‘H
- i
THEMATICS
A MA AND
;ﬁ %/ COMPUTERS
IN SIMULATION

ELSEVIER Mathematics and Computers in Simulation 42 (1996) 585-593

Various proofs of Sylvester’s (determinant) identity
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Abstract

Despite the fact that the importance of Sylvester’s determinant identity has been recognized in the past, we were able to
find only one proof of it in English (Bareiss, 1968), with reference to some others. (Recall that Sylvester (1857) stated this
theorem without proof.) Having used this identity, recently, in the validity proof of our new, improved, matrix-triangularization
subresultant polynomial remainder sequence method (Akritas et al., 1995), we decided to collect all the proofs we found of
this identity —one in English, four in German and two in Russian, in that order—in a single paper (Akritas et al., 1992). It
turns out that the proof in English is identical to an earlier one in German. Due to space limitations two proofs are omitted.
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1. Introduction

Throughout this paper we consider ann x n matrix A = (a;;) (i, j = 1,2, ..., n) with elements a;; and
determinant |A[, also written det A. We introduce the notation

all ay k-1 alj
=1 : :
iy ’
Qk—1.1 - Ghk—Lk—1 Gk-—1,j
ail A k—1 ajj

with 1<k<n, and k<i, j<n; that is, this determinant, of order &, is obtained from the matrix A by adding
row i and column j to the upper left corner minor of order £ — 1.
If we set a80 = 1, then for 1< p<n, Sylvester’s identity can be expressed as

det Dp(A) = (det A) - (@?_} ,_ "7, )

where

* Corresponding author. Partially supported by GRF grant 3089-XX-0038 (1993) of the University of Kansas.

0378-4754/96/$15.00 © 1996 Elsevier Science B.V. All rights reserved
PII S0378-4754(96)00035-3



586 A.G. Akritas et al. / Mathematics and Computers in Simulation 42 (1996) 585-593

p I P
app T
“54-1 p A+l prl e “5+1 n
Dp(A) = o ) } )
p P
anp an,p—i—l arItJn
ofordern — p+ 1 and 05( p,i,j=1,2, ..., n)are minors, of order p, obtained from matrix A by adding

row i and column j to the (upper left) corner minor of order p — 1 (see for example [3, 6, 7, 8, pp. 30-35]).
Note that

(@) =(@j)  (.j=12...,n),

as well as the fact (easily shown using any of the proofs of the following section) that (1) is valid over an
integral domain.

To see an application of Sylvester’s identity consider the process of matrix-triangularization over the
integers [7]; it is assumed that all diagonal minors of A are different from zero:

af #0, k=1,2,....n

In the first step of this process, matrix A(= A(!) is transformed in the following way: from each row
with index i, i>2, multiplied times a1, subtract the first row multiplied times a;1. The elements of the
resulting matrix A@ are as follows:

alzj = allj, al-zl =0 and al-zj fori > 1,

where the notation was introduced above. Observe that the elements of A®) have grown in size and the
same is expected of the elements of each subsequently updated matrix. This growth needs to be controlled
in order to avoid wasting computer memory and time. Using (1), at the kth step, k2, the elements of A (k+1)
can be reduced by dividing out a diagonal minor of order £ — 1. To see this, assume that at the (k — 1)th
step we obtained matrix A%) with elements

a; fori=12,... k-1, j>i,
al; =10 fori>j, j=12...k-1,
ak. for i, j>k.

)

Then, at the kth step matrix A¥) is transformed as follows: from each row with index i, i >k + 1, multiplied
times a,fk, subtract the row with index &, multiplied times a{‘k; then the (i, j)th element of row i, j 2k + 1,
is of the form

koo ok _ ko k
Ak - G5 — Ak " U @)

and in the first k columns there are zeros. Consider now (1) withdet A = afjH, of orderk + 1, fork<i<n,
k< j< n, and under the condition p = k; we then obtain

k _k
A 9

_ k4l k-1
=4 Qe k-1

from which we see that (2), and hence all the updated elements of A%+D can be reduced by dividing out
the diagonal minor of order k — 1.
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2. The various proofs

In this section we present all seven proofs of Sylvester’s identity (1). However, due to space restrictions,
only three are presented in full: the one by Bareiss, one proved with the help of Jacobi’s Theorem and one
by Malaschonok; a brief outline is given for the rest. The whole presentation is in the alphabetical order
of the language they were written in; namely, we first present Bareiss’s proof (written in English), then the
four proofs found in Kowalewski’s book (written in German) and finally Malaschonok’s proofs (written in
Russian). We will also denote them as B, K1, K2, K3, K4, M1 and M2, respectively, and we will try to
compare them.

2.1. Bareiss’s proof (B)

This proof of (1) [3] is a compact form of K2, the proof found in Kowalewski’s book [6, pp. 91-93], and
is based on the fact that

A7l = VIA%I - (adj A), 3)

where the 'determinant of A is assumed # 0, and (adj A) is the n X n matrix whose (i, j)th entry (adj A);;
is (=17 det A ji = @ij; &j; is the algebraic complement of a;; and A;; is the matrix obtained by crossing
out the ith row and the jth column:

(adj A) = ()T,

the transpose of (c;;), where o;; = (—1)*/ det A;;. The above equation is a direct corollary of the well
known fact that

(adjA) - A= |A| 1,

where [ is the identity matrix. (See also Sections 2.3 and 2.7.)
To start the proof of (1), we partition A and factor by block triangularization such that

Az(WX):(WO)(I wlx )
Y Z Y1) \oz-ywlx)
where W is a nonsingular square matrix of order p — 1. Then
Al = |W|-1Z-YWIX]. “)
Multiplying both sides by |W|"~7, Eq. (4) becomes
IWIP|Al = |IW|-1Z - YW~ X|| &)

because the second determinant on the right-hand side of (4) is of order (n — p + 1). Consider ai’}, the
determinant of order p (p<i, j<n) which is |W| bordered by a row and a column. If we apply now the
identity (4) to each element of the determinant on the right-hand side of (5) we obtain

p—1p—1
4R (a,-j -3 > air<W—1>rsasj) =af; (p<i,j<n). (6)

r=1 s=1
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Since |W| = a;’:ll‘p_ 1» Eq. (5) takes the form of Sylvester’s identity (1).
The validity of Eq. (6) can be seen if we expand a,‘.'} by minors according to the last column, then expand

each minor (except |W|) according to the last row and, finally, make use of (3).

2.2. First proof in Kowalewski’s book (K1)

This proof of (1), due to Studnicka [6, pp. 76-80], is based on induction. It is straightforward and rather
long, no special theorems are used, and can be understood even by high school students. For details see [2]
or [6].

2.3. Second proof in Kowalewski's book (K2)

This proof of (1) [6, pp. 91-93] is the long version of the one presented by Bareiss. Namely, both B and
K2 are different versions of one and the same proof, since they are based on the identity

—1p-1
po_ .
a,s = arvap [ p—1 Z Z] ApsQragQpo

where a,; denotes the algebraic complement of a,s in a][; ] Lp—1-
The only difference between the two proofs is that, in K2, the composition of rows, premultiplied times
a coefficient, corresponds to matrix multiplication in B. (See also Sections 2.1 and 2.7.)

2.4. Third proof in Kowalewski’s book (K3)

This is an elegant proof of (1) [6, pp. 93-94] based on Jacobi’s identity [5], which can be stated as
follows:

Jacobi (1841): Let ~|A| # 0 be a nonvanishing determinant, and let |(adj A)| be its adjoint determinant.
Moreover, le~t [(adjA)?|, of order p, be a minor of |(adj A)|, and let al, be the corresponding minor of |A|.
Then |(adj A)P| differs from the algebraic complement of af; by the factor | AP,

The third proof of (1) can now be stated as follows. Consider |A| as defined above, and its adjoint
determinant |(adj A)|, defined as

(adj A)1; (adj A);z ... (adj A)in

’ (adj A)21  (adj A)2 ... (adj A)an
l(adj A)| = : : . : , (7

(adj Adni (adj Apa ... (adj Adnn

where we follow Kowalewski’s notation now and do not transpose the matrix. In (7) consider the minor
(adj A)pp ... (adj A)pp
(adj A" P* =] AP 8)
(adj A)pp ... (adj Ay
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If we now delete in (8) row r and column s (r, s = p, ..., n), we obtain a determinant of order (n — p),
which by Jacobi’s Theorem above is equal to

an ... a1p-1 als
|A|n—p+l . : '-. N N —_ IAln—p+la£;
ap—1,1 --- QGp—1,p—1 Ap—1;
arl ... Qrp-1 Ars

multiplied times (—1)"5. )
However, the algebraic complement of (adj A), in |(adj AP+ s also

n—p+1
|A|" TP al

and, therefore, the determinant adjoint to |(adj A)"=P+1| has the value

p 14
app e ap,,
|A|(n—p+l)(n—p—1) . : .
P
ab, ... al,

On the other hand, since |(adj A)| = |A|"~!, this adjoint determinant is equal to |(adj Ayr—ptl {"~P or,
since (by Jacobi’s Theorem)

ay ... ayp-1
l(adj Ay~ P* =} : . - |AI"P,
ap—1,1 --- Qp—1,p—1

this adjoint determinant is equal to

n—p
at -.. QAi,p—1
|A|("—P)2 . .
ap—1,1 --- Ap—1,p—1
From the above it follows that
p P n—p

app --- Gpp air ... ajp-i

ab, ... ah, Ap_1,1 --. Gp_1,p-1

which is Sylvester’s identity.

2.5. Fourth proof in Kowalewski’s book (K4)

This gives us more than just the proof of Sylvester’s identity (1); namely, it proves {6, pp. 100—-101] the
generalized identity of Sylvester, also known as the Sylvester—Kowalewski identity, a partial instance of
which is Sylvester’s identity.
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The generalized identity can be expressed as

det Dm(A) = (a;’ ll )(m p+1) |A|( ) (9)

from which we see that, for m = p, (4) reduces to (1).

2.6. Malaschonok’s first proof (M1)

This proof of (1) [7] differs from the other ones in that it does not require matrix A to be defined over a
field, and, therefore, does not require a special proof for the case det A = 0, based on the continuity of the
determinants. Hence, M1 applies to matrices over any commutative ring.

This proof is based on the following equation (which is obtained by expanding a accordmg to the last
column):

p_  p-l
ij = %p—1,p—19ij — Z au“(w) ’ (10)

where 2< p<n, 1<i, j<n, a(';l.—)l is the minor of order p — 1, which is located in the upper left corner of A,
if in A we replace row s (s<p) by row i, and

al.’;.:O for2<p<n, i < p, j<n

or for 2<p<n, i<n j < p. (1)

To prove Sylvester’s identity we transform matrix A in the following way: we multiply each row with

number i, p<i<n, times ap , and subtract from it each one of the rows with numbers s, 1<s < p,

p 1. p
multiplied times the minor a( si) . The resulting matrix is then

T=(j, i,j=12....n,

with elements
aij, ISi < p+1, 1<j<n,
tij = 1 = 1
=) gP - : :
G~ Ly P ISisn 1<j<n
-

and determinant
det T = (det A) - (ap 1 - l)”"P. (12)

If we make use of (10) and (11), then it is possible to write the matrix 7 as follows :
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(ai] - - dip—1 Qip - Qin

a ---axp—-1 a42p - A2p
T=|apt - app-i gpp gP"
o -.. 0 ap+1p . ap+1’n

P P

\ 0 0 ap, akb,

If we expand the above matrix T according to the minors contained in the first p rows, using Laplace’s
theorem

|Al=)_IM||M],

where M is the algebraic complement of M, and the sum is taken over the (r'r'l) products (m being the
specified rows containing the minors), we have
=1 1,2,....p
"T[l,z,...,p— l,s]

1,2,...,p
T|:1,2,...,p—1,s:|
where in the brackets above, the first row indicates which rows of T are used and the second row indicates

which columns of T are used.
Here we consider that all minors of the type

=1 1,2,....,p
‘TI:I,Z...,p—l,s]

det T = (-1F* : (13)

s=p

L}

which are obtained by crossing out rows 1, 2, ..., p and columns gy, g2, . .., gp, are equal to zero, except
for those minors in which among the crossed out columns g1, g2, . . ., gp are contained all the zero columns
,2,....,p— 1.

Comparing the matrices A, D,(A) and T, we observe that there exist the following two equalities of
minors for s> p :

1,2,...,p _ 1,2,....p . p
‘T[1,2,...,p—1,s:| ~‘A[1,2,...,p—1,s:H—'aps’
—1L2,....p J S—
v R

Therefore, Eq. (13) now becomes

n
det T =) (—=1)!*T6-PtDgr
s=p

Dp(A)[f]’.

However, the right-hand side of the above equation represents the expansion of the determinant of the
matrix D, (A) by the first row. Therefore, we arrive at the equality

det Dp(A) =det T. (14)
Finally, from Eqgs. (12) and (14) immediately follows Sylvester’s identity (1).
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2.7. Malaschonok’s second proof (M2)

This proof is based on (10) and (11) of Section 2.6.
To begin the proof, let

W X
=(v2),

where W is a square submatrix of order p — 1; more precisely, we have det W = a ﬁ_—ll |- Moreover, let

p—
1 0

Iy_| = )

0 1

be the identity diagonal matrix of order p — 1, and let

p—

1
p—l.p-1 0

a
In_p+1(a) =
p—1

0 ap_1,p-1

be the diagonal matrix of order n — p + 1, with elements a;,’:]l.
Set

p-1

[i, j] = det W;jy,
where W(;j is obtained from W by replacing row i by row j (i.e. using the convention established in
Section 2.6 we have [i, j] = a(’;j_)l) and consider the (n — p + 1) x (p — 1) matrix
[l$p] LR [P_ lap]
A = S :
[L,n] ... [p—1,n]
Then, using (10) and (11), we have the matrix identity

Iy 0 (W X
(%" @) 4= (5 o) @

from which we obtain the determinantal identity

—1 _ -
(@~} ,_ " P! (det A) = (det Dy(A))-ab”| |

and after cancellations Sylvester’s identity (1).
Comparing M2 with B, or K2, we see that B (and K2) are based on the inverse matrix transformation of
(15); namely, they are based on

(1) (3 )
A ©Lopa@) \ 0 DyA)
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3. Conclusion

We are, thus, done with the presentation of the proofs of Sylvester’s determinant identity (1). It is rather
unfortunate that, due to “its inclusion as merely one of a class of theorems” [9, p. 60], none of the proofs
of this identity can be found in the English-language books on matrix theory [4].

Despite all these, using Sylvester’s identity we were able to obtain elegant proofs for the validity of
the new, improved, matrix-triangularization subresultant prs method [1]. Therefore, there can be no doubt
that, (not only) at the time of its discovery, this identity was —as Sylvester himself styled it—“a remarkable
theorem" [9, p. 60].
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