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Summary. Sylvester’s form of the resultant is often encountered in the liter-
ature but is completely different from the one discussed in this paper; the form
described here can be found in Sylvester’s paper of 1853 [12], and has been previ-
ously used only once, by Van Vleck [13] in the last century. Triangularizing this
“rediscovered” form of the resultant we obtain a new method for computing a great-
est common divisor (gcd) of two polynomials in Z[z], along with their polynomial
remainder sequence (prs); since we are interested in exact integer arithmetic compu-
tations we make use of Bareiss’s [4] integer-preserving transformation algorithm for
Gaussian elimination. This new method uniformly treats both complete and incom-
plete prs’s and, for the polynomials of the prs’s, it provides the smallest coefficients
that can be expected without coefficient gcd computations.

1. Introduction. In this note we restrict our discussion to univariate polyno-
mials with integer coefficients and to computations in Z([z], a unique factorization
domain. Given the polynomial p(z) = ¢ " + ca1 2" "' 4+ + Co, its degree is de-
noted by deg(p(z)) and c,, its leading coefficient, by lc(p); moreover, p(z) 1s called
primitive it its coefficients are relatively prime.

Consider now pi(z) and pa(z), two primitive, nonzero polynomials in Z[z},
deg(pi(z)) = n and deg(pz(z)) = m, n 2 m. Clearly, the polynomial division
(with remainder) algorithm, call it PD, that works over a field, cannot be used in
Z|[z] since it requires exact divisibility by lc(pz). So we use paendo-division, which
always yields a pseudo-quotient and pseudo-remainder; in this process we have to
premultiply pi(z) by le(p2)*~ ™% and then apply algorithm PD. Therefore we

have:
(1) le(p2)" ™ pi(z) = q(£)p2(z) + p3(z), deg(ps(z)) < deglp2(z)).

Applying the same process to pp(z) and p3(z), and then to p3(r) and py(z),
etc. (Euclid’s algorithm), we obtain a polynomial remainder sequence (prs)

pi(z), pz(I),px(I), o pa(T), Pasi(z) =0,

where pa(z) # 0 is a greatest common divisor of pi(z) and p2(z), ged(pi(z), p2(x)).
If n; = deg(pi(z)) and we have n; — n;y; = 1, for all ¢, the prs is called complete,
otherwise, it is called incomplete. The problem with the above approach is that
the coefficients of the polynomials in the prs grow exponentially and hence slow
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down the computations. We wish to control this coefficient growth. We observe
that equation (1) can also be written more generally as

(2) le(psm) ¥ pi(2) = 6i(2)pina () +Bipua(c),  deg(pia(2)) < deglpia(z)),

i =1.2,...,h—1. That is, if a method for choosing 3; is given, the above equation
provides an algorithm for constructing a prs. The obvious choice §; = 1, for all g,
is cailed the Euclidean prs; it was described above and leads to exponential growth
of coefficients. Choosing 3; to be the greatest common divisor of the coefficients of
pix2(z) results in the primitive prs, and it is the best that can be done to control
the coefficient growth. (Notice that here we are dividing pi+2(z) by the greatest
common divisor of its coefficients before we use it again). However, computing the
greatest common divisor of the coefficients for each member of the prs (after the first
two, of course) is an expensive operation and should be avoided. So far, in order to
control the coefficient growth and to avoid the coefficient ged computations, either
the reduced or the (improved) subresultant prs have been used. In the reduced prs
we choose '

(3) i=1 and §Gi= lc(p,-)""""‘“, t=23,...,h =1,
whereas, in the subresultant prs we have

(4) Bi=(=1)" ™ and fi=(-1)™ T e(p) HYTM, i=2,8,.., b1y

where
Hy =lc(py)™™ ™ and H; = lc(p,-)"“""‘H,.l:l(n“‘_"‘), 1 =3.4,...,h—1

That is, in both cases above we divide pi2(z) by the corresponding 3; before we use
it again. The reduced prs algorithm is recommended if the prs is complete, whereas
if the prs is incomplete the subresultant prs algorithm is to be preferred. The proofs
that the B;’s shown in (3) and (4) exactly divide pi42(z) are very complicated (7]
and have up to now obscured simple divisibility properties [11], (see also [5] and
(6]). For a simple proof of the validity of the reduced prs see [1]; analogous proof
for the subresultant prs can be found in (8.

In contrast with the above prs algorithms, the matrix-triangularization subre-
sultant prs method avoids explicit polynomial divisions. In what follows we present
this method. We also present an example where bubble pivot is needed.

2. Sylvester’s form of the resultant. Consider the two polynomials in
Z(z]. p(z) = caz™ + Cac1z™ V4 -+ co and po(r) = dmz™ + dpmorz™ b+ 4+
dy, can#0, dmn#0, n2m.In the literature the most commonly encountered



forms of the resultant of p;(z) and p2(z) (both known as “Sylvester's” forms) are:

Cn Cn—1 ‘e Cop 0 ‘e 0
0 Cn Cn-1 N Cy ces 0
( ) 0 0 e Cn Cp—-1 ... €

res \p1,p2) =
B dm dm-1 dy 0 0 0
0 dm  dm-—i do 0 0
0 0 dm dm—l dO

or

Cn Cn-1 - Co -0 . 0
0 Cn Cn—1 Co 0
0 0 Cn Cn-1 Co

res_(p1,p2) =
T 0 0 dm dm—-l dO
0 dn  dm-1 ... dy 0 ... 0
dm dm—1 dy 0 0 ... 0

where for both cases we have m rows of ¢’s and n rows of d's; that is, the de-
terminant is of order m + n. Contrary to established practice, we call the first
Bruno’s and the second Trudi’s form of the resultant [3]. Notice that resg(p1,p2) =
(=1)M=1/2 resp(p, p2). We choose to call Sylvester’s form the one described below;
this form was “buried” in Sylvester’s 1853 paper [12]and is only once mentioned in
the literature in a paper by Van Vleck [13]. Sylvester indicates ([12]), p. 426 that he
had produced this form in 1839 or 1840 and some years later Cayley unconsciously
reproduced it as well. It is Sylvester’s form of the resultant that forms the foun-
dation of our new method for computing polynomial remainder sequences; however
,we first present the following theorem concerning Bruno’s form of the resultant:

THEOREM 1 (Laidacker (10]). If we transform the matrix corresponding to
resg(p1(z), p2(z)) into its upper triangular form Tg(R), using row transformations
only, then the last nonzero row of Tg(R) gives the coefficients of a greatest common
divisor of pi(z) and p,(z).

The above theorem indicates that we can obtain only a greatest common divisor
of pi(r) and pa(x) but none of the remainder polynomials. In order to compute both



2 ged(py(z),p2(z)) and all the polynomial remainders we have to use Sylvester’s
geaipiil), pol; 3

orm of the resultant; this is of order 2n (as opposed to n + m for the other forms)
and of the following form (p2(z) has been transformed into a polynomial of degree

n by introducing zero coefficients):

Cn Cn_1 ...cp O 0...0
dn dp-1  ...dg 0 0...0
0 Cn Co 0...0
ress(p,q)——- 0 dn d 0...0 (S)
0 ... 0 Cn Cne1 .. Cp
0 ... 0 dn dn-1 ... dy

Svlvester obtains this form from the system of equations ([12]) pp. 427—428)

plz) =0
q(z) =0
r-p(z)=0
z-q(z)=0
2 -p(z) =0
2 q(z)=0
" p(z) =0

2" q(z) =0

and he indicates that if we take k pairs of the above equations, the highest power of
r appearing in any of them will be z"+tk=1 Therefore, we shall be able to eliminate
so many powers of z, that " will be the highest power uneliminated and n -k will
be the degree of a member of the Sturmian polynomial remainder sequence gener-
ated by p(z) and q(z). Moreover, Sylvester showed that the polynomial remainders
thus obtained are what he terms simplified residues; that is, the coefficients are the
smallest possible obtained without integer gcd computations and without introduc-
ing rationals. Stated in other words, the polynomial remainders have been freed
from their corresponding allotrious factors.

It has been proved [13] that if we want to compute the polynomial remainder
sequence py(z), p2(z), pa(z), ..., pa(z), deg(pi(z)) =n, deg(pe(2)) =m, n2>m,
we can obtain the (negated) coefficients of the (i + 1)th member of the prs, ¢ =
0,1,2,..., h — 1, as minors formed from the first 2i rows of (§) by successively
associating with the first 2i-1 columns (of the (2i) by (2n) matrix) each succeeding
column in turn.

Instead of proceeding as above, we transform the matrix corresponding to the
resultant (S) into its upper triangular form and obtain the members of the prs with



:2e help of Theorem 2 below. We also use Bareiss's integer-preserving transforma-
zion algorithm [4]; that is:
let rool> =1, and r'g?) = rij» LJ=1,...,n;thenfor k <i,; <n,
FE=D - (k=1)
(5) ry =/ B

h—ln 1

A1) (k 1)
Tik x]

Of particular importance in Ba.reiss's algorithm is the fact that the determinant
of order 2 is divided ezactly by rk 1 ,1 1 (the proof is very short and clear and is
described in Bareiss’s paper [4]) and that the resulting coefficients are the smallest
that can be expected without coefficient gcd computations and without introduc-
ing rationals. Notice how all the complicated expressions for 3; in the reduced
and subresultant prs algorithms are mapped to the simple factor rzk:'zk , of this

method.

It should be pointed out that using Bareiss’s algorithm we will have to perform
pivots (interchange two rows) which will result in a change of signs. We also define
the term bubble pivot as follows: if the diagonal element in row i is zero and the
next nonzero element down the column is in row ¢ + j. j > 1, then row i + J will
become row ¢ after pairwise interchanging it with the rows above it. Bubble pivot
preserves the symmetry of the determinant.

We have the following theorem.

THEOREM 2 ([2]). Let pi(z) and pa(z) be two polvnomials of degrees n and m
respectively, n > m. Using Bareiss’s algorithm transform the matrix corresponding
to ress(pi(z). p2(z)) Into its upper triangular form Ts(R); let n; be the degree
of the polynomial corresponding to the i-th row of Ts(R). i = 1.2..... 2n, and
let pi(z).k > 2, be the kth member of the (complete or incomplete) polynomial
remainder sequence of p\(z) and pa(z). Then if pi(r) is in row i of Ts(R), the
coefficients of pyyy(z) (within sign) are obtained from row i + J of Ts(R), where
J is the smallest integer such that n,4+; < n,. (If n = m associate both pi(z) and
p2(z) with the first row of Ts(R).)

We see, therefore, that based on Theorem 2, we have a new method to compute
the polynomial remainder sequence and a greatest common divisor of two poly-
nomials. This new method uniformly treats both complete and incomplete prs's
and provides the smallest coefficients that can be expected without coefficient gcd
computation.

3. The matrix-triangularization subresultant prs method. The inputs
are two (primitive) polynomials in Z[z], pi(z) = cpz” +£noy + - -+ o and p2(7) =
dm'rm+dm—lrm~l+”'+d07 Cn#ow (Im #0, an-

Step 1: Form the resultant (S),ress(pi(+),p2()), of the two polynomials p(z)
and pa().

Step 2: Using Bareiss’s algorithm (and bubble pivot) transform the resultant (S)
into its upper triangular form Ts(R); then the coefficients of all the members of the



polynomial remainder sequence of p;(z) and pa2(z) are obtained from the rows of

Ts(R) with the help of Theorem 2.

For this method we have proved [2] that its computing time is:

THEOREM 3. Let p1(z) = cpz™ + cney 2™ + -+ + ¢p and po(z) = dpz™ +
dp1z™ P+~ +dy, ¢cp #0, dn # 0, n > m be two (primitive) polynomials
in Z[z] and for some polynomial P(z) in Z[z] let |P|. represent its maximum
coefficient in absolute value. Then the method described above computes a greatest
common divisor of p1(z) and p2(z) along with all the polynomial remainders in time

0(n°L(Jpleo)?)
where |ploo = max(|p1]oe), P2]0)-

Below we present an incomplete example where bubble pivoting is needed {3];
note that there is a difference of 3 in the degrees of the members of the prs, as
opposed to a difference of 2 in Knuth’s “classic” incomplete example [2].

Example. Let us find the polynomial remainder sequence of the polynomials
pi(z) = 32° + 528 + 727 = 32% - 52° — Tzt + 32° + 527 + Tz - 2 and py(z) =
28 — 23 — 22 — £ — 1. This incomplete prs example presents a variation of three
in the degrees of its members (from 7 to 4) and it requires a bubble pivot in the
matrix-triangularization method; that is, the special kind of pivot described above
will take place between rows that are not adjacent (the pivoted rows are marked by
“#).

The matrix-triangularization subresultant prs method

Tow degree
1> 357 -3-7337-200000000 (9)
2> 0100-100-1-1-100000000 (8)
3) 00570 -5 —763810 -20000000 (8)
4> 000 -7007 -6 —13 —15 -30000000 (M
3) 0000 —4900792319 —-5514000000 (7)
#6) 00000 —3430 —243017393 —4139800000 (7)
#7) 000000 —2401 — 310 — 1273 1637 — 339 36 — 2891686 000 0(7)
8> 00000002038 4459 7546 3430 2401000000 (4)
9) 00000000 — 1764 — 3822 — 6468 —2940 — 205800000 (4)
10) 000000000 15123276 5344 252017640000 (4)
11) 000000000025811 — 189824520 —811 —3024000 (4)

12> 00000000000 —64205 — 77246 — 37568 — 28403000 (3)
13) 000000000000 2124693 449379 519299 1284100 0 (3
14> 0000000000000 — 5240853 — 1800739 — 201863900 (2
15) 00000000000000 — 22009248 — 24412716 10481706 0 (2
16> 000000000000000 —405801132476203300 (1
17) 0000000000000000 —398219984 81602264 (
18> 00000000000000000 682427564 (0

The members of the prs are obtained from the rows whose numbers are followed by
'~‘>

17"

, except for row 8 in which case the smaller coefficients shown below, in 6 >,



are taken as the coefficients of the polynomial. The largest integer generated is

- b T

343317119202448 {17 digits].

Pivoted row 6 during transformation 6. Stored row is:

&> 000000042911547049000000

Pivoted row 7 during transformation 7. Stored is:

7) 0000000294637 1073490343000000
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