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Abstract:   In  this  talk  we  first  mention  some  key  facts  of  Obreschkoff's  life  and  work  and  then  delve  into  the
influence  of  Obreschkoff's  book  Verteilung  und  Berechnung  der  Nullstellen  reeller  Polynome,  VEB  Deutscher
Verlag der Wissenschaften, Berlin, 1963, on the real root isolation problem.

Obreschkoff  is  one  of  only  two  authors  in  the  literature  (Uspensky  being  the  other  one)  who  mention  Vincent's
theorem of 1836. This theorem is the core of the continued fractions (CF) real root isolation method, which turns out
to be the fastest method known today. A little known “secret” about this method is that it can be implemented only if
we are able to compute “efficient” bounds on the values of the positive roots of polynomials — as opposed to bounds
on the absolute  values of the roots.  Surprisingly, very little is still known about such positive root bounds.  There-
fore,  it  is  remarkable  that  Obreschkoff  is  the  only  author  we  know  of  to  have  included  Cauchy's  theorem  —  for
computing positive root bounds — in the above mentioned book of his that came out in 1963, the year he died.

Without  Cauchy's  theorem,  the  implementation  of  the  CF  algorithm  would  have  been  impossible  and  without
Obreschkoff's 1963 book my Ph.D. thesis would not have been completed.

1  Nikola Obreschkoff — A short biographical note

First of all I would like to express my thanks to co-organizer of ACA 2006 Margar-
ita Spiridonova,  and  Andrey Andreev,  of  the  Bulgarian Academy of  Sciences,  for
providing material difficult to obtain .

It  is  a  humbling experience to  hold  this  talk in  Varna — Obreschkoff's birthplace
— on the occasion of the 110th anniversary of his birthday.  Additionally, for the
first time in my life, I  am in a position to publicly express my gratitude to Nikola
Obreschkoff for his book Verteilung und Berechnung der Nullstellen reeller Polynome;
that  book  alone  provided,  at  a  crucial  junction,  the  help  that  was  needed  for  the
completion of my Ph.D. thesis.  

During  the  '80s  I  tried  very  hard  to  find  someone  who  knew  Obreschkoff  so  that  I  can
learn more about him.  My efforts were successful only in July 1988, when during a confer-
ence in Piza, Italy, I met Professor Blagoj S. Popov, from the Mathematics Department, of
the  University  of  Skopje.   During  World  War  II  Professor  Popov  was  a  student  at  the
University of Sofia, and had Obreschkoff as a professor.  He had only good words to say
about him, both as a professor and as a mathematician.  Here is what we can additionally
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learn  from  B.  Penkov,  who  wrote  about  Nikola  Obreschkoff  on  his  centennial
anniverssary.

Nikola Dimitrov Obreschkoff was born in this town of Varna — so that he can be
rightfully called a “Varnalis” — on April 18, 1896 as one of the last children in a
family of 10.  His mother Kitza Obreschkova, a music lover and fluent in French,
was the moral and intellectual force of the family.  His father was a military officer.

At  the  turn  of  the  century  the  family  moved  to  Sofia,  where  Nikola  graduated  in
1915 from the Second Boys' High School.  In the fall of 1915 Nikola was admitted
as a student in the Physico-Mathematical Department of Sofia University.  After a
short interruption during World War I, Nikola graduated in 1920 and was immedi-
ately appointed assistant at the Chair of Calculus.  Reflecting on the works of Obre-
schkoff  one  comes  to  the  conclusion  that  he  was  simultaneously  algebraist  and
analyst and probabilist.

In 1922,  Obreschkoff  received his  “Habilitation” with his  papers  on the extension
of the so-called Budan-Fourier theorem and the distribution of zeros of polynomi-
als — a topic that remained his “true love” to the end.

In  1925  Obreschkoff   was  promoted  to  Associate  Professor  and  in  1928  to  Full
Professor  and  Head of  the  Chair  of  Algebra.   He remained at  that  position for  35
years.  He received two Ph.D. degrees — from Palermo (1932) and Paris (1933) —
and produced about 250 publications, with an average of 6 or 7 papers per year.  

In  1945  Obreschkoff  was  elected  directly  as  an  Ordinary  (instead  of  as  a  Corre-
sponding)  member  of  the  Bulgarian  Academy  of  Sciences  and  Arts  —  as  it  was
then called.  In 1950 he became director of the then recently established Mathemati-
cal Institute and held that position until his death 13 years later. 

Obreschkoff  authored  many  and  influencial  books.   Only  few  months  before  his
unexpected death in 1963, two monographs were published:  Zeros of Polynomials
(in Bulgarian, and now also available in English) and Verteilung und Berechnung der
Nullstellen reeller Polynome, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963 (in
German).  These books are the result of 40 years of active research in this field and are a
“goldmine” of information.   In particular,  the book in  German can be found in all  major
University Libraries in the United States and played a tremendous role in the development
of the continued fractions method for the isolation of the real roots of polynomials.

In  this  talk  I  will  not  analyze  Obreschjoff's  work;  others  more  capable  than  me
have done it in the past and will do it again in the future.  Instead, I will focus on
the influence his 1963 book, in German, had on the development of the continued
fractions method.

Nikola Obreschkoff & Real Root Isolation
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It is interesting that — back in the late '70s and '80s — I attempted to buy a copy of Obre-
schkoff's 1963 book in the United States, but this effort was not successful.  I then asked
my father in Greece to try and buy a copy of it through the Bulgarian Embassy in Athens,
but that effort also failed.  So, I resorted to making a copy of it from the library — since
copying  was  not  illegal  back  then.   Unfortunately,  the  letters  in  that  copy  have  faided
away and so I am again back to square one.  

2  An overview of the polynomial real root isolation problem 

It  is  well  known that  in  the  17th and 18th century  many attempts  were  made to  find the
solution of the general quintic  equation.  Even though all these attempts failed, the works
of  Cardano  and  Desvartes  led  to  a  deeper  understanding  of  the  “nature”  of  the  roots  of
polynomial equations. 

In 1804 Paolo Ruffini proved that it is impossible to solve by radicals the general quintic
equation.   Later,  in  1826,  Abel  proved  the  general  case,  namely  that  it  is  impossible  to
solve by radicals algebraic equations of degree greater than 4.

In  the  beginning  of  the  19th  century  the  attention  of  the  mathematicians  had  already
shifted to numerical methods for the solution of polynomial equations.  At this time Fou-
rier suggested to proceed in two steps:  to wit, first isolate the roots and then approximate
them to any desired degree of accuracy. 

Isolation of the real roots of polynomial equations is the process of finding real non-over-
lapping  intervals  such that  each  one  of  them contains  one  real  root  and each  real  root  is
contained in some interval.  On the other hand, approximation is the process of narrowing
the intervals such that the roots are computed to the required degree of accuracy.

Isolation is by far the most important problem and as such it attracted the attention of the
great  matematicians  of  the  time.   In  the  beginning  of  the  19th  century  F.D.  Budan  and
J.B.J.  Fourier  presented  two  different  —  but  equivalent  —  theorems  that  allow  us  to
compute an upper bound on the number of the real roots that an equation with real coeffi-
cients has in a given open interval.

Budan's theorem was published in 1807 in the paper “Nouvelle méthode pour la résolution
des équations numériques”, whereas Fourier's theorem was first published in 1820 in “Le
bulletin des sciences par la société philomatique de Paris.”  Due to the importance of these
two theorems a great dispute erupted concerning priority rights.  As F. Arago describes in
his book Biographies of distinguished scientific men (p. 383) Fourier “deemed it necessary
to  receive  statements  from  ex  students  of  the  Polytechnic  School  or  professors  of  the
University” to prove that he had taught his theorem in 1796, 1797 and 1803. 

No wonder then that the “authorship” of these two equivalent theorems is attributed, in the
literature, sometimes to Budan, sometimes to Fourier, and most of the times to both — as
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Budan-Fourier or Fourier-Budan.  The interesting thing to note is that no matter the name
of the theorem, its  statement is  the one due to Fourier,  whereas the statement of Budan's
theorem  was  totally  missing  from  the  literature  up  until  1978,  the  year  I  completed  my
Ph.D. thesis.  The latter found Budan's theorem only in Vincent's paper of 1836, and after
that it has appeared in my publications.

Based  on  Fourier's  statement  of  the  theorem,  C.  Sturm  presented  in  1829  an  improved
theorem that allow us to compute the exact number of the real roots that an equation with
real coefficients has in a given open interval.   With the help of his theorem — and using
bisection — Sturm became the first person in the history of mathematics to solve the real
root isolation problem.  

With this achievement Sturm became really famous and from 1830 till 1978 his bisection
method was the only one widely known and used.  Consequently, Budan's (version of the
equivalent) theorem was totally forgotten and along with it Vincent's theorem that is based
on it.  

Vincent's theorem of 1836 is the basis of the continued fractions  method for the isolation
of the real roots of polynomial equations with integer coefficients, a method by far surpass-
ing  Sturm's  in  efficiency.   The  continued  fractions  method is  the  fastest  method existing
and  has  been  implemented  in  Mathematica.   By  contrast,  Sturm's  method  is  not  used  in
any  computer  algebra  system.   Below  is  a  diagram  of  the  development  of   Polynomial
Real Root Isolation

   Fourier's theorem     ó   Budan's theorem
(1820) (1807)

        ‡      ‡
        ‡      ‡
   Sturm's theorem  Vincent's theorem

(1829) (1836)
        ‡ á      ‡
        ‡       á      ‡

               Sturm's bisection            á      Vincent's Continued Fractions 
    method (1829)       á           exponential method (1836)

á      ‡
      á      ‡
á      ‡

     Collins-Akritas              Akritas with Strzebonski                              
               bisection method.                                          CF polynomial method
              (1975-76),  Maple                                   (1978, 1994),  Mathematica
                           ‡
                           ‡
          Rouillier-Zimmermann

Nikola Obreschkoff & Real Root Isolation
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               bisection method
                  (2004), gmp  

Figure  1.   The  theorems  by  Budan  and  Fourier  and  the  two  classical  methods  for  the  isolation  of  the  real  roots  of
polynomial equations.  The  methods by Collins-Akritas and Rouillier-Zimmermann are based on a total modification of
Vincent's theorem and are not considered classical.

Vincent's  first  names  were  forgotten  to  such  an  extent  that  I  thought  his  first  initial  was
“M”,  since  the  1836  paper  is  attributed  to  a  certain  M.  Vincent.   However,  as  Lloyd
pointed out, that “M” stands for the French word Monsieur, and according to Poggendor-
ff's  Biographisch-Literarisches  Handwörterbuch  der  exakten  Wissenschaften  Vincent's
true first names are Alexandre Joseph Hidulf.

Vincent's theorem was so totally forgotten that even such a major work as Enzyclopaedie
der mathematischen  Wissenschaften  ignores  it.   Before 1978 it  is  not  mentioned by any-
one,  save  for  Obreschkoff  (1963)  and  Uspensky  (1948).   What  a  coincidence  that  both
authors  are  of  slavic  origin!   I  discovered  Vincent's  theorem  in  Uspensky's  book  in
1975-76 and did my Ph. D. thesis on it (1978).

3   Vincent's  theorem  and  the  continued  fractions  method  for  the
isolation of the real roots

We present Vincent's theorem as found in his paper of 1836 and in Obreschkoff's book of
1963.  

Vincent theorem (1836):
If in a polynomial equation, p(x), with rational coefficients and without multiple roots we
perform sequentially replacements of the form

 x ≠ a1 + 1ÅÅÅÅx , x ≠ a2 + 1ÅÅÅÅx , x ≠ a3 + 1ÅÅÅÅx , …

where a1 ¥ 0 is a random non negative integer and a2, a3, … are random positive intagers,
ai  > 0, i > 1, then the resulting polynomial either has no sign variations or it has one sign
variation.  In the last case the equation has exactly one positive root, which is represented
by the continued fraction

a1 + 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
a2+ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

a3 +
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∏

whereas in the first case there are no positive roots.

Note that if we represent by a x + bÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅc x + d  the conntinued fraction that leads to a polynomial f(x)
= p( a x + bÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅc x + d ), with one sign variation, then the single positive root of f(x) — in the interval
(0,  ¶)  — corresponds  to  that  positive  root  of  p(x)  which  is  located  in  the  open  interval
with endpoints bÅÅÅÅÅd  and aÅÅÅÅc .   These endpoints  are not  ordered and are obtained from a x + bÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅc x + d
by replacing x with 0 and ¶, respectively.  
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Therefore,  with  Vincent's  theorem we  can  isolate  the  (positive)  roots  of  a  given  polyno-
mial p(x).  The negative roots are isolated — as suggested by Sturm — after we transform
them  to  positive  with  the  replacement  x  ≠  -x  performed  on  p(x).   The  requirement  that
p(x)  have no multiple  roots  does not restrict  the generality  of the theorem because in the
opposite case we first apply square-free factorization and then isolate the roots of each one
of the square-free factors.  

From the statement of Vincent's theorem it becomes clear that in order to isolate the posi-
tive roots of a polynomial p(x) we have to compute the partial quotients a1, a2, …, am  for
the replacements that will lead to polynomials f (x) with exactly one sign variation.  As we
will  see  immediately  below,  it  is  at  this  point  that  Obreschkoff's  1963  book  comes  into
play.

There are two ways for computing the partial quotients ai  — and, therefore, two ways for
isolating the positive roots of p(x) using continued fractions.  The first method was devel-
oped  by  Vincent  in  1836,  whereas  the  second  was  developed  by  me  in  my  Ph.D.  thesis
(1978).  The difference between these two methods for computing the partial quotients ai

is analogous to the difference that exists between the integrals of Riemann and Lebesgue.
As  we  know,  the  sum  1  +  1  +  1  +  1  +  1  can  be  computed  in  the  following  two  ways:
according to Riemann as 1 + 1 = 2, 2 + 1 = 3, 3 + 1 = 4, 4 + 1 = 5, whereas according to
Lebesgue as 5·1 = 5.

Besides these two ways we will see a “failed” attempt by Uspensky to compute the partial
quotients  ai  in  yet  another  way.   Uspensky's  attempt  failed  because  he  was  unaware  of
Budan's theorem.

Computing the partial quotients ai according to Vincent (exponential behavior):
In his 1836 paper Vincent demonstrates his method with several examples.  In all of these
examples  he  computes  a  partial  quotient  ai  with  unit  increases  of  the  form ai  ≠  ai  +  1.
Each one of these increases corresponds to the replacement x ≠ x + 1 which is performed
on some polynomial f (x).  

During this process Vincent uses Budan's theorem in order to determine when the computa-
tion of one partial quotient ai  (whose initial value is set to 0) has been completed, so that
we can move on to the computation of the next.  To wit, Vincent keeps performing replace-
ments of the form x  ≠ x  + 1 (and unit increases of the form ai  ≠ ai  + 1) until he detects
sign variations losses in the polynomials f (x + ai) and f (x + ai + 1).  Then, and only then,
does Vincent perform the replacement of the form x ≠ 1ÅÅÅÅÅÅÅÅÅÅx+1 , in order to start the computa-
tion of the next partial quotient ai+1  

Vincent's method is exponential —  something that was first observed by Sturm and then
by  Uspensky.   The  exponential  behavior  appears  only  in  the  cases  of  very  large  partial
quotients ai.  However, for small ai Vincent's method is astonishingly fast.

Nikola Obreschkoff & Real Root Isolation
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Computing the partial quotients ai according to Uspensky (doubly exponential behav-
ior):
Note that Vincent made full use of Budan's theorem.  To wit, if the polynomials f (x) and
f (x  +  1)  have  the  same  number  of  sign  variations  Vincent  proceeds  to  the  next  unit
increase ai ≠ ai + 1 — which is accompanied by the next replacement of the form x ≠ x +
1.  He knew from Budan's theorem that in this case f (x) has no roots in the interval (0, 1).

Uspensky in his book (1949) also computes a partial quotient ai  with unit increases of the
form ai  ≠ ai  + 1 — which are accompanied by unit replacements of the form x ≠ x + 1.
However, if the polynomials f (x) and f (x + 1) have the same number of sign variations,
Uspensky  —  not  being  aware  of  Budan's  theorem  —  cannot  conclude  that  f (x)  has  no
roots in the interval (0, 1).  To verify that, in addition to the replacement x ≠ x + 1, Uspen-
sky  has  to  perform at  each  step  the  additional  replacement  x  ≠  1ÅÅÅÅÅÅÅÅÅÅÅx +1  — from which  he
expects a polynomial with no sign variations. 

So,  the  only thing that  Uspensky actually  achieved was to  double the computing time of
Vincent's  method.   His  claim that  he  discovered  a  new continued  fractions  method  does
not hold water.  

Uspensky's contributions to Vincent's continued fractions method:

a.   Uspensky  performed  the  replacements  x  ≠  x  +  1  using  the  Ruffini-Horner  method,
whereas Vincent used Taylor's expansion theorem.  

b.  To tackle the exponential behavior of the method Uspensky proposed replacements of
the form x ≠  x + , where  is  randomly chosen and successively increased.  Obviously,
the nature of the partial quotients ai had not been understood.

Computing the partial quotients ai so as to eliminate the exponential behavior:
In my Ph.D. dissertation, in 1978, I realized that each partial quotient ai  is the integer part
of a real number — i.e. ai  = dast,  where as  is the smallest positive root of some polyno-
mial f (x) — and, hence, that it can be computed as the lower bound, , on the values of
the positive roots of a polynomial.  So assuming that  = dast the exponential behavior of
the continued fractions method can be eliminated  by setting ai  ≠ ,  ¥ 1, and perform-
ing the replacement x ≠ x + ,  ¥ 1 — which takes about the same time as the replace-
ment x ≠ x + 1.

A lower bound, , on the values of the positive roots of a polynomial f (x), of degree n, is
found by first computing an upper bound, , on the values of the positive roots of xn f ( 1ÅÅÅÅx )
and  then  setting   =  1ÅÅÅÅÅÅÅ .   So  what  was  needed  was  an  efficient  method  for  computing
upper bounds on the values of (just) the positive roots of polynomial equations.

It  is  at  this  point  that  Obreschkoff's  1963  book  played  a  tremendous  role.   Whereas  the
English mathematical literature contained numerous methods for computing upper bounds
on the absolute values of roots of polynomials, not a single author could be found includ-
ing  in  his  book an upper  bound on just  the  positive  roots  of  polynomial  equations.   You
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can imagine the agony, sleepless nights and sweat lost during that crucial period of writing
the dissertation.

You  can  also  imagine  the  relief  felt  when  I  discovered  that  the  University  Library  in
Raleigh,  North  Carolina,  had a  copy of  Nikola  Obreschkoff's  1963 book:  Verteilung  und
Berechnung  der  Nullstellen  reeller  Polynome.   As  I  mentioned,  this  book  contained  the
results of 40 years of research on the “distribution and computation of zeros of polynomi-
als”, a topic that was Obreschkoff's “true love.”   As such it did not fail to include the all
important Cauchy's rule for computing upper bounds on just  the positive roots of polyno-
mial equations!

We present Cauchy's rule in our own notation.

Cauchy's rule:
Let p(x) = cn xn  + cn-1 xn-1 + ∫ + c1x + c0  = 0 be a polynomial equation of degree n > 0,
with integer  coefficients and cn-k  < 0 for at least one k, 1 § k § n.  (Please note that cn  >
0!)  If l is the number of the negative coefficients then 

b = max 81§k§n : cn-k<0< "##############- l cn-kÅÅÅÅÅÅÅÅÅÅÅÅÅÅcn

k  

is an upper bound on the values of the positive roots of p(x) = 0.

This  efficient  rule  was  immediately  programmed  and  the  exponential  behavior  of  the
continued fractions method was eliminated once and for all.  The results were presented in
the  ACM  conference  in  Atlanta,  Georgia  (1978)  and  won  the  first  prize  in  the  student
paper competition.

Please note that in general  ∫  dast  and, therefore,  several applications of Cauchy's rule
will  be  needed  in  order  to  exactly  compute  dast.   Even  though  these  computations  are
relatively  “cheap”,  nonetheless  the  need  is  highlighted  for  discovering  new  and  better
bounds on the values of the positive roots of polynomial equations.  

In  this  respect  we  point  out  a  new  paper  (Akritas  and  Vigklas,  2006)  presented  here  in
Varna  and  in  which  we  compare  Cauchy's  rule  with  a   recently  discovered  new  rule  by
Doru Stefanescu (2005).   This new rule is  a special  case of the alternating sums  method
found in the (Russian) literature.  Unfortunately,  Stefanescu's rule does not always work,
but when it does it gives bounds equal to or better — and in certain classes of polynomials
much  better  — than those obtained by Cauchy's rule.   Who knows what the future holds
for us in this direction.

à Appendix to this section

Nikola Obreschkoff & Real Root Isolation
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4  Comparison of two methods for the isolation of the real roots 

As we  have  seen  Obreschkoff  made  significant  contributions,  through  his  1963  book,  to
the  development  of  the  continued  fractions  method  for  the  isolation  of  the  real  roots  of
polynomials.  

In  this  section  we  present  several  tables,  in  two  different  time  frames,  that  compare  the
continued  fractions  method  with  various  bisection  methods.   In  particular,  the  results  —
Akritas and Strzebonski (2005) — of the comparison with the bisection method of Rouil-
lier  and Zimmermann (2004)  have been independently  verified  by Emiris  and Tsigaridas
(2006).

Spring of 1978:

The  first  three  tables  are  from my  Ph.D.  thesis.   They  were  created  using  the  computer
system sac-1 on an IBM S/370 Model 175 computer and compare the continued fractions
method  — without  Strzebonski's  improvement,  of  course  — with  that  of  Sturm.   Please
note that the max degree of the polynomials is at most 20 — a degree considered “large”
at the time!

Polynomials with randomly generated roots from the interval (0, 103)

Degree           Continued Fractions         Bisection 
                V-A                          Sturm

     5    0.71                 0.73
    10           23.22          22.50
    15           95.35        151.42
    20                    288.49                 > 600

Table 1.  In this table each polynomial of degree n, (where n = 5, 10, 15 and 20) was formed by taking the product of a
corresponding number of linear terms.  

Polynomials with randomly generated 10-digit coefficients

            Degree             Continued Fractions        Bisection 
                                                V-A                          Sturm

     5    0.26                 2.05
    10             0.46          33.28
    15             0.94        156.40
    20                        2.36                    524.42
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Table 2.   In this table the coefficients  of each polynomial  are all different from 0, 10-digits long and randomly gener-
ated.  

From the  first  two tables  we see  that  the  continued fractions  method is  much faster  than
that of Sturm.  How does one compare it though with the Collins-Akritas bisection method
— a method developed in 1976 and which is also faster than that of Sturm?

The  answer  was  given  indirectly  as  follows:   The  polynomials  of  Table  2  are  the  same
polynomials  used  to  compare  the  bisection  method  of  Sturm  with  the  Collins-Akritas
bisection method.  So in Table 3 below we compare the ratios of the times of the contin-
ued  fractions  method  and  of  the  Collins-Akritas  method  to  the  corresponding  times  of
Sturm's method.

Comparison  of  the  continued  fractions  method  with  the  Collins-Akritas  bisection
method for the polynomials of Table 2

            Degree              Continued Fractions    Collins-Akritas 
                  / Sturm                     / Sturm

     5     0.13                  0.28
    10              0.014             0.10
    15              0.004             0.05
    20                         0.0045                         0.03

Table 3.   In this table we compare the ratios of the times of the continued fractions method and of the Collins-Akritas
method to the corresponding times of Sturm's method.  

Even  though  the  comparison  is  not  extensive,  from  Table  3  we  see  that  the  continued
fractions method is better than the Collins-Akritas bisection method. 

Spring of 2002:

In  their  recent  work,  Rouillier  kai  Zimmermann  (2004)  present  a  new  bisection  method
for the isolation of the real roots of polynomials, “… which is optimal in terms fo memory
usage and as fast as the Collins-Akritas method …” 

In the following tables we compare the continued fractions method (CF), as it was modi-
fied to include Strzebonski's improvement, with the method REL of Rouillier and Zimmer-
mann.  Both methods became part of Mathematica's kernel and can be found in the site 

http://members.wolfram.com/webMathematica/Users/adams/RootIsolation.jsp

These  two  methods  were  tried  on  the  polynomials  Chebyshev,  Laguerre,  Wilkinson  and
Mignotte,  which  were  used  by  Rouillier  and  Zimmermann  as  well  as  on  three  types  of
random polynomials.

All  computations  were  carried  out  on  a  850  MHz Athlon  PC with  256  MB RAM.   The
data  on  memory  requirements  was  obtain  using  Mathematica's  MaxMemoryUsed  func-
tion.  At the beginning of the computations Mathematica's kernel occupied 1.6 MB.
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Special Polynomials 

Polynomials Degree  # of roots         CF               REL    
        T (s)/M (MB)     T (s)/M (MB) 

==============================================
Chebyshev   1000       1000    2172/9.2       7368/8.5
Chebyshev   1200       1200    4851/12.8     15660/11.8
Laguerre     900         900    3790/8.7     22169/14.1
Laguerre   1000       1000    6210/10.4     34024/17.1
Wilkinson     800         800     73.4/3.24       3244/10 
Wilkinson     900          900      143/3.66       5402/12.5
Wilkinson   1000       1000      256/4.1       8284/15.1
Mignotte     300             4              0.12/1.75         803/7.7  
Mignotte     400             4              0.22/1.77       3422/15.8
Mignotte     600             4              0.54/1.89     26245/49.1  

Table 4.  For the special polynomials CF, the continued fractions method, was from 3 up to 50000 times faster than REL
— for the Chebyshev and Mignotte polynomials, respectively.  

As we mentioned CF isolates first the positive roots and then the negative ones.  Should it
happen that a polynomial is symmetric CF isolates only its positive roots.  The Chebyshev
polynomials are  symmetric and so CF takes advantage of this fact; on the contrary, REL
does not!

Polynomials with randomly generated coefficients

   Coeffs. Degree  # of roots         CF               REL    
(# of bits)         T (s)/M (MB)  T (s)/M (MB)   
==============================================

                    10                  500         3.6              0.78/2.2           1.66/2.81
                    10                1000         4.4              6.67/3.75         34.2/7.5
                    10                2000         5.6              215/11.4           562/22.8

    1000                  500         3.2              0.56/2.28         2.19/2.97
    1000                1000         3.6              12.7/5.1           31.4/6.5
    1000                2000         6                 329/14.2           510/24.3

Table 5.  For polynomials with randomly generated coefficients CF, the continued fractions method, was from 1.5 up to
5 times faster than REL.  

In Table 6 below each result  is  the average over a set  of 5 polynomials.   The number of
roots is also the average.  The same sets of polynomials were used for both methods.
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Polynomials with randomly generated coefficients and unitary leading coefficient

 Coeffs. Degree  # of roots         CF               REL    
(# of bits)          T (s)/M (MB)   T (s)/M (MB
==============================================

                    10                500           5.2              1.43/2.48          8.48/3.84
                    10              1000           4.8              7.12/3.74          80.7/10.1
                    10              2000           6.8               263/11.4         1001/37.1
                1000                100           4.4              0.01/1.75          56.8/5.5
                1000                200           6               0.086/1.93           252/17
                1000                500           5.6              0.57/2.28         1917/96.8
                1000              1000           6                 25.5/5.2         >5000/? 

Table  6.   The  case  of  polynomials  with  randomly  generated  coefficients  and  unitary  leading  coefficient  proved
extremely “difficult” for REL, which was again thousand times slower than CF.

It  is  not  a  coinsidence  that  in  Table  6  REL  was  again  thousand  times  slower  than  CF.
Polynomials  with  randomly  generated  coefficients  and  unitary  leading  coefficient  have
both very large and very small roots.  This forces any bisection method to begin the pro-
cess with a very big interval which must be bisected many times before the small roots get
isolated.

Polynomials with randomly generated roots

    Roots         Degree  # of roots         CF               REL    
(# of bits)          T (s)/M (MB)    T (s)/M (MB

==============================================
                    10                100           100               0.8/1.82           0.61/1.92
                    10                200           200             2.45/2.07           10.1/2.64
                    10                500           500             33.9/2.07            878/8.4
                1000                  20             20             0.12/1.88         0.044/1.83   
                1000                  50             50             16.7/3.18           4.27/2.86
                1000                100           100              550/8.9             133/6.49

Table  7.   The  case  of  polynomials  with  randomly  generated  roots  of  order  of  magnitude  10300  was   the  only  case  in
which CF, the continued fractions method was 4 times slower than REL — as expected from the previous discussion.

The  result  in  Table  7  was  as  expected  from the  previous  discussion,  because  the  partial
quotients ai are extremely big to wit, of order of magnitude 10300.  

From these  tables  it  becomes clear  that  the  continued  fractions  method is  almost  always
faster than any bisection method.  Regarding memory usage, we see that it is the same as,
and some times better than, REL.
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5  Conclusions

We have seen, in sufficient detail,  the continued fractions method for the isolation of the
real  roots  of  polynomial  equations.   From the  description  of  the  method  it  became  clear
that its implementation would have been impossible without an efficient rule for comput-
ing upper, and lower, bounds on the values of just the positive roots of polynomials.  Such
a rule could not be found in any book in the English mathematical literature, back in 1978.

Closing  I  would  like  to  express  my  gratidude  to  Nikola  Obreschkoff  for  his  1963  book
Verteilung  und  Berechnung  der  Nullstellen  reeller  Polynome,  which  included  Cauchy's
rule.  Without that rule the implementation of the continued fractions method would have
been  impossible  and  without  Obreschkoff's  1963  book  my  Ph.D.  thesis  would  not  have
been completed.  

Nikola Obreschkoff, bolschoe cpaciba!
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