Exact Algorithms for Polynomial Real
Root Approximation Using Continued Fractions

A. G. Akritas, Lawrence, and King H. Ng, Houston
Received June 1, 1981

Abstract — Zusammenfassung

Exact Algorithms for Polynomial Real Root Approximation Using Continued Fractions. This paper
discusses a set of algorithms which, given a polynomial equation with integer coefficients and without
any multiple roots, uses exact (infinite precision) integer arithmetic, an idea by Lagrange (1767), and
Vincent's theorem of 1836, to approximate the real roots of the polynomial equation to any degree of
accuracy using continued fractions. Theoretical computing time bounds are developed for these
algorithms and some empirical results are presented.

Algorithmen zur Approximation reeller Wurzeln von Polynomen mit Hilfe von Kettenbriichen. Wir
diskutieren eine Anzahl von Algorithmen, welche die reellen Wurzeln einer Polynomgleichung mit
ganzzahligen Koeffizienten unter Verwendung von Kettenbriichen mit jeder gewiinschten Genauigkeit
approximieren. Dabei beniitzen wir ganzzahlige. also exakte Arithmetik, eine Idee von Lagrange aus
1767 und die Theorie von Vincent aus 1836. Fiir die Algorithmen leiten wir theoretische Rechenzeit-
schranken her, ferner teilen wir empirische Ergebnisse mit.

1. Introduction

Recently, the process of isolating the real roots of a polynomial equation (or, simply,
isolation) has been extensively studied [7], [3]. Isolation is the process of finding
real, disjoint intervals such that each contains exactly one real root and every real
root i1s contained in some interval. However, according to Fourier this is only the
first (of the two) step involved in the computation of the real roots of a polynomial
equation: the second step consists of approximating these roots to any desired
degree of accuracy ¢, that is, making the length of the isolating intervals less than or
equal to & In the sequel, we shall restrict our attention to those approximation
methods which have been implemented in computer algebra systems using exact
(infinite precision) integer arithmetic algorithms. (For a survey of computer algebra
systems see [15].) Moreover, we shall be dealing only with integral-coefficient
polynomials.

Bisection is basically the only approximation method widely known and imple-
mented in computer algebra systems (for a detailed description see [10]). In [10] it
was shown that the bisection method will approximate one real root in time

0(n* L(h/e) (L(eh/e))(L(eh|P|,/e) (1.1)
0010-485X/83/0030/0063/$02.80



64 A G. Akritas and King H. Ng:

where # is the degree of the square-free polynomial P, h is the initial length of the
interval, ¢is the degree of accuracy (limit of approximation), e=max {|a, |, a, |.| b, |,
1 b, |}, where(a,/b,,a,/b,]1s the initial interval, and | P| _ is the maximum coefficient
in absolute value. Empirical results showed that bisection is actually a very slow
method: its performance was later improved when it was combined with Newton’s
method [18].

Quite recently, extending previous work by the first author [3], we developed a
method with polynomial computing time bound for the approximation of real roots
using continued fractions. As we will see, using our method, one real root can be

approximated in time
1
0 <L (7> (n° L(| P]r)3)>. (1.2)

\ ©

From (1.2) it is obvious that, unlike bisection, our method does not depend on the
length of the initial isolating interval. In the following sections we will study this
method in detail. The necessary complexity notions as well as the computational
model within which our algorithms are implemented can be found in [3] and ([1]
p- 35). Here we simply remind the reader that for a given list 4 =(a,,a,, ...,a,) we
define the following operations: invert (4) resultingin A =(q,, ...,a,); prefix d,. ..., d,
to 4, k21, resulting in A=(a,,...,q, a,....,q,); and advance d,, ...,d, in 4, k<n,
resulting in g; pointing to a;, | i<k and A=(a,,,,...,a,).

2. Mathematical Background

The idea to approximate the real roots of a polynomial equation using continued
fractions is due to Lagrange (1767) [11], whose objective was to develop a procedure
free of the defects plaguing the well-known Newton's method of approximation.
Lagrange’s idea may be stated as follows (see also ([16] pp.135~141) and [9]
p.223)): Suppose a root of the polynomial equation P(x)=0 lies between the

consecutive integers a, and a; +1; diminish the roots of the equation by a, (i.e.
N\

. ) ) 1 .
x«—x+ a,)and take the reciprocal equation ( Le. x <———). Find, by trial, a root of the
N X

last equation lying between a, and a, + 1, diminish the roots by a, and take the
reciprocal equation. Proceed in this way. Then the continued fraction

approximates a root of the equation.

Clearly, Lagrange’s idea has certain drawbacks. Notice that the partial quotients ¢,
are computed by trial, which means, that this computation is exponential in the
length of the a;s. Morcover, it should be observed that the procedure is straight
forward if there is one, and only one, root between the consecutive integers «; and



Exact Algorithms for Poiynomial Real Root Approximation 63

a;+ 1. However, there was no proof, at the time, that if there are two or more roots
within (a;. ¢, + 1). the process will eventually separate them. This fact was proven in
1836 by the following

Theorem 2.1: Let P(x)=0 be a polynomial equation of degree n>1, with rational
coefficients and without multiple roots, and let 4>0 be the smallest distance between
any two of its roots. Let m be the smallest index such that

4 1
Fm—l‘;->1 and Fm—lFmA>1+8_ (21)

where F, is the k-th member of the Fibonacci sequence 1,1,2, 3,5.8,13,... and

1 nil
gp=|14+— —1.
n

Lt (2.2)

Then the transformation

(which is equivalent to the series of successive transformations of the form x =a;+-—,
i=1,2, ... m) which arbitrary, positice, integral elements ay. ds, ....d,, transforms the
equation P(x)=0 into the equation P(y)=0, which has not more than one sign
variation in the sequence of its coefficients.

The proof of the above theorem is very long, and it is omitted since it can be found in
the literature [5. 17 pp. 298 —304] (see also [ 12]). The original form of Theorem 2.1
(that is. without specifying the quantity m) is due to Vincent alone [19.7] and
appeared in 1836: Uspensky [17] extended it in a somewhat erroneous manner,
which was corrected in [2].

Theorem 2.1 can be used to isolate the real roots of a polynomial equation: from its
statement we know that a transformation of the form (2.2) with arbitrary. positive
integer elements «y, ds. ...q,, transforms P (x)=0into an equation P(y)=0 which has
at most one sign variation. This transformation can also be written as

Pm ,"+ Pm—l
= (2.3)
Qm .V+ Qm—l
where P, 0, is the k-th convergent to the continued fraction
1
(ll +_+ .
a, -
and as we recall
P.,.,=u P.+P,_
k+1 =y By k-t (2.4)
‘ Qs 1 =1 Qe+ Q-
with
Pka—l—Pk~1Qk=(—1)k- (2.5)

5 Computing 30/1



Since the elements a,, a,, ..., a,, are arbitrary, there is obviously an infinite number of
transformations of the form (2.2). However, with the help of Budan’s theorem [4] we
can easily determine those that are of interest to us: namely, there is 4 finite number
of them (equal to the number of the positive roots of P(x)=0) which lead to an
equation with exactly one sign variation in the sequence of its coefficients. Suppose
P(1)=01is one of those equations; then from the Cardano-Descartes rule of signs we
know that it has one root in the interval (0, x¢); if J was this positive root then the
corresponding root X of P(x)=0 could be easily obtained from (2.3). We only know
though that j lies in the interval (0, =« ); therefore, substituting y in (2.3) once by 0 and
once by ¢ we obtain for the positive root X its isolating interval whose unordered
endpoints are P,,_,/0,,-, and P,,/Q,.. In this fashion we can isolate all the positive
roots of P(x)=0. If we subsequently replace x by —x in the original equation, the
negative roots become positive and, hence, they toc can be isolated in the way
mentioned above.

The calculation of the quantities a,,a,, ....a,, for the transformations of the form
(2.2) — which leads to an equation with exactly one sign variation — constitutes the
polynomial real root isolation procedure. There are two methods, Vincent’s and the
one due to the first author, corresponding to the two different ways in which the
computation of the @;'s may be performed.

Vincent’s method basically consists of computing a particular a; by a series of unit
incrementations (by trial); that is a;«a; + 1, which corresponds to the substitution
x<x+1. This brute force approach results in a method which will behave
exponentially when the values of the s are big. Examples of this approach can be
found in [19] and in [17].

On the contrary, the method due to the first author consists of immediately
computing a particular g; as the lower bound on the values of the positive roots of a
polynomial; that 1s a;«b, which corresponds to the substitution x < x + b performed
on the particular polynomial under consideration. This method is obviously
independent of how big the values of the «;'s are. An unsuccessful treatment of the big
values of the a;’s can be found in ([17] p. 136). (We assume that b=~ |, where =, is
the smallest positive root.) The lower bound b on the values of the positive roots is
computed with the help of the following rule ([14] pp. 50 - 51): notice that we are

1
computing the upper bound on the values of the positive roots of P (—):0.

Theorem 2.2 (Cauchy’s Rule): Let
P(x)=x"+c¢,_ X" "+ . 4c x+co=0
be an integral-coefficient, monic polynomial equation of positive degree n, and let 1 be
the number of its negative coefficients. Then
L
b=max |Ac,_, |«

1€kgn

Cpor <0

is an upper bound on the values of the positive roots of P(x)=0.



Exact Algorithms for Polynomial Real Root. Approximation 67

Proof: From the way b is defined we conclude that
b*=ilc, -l
for each k such that ¢,_, <0; for these ks the last inequality is also written as
b"=Alc,_.|b" 7~

Summing over all the appropriate k’s we obtain

g Z n k|bn_k

k=1
w0

n
-k
z Z n kibn M

nko

or

From the last inequality we conclude that, if we substitute b for x in P (x) =0, the first
term, i.e. b", will be greater than or equal to the sum of the absolute values of all the
negative coefficients. Therefore, P(x)>0 for all x>b. ~ //
Cauchy’s rule has been implemented using exact integer arithmetic and it has been
shown that its computing time is [6]

0(n* L(1P1.). (2.6)
Pursuing studies in the direction outlined above, it was observed that Theorem 2.1
can be also used to approximate the real roots to any desired degree of accuracy.
This is easily achieved by extending (computing more partial quotients of) the
continued fraction (2.2) which transforms the original polynomial equation into one
with exactly one sign variation in the sequence of its coefficients. Notice that now the

approximation method depends heavily on the isolation process; that 1s, it cannot
work if it is provided only with the isolating intervals of the roots.

Suppose that the limit of approximation is ¢, and that we have computed k partial
quotients. Then, from the preceeding discussion it becomes obvious that the root lies
between the consecutive convergents

Py P,
Qi O
(obtained from (2.4)) whose difference in absolute value is
1
Qu-1Qx

(Use (2.5) to obtain the difference.) Hence if x is the root we are approximating, we
have

P, I | [
- é § 5
O, Qu-19x Qi

and the method will terminate when

for some k.

5*



63 A. G. Akritas and King H. Ng:

In what follows we describe two ways for extending the continued fraction (2.2), in
order to approximate a real root. These two methods have the same theoretical
computing time bound, but different empirical performance.

The first way to extend the continued fraction (2.2) is to compute each additional
partial quotient with the help of Cauchy’s rule (see Fig. 2.1). However, mainly due to
Cauchy's rule, this approach is inefficient as can be seen from Table 4.2 (at the end of
this paper). Actually, it is even slower than the bisection method [10], a method well-

known for its slowness.
é\/k ;1
a;

Fig. 2.1. Here k is computed with the help of Cauchy’s rule

Trying to improve the empirical performance of our approximation method, we
observed the special nature of the polynomials whose lower bounds b we are
computing. These polynomials are special in the sense that they have one sign
variation (and, hence, only one positive root) and consequently, they cross the x-axis
only once. We then proceeded to compute each additional partial quotient of (2.2) by
successively bisecting (and evaluating at midpoints) the interval (0, h), where b is an
easily computed upper bound on the value of the positive root (see Fig. 2.2 and
Table 4.2 for the improvement).

0\_'//‘( k;7 b

g;

Fig. 2.2. Here k is computed by successively bisecting the interval (0, )

This upper bound b can be computed with the help of the following theorem, which
is a modern version of the one found in {([9] pp. 164 —165) and ([16] p. 38).

Theorem 2.3: Let

{

P(x)=c,x"+c,_ X" ... +cp=0

be an integral coefficient polynomial equation of degree n. Then an upper bound on the
values of its positive roots is yiven by

b= max ( IHC' l-) +1 (2.8)

0<rsn
¢, <0 Z ¢

{=r+l
¢ =0

Theorem 2.3 is not actually used in our approximation method because it does not
take advantage of the special nature of the polynomials discussed above. Instead we
use Corollary 2.1 (which is much simpler to implement than Cauchy’s rule).



T B R T e T e s A e e R e e

Exact Algorithms for Polynomial Real Root Approximation 69

Corollary 2.1: Let
Pix)=c, X"+ ...+ X =, X = —cy=0

n
he an integral-coefficient polynomial equation of degree n, with only one sign variation
in the sequence of its coefficients. Then an upper bound on its (only one) positive root is
given by

max ({c;|)
0sjsr

b=————+1. (2.9)

n
Zci

i=r+1
Following is a brief description of our approach:

Let P.(x)=0 be an integral-coefficient polynomial equation of degree n with one
sign variation in the sequence of its coefficients. P,(x)=0 is obtained from an
original equation P (x)=0 after a continued fraction transformation of the form (2.2).
Let P_/Q, be the convergent to the continued fractiorr from which P_(x)=0is derived
and P, Q, the immediately preceeding one. From the previous discussion it is clear
that P, (x) =0 isolates one real root of P(x)=0, and we are going to approximate this
root to within & Obviously, if 1/02 <¢ then we have nothing to do (see also (2.7)),

whereas, otherwise we proceed as follows:

We first compute the lower bound b on the value of the positive root P.(x)=0{itis
assumed that b =| x|, where « is the positive root; b= ¢; for some i), and then obtain
P_..(x)=P.(x+b)=0 and the new convergent P.../0,.. using (2.4) and the pair
P.Q.. Py/Q,. If P, (0)=0 we have computed the root exactly and we terminate,
whereas if 1/Q> <z we return an interval whose endpoints, P, 'Q and P./Q..

new - T new

approximate the root to within the specified degree of accuracy ¢ Otherwise.

- - 1 - -
obtain P, . (x)=P . (->=O, update P.(x). Py Qo PJ/Q. by Pl.(x). P.Q

new )
X

P.../0... respectively, and repeat the procedure.

Obviously, this procedure will approximate only the positive roots. For the negative
roots we have to proceed in a similar fashion (after, of course, we substitute x by —x).

3. Computer Implementation of Our Approximation Method

We now present the algorithms which implement the main operation of our method.
Short, informal descriptions are given for the various auxilliary algorithms: these are
subsequently incorporated into one procedure which implements our root aApproxi-
mation method. From the discussion at the end of the previous section it is obvious
that in order to keep track of the performed transformation, we have to associate
with each polynomial equation, the function which corresponds to the transfor-
mation. The original polynomial equation is associated with the identity transfor-
mation M (y)=y. The substitutions performed on a polynomial equation are also
performed on the corresponding function. We begin with the following (n refers
always to the degree of a polynomial):



70 A. G. Akritas and King H. Ng:

(i) Computation of the Polynomial with One Sign Variation

This is obtained using R—AMPRRA (P,N.D. F) which is a shight modification of
algorithm R—~AMPRRI(P, N, D) ([3] pp. 308 —309). The innuts to AMPRRA are
P, N, D and F. P#0 is an univariate polynomial with integer coefficients and
without multiple roots; moreover, zero is not a root {P(0)=0). N is the special
polynomial x, while D is the constant polynomial 1 ; they are the numerator and the
denominator, respectively, of the function associated with P. F is a FORTRAN
integer. We distinguish two cases:

(a) If F=0,theoutput Risa list ofisolating intervals of the positive roots of P. Each
interval 1s represented by a triplet (A4, B, L), where 4 and B are the endpoints of
the interval and L is the list of the partial quotients.

(b) If F=1, the output R is a list of two sublists, i.e., R=(R, R,). The first sublist R,
is a list of isolating intervals. Each interval is represented by a quadruplet
(P, N, D, L), where P is a polynomial with only one sign variation in its sequence
of coefficients; N and D form the associated function: L, again, is the list of the
partial quotients. The second sublist R, is a list of one-point isolating intervals
representing the exact roots of the original polynomials.

From ([3] p. 309) it is obvious that t,yppps (P, X, I, F)=0(pn* L(| P|,)’) where p is
the number of the positive roots of P(x)=0.

(ii) Computation of the Lower Root Bound b

Instead of using Cauchy’s rule, we now use Corollary 2.1 to obtain an upper bound &
on the positive root x and then bisect the interval (0, 5) to find b = | x. This is feasible
because the polynomial we are dealing with has one positive root. Algorithm
h—~PPLRBD(P) is used: P is an integral-coefficient polynomial with one sign
variation in the sequence of its coefficients, the leading one of which is positive, and
P(0)=0. b is an integer. It was shown [13] that tpp eap(P)=0(n* L(| P|,)’).

(iii) Polynomial Translation

For our method we need algorithms for the substitutions x—b+x, b=1, and

: : : . 1
: . The latter, however, is equivalent to the pair of transformations x——
+x ' X

and x «1 + x, so that we actually need algorithms for the transformations x5 + x,

X

1
b2 1, and x——. In order to perform the substitution x—bh+x, h= [, we apply the
X

Ruffini-Horner method and we consider two cases: if h>1, we use algorithm
P'—PTRNSL(P,B), where P is a polynomial, B the integer >1, and
P'(x)=P(B+x); if b=1 we use algorithm P'«PTRANI!(P). We have shown (8]

|
that tprgns (P.B)=0(n* L(B)* +n* L(B) L(| P|,)). For the implementation of x ——
X

we use algorithm P'«PINVCEF (P), where P and P arc polynomials such that



Exact Algorithms for Polynomial Real Root Approximation 71

/1 . ) :
P (x)=P ( —\ —0. It is easily seen that tpyyer (P)~n. Obviously, by applying the
\ X/

above mentioned algorithms separately on the numerator and denominator of the
function associated with each polynomial equation, we can also transform the
function by the previous substitutions. However, we can be more efficient by taking
advantage of the fact that the numerator and denominator are both first degree
(at most) polynomials. Therefore, we use algorithms P «TUP(P,B) and
P'—TUPIL(P.F). With the first algorithm we obtain — from the polynomial
P(x)=c, x+¢, — the transformed polynomial P’(x)= P(B+x)=c x+(co+cy B)
With the second algorithm we have three options: if F=0 then, for the same
polynomial P as above, we obtain P’ (x)=P(1+x)=c, x+(co+cy); if F=1 then

I
P'(x)=c, x + (¢, +¢,) which corresponds to the equation P’ (x)=P —1—;——> =0,and
X

1
if F=2 then P'(x)=P (—) =c, x+c, (the second option is used in [3]).
X

(iv) Formation of the Isolating Interval
The isolating interval for a real root is obtained from a function of the form
N(x) a;x+a,

M(x)= =
=50 " b, x+ b

where a,, by, a,, b, are nonnegative integers such that a, + b, >0and ay by >0, if we
replace x first by 0 and then by =c. In fact, we can easily see that the isolating interval

, a, d ag ) _
will be { ==, 2 }or{ =, — J: = is represented by — 1. Algorithm I<FII(N,D,F)
bl bO bO bl

is used, where if F =1 then [ is an one-point interval, whereas, if F =0 we obtain one
of the above mentioned intervals.

(v) Approximation of a Real Root

The following algorithm incorporates the previous algorithms into one procedure to
approximate the given real root. The algorithm takes (P, N, D, EPS) as inputs where
P is an univariate polynomial with integer coefficients which present only one sign
variation (hence it has only one positive root), and P(0)#0; N and D are the
numerator and denominator respectively of the associated function; EPS is the
tolerance of the approximation to be achieved.

At first the floor function b of the root is computed using the algorithm PPLRBD(P).
Then the polynomial P and the associated functions N, D are transformed by the
substitution x«—x+b into (P,N,D'). (P,N,D) is discarded. A check of the
polynomial is made to determine whether an exact root has been reached or the
tolerance has been achieved. If P'(0) =0, then an exact root has been reached and the
one-point interval is obtained by calling FII(N’, D', 1); the algorithm is thus
terminated. Otherwise, a test of tolerance is made, by obtaining the interval using
FII(N', D’,0), and comparing its length with EPS. If it is equal to or less than EPS,



72 A G. Akritas and King H. Ng:

then the interval is saved for output and the algorithm is terminated. Otherwise
. N L .
(P,N'.D") is transformed by the substitution x — mnto (P.N,D). The tripie
X

(P',N', D'} is then discarded. The algorithm is repeated until the requirements are
satisfied. In the cource of our computation we also save the list of partial quotients
and return this through a common statement.

R«~APPROX(P,, N,, D,, EPS): Approximation of one real root.

Specifications: The inputs are Py, N, Dy, EPS. P, #0is a univariate polynomial with
integer coefficients represented by the list Po=(Coe,Co_i e, ,....Cp e, r=1,
where each coefficient C; is represented by thelist C;=(c;,, ..., Cim) M2 1. Moreover,
the polynomial presents exactly one sign variation, and hence has one positive root.
No and D, form the associated functions, i.e. they are the numerator and
denominator respectively of the continued fraction. They are both represented in the
same way as P,. EPS is the limit of the tolerance of the approximation to be
achieved. It is represented by a rational number, i.e. EPS=(C,,C,), where each
integer C, is represented by a list. The output is R representing the approximating
interval: R=(R,. R,) where R, and R; are rational numbers represented in the same
way as EPS. This algorithm also saves a list PQ of the partial quotients of the
continued fraction corresponding to the approximation. This is returned through a
common statement.

Description:

I. [Initialize.] P—Py; NN, D«Dg; PQ«0.

2. [Obtain lower bound.] b—PPLRBD (P); prefix b to PQ:
if b= | then go to 4.
3. [xex+b] PP—PTRNSL(P,b): N'«<TUP(N,b): D'<TUP(D, b): go to 5.
4. [xex+1.] P<PTRANI(P); N'~TUPI (N,0); D'<TUPI(D,0).
5. [Update.] P—P'; N—~N’': DD
6. [Check root.] s« P(0); if s#0 then go to 7;

IN—FII(N,D, 1); go to 9.
7. [Check limit.] IN «FII(N, D,0); advance L,R in IN:
if (R — L)< EPS then go to 9.
8. [xe1/x.] P<PINVCF(P); if sign(P')<0 then P’ — P':
N'—TUPL(N,2); D'TUPI(D,2); PP’ N«N"; De<D'; go to 2.
9. [Finish up.] R<IN; PQ «invert (PQ); return.

Theorem 3.1: Let Py be an univariate polynomial of degree n= 1 with exactly one sign
variation in the sequence of its coefficients and Po(0)£0. If the tolerance of the
approximution to be achicved for the positive root of Pis EPS=¢, then

\

1 -
Laverox (Po, No, Dy, EPS)=0 (L <~(—> (n3 L] Plx)’)/).



Exact Algorithms for Polynomial Real Root Approximation 71

N
P (x)=P ( —) —0. Tt is easily seen that tpyer (P)~n. Obviously, by applying the
X
above mentioned algorithms separately on the numerator and denominator of the
function associated with each polynomial equation, we can also transform the
function by the previous substitutions. However, we can be more efficient by taking
advantage of the fact that the numerator and denominator are both first degree
(at most) polynomials. Therefore, we use algorithms P'«TUP(P,B) and
P «TUP1(P.F). With the first algorithm we obtain — from the polynomial
P(x)=c, X +c, — the transformed polynomial P’'(x)=P(B+x)=c; X+(Co ¢, B).
With the second algorithm we have three options: if F=0 then, for the same
polynomial P as above, we obtain P’ (x)=P(1+x)=c, x+(co+¢,); if F=1 then

1
P’ (x)=c, x +(co + ¢,) which corresponds to the equation P’ (x)=P (-1:—> =0, and
X

1
if F=2 then P'(x)=P (—) =¢, x+c, (the second option is used in [3]).
X
(iv) Formation of the Isolating Interval
The isolating interval for a real root is obtained from a function of the form
N(x) 4 X+4dp
D(x) b, x+b,

M(x)=

where ay, by, a,, b, are nonnegative integers such that a, + b, >0and aq by >0, if we
replace x first by 0 and then by ~c. In fact, we can easily see that the isolating interval
. a, do ap dy , _
will be | —, — Jor [ —. — |; = is represented by — 1. Algorithm I <FII(N, D, F)
b, by by b,
is used, where if F = | then [ is an one-point interval, whereas, if F=0 we obtain one
of the above mentioned intervals.

(v) Approximation of a Real Root

The following algorithm incorporates the previous algorithms into one procedure to
approximate the given real root. The algorithm takes (P, N, D, EPS) as inputs where
P is an univariate polynomial with integer coefficients which present only one sign
variation (hence it has only one positive root), and P(0)£0; N and D are the
numerator and denominator respectively of the associated function; EPS is the
tolerance of the approximation to be achieved.

At first the floor function b of the root is computed using the algorithm PPLRBD (P).
Then the polynomial P and the associated functions N, D are transformed by the
substitution x«x+b into (P,N,D"). (P,N,D) is discarded. A check of the
polynomial is made to determine whether an exact root has been reached or the
tolerance has been achieved. If P (0) =0, then an exact root has been reached and the
one-point interval is obtained by calling FII(N’. D, 1); the algorithm is thus
terminated. Otherwise, a test of tolerance is made, by obtaining the interval using
FIL(N', D’,0), and comparing its length with EPS.If it is equal to or less than EPS,



72 A G Akritas and King H. Ng:

then the interval is saved for output and the algorithm is terminated. Otherwise
. _ I . )
(P N'.D') Is transformed by the substitution x«— into (P.N.D). The tripie
X

(P',N',D') is then discarded. The algorithm is repeated until the requirements are
satisfied. In the cource of our computation we also save the list of partial quotients
and return this through a common statement.

R<APPROX(P,, N,, Do, EPS): Approximation of one real root.

Specifications: The inputs are Py, No. Dy, EPS. P, =0 is a univariate polynomial with
Integer coefficients represented by the list Py =(C,, e, Cootverorn, Cpep), r2 1,
where each coefficient C; is represented by the list C;=(c,,, ..., Cimh M2 1. Moreover,
the polynomial presents exactly one sign variation, and hence has one positive root.
No and D, form the associated functions, ie. thay are the numerator and
denominator respectively of the continued fraction. They are both represented in the
same way as P,. EPS is the limit of the tolerance of the approximation to be
achieved. It is represented by a rational number, i.e. EPS=(C,,C,), where each
integer C, is represented by a list. The output is R representing the approximating
interval: R=(R,, R,) where R, and R, are rational numbers represented in the same
way as EPS. This algorithm also saves a list PQ of the partial quotients of the
continued fraction corresponding to the approximation. This is returned through a
common statement.

Description:

1. [Initialize.] P« P,: N<Ny: DeD,: PQ<0.
[Obtain lower bound.] b« PPLRBD (P); prefix b to PQ;
if =1 then go to 4.
[xe<x+bh] P—~PTRNSL(P, b): N'~TUP(N, b): D'«TUP(D,b): go to 5.
[xex+1] P~PTRANI(P); N'« TUPL(N,0): D'-TUP| (D, 0).
[Update.] P«~P'; N—~N': DD’
[Check root.] s—P(0): if s#0 then go to 7:
IN—FII(N, D, 1); go to 9.
7. [Check limit.] IN<FII(N, D,0); advance L, R in IN;
if (R— L)< EPS then go to 9.
8. [x<1/x] P'—PINVCF(P): if sign(P')<0 then P« —pP'-
N'«TUPI(N,2); D'«<TUPI (D.2);: P—P'; NN": D<D’; go to 2.
9. [Finish up.] R—~IN: PQ «~invert(PQ); return.

)

e

o v

Theorem 3.1: Let Py be anunivariate polynomial of degree n 2 Lwithexactly one sign

variation in the sequence of its coefficients and P, (0)=0. If the tolerance of the

7

approximation to be achicved for the positive root of Pis EPS=¢, then

’ N\

I X
Laverox (Po, No, Dy, EPS)=0 (L <T> (L Pl,)) )

/



)
Yl

Exact Algorithms for Polynomial Real Root Approximation

Proof: Step 2 is computed in time 0(n* L(! P|,)*) while step 3 is computed in time
0(n® L(b)*+n> L(b)L(| P1,)). Since b=0( P|..) [3] the total computing time for
step2and 3is 0(n® L(| P|.)* +n° L( P .)?) which dominates the whole procedure.
The number of iterations m is obtained if we use the inequality

|
—<e. (3.1)

m

Recall that Q,,> F,, where F,, is the m-th member in the Fibonacci sequence, and

m

that Fo= e o= 1618 ...
/3

Hence inequality (3.1) will also be satisfied if

wn

<e.

(blnl

From the latter we clearly see that

1 Ly
m=0{log,— |=0{L|— )
& .\ &

Therefore the time for the whole procedure is

- > (ﬂzL(lP!n)3+n3L(lP|x}3)>

~0 (L (—1—) (n® L(] P[,,_P)).

[n order to approximate all the real roots of a polynomial equation, we can easily
incorporate the last algorithm into a more general procedure.

, 1
L spprox (Pos No» Do, EPS) =0 <L <

o

4. Empirical Results and Conclusions

In this section we present several tables comparing our continued fractions method
with the bisection method. We compare both theoretical aspects as well as the actual
computing times for Chebyshev polynomials. We first find out the number of partial
quotients and bisections respectively, needed for each method under consideration,
in order to approximate a root to within a specified degree of accuracy. Under the
assumption that the original polynomial has only one positive root we can take
(0, %) as the initial interval for the continued fractions method; we take (0, 1) as the
initial interval for the bisection method. Moreover, for the continued fractions
method we assume the worst possible case; that is, each partial quotient is 1, In
which case we have Q,, = F,, (see equation (2.1)) where F,, is the m-th member of the
Fibonacci sequence. Under the above conditions, we can sec from Table 4.1 that 1t
takes more bisections than partial quotients in order to achieve the same degree of
accuracy.



74 A. G. Akritas and King H. Ng:

Table4.1. Comparison of the number of partial quotients and bisections needed to obruin the required degree
of accuraey

| Continued Fraction ’ Bisection

i m 1'F2 ; 1,2m

| | ?

: | 1 ﬁ?— 0.5

; 5 | 0.04 | 0.03125 |
: 10 » 33x107% i 97107+

? L5 ; 2.7x107° f 3.1x107° f
20 | 22x1078 | 9.5%1077

; 25 1.7x 10710 ‘ 19x 10 {
| 30 14x10712 ! 93x 1071 !
; 35 3% 10714 a LSx 1071 r
; 40 9.5x 10717 2310713 J

We now present a table showing the computing times for Chebyshev polynomials
using our method and the bisection method. All the times are in seconds and were
obtained using the SAC-1 (entirely implemented in FORTRAN) computer algebra
system on the Honeywell 66/60 computer at the University of Kansas. The tolerance
of the approximation is e= 10", We compare three versions of our approximation
method; namely, the versions which utilize Cauchy’s Rule, Corollary 2.1 with
bisection, and preconditioning. In the last version, we assume that a list of partial
quotients is supplied as input. In this way we spend no time in computing the floor
functions. The result of this algorithm reflects the optimum time for the approxi-
mation of a real root using the continued fractions method. The difference between
the versions using Corollary 2.1 with bisection and preconditioning reflects the time
spent in computing the floor functions. We remind the reader that Cauchy’s rule had
to be applied a number of times in order to obtain the floor function of the root.

Table 4.2. Computing times (in seconds) for the approximations of all the real roors of Chebysher
polynomials (¢=10"1%)

’ Continued Fractions Using: !
’ Degree Bisection { Cauchy's Rule | C.?roll_‘fr)‘/ .2'] Preconditioning |
| ; ! with bisection '
i ' ]l -
2 f 17.2 1.5 . 6.7 5.4 )
3 179 10.3 f 49 38
4 423 38.7 i 15.7 10.3
5 , 45.8 40.0 1 16.4 10.8 l
6 83.1 99.8 46.2 292
7 90.9 105.1 446 27.0 j
8 146.3 277.8 93.0 50.2 [
9 170.6 257.6 106.2 62.2 ‘
10 { 243.2 5243 202.8 116.2




Exact Algorithms for Polynomial Real Root Approximation

~1

]

Table 4.3. Approximating the real roots of the Chebyshev polynomials of degrees 2—10 (e=107")

Dearee List of Partial Quotients for: Approximating

i Isolation Approximation Intervals

2 {0) 0,1,2,2,2,2,2,2,2,2,2, 0.70710678118654683338

2,2,2,2,2,2,2,2,2,2,2) 0.70710678118654764296

3 {0) 0,1,6,2,6,2,6,2,6,2,6, 0.86602540378443847925

2,6,2,6,2) 0.86602540378443865879

4 0,1, 1) (11,7,3,2,1,1, 1, 1, 20, 5, 0.92387953251128634045

1L L7 0.92387953251128676332

(0, 2) 0,1,1,1,1,2243,1, 0.38268343236508971635

19,6,8,3,2,9) 0.38268343236509064218

5 0,1, 1,1 (1,2,1,6,1,56, 1,54, 1, 1, 0.58778525229247311679

1, 10, 1, 16) 0.58778525229247338805

0,1,2) (17,2,3,6,5,1, 1, 1,3, 2, 0.95105651629515309991

L, 25 2,2,1,1) 0.95105651629515359558

6 0,1,2, 1) (1,2,2,2,2,2,2,2,2,2,2, 0.70710678118654683338

2,2,2,2,2,2,2,2) 0.70710678118654764296

0,1, 3) (25,2,1,7,21, 1, 8, 1, 3, 0.96592582628906811211

10, 1,2, 3) 0.96592582628906894040

(0, 2) (1,1,6,2,1,30,5,2,9,3, 0.25881904510252075804

1, 10, 5, 5) 0.25881904510252080914

7 0,1,3,1) 0,1,2,2,24,2,3,2,2,2, 0.78183148246802977984

2,2,8 L8 1) 0.78183148246803000835

0,1, 4) (34,1,7,1,2,3, 1,1, 2,3, 0.97492791218182315610

1, 132,2,3) 0.97492791218182365484

0, 2) 0,3,3,1,1,3,1,29, 1,3, 0.43388373911755805748

1, 18,16, 1, 1, 2) 0.43388373911755880719

8 0,1, 1,3 1) (0, 14, 14,17, 1, 1, 10, 2, 1, 0.83146961230254518379

2,18, 1) 0.83146961230254537502

0, 1, 1, 4) (46, 23,43,8, 1,2, 1,3, 1, 0.98078528040322959629

15) 0.98078528040323045751

0,1, 1,1 (2, 1,840, 2, 1,4, 1, 3,21, 0.55557023301960177839

1, 17) 0.55557023301960224274

0.2 (3,7,1,17,1,13,3,2, 7, L, 0.19309032201612826749

1,8 1,1, 1,40) 0.19509032201612828%09

9 0, 1,15 1) (1,6,2,6,2,6,2,6,2,6, 2, 0.86602540378443847925

6, 2) 0.86602540378443865879

0, 1, 1, 6) (57, L, 4 1,1, 1,6, 1, 1,6, 0.98480775301220799222

10, 1,1, 3,1, 1,2,6) 0.98480775301220806644

0,1, 1L 0,3,1,72,1,1,2,3, 1, 1 0.642787609686539254453

3,14, 1, 1, 1,16, 1) 0.64278760968653933737

0,2) 0,1,12,8, 17, 1, 1,2, 1, 1 0.34203014332566870745

1,49, 1, 20, 3) 0.34203014332566873472

10 0,1,2,6,1, 1) (3.1, 14,13, 1, 1, 10, 1, 72, 0.45399049973954674160

230 0.45399049973954687273

0,1,2,6,2) (3,2,1,1,4,1,2,2, 1,35, 0.15643446304023080945

1,2,4, 1,3, 4,65) 0.15643446504023086913

0,1,2,6,1) 4, 1,2, 1, 1,3, 1,12,5, 19, 0.89100652418836719434

1,41 0.89100652418836801487

0,1,2,7) (71,4,2,7,3, 1, 1,42, 1, 0.98768834059513772582

12, 18) 0.98768834059513783641

0, 1,2, 1) (1,2,2,2,2,2,2,2,2,2,2 0.70710678118654683338

2,2,2,2,2,2,22) 0.70710678118654764297




76 A. G. Akritas and King H. Ng: Exact Algorithms for Polynomia! Real Root Approximaticn

These results show that the version using Corollary 2.1 with bisection is sub-
stantially better than the one using Cauchy’s rule. On the other hand, comparing the
resuits of the version using preconditioning. we note that there is still room for
improvement. We believe that as the properties of the special polynomial equations
with exactly one sign variation are better understood, they will result in improved
algorithms.

As an illustration we present a table showing the derived list of partial quotients
along with the approximating intervals for each root. (The tolerance of the
approximation is ¢=107'%) Since the Chebyshev Polynomials are symmetric we
only present the positive roots. For odd degree polynomials we omit the root x=0.

References

[1] Aho, A. V.. Hopcroft, J. E., Ullman, J. D.: The design and analysis of computer algorithms.
Reading: Addxson Wesley 1976.
[2] Akritas, A. G.: A correction on a theorem by Uspenskv Bulletin of the Greek Mathematical
Society 19, 278 —285 (1978).
{3] Akritas, A. G.: The fastest exact algorithms for the isolation of the real roots of a polynomial
equation. Computing 24, 299 —313 (1980).
[4] Akritas, A. G.: On the Budan-Fourier controversy. ACM-SIGSAM Bulletin /5, No.l,
8 —10(1981).
[5] Akritas, A. G.: Vincent’s forgotten theorem., its extension and application. International Journai of
Computers and Mathematics with Applications 7, 309 —317 (1981).
(6] Akritas, A. G.: Exact algorithms for the implementation of Cauchy’s rule. International Journal of
Computer Mathematics 9, 323 —333 (1981).
[7] Akritas, A. G., Danielopoulos, S. D.: On the forgotten theorem of Mr. Vincent. Historia
Mathematica 5, 427 —435 (1978).
[8] Akritas, A. G., Danielopoulos, S. D.: On the complexity of algorithms for the translation of
polynomials. Computing 24, 51 60 (1580).
[9] Burnside, W.S., Panton, A. W.: Theory of equations,2nd ed. Dublin-London: Dublin University
Press Series 1886.
[10] Heindel, L. E.: Integer arithmetic algorithms for polynomial real zero determination. Journal of
the Association for Computing Machinery /8. 533 —548 (1971).
[11] Lagrange, J. L.: Traité de la Résolution des Equations Numériques. Paris: 1778.
[12] Mahler, K.: An inequality for the discriminant of a polynomial. Michigan Mathematical Journal
11, 257-262 (1964).
{13] Ng, K. H.: Polynomial real root approximation using continued fractions. M. S. Research Report,
University of Kansas, Department of Computer Science, Lawrence, Kansas (1980).
[14] Obreschkoff, N.: Verteilung und Berechnung der Nullstellen reeller Polynome. Berlin: VEB
Deutscher Verlag der Wissenschaften 1963.
[15] Petricle, S. R. (ed.): Proceedings of the second symposium on symbolic and algebraic manipu-
lation. ACM (1971).
] Todhunter, I.: Theory of equations. London: Macmillan 1882.
] Uspensky, J. V.: Theory of equations. New York: McGraw-Hill 1948.
] Verbaeten, P.: Computing real zeros of polynomials with SAC-1. ACM-SIGSAM Bulletin 9,
No.2, 810 (1975).
[19] Vincent, A.J. H.: Sur la Résolution des Equations Numériques. Journal de Mathématiques Pures
et Appliquées /, 341 —371 (1836).

A. G. Akritas King H. Ng

University of Kansas Shetl Ol Company
Department of Computer Science P.O. Box 991

Lawrence, KS 66045, U.S.A. Houston, TX 77001, U.S.A.

Printed in Austria

Druck: Paul Gerin, A-1021 Wien



