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Absiract

A new subresultant polynomial-remainder-sequence (prs)
method is presented where the polynomial remainders are obuained
with matrix riangularization (whereas with the existing subresultant
prs method they are obtained with a sequence of polynomial
divisions). This method is based on our generalization [1] of a
theorem by Van Vleck (1899) and uniformly treats both complete
and incomplete prs's, making use of Bareiss's (1968)
integer-preserving transformation algorithm for Gaussian
climination. Moreover, for the polynomials of the prs's, this
method provides the smallest coefficients that can be expected
without coefficient gcd computations (in certain cases the
coefficients are smaller than those obtained with the existing prs
method) and it clearly demonstrates the divisibility properties.

Inrroduction
In this note we restrict our discussion to univariate
polynomials with integer coefficients and to computations in Z[x],
a unique factorization domain. Given the polynomial p(x) = cox™ +
cn_lx“’1 + +cq, s degree is denoted by deg(p(x)) and cy, its

leading coefficient, by lc(p(x)); moreover, p(x) is called primitive if
its coefficients are relatvely prime.
Consider now pj(x} and pa(x), two primitive, nonzero

polynomials in Z{x], deg(py(x)) = n and deg(pp(x)) =m,n2m,
Clearly, the polynomial division (with remainder) algorithm, call it
PDF, that works over a field, cannot be used in Z[x] since it
requires exact divisibility by le(pa(x)). So we use pseudo-division,
which always yields a pseudo-quotient and pseudo-remainder; in
this process we have to premultiply py(x) by le(po(x))*™*! and
then apply algorithm PDF. Thercfore we have:
Ie(pa ()™ ™ py (x) = q(x)py(x) + p3(x),
deg(p3(x)) < deg(pa(x)). M
Applying the same process to pz(x') and p3(x), and then 10
p3(x) and p4(x), eie. (Euclid's algorithm), we

__ obuain a polynomial remainder sequence (prs)

p1(x) pz(X}. P3(X)s ot PR{X)s PR41(X) = 0,

where pp(x) # 0 is a greatest common divisor (ged) of p(x) and
p2(x). If nj = deg(p;(x)) and we have n; - ngyp =1, foralli, the
prs is called complete, otherwise, it is called incomplete. The
problem with the above approach is that the coefficients of the
polynomials in the prs grow exponendally and hence slow down

the computatons. We wish to control this coefficient growth. We
observe that equation (1) can also be writien more generally as

1e(pie 1 )PP+ 1+ pi(x) = qi00)pj41 (%) + Bipia2(X).

deg(pj2(x)) < deg(p;s (X)), )
i=1,2,.. h-1. Thatis, if a method for choosing Bi is given, the
above equaton provides an algorithm for consmucting a prs. The
obvious choice Bi =1, for all j, is called the Euclidean prs; it was
described above and leads to exponential growth of coefficients.
Choosing Bi 10 be the greatest common divisor of the coefficients
of p;42(x) results in the primitive prs, and it is the best that can.be

done 1o control the coefficient growth. (No_Licc mgt here we are
dividing p;.o(x) by the greatest common divisor of its coefficients

before we use it again.) Heowever, computing the greatest common

divisor of the coefficients for cach member of the prs (after the first
two, of course) is an expensive operation and should be avoided.

So far, in order both 1o conwol the coefficient growth and to
avoid the coefficient gcd computations, the Sylvester-Habicht
subresultant prs method has been used (resultants arc briefly
defined below). According to this method, in case of a complete
prs we choose

By =1land B =lc(p;(x)?, i=2,3,..h1, 3)
(Sylvester) {2], [11], whereas, in case of an incomplete prs we set
By = DM1M2%lang B, =(- DM M1+ lic(p;(x))H;Mi - Pivl,
i=2,3,..,h-1, 4)
(Habicht) [8), where
Hy = le(py(x))"17"2 and H; = Ie(p;(x))"i-1°% H;_; 1101,
i=3,4,.,h1;
the latter, (4), is also known as the subresuliant prs method. See
also [4], [5], [6], [7], ([9] p. 410) where credit for the discovery of
the Sylvester-Habicht subresultan: prs method is given 10 the
wrong person. (In general, (3) can o: also expressed as
By=1and B; = le(p)™i ~ Pik1*], i=2,3,. h1, (3)
which is also known as the reduced prs method.)

Observe that in both cases above we perform polynomial
pscudo-divisions. Moreover, in both cases we divide Pi+2(x) by

the corresponding ﬁi before we use it again, The proofs that the

ﬁi's shown in (3) and (4) exactly divide Pi+2(x) are rather

complicated [6] and have up to now “hidden simple divisibility
properties” [10]. Moreover, we cannot determine aprior whether a
sequence is complete or incomplete.

In what follows we present a new subresultant prs method
which uniformly treats both complete and incomplete prs's and
provides the smallest cocefficients in absolute value that can be
cxpected without coefficient greatest common divisor computations;
moreover, this method does not explicitly perform polynomial
divisions and clearly demonstrates the existing divisibility
propertics. We also present a theorem which is a generalization of
a theorem by Van Vleck. (We have failed to detect prior use of Van
Vieck's theorem in the literature.)

The new method
Consider in Z[x] the two (primitive) polynomials p1{x) =
Cax™ + ¢ X L4t cg and po(x) = dpx™ + dpy X Laeedy,
¢p#0,d,#0,n2m.
Step 1: Form the matrix corresponding to the resultant,

res(p1(x),pa(x)), of the two polynomials p(x) and p2(x) shown
below:
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S‘EP—{ Uf-—x;lg_Barc;sss algb?iﬁ‘xm (described bclow)almvn—sf:).ﬁ_n—-
the mamx R(pl(x),pz(x)) (S) into its upper triangular form T(R);
then the coefficients of all the members of the polynomial remainder
sequence of py(x) and py(x) are obtained from the rows of T(R)

according to our main theorem, which is presented below.

Theorem [1}: Let py(x) and py(x) be two polynomials, of

degrees n and m, respectively, n 2 m. Transform the matrix
R(p{(x).pa(x)), (5, of py(x) and p5(x) into its upper triangular
form T(R), let nj be the degree of the polynomial corresponding to

the i-th row of TR), i=1, 2, ..., 2n, and let pk(x), k 22, be the
k-th member of the (complete or incomplete) polynomial remainder
sequence of py(x) and py(x). Then, if py(x) is in row i of T(R),
the coefficients of py, 1(x) (within sign) are obtained from row i+j
of T(R), where j is the smallest integer such that nj4; < i fn=
m associate both pj(x) and p5(x) with the first row of T(R).)

Proof. Similar to the proof of Van Vleck's theorem {12}).//

As a special case of the above theorem we obtain Van Vleck's
theorem for complete prs's which states that the coefficients of the
(i+1)-th member of the polynomial remainder sequence of py(x)
and ps(x) are obtained from the even rows 2i, i=1,2,.., h, of
the upper miangular form. Van Vieck demonstrated this theorem

with an example {12]. However, the resultant is ransformed into
its upper triangular form by performing elementary row operations
and removing at ecach step the greatest common divisor of the
cocfficients, a computation which we want to avoid. o
On the other hand, in our method, we transform  (5) into its

upper triangular form using Bareiss's imcgcr-prcscrving
transformation algorithm {3]. Thatis: letrgg' ™/ =1,

and rij(o) =1j, ig=1,..,n; then for k<ij,<n,

(k-1) (k~1)
Tyx rkj

rij w = (1 / rk_u-(lk_n) :

(k=1) (k-1)

Ly ij

Of particular importance in Bareiss's algorithm is the gaz'c'i that
the determinant of order 2 is divided exactly by rk-l,k-l( -2) (the
proof is very short and clear and is described in Bareiss's paper)
and that the resulting coefficients are the smallest that can be
expected without coefficient ged computations and without
inroducing rationals. Notice how all the complicated expressions

for Bi in the reduced and subresultant prs algorithms are mapped 1o
the simple factor rk-l,k-l(khl) of this method.

i Ire <3

Below we present two examples (o demonstrate our new
method.
Example. _l)f we consider, the polynomials
pi{x) = x +5x4 + 10x3 + 5x= + 5x + 2
+6x2+ 2x + 1 the upper trangular form of the matrix
corresponding to res(p(x),p3(x)) is

and pa(x) = x4 + 4x3

1510552 0 0 0 0 |
0146210 0 0 0
001434 2 0 0 0
00003-2-1 0 € C .
C0 000 96 -3 0 O
00 000 C 58 50 18 0
00 000 C 0-266-112 C
lc o 0000 0 0 -756-332
Loooooooo 0 -380 |

The *-¢d row indicates that & pivot took place. Thcriforc.' ‘the
members of the prs generated by p; (x) and py(x) are 3x“ - 2x - 1,

-266x - 112 and -980.

As an example where the coefficients of the members of the
Prs, obtained with the new method, are smaller than those obtained
with the Sylvester-Habicht method consider the polynomials pj(x)

=x3-7x +7and p2(x) = 3x2 - 7. The Sylvester-Habicht prs
method generates the polynomial sequence pa(x) = -42x + 63,
p4(x) = 49, whereas our new method generates py(x) =-l4x + 21,
p4(x) = 49. This occurs because the quotient on pscudo-dividing
pl(x) by pa(x) is 3x with no constant term involved; this means
that we did not have 'to multiply pj(x) by 32 but only by 3.

(However, there is no way for knowing this before the actual
division.) This explains why the coefficients obuained by our
method for p3(x) are smaller by a factor of 3 than thosc obtained by

the Sylvester-Habicht method.
The computing time of our method is 0(n5L2(Ip(x)l,°)). where

Ip(x)loe= max(lp | (x)les, Ip2(x)lee), the maximum coefficient in

absolute value of both p1(x) and py(x), and L(ip(x)l..) is the

number of bits used in the representation of this maximum
coefficient; this is also the compuung time of the Syivester-F~bicht

prs method.
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