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" A method with polynomial computing time bound is presented for the approximation
of real roots of polynomial equations using continued fractions; it is based on an idea
by Lagrange [10] and Vincent’s theorem {17], and it has been implemented using
exact (infinite precision) integer arithmetic algorithms. A theoretical analysis of the
computing time of this method is given along with some empirical results.
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1. INTRODUCTION

Recently, in the light of new discoveries, the process of isolating the
real roots of a polynomial equation (or, simply, isolation) has been
extensively studied [6, 2, 4]. Isolation is the process of finding real,
disjoint intervals such that each contains exactly one real root and
every real root is contained in some interval. According to Fourier
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this is only the first (or the two) step involved in the computation of
the rcal roots of a polynomial cquation; the sccond step consists of
approximating these roots to any desired degree of accuracy ¢, that
is. making the length of the isolating intervals less than or equal to «.
In this paper we shall restrict our attention to  those
approximation methods which have been implemented in computer
algebra systems using exact (infinite precision) integer arithmetic
algorithms. (For a survey of computer algebra systems sce [13]).
When we use exact integer arithmetic then, in analyzing an
algorithm, the “cost™ of an operation on two integers depends not
only on the operation itself but on the length (number of bits) of the
operands as well. If A is an integer, we define L(A4), its length, by

1 A=0
u'ﬂz{[logh A+l A%0

where b indicates the base of the number system in which the
operand A is represented when an operation is performed. If Pisa
polynomial with integer coefficients, IPIQl represents the maximum
coefficient in absolute value.

Bisection is basically the only approximation method implemented
in computer algebra systems. For a square-free polynomial P and an
isolating interval of the form (a. b] bisection proceeds as follows 9}
Evaluate the sign of P at b. If it is zero replace (a, b} by [h.h] and
terminate, otherwise evaluate the sign of P at (a+b)/2. If this sign is
zero, replace (a, b] by [(a+h)/2. («+ 5)/2] and terminate: if it has the
same sign as P does at b, then obviously the root is in the interval
(a.(a+b)/2], otherwise it is in ((a+b)/2.b]. This process is repeated
until the length of the current interval is less than or cqual to & It
has been shown [9] that the biscction miethod will isolate once real
root in time

O3 (LLhje LA eh e L(eh|P], /o)) (1.1

where n is the degree of the square-free polynomial P ks the initial
length of the interval. & is the degree of accuracy (limit of
approximation) and e=max {|a,]. lal by ] 2]} where tay by ay/hs] s
the initial interval, and a,. a,. b,. b, are integers. Empirical results
showed that bisection is a very slow method: its performance was
later improved when it was combined with Newton's method [16].
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Quite recently, extending previous work by the first author (2, 4]
the second author developed a method (actually, three versions of it)
with polynomial computing time bound for the approximation of
real roots using continued fractions [11]. This approach is based on
an idea by Lagrange (1767) and Vincent's theorem of 1836 [10, 17];
as we will see. all versions of our method will isolate one real root in

time
0<L G) (nS(L(IPi,n’)) (12)

From (1.2) it is obvious that, unlike bisection, this method does not
depend on the length of the initial isolating interval. In the sequel we
will study this method in detail. (It should be noted that the ratios
h/e, in (1.1) and 1/¢, in (1.2), are integers.)

2. MATHEMATICAL BACKGROUND

The idea to approximate the real roots of a polynomial equation
using continued fractions is due to Lagrange (1767) [10], whose
objective was to develop a procedure free of the defects plaguing the
well-known Newton's method of approximation. Lagrange's idea
may be stated as follows (see also ([14], pp. 135-141) and ([8], p.
223)): Suppose a root of the polynomial equation P(x)=0 lies
between the consecutive integers a; and a, + 1; diminish the roots of
the equation by a, (i.e. x~x+a,) and take the reciprocal equation
(i.e. x+1/x). Find, by trial, a root of the last equation lying between
a, and a,+1, diminish the roots by a, and take the recigrocal
equation. Proceed in this way. Then the continued fraction

approximates a root of the equation.

Clearly. Lagrange's idea has certain drawbacks. Notice that the
partial quotients a; are computed by trial, which mcans, that this
computation is exponential in the length of the a;'s. Moreover, it
should be observed that the procedure is straightforward if there is
one, and only one, root between the consecutive integers aq; and
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a; +1. However, there was no proof, at the time, that if there are
two or more roots within (a;.a;+1). the process will eventually
separate them. This fact was proven in 1836 by the following:

ThueoreM 2.1.  Let P(x)=0 be a polynomial equation of degree n>1,
with rational coefficients and without multiple roots, and let A>0 be
the smallest distance between any two of its roots. Let m be the
smallest index such that

A
Faoi3>1 and F,,,,AlF,,,A>1+—l— (2.1)

&n

where F, is the kth member of the Fibonacci sequence 1,1,2 358,

13....and
AR
J:,,=(1+—>" RS
n

1
x=a, +——+ 1
aZ a3+- (2'2)

Then the transformation

(which is equivalent to the series of successive transformations of the
form x=a,+(1/p).i=1L2.....m) with arbitrary, positive, integral
clements ay,ay,...,0,, transforms the equation P(x)=0 into the
equation P(y)=0, which has not more than one sign variation in the
sequence of its coefficients.

The proof of the above theorem is very long, and it is omitted
since it can be found in the literature [1, 15 pp. 298-304]. The
original form of Theorem 2.1 (that is, without specifying the
quantity m) is due to Vincent alone [17, 6] and appeared in 1836;
Uspensky [15] extended it in 2 somewhat erroneous manner, which
was corrected in [1].

Theorem 2.1 can be used to isolate the real roots of a polynomial
equation; from its statement we know that a transformation of the
form (2.2) with arbitrary, positive integer elements a;,a,,...,dm
transforms P(x)=0 into an equation P(3)=0 which has at most one
sign variation. This transformation can also be written as
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X=LP""‘. (2.3)
me+Qm-l ’

where P,/Q, is the kth convergent to the continued fraction

a! +—
a, +

and as we recall

Pooi=a, P+ P
(2.4)
Qis1=a 4 1Qu+ Qi -,

with
PO, =P Qu=(—=1} (2.5

and k20, Po=1, P_,=0,0,=0,Q_,=1.

Since the elements a,, a,, ..., a,, are arbitrary, there is obviously an
infinite number of transformations of the form (2.2). However, with
the help of Budan's theorem [3] we can casily determine those that
are of interest to us; namely, there is a finite number of them (equal
to the number of the positive roots of P(x)=0) which lead to an
equation with exactly one sign variation in the sequence of its
coefficients. Suppose P(y)=0 is one of those equations; then from the
Cardano-Descartes rule of signs we know that it has one root in the
interval (0, o0); If § was this positive root then the corresponding
root % of P(x)=0 could be easily obtained from (2.3). We only know
though that y lies in the interval (0, o); therefore, substituting y
in (2.3) once by 0 and once by co we obtain for the positive root X
its isolating interval whose unordered endpoints are P, _/Qm-
and P,/Q.. In this fashion we can isolate all the positive roots of
P(x)=0. If we subsequently replace x by —x in the original cquation,
the negative roots become positive and, hence, they too can be
isolated in the way mentioned above.

The calculation of the quantities ay,a,,...,q, for the
transformations of the form (2.2)—which lead to an equation with
exactly one sign variation—constitutes the polynomial real root
isolation procedure. There are two methods, Vincent's and the one
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duc to the first author, corresponding to the two different ways in
which the computation of the a;'s may be performed.

Vincent's method basically consists of computing a particular g;
by a scries of unit incrementations (by trial); that is @;«a; + 1, which
corresponds to the substitution xex+1. This brute force approach
results in a method which will behave exponentially when the values
of the a;'s are big. Examples of this approach can be found in [17]
and in [15].

On the contrary, the method due to the first author consists of
immediately computing a particular a; as the lower bound on the
values of the positive roots of a polynomial; that 1s ¢, «h, which
corresponds to the substitution x«—x+b performed on the particular
polynomial under consideration. This method is obviously
independent of how big the values of the a,'s are. An unsuccessful
treatment of the big values of the g;’s can be found in ([15]. p. 136).
(We can safely conclude that b={z] where «, is the smallest
positive root.) The lower bound b on the values of the positive roots
is computed with the help of the following rule ([12]. pp. SO-51):
notice that we are computing the upper bound on the values of the
positive roots of P(1/x)=0.

Tuzorem 2.2 (Cauchy’s Rule). Let P(x)=x"+c,_ X" 1+ t0x
+¢o=0 be an integral-coefficient, monic polynomial equation of
positive degree n, and let 4 be the number of its negative coefficients.
Then

b= max lic,_,'*

15kgn
« <0
n-k

is an upper bound on the values of the positive roots of P(x)=0.

Cauchy’s rule has been implemented using exact integer arithmetic
and it has been shown that its computing time is [5]

O(n*L{|P|, ). (2.6)

Pursuing studies in the direction outlined above, it was observed
that Theorem 2.1 can be also used to approximate the real roots to
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any desired degree of accuracy. This is easily achieved by extending
{computing more partial quotients of) the continued fraction (2.2)
which transforms the original polynomial equation into one with
exactly one sign variation in the sequence of its coefficients. Notice
that now the approximation method depends heavily on the
isolation process; that is, it cannot work if it is provided only with
the isolating intervals of the roots.

Suppose that the limit of approximation is ¢, and that we have
computed k partial quotients. Then, from the preceding discussion it
becomes obvious that the root lies betwcen the consecutive
convergents

P 1 By
Qv O

(obtained from (2.4)) whose difference in absolute value is

1
0 Q0

(Use (2.5) to obtain the difference.) Hence if x is the root we are
approximating, we have

Py
O

1 I

I ST

and the method will terminate when
—<¢ (2.7)

for some I.

Before we give an algorithmic description of this method we
would like to elaborate on the computation of the lower bound b on
the value of a positive root. during the approximation process.
Clearly, Cauchy's rule can be uscd. However, this rule, in gencral, is
somewhat inefficient due to the fact that several applications of it are
neceded in order to compute the value of b (a particular partial
quotient g;). While during isolation Cauchy's rule is the only

M C
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possible process, this is no longer true during approximation. That
is. during approximation we can take advantage of the special nature
of the polynomials whose lower bounds b we are computing. These
polynomials are special in the sense that they have one, and only
one. positive root and hence one sign variation. Having made this
observation we can now use the following thcorem. which is a
modern version of the one found in ([8]. pp. 164-165) and ([14]. p.
58).

Turorem 2.3, Let  P()=c,x"+¢, X" ‘4. tce=0 be an
integral-coefficient polynomial equation of degree n. Then an upper
hound on the values of its positive roots is giren by

1
c,
b= max l | -\+x (2.8)
Gcfi%” Z (.i}
i=p+ i
‘.>O
CoROLLARY 2.1. Let P(x)=c,,x"+...+c,¢,x'*‘—c,x’—-...—co=0

be an iniegral-coefficient polynomial equation of degree n, with only
one sign variation in the sequence of its coefficients. Then an upper
bound on its (only one) positive root is given by

max (|c;})
p=02L2" — 41 (29
PR

i=r+1

(It is assumed that the ¢;'s/i=0(1n are non-negative nunibers.)

Compared with Cauchy’s rule, (2.9) is much simpler to implement.
Its computing time bound is ([1 1]. p. 39)

OnL{|P ) +{LPLD’). (2.10)

In the approximation method we used a modified version of (2.9)
and found it to tzke as much time as Cauchy's rule ([11]. p. 16).
Hence. in order tc improve in efficiency, we compute b's (the partial



POLYNOMIAL REAL ROOT APPROXIMATION 67

quotients g;) in yet another way. That is, we use Corollary 2.1 to
obtain an upper bound b on the positive root and then bisect the
interval (0, 5) to find b. This is feasible because, now, there is only
one positive root; the computing time of this approach is [11]

O L(|PL))). (2.1)

3. THE APPROXIMATION METHOD

In what follows we give an algorithmic description of the
approximation method along with an analysis of its computing time.

Description.  Let P.(x)=0 be an integral-coefficient polynomial
equation of degree n with one sign variation in the sequence of its
coefficients. P.(x)=0 is obtained from an original equation P(x)=0
after a continued fraction transformation of the form (2.2). Let P./Q,
be the convergent to the continued fraction from which Pix)=0is
derived and P,/Q, the immediately preceeding one. From the
previous discussion it is clear that P.(x)=0 isolates one real root of
P(x)=0, and we are going to approximate this root to within &.
Obviously, if 1/Q2 <c then we have nothing to do (see also (2.7)).

Step 1. Compute the lower bound b on the value of the positive
root of P.(x)=0. (It is assumed that b={a}, where « is the positive
root; b=a; for some i).

Step 2. Obtain Pm(x)=i-’((x+b)=0 and the new convergent
P.../Q... using (2.4) and the pair P./Q.. Po/Qo.

Step 3. If P,,(0)=0 we have computed the root exactly and we
terminate.

Step 4. If 1/Q2<e we return an interval whose endpoints,
P../Qu.. and P./Q., approximate the root to within the specified
degree of accuracy ¢, and we terminate.

Step 5. Obtain P (x)=P,.(1/x)=0. update P.(x), Po/Qo. P./Q.
by Plu(x) Po/Qc. Poeu/Qpen Tespectively, and go back to Step 1.
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TueoreM 3.1, Let P(x)=0 be an integral-coefficient polynomial
equation of degree n with one sign variation in the sequence of its
coefficients (and hence with one positive root) such that P(0)#0. If ¢
is the required degree of accuracy. then the method described above
will isolate the positive root of 1.’((.\')=0 in time

o(L(D(n’(utﬁr ,;))’)>

(where 1/¢ is integer).

Proof. From [7] we know that the transformation P,
()= PAx+b)=0 is exccuted in time Om*(L{b)+n*LIb)LUP].)).
Combining the last formula with the fact that b=0(P,,) (sce [4]. p.
59) we obtain 0(n*(L(|P,|.))?) which is bounded by

o} LA P (3.1

Comparing (2.6). {2.10), and (2.11) with (3.1} we see that (3.1)
dominates the computing times of all the steps (for onc iteration of
our method.)

To find i, the number of iterations of our method needed to
approximate the root to within & wc use (2.7), i.e. 1/Q?<c, and the
following facts: (a) Q,2F, where F; is the ith member of the
Fibonacci sequence (see also (2.4)). and (b) F; =d>"/\/§ (rounded to
the nearest integer), where ¢ =1.618.... Obviously, (2.7) yields

5
or =*

from which we obtain

A 1

The proof is now completed if we multiply (3.1) and (3.2). |}
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4. EMPIRICAL RESULTS AND CONCLUSIONS

In this section we present two tables comparing theoretical
aspects and actual computing times for the methods of
approximation by bisection and continued fractions.

"Table 1 indicates that, in order to achieve a specified degree of
accuracy, more bisections are needed than are partial quotients. The
assumptions are that for the bisection method the initial isolating
interval is (0,1], whereas for the continued fraction method it is
(0, ). Morcover, for the latter method we take the worst possible
casc, i.e. @;=1 for all /s, and in this case Q, = F,, where F; is the ith
member of the Fibonacci sequence (sce also (2.4)).

TABLE 1

Comparison of the number of partial quotients and
bisections needed 10 obtain a specified degree of

accuracy
Continued fraction Bisection
m method (1/F}2) method (1,2™)
1 1.0 0.5
5 0.004 0.03128
10 33x10°¢ 9.7x107*
15 27x10°% 3ix107%
20 22x 107" 9.8%x10"7
25 1.7x10°1° 19x10°*
30 14x10°12 93x 10710
35 J1x107 1.5x 107"
40 9.5x107 Y7 23x10°13

In Table Il we compare the actual computing times of the
bisection method with all three versions of the continued fraction
method. All times are in seconds and were obtained by using the
SAC-1 computer algebra system, on the Honeywell 66/60 computer
of the University of Kansas, to approximate all the real roots of the
Chebyshev polynomials to within e= 10715,

From Table II we see that using Cauchy’s rule. is much slower
than the bisection method, because the former has to be applied several
times in order to compute the integer part of the root. However, the
new method improves when we combine Corollary 2.1 with bisection
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TABLE 11

Times in seconds for the approximation of all the real roots of the
Chebyshev polynomials to within e= 10713

Continued fractions using:

Corollary 2.1
Degree  Bisection Cauchy’s rule with bisection  Preconditioning

2 17.2 118 6.7 54
3 179 10.3 49 38
4 423 387 157 10.3
s 458 400 16.4 10.8
6 83.1 99.8 46.2 29.2
7 909 105.1 44.6 27.0
8 146.3 2778 93.0 50.2
9 170.6 2576 106.2 62.2
10 243.2 5243 2028 116.2

to compute each partial quotient. The times in the last column were
obtained assuming that a list of partial quoticnts is supplied as input
(preconditioning). These times reflect the optimum time for the
approximation of the real roots using continued fractions; they also
indicate that a lot of time will be saved if a faster method is devised
for computing the partial quotients q;.
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