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1. Introduction ,° ..

Let I be an integral domain, and let ™ |
A; = Ea;jxm_‘.’,.' 5
j=1 G

where a;; € I,i=1,2,...,n; then
1

mat(Al,A.z,---»ffln‘)

denotes the matrix (a;;) of order n x m. Mdféqver, let A,B €

I[z],deg A = m,deg B = n and let
My =mat(x"'k_1A, x"—"’."ZA, oA,
g™ *=1B,2™"*~2B,..., B),
0 < k < min(m, n)

be the matrix of order (m + n — 2k) x (m + n — k), wherQ Mo is the
well-known Sylvester’s matrix. Then, kth subresultant polynomial of A
and B is called the polynomial

k
Sk = ZM,';:C",
i=0

of degree < k, where M} is a minor of the matrlx M of order m+n—2k.
formed by the elements of columns 1,2,...,m -+ n — 2k — 1 and column

m-+n—k —1i. Habicht’s known theorem [4] estabhshes a relation between -
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the subresultant polynomials So, 51,...,Smin(m,n)-1 and the polynomial
remainder sequence(prs) of A and B, and also demonstrates the so-called
gap structure. )

According to the matrix-triangularization subresultant prs method
(see [1] or [2]) all the subresultant polynomials ‘of A and B can be
computed within sign by transforming the matrix (suggested by Sylves-
ter [7])

mat(xmax(m,n)—lA’ xmax(m,n)—lB’

zmax(m,n)—ZA’ xmax(m,n)-2B, LA, B),

of order 2 - max(m,n), into its upper triangular form with the help of
Dodgson’s integer preserving transformations {3]; they are then located
using a theorem by Van Vleck [8] and its extension [2]. (We depart from
established practice and we give credit to Dodgson, and not to Bareiss,
for the integer preserving transformations [6]. Charles Lutwidge Dodgson
(1832-1898) is the same person widely known for his writing Alice in
Wonderland under the pseudonym Lewis Carroll.)

Below we propose a matrix-triangularization subresultant prs method

~ allowing us to ezactly compute and locate the members of the prs (without

using Van Vleck’s theorem [8]) by applying Dodgson’s integer preserving
transformations to a matrix of order m +n.

2. The Method and Related Theorems
We assume that deg A = m > deg B = n and we denote by M the

" following matrix

M =mat(z™'B,z™"2B,...,z""1B,2" "4,

z""2B,z""%4,...,B, A)

of order m + n with elements a;;(j,7 = 1,2,...,m + n). (This matrix
can be obtained from Sylvester's matrix My after a rearrangement of its
rows.)

Dodgson’s integer preserving transformations

k k k k
Jert (@50 — 058y
| - ‘ (1)
J ak 1
k—1,k—1

PAd
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(see. [2],[3],[5] or'[6]) where we set aj, = 1 and it is-assumed that af, s
0,k =1,2,...,m+n, are applied to the matrix M = (a;;) and transform
it to the upper-tr:angular matnx Mp = (bi;),(i,7 = 1, 2 .oym o+ n),
“ where
CL b*-—-{q forz>]
Vel fori<y
and, in general,

[ 2 ajy k-1 aj
. .
a;; = : :
J
’ Qk-1,1 ++¢ Okl f—1 - Ck—1,5

aiy N T | aij

‘ withl1 <k<m+n, andk<z,3<m+n

The following two theorems can be used to locate the members of the
prs in the rows of Mp; proofs will be presented elsewhere. The correct
sign is computed. . -

Case 1: If none of the diagonal minors of the matrix M is equal to
zero, then we have:

Theorem 1. Dodgson’s integer preserving transformatlon will trans-
form matrix M to the upper triangular matrix Mp, Whl(‘h contains all n
subresultants (located in rows m+n — 2k;k =0,1,2,...,n — 1)

k
S mie

i=0
where ‘
i (_1yo(k) mtn-2k
My = (-1) Qntn—2k,mbn—k—i
and

o(k) =(m =n+1) 4 (m—k) .
_(n-—-k)(Zm-—n-—k-{-'l)
- - ,
k=0,1,...,n~1. S

Case 2: If not all dxagonal minors of the matrix M are nonzero, then
we have:
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Theorem 2. Dodgson’s integer preserving transformations with bub-
ble pivot and choice of the pivot element by column, will transform matrix
M to the upper triangular matrix Mp, and at the same time will com-
pute all subresultants Si; if, in the process, s row replacements take place,
namely row j; replaces row i;, j, replaces iz, ..., j, replaces i,, (and af-
ter each replacement row 1, is immediately below row j,, p=1,2,...,s),
then (a) Sk = 0, for all k such that {2t2=fe) 5 g 5 (mE2=3s) apd for all
p=12...s (b)forallp=12,...,sif k= g—'—"-t'z‘—'-‘—iﬁ is an integer
number not in (a), Sk is located in row i, before it is replaced by row jj,.
(c) for the remaining k,(k = 0,1,...,n — 1 and those not in (a) or (b))
Sy is located in row j = m 4+ n — 2k, ‘

Moreover, in (b) and (c) the subresultant Sy = Z:‘;o Mjz', is located
in row j in such a way that

My = (_1)0(k?+0(j)a;‘,j+k—i

. where

k)(2m —n -k +1)

o (k) =(n -

2 1
.7) Z]p Zip,jij,iij-
=1 .

Note that in cases (b) and (c) Theorem 2 reduces to Theorem 1 in the
case of a complete prs, and due to the fact that rows above row j change
places, the sign changes by a factor (—1)70).
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In this paper we compare two real root isolation methods (both deriva-

" tives of Vincent's theorem of 1836) using Descartes’ Rule of Signs: the

Interval Bisection method, and the Continued Fractions method. We
present some time-saving improvements to both methods. Comparing
computation times we conclude that the Continued Fractions method
works much faster save for the case of very many very large roots.

1. Introduction

Isolation of real roots of univariate polynomials is the time-critical part
of any algorithm for complex root isolation. Therefore the efficiency
of the real root isolation algorithm is essential for developing efficient,
guaranteed and precise root-finding strategies.

The present paper contains an analysis of 2 different techniques for real
roots isolation; both are based on Vincent’s theorem of 1836 (see (1] and
[2]) and Descartes’ rule of signs, and were proposed by the first named
author (see [3}, {1], [2] and article [4] for a survey of various techniques).

We discuss the behavior of the actual root isolation programs using the
basic techniques along with the behaviour of a specific implementational
variations thereof, using interval arithmetic for preprocessing the data.

The timing statistics over a wide variety of polynomials and segments
seem to suggest that the Continued Fractions method of root isolation
works significantly faster in most cases but that an actual implementation
should be also able to switch to the Interval Bisection in a small class



