtained. This is true
because instead of computing each kth root we compute the smullest

integer k' such that
17k ¢ 1k
< <0r Mol S2k'>
= p =

n
and then we set b (or B)=2**1, where k is the maximum ol the k"s.

Lk
A
C

13

328 A. G. AKRITAS

The computation of cach k' is as follows:

Let
(ot=2)
S or—-= :
IS

be a quotient, for some k, 1 £k<n, and suppose that

f'n ~k
(

"

2i<h<2tt und V<2
Then clearly

gimim1 P gimin, 2)
¢

Ifweset p=i—j—1 and p+2=i—j+1, then (2) becomes
2"<9<2”+2.
¢
Taking the kth root of the last expression yields

k b i + 2)/k b
Pk =) R (5)
4

Il p=gq-k+r, 0Zr<k, then clearly

24

WA

’)P/‘k .
bt 3

moreover, p+2=¢g-k+r+2 and

2(!’””2)/"=2‘l.2(r+2)/k§2‘l+2‘ 4)

since (r+2)/k<2, given r<k—1. Combining (3) and (4) results in k'=y
+2. We obtain a smaller value for k' if r<k—2. In this case (r+2)/kZ1
and
AR LE L AR
so that k'=q+ 1.
~ From the previous discussion we conclude that the main operations in
(the extended) Cauchy’s rule are:

i) the computation of |log,]4|), the greatest intcger <log,jAl and
[log,|4{], the smallest integer 2 log,|Al, for any integer 4 %0,

ALGORITHMS FOR CAUCHY'S RULL 329

it) the computation of 2* for a nonnegative integer k, and
i) the computation of [A4/2"] for any integer A and n positive or
negative, where [x]={x} il x20 or [x]=[xT il x <.

3. COMPUTER IMPLEMENTATION OF CAUCHY'S RULE

In this section we first introduce the appropriate data structures that are
useful in designing efficiently our algorithms, and then we present,
informally, the auxilliary algorithms for the implementation of Cauchy's
rule. A detailed algorithm for the latter follows along with its computing
time analysis.

We begin by resursively defining a list over an arbitrary set S to be a
finite sequence (a,,q,,...,a,), n20, such that cach «; is cither an clement
of S or a list over S; the empty list is represented by 0. When we write 4
=(dy,dy,...,d,) We Interpret it in two ways: (i) A is considered to be a
pointer to the beginning of the list, and (i) 4 represents the entire list, 5o
that when we write 4 @ x, where @ is any one of the binary operators on
scalars, we mean that the operation @ has been performed between each
element of 4 and the scalar x. '

Given the list A=(ay,a,,...,a,), where A is a pointer 1o the beginning
of the list, one can define various operations on it; of interest 10 us are the
following: length(A)=n; first(4)=a,; last(4)=a,; Wil(4) resulting in 4
=(ds, d3,...,d,); invert{A4) resulting in A={(a,,...,a,); prefix a,,....a, o
A, k21, resulting in A={(a,,..., 4, a,,...,a,); advance d,,....a, in 4, k<n,
resulting in a; pointing to a;, 1Zi<k and A= (4, »..0u,). Il A=0, the
empty list, we define prefix a to 4 to mean A= (a). In what follows, lists
and list elements of a list will be denoted with capital letters of the
alphabet, whereas elements of S will be denoted with small letters.

The algorithms described in this article involve operations on integers.
rational numbers, and polynomials.

We distinguish two types of integers—those that are represented by lists
and those that are not. An integer of the first type will be represented as
A=(ag,a,,...,a,), n=1, where these a’s are the coeflicients of f"s in the
expression 4=>"_,aff' and are all posilive or negative, according 1o
whether 4>0 or 4 <0, respectively; f=2*—1 is the largest value stored
in a computer word. Each q; is stored in a separate computer word and,
except for g, takes up p bits. Sign(4)=+1 depending on whether a,>0
or a,<0.

A rational number R is considered to be the list R=(N,D), where N
and D are the numerator and denominator, respectively, and are both
integers represented by lists.

330 A, G, AKRITAS

An univariate polynomial P(x) ol degree n (and the cquation P(x)=0)
will be represented by the ordered list P=(C e, Coyie, o Criey) rz
where each integer coefficient C; is #0 and is represented by the list ¢
= (Ch1a Cias o Cig)y M2 15 Lhe exponents ¢; are in decreasing order ¢, v,
>...>e¢,. We define sign(P)=sign(C,) and degreetP)=¢,. The empty list
represents the polynomial P=0.

The language used to describe our algorithims is busically that of
conventional mathematics, with the exception of the replacement operator.
We use simple and compound statements, where cach simple executable
statement is separated from another by “:". A compound statement is
sequence of simple statements: it is enclosed in parentheses and may be
preceeded by the word do. Comments follow the step number and are
enclosed in square brackets. We also use the following special statements
whose meaning is obvious (sec also [17] p. 35): if condition rhen statenient
else statement; while condition do statement; repeat statement until

condition; for i=1,2,.. ¢ do statement.

DEFINITION 3.1 By the f-length of an integer k we mean the number of
S-digits in its representation, and we write Ly(k) H [xl s the ceiling
Sunction, the feast integer greater than or equal to o and [s the floor
Sunction, the greatest integer less than or equal 1o x, then

1 ' o k=0
4 /\’ o=
I /;() ‘7log/;(lk‘ -+ U] ES U()g/[l]\»u +1, k0,

In what follows the subscript # will be omitied since for any other basce 7
Ly~L, (if we think of L, and L, as functions delined on the set of
integers; ~denotes co-dominance [2]).

DEFINITION 3.2 Let A be any algorithm and S the set of all valid inputs
to A. t, is the computing time function associated with A and delined on 8.
The integer t(x), for x in S, is the number of basic operations performed
by the algorithm 4 when presented with the input x.

Basic operations consist of such things as single precision additions and
multiplications, replacements, unconditional transfers, and subroutine
calls. The reader can easily sce that for two integers A, B which arc
represented as lists we have the following: the time to compute A+ B s
O(max(L(A), L(B))) whereas the time to compute A - B is O(L{(A)L(13)).

Computing time bounds for operations on polynomials are
characteristically given as functions of the degrees and the norms of the
polynomials.

-

ALGORITHMS FOR CAUCHY'S RULL 331
DEFINITION 3.3 Let Plx)=)"oex'=0 be a univariate polynomial
cquation with integer cocflicients (if the cocllicients are rationual we first
turn them into integers). The max-norm (or sub-infinity normyy of P{x)is

P

,o= max (o).

Ogizn

We now present sort, informal descriptions for the various auxilliary
algorithms, which perform the operations (i), (i), and (i) mentioned at
the end of the last section.

i} Computation of the floor and ceiling functions of the
logarithm.

For this operation we use algorithm IFCLOG(A, nr). The input is A, a
nonzero integer represented by the list 4= (u¢y.as.....q)), 12 11 the outputs
are m={log,l4[] and n=[log,|A]]. Tt is easily scen that fycroglA, mn)
=0(L(A4)).

ii) Computation of 24

Here we consider two different algorithms. The computation of 2* for a
nonnegative integer k is performed with the help of algorithm A4« 1P2(4),
The output is 4=2* which is represented by the list A=(u, us....q,
n2 1. Obviously, 1p,(k}=0(k+1). Since it is sometimes desirabie to obtiin
2% us a rational number (and, thus, include the case when k<0) we make
use of the algorithm R«RNP2(k). The output is the rational number R
=2*; in the case where k=0, R is represented by the list R = (A,B). where
A4 and B are both integers represented by the lists A= (¢, aye...oq,) n21
and B=(1). Il k<0, then obviously R= (B, A). Clearly, { ynpal k)= ([+ 1).

iti) Computation of {4/2"].

Algorithm B«ITRUNC(A4,n) is used in this case. The inputs are the
integers A and n. A4 is represented by the list A= (a,.ds....qp), 121,
whereas n is a simple integer, which can be positive, negative or equal to
zero. The output is the integer B, which is [A4/2"], the integer part of the
division m case n>0, and B=A4-2" in casc n<0. In both cases B is
represented by the list B=(b,,b,,...,b,), m21. It can be shown that for
A=0 we have: ¢ (A4, n)=0(L{A)) if n>0, and 1 {4, n)=0(L(4)

! . ITRUNC ITRUNC
{ni), if n<O.

Using the previously defined algorithms we now implement Cauchy's
rule.

332 A. G. AKRITAS
Algorithm 3.1 (Cauchy's Rule). Be~CAUCHY(P)

Speciﬁcations The input P#0 is an univariate polynomial represented
by the list P=(C.e,.C,_,¢,_,...,Cy,e;), r21, where cach integer
coefficient C; is represented by the list = (¢, ¢ .. i o mz 1 The
output B is a positive upper root bound for /’: B is u binary rational
number of the form B=(B,, B,), where the B;’s ure integers represented by
lists (one of them being the list (1)). 1f P(x)=) 1., cix’se, #0, then B s the
smallest power of 2 such that

)Cn—k
) -
¢

A

B,

n

for 1£k=n and ¢,., <0. If ¢,_, =0 for all the appropriate k's, then B=1.

Description

[Sign (P)=17] PP if sign (P)= =1, then Pe=—P.

[Initialize for 2] 2«0; P'«P; advance C.¢ in I”.

[Count negative terms.] while P'#0 do (advance C,e in P'; sesign
Cliifs=—1then fe=i+1)

4. [Initialize for B.] k«0; if /.=0 then go 1o 6; P'«P; advance C.e in P
if P'=0 then go 1o 6; IFCLOG (C, ,j'); t<0.

[Process negative terms.] repeat (advance C,, e, in P'; if sign (C))=1
then do (if P'=0 then go 1o 6 else go 1o 5), ke-e—v¢,: Cy—=7-Cy;
IFCLOG(C,, i,1'); p—i—j=1; qep/k; r—p—k-q; if r<O then do (rer
+ki geq-1); Keg+ls if r=k—=1 then do (Cye=|Cyf;
<ITRUNC(C, =k - k); if C3>C then K'«k'+1): if t=0 or k'>k then
kek'; te1) until P'=0.

6. [mesh up.] B—RNP2(k); return.

o

W

THEOREM 3.1 Let P(x)=2}'=o ¢;x' be an integral, univariate polynomial
of degree n>0, with ¢,#0 and ¢,., <0 for at leust one k, 1 £k<n. Then
(P)=0(2L{|P|,))-

C\UCHY

Proof 1t is easily seen that steps 1 through 3 are exccuted in time
0L({Pl,)). As for the other steps, recalling the computing times for
IFCLOG and ITRUNC, we see that one execution of step 5 {which
computes k' such that |ic,_,/c,|'*<2") is done in time<c[k+L(|c,-])]
~c[k+L(|P|,)], which dominates the computing times of steps 4 and 6.
Step §, moreover, is executed at most n times, for k=1,2.. .., a1, so that

'
LPS)
w

ALGORITHMS FOR CAUCHY'S RULE

1cAuc'1n'(P)§('[Y (K +L(I\P\q,))J

k=1

n
_—:c[(n +1)5+n- 1.(\1’\) l

~c[n?+nL(Pl.))

~ ('nzL(lP S N

which proves the theorem. O

The implementation and analysis of the Extended Cauchy's Rule s
quite similar.

References

[1] A. V. Aho, 5. B Hoperoft and J. D. Ultman, The Design and Analysis of Compuier
Algorithms. Addison-Wesley, Reading, 1976.

{21 A. G. Akritas, Vineent's Theorem in Algebraic Manipulation. Ph.b. Thesis, Operations
Research Program, North Carolina State University, Raleigh HY7N.

{31 A.G. Akritas, A New Method for Polynomial Real Root solation. Proc. of the 1oth
Annual Southeast Regional ACM Conference, Atlunta, Georgiu, 39 43 (1978).

(4] A. G. Akritas, A Correction on a Theorem by Uspensky. Bulletin of the Greek
Mathematical Society 19 (1978), 278-285.

[5] A. G. Akritas and S. D. Daniclopoulos: On the Forgotten Theorem of Mr. Vincent.
Historia Mathematica 5 {1978), 427-435.

(6] N. Obreschkofl, Verteilung und Berechnung der Nullstellen reeller Polynome. VEB
Deutscher Verlag der Wissenschaften, Berlin 1963.

[7] 3. V. Uspensky, Theory of Equations. McGraw-Hill, New York, 1948,

[8] A. van der Sluis, Upperbounds for Roots of Polynomials. Numerische Mathematik 15
{1970), 250-262.

{91 A. J. H. Vincent, Sur la Resolution des Equations Numeériques. Journal - de
Mathématique Pures el Appliquées) (1836), 341-372.

