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ALKIVIADIS G. AKRITAS, EVGENIA K. AKRITAS, a n d  GENADII I. MALASCHONOK 

We present an impr{wed variant of the matrix-triangularization subresultant prs method [1] fi~r the 
computation of a greatest comnum divi~w of two polynomials A and B (of degrees m and n, respectively) 
along with their polynomial remainder ~quence. It is impr~wed in the sense that we obtain complete 
theoretical results, independent {}f Van Vleck's theorem [13] (which is not always tnle [2, 6]), and, instead 
of transfornfing a matrix of order 2 .max(m, n) [1], we are now transforming a matrix of order m +  n. 
An example is al.,a~ induded to clarify the concepts. 

MaTp qHOe SbIq CAeH e cy6pe3yAt, TaHTHBIX 
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A .  F. AKP//rrAc, E. K .  AKPHTAC, F. I/'l. MAAAmOHOK 

Flpe~lcraBJ'lerl yJlyqnleHH/:,ll~ Bapl.laHT MaTpl.lqHo-rpHaHlyJl.qpH3alIHOHHOlO cy6pe3yJlbTanTHOl'O MeToaa no-  

:lllHOMtlaJlbl-n~x ,u~c:xea<>marem, ti<m'refi <RTraTKOB ([I['IO) [1] a;xa ma,~nc.aemta Hal.16O/lbnlero ~gSntexo ae- 
:lnTedl~! 21ByX MHOrOttdleH(}B m n B (CTelleHelTI m ii n C{R)TBC~'I'(YrBeHHO) C O}IHOBpeMeHHI~M HaxoxK31eHHeM 

HX ~lOl']. YJlytlnleHne 3aKdiiottaeTcI, l B TOM, qTO IlOdlyqeHl~I 3aKOHt,IeHHIMe TeOpeTrtqecKne pe3yJlt, TaTIM, 

ae3aBr, lCrlMl:,le OX T~}pCMbl Baa  B.aer.a [13] (KOTopaa tie Bcerlta cupaBeaJmma, CM [fi, 6]). KI.~Me XOn~, 

B.~ecxo npe~6pa2o~anu~ Maxpnm,1 nopsaKa 2-max(m,  n) [1] renepb upeo6pa2yexc~ Maxpnua nop~taKa 
D2 + '/Z. I"Ipe, llCTaB.rleH qlIUleHtibllYl IlptiMep ~ldl~l IIdl211oCTpalll.n,I 3THX IIOJIo)KeHHI~I. 

1. Introduction 
Let [ be  an  in teg ra l  d o m a i n ,  a n d  let 

whe re  c/j E 3", i = 1, 2 , . . . , n ;  t hen  

771 

A~ = ~ cox m-~ 
7=1 

mat(A1,  A2, �9 � 9  A~) 

deno tes  the  m a t r i x  ( a q )  of  o r d e r  n • m.  Moreover ,  let A,B E I [z ] ,  d e g A  = ra,  d e g B  = n 

a n d  let  

Mk = m a t ( z ' ~ - k - l A ,  zn-k-ZA,..., A, x'n-k-lB, zm-k-2B,..., B ) ,  0 < k < m i n ( m ,  n )  
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be the matrix of order (m + n - 2k) x (m + n - k), where -A/[0 is the well-known Sylvester's 
matrix. Then,  kth subresultant polynomial of A and /3 is called the polynomial 

k 

Sk = E M~ xi 
i=0  

of degree _< k, where M~ is a minor of the matrix M~ of order ra + n - 2k, formed by the 
elements of  columns l, 2 , . . . ,  ra + n - 2k - 1 and column ra + n - k - i. Habicht's known 
theorem [7"] establishes a relation between the subresultant polynomials So, 5 1 , . . . ,  Smin(m,n)-i 
and the polynomial remainder  sequence (prs) of A and /3, and also demonstrates the so-called 
gap structure. (For a surprisingly simple proof  of  Habicht's theorem see Gonz~ilez et al [6].) 

According to the matrix-triangularization subresultant prs method (see for example Akritas' 
book [2] or papers [1, 3]) all the subresultant polynomials of  A and /3 can be computed within 
sign by transforming the matrix (suggested by Sylvester [12]) 

mat(xmax(m'n)-l A, Xmax(m'~)-l /3, xmax(m'n)-2 A, xmax(m'n)-2 /3, . . . , A, t3) 

of order 2 - m a x ( r n ,  n), into its upper  triangular form with the help of  Dodgson's integer 
preserving transformations [5]; they are then located using an extension of a theorem by Van 
Vleck [1, !3]. (We depart  from established practice and we give credit to Dodgson, and not 
to Bareiss [4], for the integer preserving transformations; see also the work of Waugh and 
Dwyer [14] where they use the same method as Bareiss, but 23 years earlier, and they name 
Dodgson as their source-differing from him only in the choice of the pivot element ([14], 
p. 266). Charles Lutwidge Dodgson (1832-1898) is the same person widely known for his 
writing A//ce in Wonderland under the pseudonym Lewis Carroll.) 

Below we propose a matrix-triangularization subresultant prs method allowing us to exactly 
compute and locate the members of  the prs (without using Van Vleck's theorem [13]) by applying 
Dodgson's integer preserving transformations to a matrix of  order rn + n. 

21 Our method and its theoretical justification 
We assume that deg A = m _> deg/3 = n and we denote by M the following matrix 

M = m a t ( x m - l B ,  xm-2B  . . . .  , x '~-lB, x'~-lA, x'~-2B, x '~-2A, . . . ,  B,  A)  

of order m + n with elements aq ( j ,  i = 1, 2 , . . . ,  m + n). (This matrix can be obtained from 
Sylvester's matrix M0 after a rearrangement  of  its rows.) 

Dodgson's integer preserving transformations (which can be easily proved using Sylvester's 
identity (S) below) 

k . k  k k (aijakk -- aikakj ) 
a~ +1 = (D) a k - 1  

k - l , k - 1  

(see [4, 5, 9, 14]) where we set a0~ = 1 and it is assumed that a~k # 0, k = 1, 2 , . . . ,  rn + n, are 
applied to the matrix M = (aij) and transform it to the upper-triangular matrix M o  = (b/j), 
( i , j  = 1, 2 , . . . , m  + n), where 

= f 0 for i > j 
b~j 

a~j for i < j 
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and, in general, 

a l l  

k 
a i j  = 

a k - l , 1  

a i l  

�9 . a l , k - 1  a l j  

�9 .. : : 

�9 . a k - l , k - 1  a k - l , j  

�9 �9 a i , k  - 1 a i j  

with l < k < m + n ,  and k < _ i , j < _ m + n .  

The following two theorems can be used to locate the members of  the prs in the rows of  
Mo .  The  carrect sign is computed. 

Case 1: If  none of the diagonal minors of the matrix M is equal to zero, then we 
have: 

Theorem 1. Dodgson's integer preserving transformation will transform matrix M to the 
upper triangular matrix MD, which contains all n subresultants (located in rows rn + n - 2k, 
k -: 0 , 1 , 2  . . . . .  n - l )  

k 

i=0 

where 

and 

= 

k = 

M •  t ~ a ( k )  m + n - 2 k  
-~- ( - -  L ] a r n + n _ 2 k , m + n _ k _  i 

( m - n + l ) + . . . + ( m - k ) =  

0,1 . . . . .  n - 1 .  

( n -  k ) ( 2 m -  n -  k + 1) 

P~oof. It is easy to see that the submatrix located in the upper  left corner of  the matrix M 
(where the matrix M was defined in the beginning of this section) and having ra + n - 2k rows 
and m + n - k columns (k = 0, 1 , . . . , n -  1) will be 

M~ = m a t ( x m - k - l B  . . . . .  x ~ - k - l B ,  x '~-k- lA,  x~ -k -2B ,  x n - k - 2 A  . . . . .  B ,  A). 

A/I~ differs from matr ix Mk (mentioned above) only in the ar rangement  of  the rows. That  is, 
in order  to obtain Mk from JkI~ it is necessary to rear range  

a ( k ) = ( m - n + l ) + . . . + ( m - k ) =  
( n -  k ) ( 2 m -  n - k + 1) 

adjacent rows�9 

Therefore  we have 
m ~ =  r lW(k)--~+n-2k \ - - ~ J  t ~ m + n - 2 k , m + n - k -  i 

w h e r e i = 0 , 1  . . . .  , k  and k = 0 , 1 , . . . , n - 1 .  [] 

Before we proceed further,  we state Sylvester's de terminant  identity [11] which is needed 
in the proof. If we set/3oOo = 1, Sylvester's identity can be expressed as 

de tDp(B)  = ( d e t B ) .  triP-1 w-p _ _ ~ ,p- l ,p- lJ  , 1 < p <  r (S)  
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where  B = ( b i j ) , ( i , j = l , 2 ,  . . , r ) ,  

fl~,p /3~,v+1 . . .  /3W,~ 

G ( B )  = : : . . .  

of o r d e r  r - p +  1, and  fliP, j (p, i, j = 1, 2 , . . . ,  r)  are  minors  (just like a~j def ined  above) ob ta ined  
f rom mat r ix  B by a d d i n g  row i and  column j to the (upper  left) corner  minor  of  o rde r  p -  1 
(see for  example  Malaschonok's  work [9]; [10], pages  a0-a,5; [4; or [8]). 

Case 2: If  not all d iagonal  minors  of the ma t r ix  M are  nonzero,  then we have the 
fol lowing theo rem (the te rm bubble pivot, used below, means  that,  af ter  pivoting,  row 
ip is immediately below row jp): 

T h e o r e m  2. Dodgson's integer preserving transformations with bubble pivot and choice o f  
the pivot d e m e n t  by column, will transform matrix M to the upper triangular matrix MD, 
and at the same time will compute all subresultants Sk; if, in the process, s row replacements 
take place, namely row j l  replaces row il, j2 replaces i 2 , . . . ,  js replaces is, (and after each 
replacement row ip is immediately below row jp, p = 1, 2 . . . . .  s), then (a) Sk = O, for all k 

such that (m+,-i~)2 > k >  (m+"-Je)2 and for all p = I, 2 , . . . ,  s. (b) for all p = 1, 2 . . . . .  s, i f  

k = (re+n-iv) is an integer number not in (a), Sk is located in row ip before  it is replaced by 
2 

row jp. (e) for the remaining k, (k = O, 1 , . . . ,  n - 1 and those not in (a) or (b)) Sk is located 
in row j = m + n - 2k. 

Moreover, in (b) and (c) the subresuhant Sk = ~ = o  M~ :ci, is located in row j in such a 
way that 

M~ = r ~w(k)+~(j)~J 
k- -  * } ~ j , j + k - i  

where  

( n -  k ) ( 2 m -  n -  k + l )  = 
2 

= ip, jp j, ip j. 
p = l  p = l  

Proof. It is c lear  tha t  the first m -  n + 1 d iagonal  minors  a re  not equal to zero because ass, for  
s = 1, 2 , . . . ,  m - n + 1, is the l ead ing  coefficient of  B;  the re fore  

s = (an )S  # 0, s = 1 , 2 , . . . , m - n + 1 .  a s s  

s = 0, with s-1 Suppose now that  for  some s > m - n + l  we have ass as_l,s_ 1 7 ~0.  In this 
case we have the fol lowing two subcases: 

$ 
I ai~ = O, for  all i = s, s + 1 , . . . ,  m + n. 

Here ,  m a k i n g  the co r re spondence  a~j +--+ fl~,~, a/~ +--* de t /3 ,  and  a s-1 v-1 s s - l , s - 1  ~ /~;-1,p-1 in Sylvester 's 
s = 0 for  i = s , s + l , . . . , m + n  if  and  only if  the first co lumn of  identi ty,  we see that  ais 
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Dp(B) is 0, and hence d e t B  = 0; that is all minors of the form a~ (k > s, i > s, j > s) are 

equal to zero, and therefore Sk = 0 for all k < (m+,~-s) 
- -  2 

8 s = 0 ,  for a l l i = s , s + t , . .  , p - l ;  aps#O. I I  a~s 

k = 0  ( s < k < p - 1 ,  In this subcase, using again Sylvester's identity, we see that all minors aij 

i > s, j > s). Therefore, Sk = 0 for all k such that (m+,~-s-:) > k > (m+,~-p+l) However it 
2 2 " 

is necessary to continue the computation of  the remaining subresultants Sk, k < (m+2'~-P); in 
s order to do this we use bubble-pivot to replace row s by row p, where aps # 0 plays the role 

of the corner mirror, and we now can continue Dodgson's integer preserving transformations. 
Such an interchange of rows results in all minors a/~ (k > p) being multiplied by ( - 1 )  (p-s), 

th,r is, all subresultants Sk, k = 0, 1 , . . . ,  kl (kl < ~ )  are being multiplied by ( - 1 )  (p-s). 

Dodgson's transformations may be continued further, as long as situations I or II  are not 

encountered. [] 

Note that in cases (b) and (c) Theorem 2 reduces to Theorem 1 in the case of  a complete 
p~, and due to the fact that rows above row j change places, the sign changes by a factor 

3. Example 
As in [1], it should be noted that if [P]~ represents the maximum coefficient in absolute value 
of a polynomial P over the integers, then the theoretical computing time of this method is 

where [PI~ = max(lAl~,  IBis ) .  Below, we present an example that helps clarify the method 
introduced above. 

Example. If  we triangularize the matrix M, of order 7, corresponding to the polynomials [2, 
Example 2, p. 270] 

A = 2 x  4 + 5x 3 + 5x 2 - 2x + 1 and 
t3 = 3x3 + 3x2 + 3 x - 4  

we obtain the following matrix: 

I 
3 3 3 - 4  0 0 0 

] 
0 9 9 9 - 1 2  0 0 
0 0 27 27 27 - 3 6  0 
0 0 0 - 6 3  135 0 0 
0 0 0 0 I47 - 3 1 5  0 
0 0 0 0 0 3411 - 5 8 8  
0 0 0 0 0 0 15683 

along with the information that one pivot took place and row 3 was replaced by row 4. 

The obtained polynomial remainder sequence is incomplete, and we only have the re- 
mainders - 6 3 x  + 135 and 15683, of degree 1 and 0 respectively. However, we still have 
to determine the signs of these remainders; since pivoting took place, we are going to use 
Theorem 2 above. 
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In Theorem 2 we see have that we have to compute the quantity ( -1 )  "(k}§ for k = 0, 
and 2, and j = 4, by which the two remainders are going to be multiplied. By the formula 
stated in the theorem, and given that the degrees are m = 4 and r~ = 3, we see that 

�9 ~ ( 0 ) = ( 3 - 0 ) ( 2 . 4 - 3 - 0 + 1 ) / 2 = 9 ,  

�9 r  

�9 { 7 ( 4 ) = 4 - 3 = 1 .  

Therefore, 15683, the remainder of degree 0, is multiplied times ( -1 )  9+1 = 1 whereas, 
5'2 = - 6 3 z  + 135, the remainder of degree 1, is multiplied times ( -1 )  2+1 = -1 .  
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