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Abstract. We present in some detail the two classical subre-
sultant prs methods that exist in the literature for computing
polynomial remainder sequences (prs) and greatest common divi-
sors (ged) of polynomials over the integers. Both methods are
based on Sylvester's paper of 1853 {12}, the first method makes
use of pseudodivisions whereas the second one triangularizes a
matrix corresponding to the resultant of the two polynomials
under consideration. The Jfollowing figure demonstrates the
relation of these two methods [3]

I —————— Sylvester's paper of 1853 -—-—- >
pseudodivisions matrix-triangularization
The two methods. We restrict our discussion 1o univariate

polynomials with integer coefficients and to computations in
Z[x], which is not a - Euclidean domain. Given the polynomial
pH)=c X"+ cn_lx""+...wc0, its  degree is  denoted by
deg(p(x)) and ¢, its leading coefficient, by le{p(x)); more-
over, px) Is called primitive if its coefficlents are  relati-
vely prime.  Consider now 91(") and p2(x), two primitive, non-
zero polynomials in axl, deg(pl(x))=n and deg(pz(x))=m,
n=m.

The Psecudodivisions Subresultant PRS Method. We know that the
polynomial division algorithm (with remainder), call it PD,
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that works over a fleld, cannot be used in Z[x] since 1t re-
quires exact divisibility by lc(pz(x)). So we use pseudodivi-
sion, which always yields a pseudoquotient and pseudoremainder,
in this process we have to premultiply p,(x) by lc(pz(x))*‘”"“‘1
and then apply algorithm PD. That is, we have

1e(p, (X)) ™ Py (X)=aX)PX)+ P (), deg(p,(¥)) < deg(p,(x) (1)
Applying the same process {0 p2(x) and pa(x), and then to

ps(x) and p4(x), etc  (Euclid’s algorithm), Wwe obtain a
polynomial remainder seguence (prs) :
Pl(X), P2(X), P3(X), ,Ph(x), Phﬂ(x) =0

where ph(x) nonzero is a greatest common divisor of pl(x) and
p2(x). If nl=deg(p£(x)) and we have nl—n“l:l, for all i,
the prs is called complete, otherwise, it Is «called incomplete.
The problem with the above approach is that the coefficients of
the polynomials grow exponentially and hence slow down the com-
putations. We wish to control this coefficient growth. Obser-
ve that equation (1) can be also written in a more general form
as

1e(p,, ()

i’

+1
1D %) = Q0P (%) + BP0
deg(p,,,(¥) < deglp, ,(x), (2
i=12 .., h-1 Thatis, if a method for choosing 5: is
given, the above equation provides an algorithm for construc—
ting a prs. .
In Sylvester's approach of 1853 we have [12]

g =1 and B=le(p(x)% 1=2,3, ..., L, 3)
which is ideally suited for complete prs’s; for incomplete
prs’'s we can easily modify (3) to obtain

my Tt ‘
Bl=1 and 6¢=1c(p£(x)) , 1=2,3,...,h-1 (39)

It should be noted that using (37) we obtain smaller coeffi-
cients than those obtained by (3), but still, we do not obtain

the smallest possible coefficients. This was achieved by :

Habicht in 1948 [8].
In Habicht's approach we have




227

. ",; : R, n~n . +] R 3
=D 2 and B=(-1' T acpopH,t
| i=2,3,...,h-1, (4)
where
n,—#, r,_—», 1—{r,_ -n)
H, = 1e(p,(x) 12 and H,=1le(px)) H, 7Y

i=3,4,...,h-1

In the case of incomplete prs’s using (4) we obtain the smal-
lest possible coefficients without coefficient gcd calcula-
tions. (Also note that in the case of complete prs's using
(3), (37) and (4) we obtain the same coefficients.)

" In both cases above what we did was to divide pz+2(x) by
the corresponding Bz before we use it again. The proofs that
the B's shown in (3) and (4) exactly divide pm(x) have  been
presented in a very complicated fashion in [5], [6], and [7]
and have up to now obscured simple divisibility properties
[10]; see also [1].

The Matrix Triangularization Subresultant PRS Method. In this

case we make use of Sylvester's form of the resultant (for the
two polynomials P, {(x) and »p (x) mentioned above)which c¢an be
expressed in the fol]owmg form [2)

€, €y -+ S5 0O 0
4 d, 4 - 43 0 O 0
0 cn o 0 0
ress(pi,p:,) = 0 dn d0 0 0 S
0 ... 0 ¢, ¢, .. g
o ... 0 4, dn_1 <1,J

Note that p2(x) has been transformed into a polynomial of deg-
ree n by introducing zero coefficients and that this is a mat-
rix of order 2n (as opposed to n+m for the forms of the resul-
tant encountered in the 1literature). This form of the resul-
tant appears in Sylvester’'s paper of 1853 - [12] and is only once
mentioned in the literature by Van Vieck [13].
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Van Vleck showed that, if we have the polynomial remainder
sequence p,(x), pz(x),...,ph(x) we can obtain the (negated)
coefficients of the (i+1}th member of the prs, i=0,1,2,...
, h=1, as minors formed from the first 21 rows of (S) by suc-
cessively associating with the first 21-1 columns {of the 21 by
2n matrix) each successive column in turn. Moreover, it has
been proved by Habicht [8] that the coefficients obtained in
this way are the smallest possible without coefficient ged com-
putations; see also [9]

Using  Bareiss's  integer-preserving transformation  algo-
rithm [4] (see also Malashonok’s preprint [11}) and bubble
plvot we have shown the following:

Theorem. Let px(x) and pz(x) be t{wo polynomials of degree n
and m respectively, nzm. Using Bareiss’s algorithm transform
the matrix Ms corresponding to ress(pl(x),pz(x)) into its upper
triangular form TMy; let n, be the degree of the polynomial
corresponding to the ith row of T(MS), i=1,2, ..,2n, and
Jet pk(x), k=2, be the kth member of the {(complete or incomp-
lete) polynomial remainder sequence of pl(x) and pz(x). Then
if pk(x) is in row i of T(MS), the coefficients of pM(x)
{within sign) are obtained Iroun row i+j of T(Ms), where | is
the smallest integer such that n£+i< n, (iff n=m associate
both p,(x) and pz(x) with the first row of T(Ms).)

For a proof and examples see [3].
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