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Reflections on a Pair of Theorems by Budan and Fourier 

ALKIVIADIS G. AKRITAS 
University of Kansas 
Lawrence, KS 66045 

Isolation of the real roots of a polynomial equation is the process of finding real, disjoint 
intervals such that each contains exactly one real root and every real root is contained in some 
interval. This process is quite important because, as J. B. J. Fourier pointed out, it constitutes the 
first step toward the solution of general equations of degree greater than four, the second step 
being the approximation of roots to any desired degree of accuracy. 

In the beginning of the 19th century F. D. Budan and J. B. J. Fourier presented two different 
(but equivalent) theorems which enable us to determine the maximum possible number of real 
roots that an equation has within a given interval. 

Budan's theorem appeared in 1807 in the memoir "Nouvelle methode pour la resolution des 
equations numeriques" [10, p. 219], whereas Fourier's theorem was first published in 1820 in "Le 
Bulletin des sciences par la Societe Philomatique de Paris," pp. 156, 181 [10, p. 223]. Due to the 
importance of these two theorems, there was a great controversy regarding priority rights. In his 
book (1859) "Biographies of distinguished scientific men," p. 383, F. Arago informs us that 
Fourier "deemed it necessary to have recourse to the certificates of early students of the 
Polytechnic School or Professors of the University" in order to prove that he had taught his 
theorem in 1796, 1797 and 1803 [10]. Based on Fourier's proposition, C. Sturm presented in 1829 
an improved theorem whose application yields the exact number of real roots which a polynomial 
equation without multiple zeros has within a real interval; thus he solved the real root isolation 
problem. Since 1830 Sturm's method has been the only one widely known and used, and 
consequently Budan's theorem was pushed into oblivion. To our knowledge, Budan's theorem can 
be found only in [16] and [61 whereas Fourier's proposition appears in almost all texts on the 
theory of equations. We feel that Budan's theorem merits special attention because it constitutes 
the basis of Vincent's forgotten theorem of 1836 which, in turn, is the foundation of our method 
for the isolation of the real roots of an equation [1], a method which far surpasses Sturm's in 
efficiency [2], [3]. 

In the discussion which follows we present separately, and without proofs, the classical 
theorems by Fourier and Budan and we indicate how they lead to the corresponding real root 
isolation methods. Some empirical results are also presented for comparison. 

Fourier's theorem 

Fourier's theorem, first published in 1820, was also included in his Analyse des Equations, 
published posthumously by C. L. M. N. Navier in 1831. Found in almost all texts on the theory of 
equations, it is sometimes given under the name Budan-Fourier or even Budan [9], [17]. Hurwitz 
[12] presents it as a special case of a more general theorem and Obreschkoff [13, pp. 76-87] 
generalizes it for complex roots. The statement given below is the way it is rendered by Vincent 
[16, p. 342]. We must first define the notion of sign variation. 

DEFINITION. We say that a sign variation exists between two nonzero numbers cp and cq 
(p < q) of a finite or infinite sequence of real numbers cl, C2, C3,..., if the following holds: 

for q =p + 1, cp andcq have opposite signs; 
for q 2p + 2, the numbers cp+ I,. . , Cql are all zero and cp and Cq have opposite signs. 

THEOREM 1 (Fourier 1820). If in the sequence of the m + 1 functions P(x), P(')(x), ... ,P(M)(x) 
(where P(i) = the ith derivative), we replace x by any two real numbers p, q (p < q) and if we 
represent the two resulting sequences of numbers by P and Q, then 
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(i) the sequence P cannot present fewer sign variations than the sequence Q; 
(ii) the number of real roots of the equation P(x) = 0, located between p and q, can never be more 

than the number of sign variations lost in passing from the substitution x =p to the 
substitution x = q; 

(iii) when the first number is less than the second, the difference is an even number. 

The sequence of the m + 1 derivatives is called Fourier's sequence. In (iii) the "first number" 
means the number of the real roots of P(x) = 0 located between p and q; the "second number," 
on the other hand, refers to the number of sign variations lost in passing from the substitution 
x =p to the substitution x = q. Obviously, Fourier's theorem gives an upper bound on the number 
of real roots which the equation P(x) = 0 (of degree m) has inside the interval (p, q). 

We remind the reader that the two main subjects of Fourier's life work were the theory of heat 
and the theory of the solution of numerical equations. Both of these subjects were carried forward 
by Sturm, who had personal and scientific relations with Fourier [8]. The manuscript of Fourier's 
treatise on the solution of numerical equations was by 1829 communicated to several persons 
including Sturm, who mentions explicitly what a great influence it had on his own work. 

What Sturm did was to replace Fourier's sequence by 

P(x), P(l)(x), RI(x), . . . 9RJ(X) 

which is called Sturm's sequence or chain. This new sequence is obtained by applying the 
Eucidean algorithm to the polynomials P(x) and P(1)(x), and taking Ri(x), i = 1,... ,k as the 
negative of the remainder polynomial; that is, the sequence is defined by the following relations: 

P(x) = P(')(x)Q1(x) -R(x), 

P(')(x) = R1(x)Q2(x)-R2(X)g 

Rk-2(X) = Rk-I(X)Qk(X)- Rk(X). 

The advantage of Sturm's sequence is that we can now obtain the exact number of real roots 
which the equation P(x) = 0 has within a given interval. This is formally stated as follows: 

THEOREM 2 (Sturm 1829). If the equation P(x) = 0 has only simple roots, then the number of its 
real roots in the interval (p, q) is equal to the difference 

v(p) -v(q) 

where v(4) denotes the number of sign variations in Sturm's sequence for x =. 

Sturm himself tells us [8] that the above theorem was merely a by-product of his extensive 
investigations on the subject of linear difference equations of the second order. The requirement 
that P(x) = 0 has only simple roots is no restriction of the generality because we can first apply 
square-free factorization [4], [15] and then use Sturm's theorem. 

Clearly Sturm's theorem can be used in the isolation of the real roots of an equation. The 
process itself is quite simple because all we have to do, once Sturm's sequence has been obtained, 
is to compute an absolute upper root bound b so that all the roots lie within the interval (- b, b). 
We then subdivide this interval until in each subinterval there is at most one root; that is, Sturm's 
method is actually a bisection method. Quite recently, this method was implemented within a 
computer algebra system [11] using exact integer arithmetic algorithms and its computing time 
was thoroughly analyzed. (Computer algebra systems usually deal only with integer (rational) 
numbers, so that the user does not have to worry about round off and truncation errors. For a 
survey of such systems see [14].) It was shown that if P(x) = 0 is an integral-coefficient univariate 
polynomial equation of degree n > 0 without multiple roots, then the computing time of Sturm's 
method is 
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where L(I PI,,) is the length, in bits, of the maximum of the absolute values of the coefficients of 
P. This lengthy computing time shows Sturm's method leaves a lot to be desired; it has been 
determined that its slowness is due to the computation of the Sturm sequence. 

Budan's theorem 

Although Budan's theorem appeared much earlier than Fourier's, it seems to have been 
ignored; as far as we have been able to determine it does not appear in any of the standard texts 
on the theory of equations. The following statement of the theorem is from Vincent's paper [16, p. 
342]. 

THEOREM 3 (Budan 1807). If in an equation in x, P(x) = 0, we make two transformations, 
x = p + x' and x = q + x", where p and q are real numbers such that p < q, then 

(i) the transformed equation in x' = x -p cannot have fewer sign variations than the trans- 
formed equation in x" = x - q; 

(ii) the number of real roots of the equation P(x) = 0, located between p and q, can never be more 
than the number of sign variations lost in passing from the transformed equation in x' = x -p 
to the transformed equation in x" = x - q; 

(iii) when the first number is less than the second, the difference is always an even number. 

Like Theorem 1, Budan's theorem also gives us an upper bound on the number of real roots of 
the equation P(x) = 0 inside the interval (p, q). However, it only makes use of the transforma- 
tions x =p + x' and x = q + x" and does not depend on any sequence of polynomials. 

Theorems 1 and 3 are equivalent; this fact can be easily seen if in Fourier's sequence we replace 
x by any real number a. The m + 1 resulting numbers are proportional to the corresponding 
coefficients of the transformed polynomial equation P(x + a) = 0, obtained by Taylor's expansion 
theorem. 

Budan's theorem constitutes the basis of the following statement [16], [3]. 

THEOREM 4. Let P(x) = 0 be a polynomial equation of degree n > 1, with rational coefficients and 
without multiple roots, and let A > 0 be the smallest distance between any two of its roots. Let m be 
the smallest index such that 

I 
Fm_l A> I and Fm-jFm/\ > I +-, 1 1n 

where Fk is the kth member of the Fibonacci sequence 
1, 1,2,3,5,8, 13,21,..., 

and 

n n) 
Let a,, a2,... ,am be arbitrary positive integers. Then the transformation 

x=al + 
a+ 1 

a3+ 

(1) 

+1 

m y 
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(which is equivalent to the series of successive transformations of the form x = ai + 1/4, i = 1, 2,.. ., m) 
transforms the equation P(x) = 0 into the equation P(y) = 0, which has not more than one sign 
variation. 

This theorem is an extended version of the one originally presented by Vincent [16], [4]. The 
latter was first hinted by Fourier and, in his paper, Vincent indicates his surprise that Fourier did 
not try to go further and prove the proposition that was the main subject of Vincent's article. He 
states, however, the belief that such a proof may exist in other manuscripts which were not 
published because of the untimely death of Navier. 

Theorem 4 can also be used in the isolation of the real roots of an equation. To see roughly 
why it is true and also how it is applied, observe the following: 

(i) The continued fraction transformation (1) can be also written as 

X Q ?Y+ Q ', (2) 

where Pk/Qk is the kth convergent to the continued fraction 

a I +~~~~ 

a2+ 

a3+ . 

and, as we recall, 

Pk+l Iak+lPk+ Pk-19 

Qk+1 ak+lQk + Qk-1I 

(ii) The distance between two consecutive convergents is 

Pm_- I Pm 1 
Qm-I Qm Qm-IQmi 

It can be proven that the smallest values of the Qi occur when all of the ai = 1. Then Qm = Fm, the 
m th Fibonacci number. This explains why there is a relation between the Fibonacci numbers and 
the distance A in Theorem 4. 

(iii) Let P(y) = 0 be the equation obtained from P(x) = 0 after a transformation of the form 
(2). Observe that (2) maps the interval 0 <y < oo onto the x-interval whose unordered endpoints 
are the consecutive convergents Pm- I/Qm- I and Pm/Qm. If this x-interval has length less than A, 
then it contains at most one root of P(x) = 0, and the corresponding equation P(y) = 0 has at 
most one root in (0, oo). 

(iv) If 9 was this positive root, then the corresponding root x of P(x) = 0 could be easily 
obtained from (2). We only know though, that9 lies in the interval (0, oo); therefore, substitutingy 
in (2) once by 0 and once by o0, we obtain for the positive root x its isolating interval whose 
unordered endpoints are Pm-i/Qm-l and Pm/Qm. To each positive root there corresponds a 
different continued fraction; at most m partial quotients have to be computed for the isolation of 
any positive root. (Negative roots can be isolated if we replace x by -x in the original equation.) 

REMARK. It is clear that if we knew the value of A, we could compute m from the inequalities 
of Theorem 4. Then, without any tests, we could obtain P(y) = 0. However, in our algorithmic 
procedure (to be described below), we do not initially know A. Thus we need the stronger 
conclusion that P(y) = 0 has at most one sign variation in order to have an effective test for root 
isolation. This is what requires the additional complexities in our theorem. For details see [3]. 
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From the above discussion it is obvious that the calculation of the partial quotients a1, a2, ... ,am 
(for each positive root) constitutes the real root isolation procedure. (From Budan's theorem we 
know that the value of a particular partial quotient ai has been computed if P(x + ai) = 0 has 
more sign variations in the sequence of its coefficients than P(x + ai + 1) = 0.) There are two 
methods, Vincent's and ours, corresponding to the two different ways in which the computation of 
the ai's may be performed. As we will see, the difference between these two methods can be 
thought of as being analogous to the difference between the integrals of Riemann and Lebesgue. 
That is, it is well known that the sum 1 + 1 + 1 + 1 + 1 can be computed in the following two 
ways: (a) 1 + ? = 2, 2 + ? = 39 3 + , = 49 4 + , = 5 (Riemann) and (b) 5 1 = 5 (Lebesgue). 

Vincent's method basically consists of computing a particular ai by a series of unit incrementa- 
tions ai <- ai + 1 (replace ai by ai + 1), with each one of which we have to perform the translation 
P(x) <- P(x + 1) (for some polynomial equation P(x) = 0) and check for a change in the number 
of sign variations. This "brute force" approach results in a method with exponential behavior and 
hence is of little practical importance. As an example, let us isolate the roots of the polynomial 
equation 

P(x) = (x-a)(x-f) 0 

where a = 5 - 109 + E and ,6 = a + 1. Consider a(a), the first partial quotient for a, which is 5 109. 
Using Vincent's method we set a(a) <- 1, P(x) <- P(x) and compute P(x) P- P(x + 1). Since the 
number of sign variations in the sequence of coefficients of the transformed polynomial P(x) has 
not changed, we set a(a) - a(') 1 and compute a new P(x) <- P(x + 1), checking again the 
number of sign variations. This process is repeated 5 109 times and, on the fastest computer 
available, it would take about six years! (Note, however, that Vincent's method can be quite 
efficient when the values of the partial quotients are small; for examples see [15].) 

Our method, on the contrary, basically consists of computing a particular ai as the lower bound 
b on the values of the positive roots of a polynomial equation. (It is assumed that b= [as (the 
floor function or greatest integer function), where as is the smallest positive root.) This is achieved 
with the help of 

CAUCHY'S RULE. Let P(x) = x' + c, 1x'- 1 + * ? c x + co = 0 be a polynomial equation of 
degree n with integral coefficients, at least one of which is negative. If X is the number of negative 
coefficients of P(x), then 

b max IXcn lk|/ 
Cn-k<0 

is an upper bound on the values of the positive roots of P(x) = 0. 

Proof. From the way b is defined we conclude that 

b >XAlCn-kl 

for each k such that c__k < 0; for these k's the last inequality can also be written as 

bnaXACn-klbnk 

Summing over all the appropriate k's we obtain 
n 

Xb > X Cfnklbn-k 
k=1 

Cn-k<O 

or 
n 

bn E 2 |Cn-k I b nk 

k=1 
Cn-k<O 

From the last inequality we conclude that if we substitute b for x in P(x) = 0, the first term, i.e., 
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bn, will be greater than or equal to the sum of the absolute values of all the negative coefficients. 
Therefore, P(x) > 0 for all x > b. 

Observe that computing the lower bound b of P(x) = 0 is equivalent to computing the upper 
bound on the values of the positive roots of P(1/x) = 0. It might be thought that Cauchy's rule 
requires a great amount of computation, since it seems that the calculation of k th roots is needed. 
This, however, is not true because instead of computing each k th root we compute, very 
efficiently, the smallest integer m(k) such that 

|IXcf_ |lk (k) 

and then we set b = 2K+ 1, where K is the maximum of the m(k)'s. For details see [5]. 
Once we have computed a1i - b, b l 1, we need to perform only one translation, namely, 

P(x) <- P(x + b) which takes the same amount of time as P(x) <- P(x + 1) [7]; therefore, with our 
method we have enormous savings of computing time, and the previous example is solved in a 
matter of a few seconds. In what follows we present a recursive definition of our method as found 
in [3]: 

Let 
P(x) = 0 (3) 

be a polynomial equation without multiple roots and with v sign variations in the sequence of its 
integer coefficients. 

If v = 0 or v = 1: From the Cardano-Descartes rule of signs we know that v = 0 implies that (3) 
has no positive roots, whereas v = 1 indicates that (3) has exactly one positive root, in which case 
(0, oo) is its isolating interval; in either case, no transformation of (3) is necessary, and the method 
terminates. 

If v > 1: In this case (3) has to be further investigated. We first compute the lower bound b on 
the values of the positive roots and then we obtain the translated equation Pb(x) = P(x + b) = 0, 
which also has v sign variations provided P(b) #0 (if P(b) = 0, we have found an integer root of 
the original equation and v is decreased). The equation Pb(x) = 0 is now transformed by the 
substitutions x <- x + 1 and x l- I/(x + 1), and the procedure is applied again twice, once with 
Pb(l/(x + 1)) = 0 in place of (3) and once with Pb(x + 1) = 0. 

We have implemented our method in a computer algebra system (for a detailed description of 
the algorithms see [2]) and have been able to show that its computing time bound is 

0(n'L(I p 1. ) ) 

which is the fastest obtained so far when exact integer arithmetic algorithms are used. 
TABLES 1 and 2 show the observed computing times for the methods of Sturm, Vincent, and 

ours for certain classes of polynomials. All times are in seconds and were obtained using the 
SAC-1 computer algebra system on the IBM S/370 computer, located at the Triangle Universities 
Computation Center (North Carolina), where a subroutine CCLOCK is available which reads the 
computer clock [3]. TABLE 1 clearly indicates that, for this class of polynomials, Sturm's method is 
completely out of the race, whereas TABLE 2 makes clear the exponential nature of Vincent's 
method. 

Polynomials with Randomly Generated Coefficients 

____________ Computation Time 

Degree Sturm Our Method 

5 2.05 .26 
10 33.28 .48 
15 156.40 .94 
20 524.42 2.36 

TABLE 1 
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Polynomials of Degree 5 with Randomly Generated Roots 

Computation Time 

Roots are 
in the Interval Vincent Our Method 

(0,102) .45 .16 
(0,103) 1.61 .71 
(0,104) 16.43 2.01 
(0,105) 175.62 4.81 

TABLE 2 
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The Last Duel 

Hector's paces 

were vector spaces. 

-RICHARD MooRE 
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