Erich Kaltofen ~ Stephen M. Watt

Editors

Computers and
Mathematics /7 6

Springer-Verlag
New York Berlin Heidelberg

e N VIMIGIWOAUAL

In this note, we have outlined how we conducted our research with the help of a computer
algebra system. As was shown, the use of algebraic devices (working modulo some polynomial) to
compensate the weaknesses of the simplification algorithm(s) for complex expressions, gave us much
more than just a convenient solution. One of the outstanding effect of this use of MAPLE was the
uaveiling of uncxpcclcd: formulas such as (1), (2), (3), and (4). That is why this approach ought to be

publicized.

Bibliography

{1} F. Bergeron, N. Bergeron and A.M. Garsia, Idempoients for the Free Lie Algebra and
g-Enumeration, (to appear in IMA 1988 Combinatorics Workshop Proceedings,

Springer-Verlag).

(2] A. Bjorner and M. Wachs, g-Hook Formulas for Trees and Forests,
(to appear in Journ. Combin. Theory, series A).

{31 C. Dicrescenzo and D. Duval, Algebraic Computation on Algebraic Numbers, in
Computers and Computing, Ed.: P.Chenin, C. di Crescenzo and F.Robert,
Wiley-Masson, 1986.

[4) B.W. Char, K.O. Geddes, G.H. Gonnet and S.W. Watt, MAPLE User's Guide,
: WATCOM, 1985.

{5) AM. Garsia, Combinatorics of the Free Lie Algebra and the Symmetric Group,
(1o appear in a volume commemorating J. Moser's 60t birthday).

[BR)

f\(“(\' SR IRAL T N R FAYAY R FEYE |

W ORI i o

Exact Algorithms for the Matrix-Triangularization

Subresultant PRS Method

Alkiviadis G. Akritas
University of Kansas
Department of Computer Science

Lawrence, Kansas, 66045

Abstract. In (2] a new method is presented for the computation of a greatest common divisor
(gcd) of vwo polynomials, along with their polynomial remainder sequence (prs). This method is
based on our generalization of a theorem by Van Vieck (1899)[12] and untformly sreats both normal
and abnormal prs's, making use of Barciss's (1968)(4) integer-preserving transformation algorithmn
for Gaussian elimination; moreover, for the polynomials of the prs's, this method provides the
smallest cocfficients that can be expected without coefficient ged computations. In this paper we

present efficient, exact algorithimy for the implemeniation of this new method, along with un

exarnple where bubble pivot is needed.

1. Introduction

In this note we restrict our discussion to univariate polynomials with integer coclficients and to
computations in Z{x], a unique factorization domain. Given the polynomial p(x) = ¢;x™ +
cn_lx“'1+...+co, its degree is denoted by deg(p(x)) and ¢y, its leading coefficient, by le(p);
morcover, p(x) is called primitive if its coefficients are relatively prime.

Consider now p1(x) and pp(x), two primitive , nonzero polynomials in Z[x], deg(py (x)) =n
and deg(pp(x)) = m, n 2 m. Clearly, the polynomial division (with remainder) algorithin, call it
1D, that works over a field, cannot be used in 2] x| since it requires exact divisibility by le(p). S0

we use psendo-division, which always yiclds a pseudo-quotient and pseudo-remainder; in this

In general, if we have the polynomial remainder sequence ~1(x), p2(x), p3(x), ..., PR{X),
deg(p1(x)) = n, deg(pa(x)) =m, n2>m, wecan obtain the (negated) coefficients of the (i+1)th
member of the prs, i =0, 1, 2, .., h-1, as minors formed from the first 2i rows of (S) by

successively associating with the first 2i - I columns (of the (21) by (2n) matrix) each succeeding

column in tum.

Or the other hand, we transform the matrix correspending to the resultant (S) into its upper
triangular form using Bareiss's integer-preserving transformation algorithm [4]. Thatis:

let roo(‘l) =1, and rij(o) =Tjjs i,j=1,.,n; then for k<ij, <n,

l'kk(k'l) rkj(k'l)'

i s = (1/ e k-1 2 - (5)

rik(k‘l) rij(k'l)

Of particular importance in Bareiss's algorithm is the fact that the determinant of order 2 is
divided exactly by rk-l,k-l(k‘z) {the proof is very short and clear and is described in Bareiss's

paper [4]) and that the resulting coefficients are the smallest that can be expected without coefficient

ged computations and without introducing rationals. Notice how all the complicated expressions

for Bj in the reduced and subresultant prs algorithms arc mapped to the simple factor rk_l,k_l(k'z)

of this method.

It should be pointed out that using Bareiss's algorithm we will have to perform pivots
(interchange two rows) which will result in a change of signs. We also define the term bubble pivot
as follows: if the diagonal clement in row i is zero and the next nonzero element down the column is
in row i+j, j>1, then row i+j will become row i after pairwise interchanging it with the rows above
it. Bubble pivot preserves the symmetry of the determinant.

We have the following theorem.

Theorem 2 ([2]). Let pi(x) and pa(x) be twa polynomials of degrees n and m respectively, n
> m. Using Bareiss's algorithm transform the matrix corresponding to resg(p(x),p2(x)) into its
upper triangular form Tg(R); let n; be the degree of the potynomial corresponding to the ith row of
I's(R),i=1,2,.. 2n, and let px(x), k > 2, be the kth member of the (normal or abnormal)
polynomial remainder sequence of py(x) and pa(x). Then if pg(x) is in row i of Tg(R), the
coefficients of py41(x) (within sign) are obtained from row i+j of Tg(R), where j is the smallest

integer such that Nj4j <Ay (If n = m associate both p1(x) and pp(x) with the first row of Tg(R).)

[B13

Notice thot as a special case of the above theorem we obtain Van Vieck's theorem for not

prs's. Wesee, .refore, that based on Theorem 2, we have a new mcthod to compute the
polynomial remainder sequence and a greatest common divisor of two polynomials. This new
method uniformly treats both normal and abnormal prs's and provides the smallest coctlicients

can be expected without coefficient ged computation.

3. Our method and its implementation

The inputs are two (primitive) polynomials in Z{x], pj(x) = x4 cnﬂlx“'l +...o e and
= dpyx™M + dm_lxm‘1 +...4dg, cp#0,dp=0,nzm.

Step 1: Form the resultant (S), resg(p(x),pa(x)), of the two polynomials p1(x) and p2(x).
Step 2: Using Bareiss's algorithm (described above) transform the resultant (8) into s

triangular form Tg(R); then the coefficients of all the members of the polynomial rema
i

sequence of py(x) and pp(x) are obtained from the rows of Tg(R) with the help of Theorein

For this method we have proved [2] that its computing time is:

Theorem 3. Let pj(x) = cpxP + ¢y x4+ ¢y and pa(x) = dppx™ + A XM LA

+dg, cp#0,dy#0, n2m be two (primitive) polynomials in Z[x] and for some polynomia
in Z{x] let IPl,, represent its maximum coefficient in absolute value. Then the method descl
above computes a greatest connon divisor of p1(x) and pp(x) along with all the polyuc
remainders in time

0(11514(!1)100)2)

where Iples = max (Ipple, IP2le).

Below we present efficient exict (maple-like) algorithms for the matrix-triangulariz
subresultant prs method. A subalgorithm call is the name of the subatgorithm in all bold le
All subalgorithm calls are from the main algorithm. Parameters (arguments) are not sh

Comments are made within braccs (). An explanation of the variables is found aftel

algorithms.

149

process we have to premultiply pq(x) by le(pp)"™M+1 and then apply algorithm PD. Therefore we
have:

le(p)™ ™ py(x) = q0x) p2(0) + p3(0, deg(p3(x)) < deg(pa(x)). (1)

Applying the same process to p(x) and p3(x), and then to p3(x) and p4(x), etc. (Euclid's
algorithm), we obtain a polynomial remainder sequence (prs)

P1(x). p2(x), p3(X), . . . ph(xX), Ph+1(x) = 0, "
where pp(x) # 0 is a greatest common divisor of py(x) and pp(x), ged(py(x),p2(x)). If nj =
deg(pi()) and we have nj - njyq = 1, for all i, the prs is called normal, otherwise, it is catled
abnormal. The problem with the above approach is that the cocfficients of the polynomials in the
prs grow cxponentially and hence slow down the computations. We wish to control this
cocfficient growth. We obscrve that equation (1) can also be written more generally as

le(pis DM+ pi(x) = 4i(x) pia1 (0) + Bipia2(0), deg(pien(x)) < deg(pis1(x), ()
i = 1,2,..,h-1. Thatis, if a method for choosing B is given, the above cquation provides an
algorithm for constructing a prs. The obvious choice B; = 1, for all i,.is called the Euclidean prs; it
was described above and leads to exponential growth of coefficients. Choosing B; to be the
greatest common divisor of the coc(Ticients of pjy2(x) results in the primitive prs, and it is the best
that can be done to control the cocfficicnt growth. (Notice that here we are dividing pj;.2(x) by the
greatest common divisor of its cocfficicnts before we use it again.) However, computing the
greatest common divisor of the coefficients for cach member of the prs (after the first two, of
course) is an expensive operation and should be avoided. So far, in order both to control the
coefficient growth and to avoid the cocfficient gcd computations, either the reduced or the

(improved) subresultant prs have been used. In the reduced prs we choose

By =1and Bj=Ic(pp™ - Ni+1*1, =23, h-1, (3)
whereas, in the subresultant prs we have
By = D2+ and B = (-1)ni - N1+ lepp) M- Miwl, i=2,3,... k-1, 4)

where

H = 1c(pp)™1"2 and Hj = le(pp)Mi-1-M Hiy D - (Miep - 0)y i= 34, h-1.
That is, in both cases above we divide pjg.2(x) by the corresponding B; before we usc it again. The
reduced prs algorithm is recommended if the prs is normal, whercas if the prs is abnormal the
subresultant prs algorithm is to be preferred. The proofs that the Bi's shown in (3) and (4) cxactly
divide pj4.2(x) arc very complicated [7] and have up to now obscured simple divisibility properties
1101, (sec also [5] and [6]). For a simple proof of the validity of the reduced prs see [1]; analogous

proof for the subresultant prs can be found in [8].

146

In contrast with the above prs algorithms, the matrix-triangularization subresubtant prs
method avoids explicit polynomial divisions (cxplained below). In what follows we present
cfficient, exact algorithms for the implementation of this method. We also present an example

where bubble pivot is needed.

2. Gaussian elimination and Sylvester's form of the resultant

Consider the two polynomials in Z[x}, p(x) = cpxM + cn_lx"'1+...+ cg and pa(x) = djpx™ +
Ao 1xM- L+ dg, cp0, dm# 0, n>m. Conirary to established practice, we choose to call
Sylvester's form of the resultant of pj(x) and p(x) thc one described below; this form was

"buried” in Sylvester's 1853 paper [11] and is only once mentioned in the literature in a paper by
Van Vieck [12]. Sylvester indicates ([11], p.426) that he had produced this form in 1839 or 1840
and some ycars later Cayley unconsciously reproduced it as well. It is Sylvester's form of the
resultant that forms the foundation of our new method for computing polynomial remainder
sequences; however, we first present the following theorem concerning Bruno's form of the

resultant (the form encountered most often in the literature under the Sylvester's name):

Theorem 1 (Laidacker[9]). If we transform the matrix corresponding to resg(p1(x),p2(x)) into
its upper triangular form Tg(R), using row transformations only, then the last nonzero row of

TR(R) gives the coefficients of a greatest common divisor of p1(x) and p3(x).

The above theorem indicates that we can obtain only a greatest common divisor of pj(x) and
p2(x) but none of the remainder polynomials. In order to compute both a ged(p(x),p2(x)) and ail

the polynomial remainders we have to use Sylvester's form of the resultant; this is of order 2n (as
opposcd to n+m for the other forms) and of the following form (pa(x) has been transformed into a

polynomial of degree n by introducing zcro coefficients):

{cn chp1...¢c9 00 0
Idn dy-1...dg O 0...0
iO Ch ... cg 0...0

resg(pq) = dy dg 0 0 (S)
-iO...Ocn Cp-l - - . €Q
10...0 dy dng. . . doj
147

start (deg(py(x)) >= deg(pp(x)))
initialize {set resultant matrix to zero, and initialize the variables used)
getpolys {get cocfficients of the first two polynomials)
buildmatrix {build the matrix corresponding to Sylvester's form of the resultant)
setkto 1 {k is the index for the transformation loop)

whilc k <n dd {loop n-1 times, unless ged is found (see pivot))
if (r[k,k] = 0) then pivot fi {need to put a non-zero clement into r{k,k]}
if k <n then {in pivot, if ged is found k is sct to n+1}) ,
do transform; sct d to r[k,k] od
fi
setkto k+1 {increment main loop index)

od

end

initialize
npi=deg(p1(x)); {deg(p1(x)) >= deg(pa(x))}
n:=2*ny;
for i from 1 tondo
forj from 1 ton do

rfi,j] ;=0 {sce notes on variables below)
od
tranfi] ;= false {sce notes on variables below)
od
d:=1 {no division for first transformation)
end
getpolys

{this is dependent on the language used and whether the program is interactive or reads data from a

data file; the function coeff(p(x), i) computcs the coefficient of xi in the polynomial p(x)}

fori from 1tony+1 do
[1,i} := cocff(py(x), nj+1-i) (put the coefficients of p1(x) in row 1 of the matrix)

1[2,i] := coeff(pa(x), nj+1-i) {put the cocfficients of pp(x) in row 2; remember that we have

to include leading zero if deg(pa(x)) < deg(p (x))

end

150

buildmatrix

k:=2;
forifrom 3 tondo

for j fromk to n do

tli,j] = rfi-2, j-1]

od

if(imod 2) =0 then k :=k+1 fi
od

{the following will build array L; L{i] is the location of the last polynomial element in row i}

{loop to put values in rows 3 to n)
{loop to put values across cach row}

j=1
fori from 1 to njy do

L{jl:=i+ny (last position is based on first plus degree)

L[j+1]:=i+np;

ji=j+2 {go down two rows)
od

end

pivot
{check across row k for all zeros, this means row k-1 is gcd)
ckdged = true;
1:=k+1;
while (i <= L[k]) and ckdgcd do
if rTk,i] <> O then ckdged := falsc fi
{increment loop index}

{i is the index for loop)

{loop across row}

i=i+1
od
if ckdged then
for i from k+1 to n do
for j from k to n do

{nced to zero matrix below row k and stop processing}

ri,k] =0

od
od
ki=n+1 (tfﬁs stops main loop}

clse {nced to find a row s without a zero in column k to pivot up}

si=k+1 {start looking one row below k)
while 1fs,k] = 0 do {loop while valuc in column k is zero)

si=s5+1
od

{move row s to row k with bubble pivot}

151

tempbool := rans(s); {need 1o pivol tan with rows)
tempint ;= L{s};
for j from 1 ton do temprow(j] :=rfsj] od;
forifromsby-ltok+1do (this needs 10 step backwards (sis > k+1))
tran(i] := tranfi-1];
L{i} :=L[i-1];
for j from 1 to n do rfij) := r[i-1,j) od
od;
tran(k] := tempbool;
L[k] := tempint;
for j from 1 to n do r{k,j) := temprow(j} od;

‘oo

fi
end

transform
{Find the last row s with a non-zero element in column k or the last row which has been
ransformed (whichever is higher)}
s:i=k;
for i from k+1 to n do
if (r{i,k] < 0) or wran[i] thens:=ifi
od
{ks is now the last row with a non-zero element in column k}
forifromk+ 1tosdo {loop through all rows up to s}
forj fromk + 1 to L[i] do {loop across row 1o last element}
if tran[k] and tran(i] and (d <> 1) then
{okay to divide as you transform row i}
f{ij] := iquo(r(k,k] *e{ig] - rfi,k] * o[k j}.d)
{iquo(m,n) computes the integer quotient of m divided by n}

clse
t{ig] = rlk k] *rfij] - ofi, k) * r[k]
fi
od;
rfi,k] :=0; {need to zero column k below row k}
tran[i] := true {row i has been transformed)
od
end

152

printmatrix
{this is dependent he language used; print each row and column}
forifrom 1tondo

for j from 1 to n do

write 1{i,j) {on one line}

od;

advance a line
od

end

The variables

t. r[i,jlis a two dimensional matrix (array).

2.) =degp1(x)).

3. n=2%ny is the length and width of the resultant (matrix).

4. L{i] is the location of the last element in row i this is important because it is used so that we do

not update the zero elements of a row.
5. tran[i] is a one dimensional boolean (or logical) array; it is true when row i was transformed

during the last transformation; this is important since only transformed rows may be divided

by d.
6. d is the value which a transformed row may be divided by if all other factors allow for

division. In the Bareiss transform d is r{k-1,k-1].
7. k is the current transformation number and r{k,X] is the corner clement where the next

transformation will begin.
8. tempint, tempbool and temprow are temporary variables used for pivoting.
9. ckdged is a boolean (logical) variable which will be true when row k is all zeros. This means

a greatest common divisor (ged) has been found and further transformations are not

neeessary.

Below we present an incomplete example where bubble pivoting is needed [3); note that there is
a difference of 3 in the degrees of the members of the prs, as opposed to a difference of 2 in

Knuth's “classic” incomplete example.

Example. Let us find the polynomial remainder sequence of the polynomials p(x) = 3x9 + 5x8 4
7x7 - 3x6 - 5x5 -7x4 + 3x3 + 5x2 + 7x - 2 and p2(x) = x8.x5-x2-x-1. This incomplete prs
example presents a variation of three in the degrees of its members (from 7 1o 4) and it requires a

bubble pivot in the matrix-tiangularization method; that is, a pivot will take place between rows thit

are not adjacent.

153

2

The matrix-triangularization subresultant prs method

row
I>
2>
3)
4>
5)
#6)
#7)
8>
9
10)
[B9)]
12>
13)
14>
15)
16>
17
18>

5
1
0
0
0
0
0
0
0
0

SO 0O 000 o0 o

0
0
0
0
0
0
0
0

© O oo oo oo

OOooooomo\;

0
0
0
0
0
0
0
0

) degree
357357 200000000 (&)
0-100-1-1t-100000000 (8)
70-5-76810-20000000 8)
7°007 -6 -13 .15 30000000)
0 -49 0 0 79 23 19-55 14 0 0 0 0 0 0 .)
0 0-343 0-24 501 73 93 413 98 0 0 0 0 O Q)
0 0 0 -2401 -510 -1273 1637 -339 56 -2891 686 0 0 00 7
0 0 0 02058 4459 7546 3430 2401 0 0 0 0 0 0 “)
0 00 0 0-1764 -3822 -6468 -2940 2058 0 0 0 0 0 4)
00000 015123276 5544 2520 1764 0 0 0 0 Q)
00000 0 025801 -18982 4520 -811 -3024 0 © 0 (4)
0000000 0-64205 -77246 -37568 -28403 0 0 0 3)
00000000 0 2124693 449379 519299 128410 0 0 3)
000000000 0-5240853 -1800739 -2018639 0 0 (2)
0000000000 0-229009248 -24412716 10481706 0 @
00000000000 0-4081132 47620330 0 (€))
000000000 O0O00O0-398219984 81602264 } 1)
000000000O0O0O0O0O0 682427564 0)

Largest intcger generated is 278438171 19202448 [17 digits).

Pivoted row 6 during transformation 6. Stored row is:

6> 000000 0429115470490 0 0 0 0 0 4)

Pivoted row 7 during transformation 7. Stored row is:

7 000000 029 637 1078 490 3430 0 0 0 0 Q “4)

Bibliography

{11 Akritas, A.G.: A simple validity proof of the reduced prs algorithm. Computi ng 38, 369-372,
1987.

[2] Akritas, A.G.: A new method for computing greatest common divisors and polynomial
remainder sequences. Numerische Mathematik 52, 119-127, 1988.

(31 Akritas, A.G.: Elements of Computer Algebra with Applications. John Wilcy, New York, in
press.

4] Barciss, E.H.: Sylvester's identity and multistep integer-preserving Gaussian elimination.
Mathematics of Computation 22, '565-578, 1968.

{51 Brown, W.S.: On Euclid's algorithm and the computation of polynomial greatest common

154

ey

divisors. JACM 18, 476-504, 1971,

Brown, W.S.: The subresultant prs algorithm. ACM Transactions On Mathematical Softwarce

[0]
4, 237-249, 1978.

[7] Collins, G.E.: Subresultants and reduced polynomial remainder sequences. JACM 14,
128-142, 1967.

[8] Habicht, W.: Eine Verallgemeinerung des Sturmschen Wurzelzdhlverfahrens. Commentarii
Mathcmatici Helvetict 21, 99-116, 1948,

[91 Laidacker, M.A.: Another theorem relating Sylvester's matrix and the greatest common

divisor. Mathematics Magazine 42, 126-128, 1969.

[10] T.oos, R.: Generalized polynomial remainder sequences. In: Computer Algebra Symbolic and
Algebraic Computations. Ed. by B. Buchberger, G.E. Collins and R. Loos, Springer Verlag,

© Wicen, New York, 1982, Computing Supplement 4, 115-137.

[11} Sylvester, J.J.: On a theory of the syzygetic relations of two rational integral functions,
comprising an application to the theory of Smrm’s_ functions, and that of the greatest
algebraical common measure. Philoshophical Transactions 143, 407-548, 1853.

f12] Van Vicck, E. B.: On the determination of a series of Sturm'’s functions by the calculation of a
single determinant. Annals of Mathematics, Sccond Series, Yol. 1, 1-13, 1899-1900.

iss

