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THE ROLE OF THE FIBONACCI SEQUENCE IN THE
: ISOLATION OF THE REAL ROOTS OF
POLYNOMIAL EQUATIONS
A. G. Akritas and P. G. Bradford

L_INTRODUCTION

~ Isolation of the real roots of polynomials in Z[x] is the process of finding real, disjoint
intervals each of which contains exactly one real root and every real root is contained in some
interval. This process is of interest because, according to Fourier, it constitutes the first step
involved in the computation of real roots, the second step being the approximation of these roots
to any desired degree of accuracy.

Various propositions have been used to isolate the real roots of polynomial equations with
integer coefficients; due to their relation to Fibonacci numbers in this paper we will only examine
Vincent’s theorem [10] and \Wang's generalization of it as presented by Chen in her dissertation
's) .

18].

In its original statement Vincent’s theorem of 1836 states the following [7):
Theoremn 0: If in 2 polynomial equation with raiional coefficients and without multiple roots one
makes successive substitutions of the form

N 1
a, + 1/x" xi=ay + 1x"

xi=a, + 1/x, x

where a; is an arbitrary nonnegative integer and a,, ay. ... arc any positive integers, then i

resulting, transformed cquation has either zero or onc sign variation. In the latter, the
has a single positive root represented by the continued fraction

e M P - e N .
wihiereas i ihe fornrer case there v no root.
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polynomial equation. The generality of the thoerem ol
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Notice that Vincent’s theorem does not give us a bound on the number of substitutions of
the form x:za, + 1/x ihat have to be performed; this bound was computed with the help of the
Fibonacci sequence by Uspensky (with a correction by Akritas) dnd is described below.

In 1960, and without bcing aware of Vincent’s theorem, Wang generalized it so that jt
can be applied "to polvnomial equations with multiple roots; more precisely. using Wang’s
theorem we obtain not only the isolating intervals of the roots but also their multiplicites. Like
Vincent, Wang did not give us a bound on the number of substitutions of the form xi=a; + 1/x
that have to be performed; and again, this bound was computed with the help of the Fibonacci
sequence by Chen (in her Ph.D. thesis) and is also described below.

2. VINCENT'S THECREM OF 1836 AND WANG’S THEOREM OF 1960

We begin with a formal delinition of sign variations in a number sequence.
Definition: We say that a sign variation exists between two nonzero numbers ¢, and ¢, <
Zelnition: A g h ¢
of a [mite or infinite sequence of real numbers ¢}, ¢a, ..., if the following holds:

for ¢ = p+ 1 c. and ¢, have opposite signs;

for ¢ > p -+ Z. the numbers Cpa1r- s Cgy are all zero and ¢, and ¢, have opposite signs.

We next present the extended version of Vincent’s theorem of 1836 which. by the way, is
based on Budan’s thecrem of 1807 {5]. Notice how the Fibonacci numbers are used to bound the
number of partial quotients that need to be computed.

Theorem 1: Let p{x) = 2 be & polynomial equation of degree n > 1, with rational cosificients and
without multiple roots. and let & > 0 be the smallest distance between any twe of its roots. Let
m be the smailest index such that

Foal/2>1and F o Fimd > 14 1/cn, (V)
where I is the k-th member of the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, ... and

fa= (1= 1m I

Let a; be an arbitrary nonnegative integer and let a,, ..., am be arbitrary positive integers. Then
the substitution

(CF)

(whick is equivalent to the series of successive substitutions of the form x:=a, + 1/y.i=1,2, ..,
m) trensforms the equation p{x) = 0 into the equation p,;(y) = 0, which has no more than one
sign veriation in the sequence of its coefficients.
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The proof can be found in ‘the literature (4], [6].. Smce the transformed equation p(y) =
0 has cither 0 or 1 sign, variation, thc above.theorem is c]oscly related to the Cardano-Descartes
rule of signs which states that the number p of positive roots of a-polynomial equation p(x) = 0
cannot exceed the number v of sign variations in the sequence of coefficients of p(x),and if n = v
— p > 0, then n is.an even number. Notice that the Cardano-Descartes rule of signs gives the
exact numbé;. of positive roots only in the following two special cases:

(i) if there is no sign variation, there is no positive root, and

(i1) if there is one sign variation, there is one positive root.

(Obscrve how these two special cases are used in Theorem 1 above.)

Theorem 1 can be used in the isolation of the real roots of a polynomial equation. To see
how it is applied, observe the following:

i. The continued fraction substitution (CF) can also be written as

— PmY 4 Pmyy (CF1)
Qmy -+ Qm-y

where p,/q, is the k-th convergent to the continued fraction

a; +

and, as we know, fork > 0, py =1, p.; = 0. gz = 0, and q_; = 1 we have:
Prai = 2p41Pr F+ Piess
Qg1 7= 3440 T Qpoy-

it. The distance between {wo consecutive convergents is

|pv7r1/q771-l - p"‘/(l'"k = l/qm-I(]’““

Clearly, the smallest values of the q; occur when a; = 1 for all i. Then, g = Fum, the m-th
Fibonacei number. This explains why there is a relation between the Fibonacci numbers and the
distance & in Theorem 1.

i, Let py(y) = 0 be the cquation obtained from p{x) = 0 aficr a substitution of the
form (CF1), corresponding to a series of translations and inversions. Observe that (CF1) maps
the interval 0 < y < oo onto the x-interval whose unordered endpoints are the consecutive
convergents poy/Gme; and pm/qm. If this x-interval has length less than 4, then 1t contains at
mosi one root of p(x) = 0§, and the corresponding equation p,{¥) = 0 has at most one root in

AR
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[N

iv. If y' were this positive root of p,;(y) = 0, then the corrcs‘pnnding root x' of p(x) = 0
could be casily obtained from (CF1). We only know though, that y' lies in thetinterval (0,00);
therefore, substituting y in (CF1) once by 0 and once by oo we oblain for the positive root x its
isolating interval whose unordered endpoints are p .y /- and pm/qm. To cach positive root
there corresponds a different continued fraction; at most m partial quotients have to be computed
for the isolation. of any positive root. (As we mentioned before, negative roots can be isolated i
we replace x by —x in the original equation.) '

The calculation of the partial quolients (for cach positive root) constitutes the real root
isolation procedure. There are two methods, Vincent’s and the continued fractions method of
1978 (developed by Akritas), corresponding to the two different ways in which the computation of
the &,’s may be performed. The difference between these two methods can be thought of as being
analogous to the difference between the integrals of Riemann and Lebesgue. That is, the sum
1+1=+141+1 can be computed in the following two ways: :

I

(a) 141

2, 241 =3, 3+1 =4, 4+1 = 5 (Riemann) and
() 5-1=5

(Lebesgue).

Vincent’s method consists of computing a particular a; by a series of unit incrementations
a;=a, + 1. to cach one of which corresponds the translation p{(x):=p{(x+1) for some

polynomial equation p,;(x). This brute force approach results in a method with exponential
behavior and hence is of Jittle practical importance.

The continued fractions method of 1978 on the contrary, consists of computing a
particular a; as the lower bound b on the values of the positive roots of a polynomial equation;
actually, we can safely conclude that b = la,]| where a, is the smallest positive root of some
cquation obtained during the transformations described in Theorem 1. Implementation details
can be found in the literature {1}, {2]. lere we simply mention that to compute this lower bound
b on the values of the positive roots we use Cauchy’s rule [3] (actually presented for upper

bounds).

Cauchy’s Rule: Let p(x) = x"+c,_,c" 4. 4 cax+cy = 0 be a monic polynomial equation with
integer coeincients of degree n>0, with ¢, ;<0 for at least one k, 1 < k < n, and let A be the
numiber of its negative cocfficients. Then

1k
b=max {|Ac,.;|" }
1<k<n
Ch-k < 0

is an upper bound on the values of the positive roots of p(x) = 0.

Notice that the lower bound is obtained by applying Cauchy’s rule to the polynomial
(1/\‘ = )

Moreover, we used Mahler’s [9] bound on &
>30T, Y, . ()

(where n is the degree of p(x) and |p(x)]; is the sum of the absolute values of the coefficients).

According to Chen [§], and without being aware of Vincent’s theorem, Wang in 1960
independently stated a more general theorem which includes-the one by Vincent as a special case.
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Again & bound was needed ‘()p the ~numbcrArr,\ of subst:itjjfioils ofithe form x:=a; 4 1/y that must
be performed; this bound on 'm was computed, again with the help of Fibonacci numbers, by
Chen [8] and is described.in "Theorém 2 below. e

Theorem 2: Let p(x) = 0 be an integral polynomial equation of degree n > 3, and assume that it

has at ]eas't_.Q sign vdriations in the sequence of its coefficients; moreover, let A > 0 be the
smallest distance between any two of its roots. Let m' be the smallest positive index such that

(F )t > 1/8, (F1B)

where ¥ is the k-th member of the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, ..., and let m' be
the smallest positive integer such that

m' > 1+ f10g¢ nl}/2.

If we let

then the arbitrary continued fraction substitution

Xi=a, -+
a, +

with a; nonnegative integer and ay, ... am positive integers, transforms p(x) = 0 into th
equation p(y) = 0, which has r sign variations in the sequence of its coefficients. If r = 0. ther
there are no roots of p(x) in the interval 1, with (unordered) endpoints pim/qum. Pari/Gm-;
(obtained from (CFI). If r > 0, then p(x) = 0 has a unique positive position real root of
mudtinlicity r in Iom.

Notice how this theerem includes the one by Vincent as a special case; however, as was
mentioned before, this proposition is of theoretical interest only. It has been demonstrated. both
theoretically [1] and empirically [2], that. when classical arithmetic algorithms arc used, Vincent's
theorem together with square-free factorization is the best approach to the problem of isol. g
the real roots of a polynomial equation with integer coefficients.

CONCLUSION

We have iustrated the importance of tie Fibonacci sequence in computing an upper bound on
the number of substitutions of the form xi=a+1/x. which are required for polynomial real roc:
isolation using Theorem 1 (Vincent) or Theorem 2 (Wang).
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