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SUMMARIES

A little known theorem concerning the isolation of
roots of polynomial equations, published in 1836 by a
mathematician known only as Mr. Vincent, is discussed.
Mr. Vincent's method is of historical and practical
Interest because it requires fewer computations than
Sturm's method. The advantages afforded by this
theorem are particularly relevant to software systems
for computerized algebra. Certain computational
results which offer an empirical comparison of the
two methods are also presented.

Ci'examiné est un théoréme peu connu relatif
1l'isolement des racines des équations polynémes,
publié en 1836 par un mathématicien connu simplement
sous le nom de Monsieur Vincent. La méthode de Vincent
est d'un intérét historique aussi bien gue pratique
puisqu'elle exige moins de calculs gue celle de
Sturm. Les avantages admis par ce théoréme sont
particuliérment applicables & des programmes de
manipulations algébriques. Certains résultats qui
offrent une comparaison empirique des deux méthodes
sont également présentés.

Diskutiert wird ein wenig bekannter Lehrsatz,
der die Isolation von Wurzeln pelynomischer Gleichungen
betrifft und 1836 von einem nur als Herr Vincent
bekannten Mathematiker verdffentlicht wurde. Herrn
Vincents Methode hat historisches und praktisches
Interesse, weil sie weniger Berechnungen als Sturms
Methode verlangt. Die Vorteile, die dieser Lehrsatz
hat, sind fir Software Systeme flr Computeralgebra
besonders wichtig. Eingeschlossen sind auch gewlisse
Berechnungsergebnisse, die einen empirischen Vergleich
der beiden Methoden darbieten.
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1. INTRODUCTION

In 1834 a certain Mr. Vincent published a '"mote'" (of thirty
pages) in the Mémoires de la Société royale de Lille concerning
the solution of polynomial equations with numerical coefficients.
The same memorandum appeared two years later, with a few
additions, under the title '"Note sur la résolution des
équations numérique" in the October issue, 1836, of the Journal
de Mathématiques Pures et Appliquées [Vincent 1836]. According
to a footnote, the article was reprinted "for the benefit of the
professors'. Nevertheless, the article and the remarkable
method described therein were consigned to oblivion for more
than a century [1], although it seems that several people had
dealt with variations of this method; Mr. Vincent even mentions
that a similar '"note'" was included in the sixth edition of
Bourdon's Algebra [Bourdon 1831].

We may attempt to explain the fact that Vincent's theorem
was forgotten by noting the careful manner in which he pays
tribute to Sturm and notes the "beauty' and usefulness of Sturm's
celebrated theorem on the location of the roots of equations.

In 1834, the same year in which Vincent first published his
paper, Sturm published his work on second order differential
equations, known today as the Sturm-Liouville theory, for which
he received the "Grand Prix des Sciences Mathématiques' from

the Académie des Sciences. Two years later, when Vincent's
paper was reprinted, Sturm was elected to the Académie des
Sciences. It is not surprising that Sturm's method outshone

all the others. Vincent uses in his approach a theorem on the
isolation of roots, given by the French physician F. D. Budan

in 1807. This theorem was enunciated in a somewhat different
form by J. B. J. Fourier and included in his Analyse des
Equations published posthumously by C. L. M. H. Navier. Vincent
indicates his surprise that Fourier did not try to go further
and prove the proposition that was the main subject of Vincent's
paper. He states, however, the belief that such a proof may
exist in other manuscripts which were not published because of
the untimely death of Navier.

The Budan-Fourier theorem on the isolation of roots uses a

sequence of derivatives, f(x), f(lj(x), . f(n)(x]. The
procedure is similar to that used later (1829), by Sturm, to
calculate the number of variations of sign (as defined by
Descartes' rule) in the two sequences of real numbers obtained
when x is replaced by the real numbers p and q (p < q)}. This
method, however, involves less computation than Sturm's method.
Another possible reason that Vincent's original method may
not have proved popular is his somewhat inefficient procedure
for obtaining the transformed eguation for the substitution
X =y + a. He obtains the coefficients of this equation as
coefficients of the Taylor expansion of the polynomial. As it



HM5 On the Forgotten Theorem 429

will be scen in the next section, Uspensky simplified the method
considerably by using synthetic division (Horner's rule in
essence) to obtain the coefficients of the transformed equation
[Uspensky 1948, 127-137]. Moreover, for a = 1 the synthetic
division does not include any multiplication. With this
modification Vincent's theorem becomes a powerful tool for the
isolation of real roots of equations, a tool that represents an
essential improvement over methods based on Sturm's theorem.

So far as we have been able to determine, Vincent's theorem
and the implied method for isolating roots are not mentioned by
any author with the exception of Uspensky [1948, 128] and
Obreschkoff [1963, 248-249]. Uspensky notes that even such a
capital work as the Enzyclopidie der mathematischen Wissenschaften
ignores it. We will show that Vincent's contribution has
practical significance as well as historical.

A statement of the theorem and of the propositions on which
it is based will be given in the following sections, together
with a description of its use and an assessment of the related
method for root isolation.

2. VINCENT'S THEOREM

Most methods for the isolation of the roots of pelynomials
with numerical coefficients rely on Descartes' rule of signs.
According to this rule, the number of positive real roots of a
polynomial equation with real coefficients is never greater than
the number of variations in the sequence of its coefficients,
3gs 815 e, a, and if less, the difference is an even number.

A variation is defined as a change of sign in two consecutive
terms of the sequence of coefficients. Zero coefficients are
disregarded in counting the number of variations. It must be
noted that Descartes' rule gives the exact number of roots only
if there is either one or no variation. In the first case
there is one positive real root; in the second there is no root.

As mentioned previously, Vincent states in his paper that
he based his proposition on a result which was formulated some-
what differently by both Budan and Fourier. Vincent states
Budan's theorem as follows:

If in an equation in x, f(x) = 0, we make two
transformations x = p + x' and x = q + x", where p
and q are real numbers such that p < q, then

(1) the transformed equation in x' = x - P cannot
have fewer variations than the transformed
equation in x" = x - q;

(i1) the number of real roots of the equation
f(x) = 0 located between p and q can never be
more than the number of variations lost in
vassine from the trancfarmed amiyg4s mm 2
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x' = x - p to the transformed equation in
X" =X = Gs

(iii) when the first number is less than the second,
the difference is always an even number.

Fourier's version of this result is stated as follows:
1f in the sequence of (m+l) functions

stah, B, qosy T (i
we replace x by any two real numbers p, q (p < q), and
if we represent by P and Q the two resulting sequences
of numbers, then
(i) the sequence P cannot present fewer variations
than the sequence (;
(ii) the number of real roots of the equation
f(x) =0, located between p and q, can never
be more than the number of variations lost
in passing from the substitution x = p 1o
the substitution X = q;
(iii) when the first number is less than the second,
the difference is an even number.

Using this result, Vincent carries out several consecutive
transformations in order that the transformed equation will have
only one or zero variations; in this case the number of roots
can be determined umambiguously. He states his proposition as
follows:

If in a polynomial equation with rational coefficients
and without multiple roots, one makes successive
transformations of the form

(1) x =a+ l\, x' = b + lh, * = E oy e
X X
where a, b and ¢ are any positive numbers greater than
one, then the resulting transformed equation either has
zero variations or it has a single variation. In the
second case the equation has a single positive real
root represented by a continued fraction

1
b +

a + =
1

,_‘
(88
St

ol SR
in the first case there is no root.

It is obvious that Vincent's method relies heavily on
+ransformations which consist of a translation and an inversiom.
While the inversion can be easily obtained by reversing the order

£ the polynomial coefficients, the translation operation requires
a computation which Vincent does not perform in the easiest
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possible way. He uses Taylor's expansion theorem to obtain the
coefficients of the transformed polynomial. If the substi-
tution x = y + a is made in the polynomial equation

1

f(x) = Co* CyX* -un # ¢ X =0, then the coefficients
(k)
I Sl
Ck_ k! ,kzo, 1) reey 01,
of the transformed polynomial in v may be expressed by
I . i
¢ & Dy Tk _
¥ L GBI N 0, 1 e e

3=k

The computation is somewhat simplified when @ = 1. Since Horner's
method had been known from 1819, it is rather surprising that
Vincent did not employ it for polynomial evaluation [Horner

1819, 308-335] in order to perform translations. The applica-
bility and superiority of this method can be seen from the
following: consider a polynomial

(3) f(x) = coxn + clxn_l cee boC

and the transformation x = y + a. This substitution produces

a polynomial in y having coefficients b. which satisfy the
relations !

g n-i 3 n-i L n-1i s n-i
(4) z c;Xx = E ci[y+a) = E biy = X bi{x»a) ;
i=0 i=0 i=0 i=0

From the first and last expressions in (4), we deduce that the
coefficients bi of the transformed polynomial, can be obtained

with a sequence of applications of the synthetic division
algorithm (i.e., Horner's rule for the evaluation of polynomials).
Indeed, (4) suggests that we can write

(5) f(x) = (x-a)g(x) + Rn,

where g(x) is a polynomial of degree n-1, and Rn is the
coefficient bn in (4). If we express f(x) as in (3), and g(x)
as a polynomial of degree n-1 with coefficients ao, Al een, an-l’
and then equate the coefficients of equal powers of x in (5),

we obtain

(6) a, = ¢, aj = cj + aaj_l ]

which is the synthetic division algorithm. We notice that the
last coefficient a_ is precisely the remainder Rn in (5), or

= A 12y sy Ay

equivalently, the coefficient br in (4). Further, application
L
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of the same process to g(x), gives

(7) g(x) = (x-a) h(x) + R .,
where h(x) is of degree n-2. Combining (5) and (7), we obtain
2
(8) f(x) = (x-a)” h(x) + Rn_l(x—a] + Rn.
If the process is repeated n times we obtain
= n ni-1
f(x) = Ro{x-u) + thx—a} P Rn’

in which the coefficients Ri are equal to the coefficients hi’

and appear as remainders in each application of algorithm (6).
In particular, for a = 1 this algorithm does not require any
multiplication, so that the transformation x = y + 1 can be
performed in a very efficlent manner. To find the exact number
of positive roots of a polynomial, we consider separately the
positive roots of a polynomial which are > 1 or < 1, excluding
the case when 1 is a root. The positive roots that are greater
than 1 may be written in the form x =1 + Yy, while those less
than 1 may be written in the form x = 1/(1 + v) where y > 0.
We can therefore transform a polynomial equation by the
substitutions x = 1 + y and x = 1/(1 + ¥) and examine the
number of variations of the transformed equations [Uspensky 1948,
128]. If the equation obtained by the transformation x = 1 + ¥
has no variations, it means that the original equation has no
roots > 1, whereas the presence of one variation indicates
precisely one root > 1 of the given equation. Similar con-
clusions hold for the equation resulting from the transformation
x = 1/(1 + y). 1f one or both of the transformed equations have
more than one variation, we transform them again by the substi-
tutions y = 1 + z, y = 1/(1 + z), and if necessary continue to
make similar substitutions until the transformed equations have
no more than one variation. This necessarily must happen after
a finite number of steps. The negative roots are investigated
by replacing x by -x in the original equation and by investigating
the positive roots of the transformed equation.

Uspensky has given a proof of Vincent's theorem which
includes also the concept of root separation. For the sake of
completeness we state this theorem in the words of Uspensky:

Let Nk be the k-th term of the series
1, 1, 2, 3, 5, 8, 13, 21, ...

in which each term is the sum of the preceding two and
where f > 0 is the smallest distance between any two
roots of the eguation f(x) = 0 of degree n and
without multiple roots. Let the number m be so
chosen that
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. 1 ; 1
hm-lﬂ ; 2 ﬂ'Nmr\m-l 2l £
where 1
n-1
e = (1 + EJ -1
n
Then the substitution
1
X = a, + —
1 d2 +
s A X 1
am £

Presented in the form of a continued fraction with

arbitrary positive integral elements al, a a

27 77 g
transforms the equation f(x) = 0 into the equation
F(£) = 0, which has not more than one variation.

[Uspensky 1948, 298-299]

3. SOME APPLICATIONS AND ASSESSMENT OF VINCENT'S METHOD

It is obvious that this method for isolating the roots of
polynomials is of great significance for numerical mathematics,
But its most significant application is in the area of
computerized algebra otherwise known as symbolic and algebraijic
manipulation, in which the éxact computation of the roots of
polynomials is Tequired. Among the existing major algebra
systems, SAC-1 is well known for its polynomial algebra
capabilities [Collins 1971]. Most algorithms for root isolation
have been based on Sturm's theorem [2]. Further, the decision
methods for elementary algebra developed by Tarski [1951] and
by Seidenberg [1954] involve root isolation techniques which use
Sturm's theorem [Akritas 1973]. Such techniques are likewise
important in quantifier elimination algorithms [Collins 1975].

Heindel [1971] has developed an algorithm for root
isolation, based on Sturm's theorem, for which he shows that the

computing time is bounded by nlBL(d)S, where n is the degree of
the polynomial and L(d) the length (number of bits in binary
Tepresentation) of the sum of the absolute values of the
polynomial coefficients. It is obvious that algorithms which
use more efficient methods, such as Vincent's, are very
desirable.

The superiority of Vincent's method is confirmed by
empirical comparisions of the computation time for root isolation
performed with algorithms based on the two theorems [Collins
and Akritas 1976]). The table below shows the computation time
in seconds for randomly generated polynomials of degrees 5-25.
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DEGREE STURM VINCENT
5 0.58 0.07
10 6.83 0.21
15 28.8 0.32
20 89.6 0.68
25 208.2 0.74

A theoretical analysis of Vincent's method 1s currently
being prepared by the authors.

NOTES

1. One of the authors of this article (AGA) came across
Vincent's theorem while reviewing methods for the isolation of
real roots of equations as presented by Uspensky [Uspensky 1948].

2. Recently, another algorithm based on Rolle's theorem
has been developed [Collins and Loos 1976].
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