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Abstract In 1976, G.E. Collins and A.G. Akritas developed a bisection method for
the isolation of the real roots of polynomials. Even though this method is based on
Vincent’s theorem of 1836, credit to Vincent has been denied; to wit, from 1976 up until
1986 it was called “modified Uspensky’s method”, whereas from 1986 to the present
day it is being called either “Collins-Akritas method” or “Descartes’ method”. In this
paper we track the development of this bisection method, show its relation to Vincent’s
theorem and justify the name “Vincent-Collins-Akritas” given to it recently in France.
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1 Introduction

As one of the two authors who developed the bisection method under discus-
sion [19], Akritas has followed closely, and with great interest, the “maturation
process” of his spiritual “child”. So far he has made only one corrective interven-
tion, back in 1986 [5], when the name of the method was wrongly attributed to
Uspensky. The closing sentence in that article was: “It is our hope that scientists
will give Vincent the credit he so justly deserves.”

Thirty years later Vincent still does not get the proper credit. Due to var-
ious misunderstandings, the bisection method derived from his theorem is re-
ferred to either as the “Collins-Akritas method” [28], which is almost right, or
as the “Descartes’ method” ([21], [22], [24], [25], [31]), which is totally mislead-
ing; moreover, Vincent’s paper [36] is not cited in certain articles ([21], [22],

1 For his book Theory of Equations, which kept Vincent’s theorem “alive”. See
http://www.apmath.spbu.ru/ru/misc/uspenskii.html for an interesting biography of
Uspensky (in Russian) [35].



[23]). Therefore, in an effort to dispel the existing misconceptions we attempt
yet another corrective intervention.

Let us begin with a review of Descartes’ rule of signs [16].
Consider the polynomial p(x) ∈ R[x], p(x) = anxn + · · · + a1x + a0 and let

var(p) represent the number of sign variations or changes (positive to negative
and vice-versa) in the sequence of coefficients an, an−1, . . . , a0.

Descartes’ rule of signs: The number %+(p) of real roots — multiplicities
counted — of the polynomial p(x) ∈ R[x] in the open interval ]0,+∞[ is bounded
above by var(p); that is, we have var(p) ≥ %+(p).

According to Descartes’ rule of signs if var(p) = 0 it follows that %+(p) = 0.
Additionally, according to Descartes’ rule of signs, the mean value theorem

and the fact that the polynomial functions are continuous, if var(p) = 1 it follows
that %+(p) = 1 [16].

Therefore, Descartes’ rule of signs yields the exact number of positive roots
only in the two special cases mentioned above2.

These two special cases of Descartes’ rule are used in Vincent’s theorem of
1836, [36], which states:

Theorem1. (Vincent’s original theorem — “continued fractions” version) If in
a polynomial, p(x), of degree n, with rational coefficients and without multiple
roots we perform sequentially replacements of the form

x ← α1 + 1
x , x ← α2 + 1

x , x ← α3 + 1
x , . . .

where α1 ≥ 0 is an arbitrary non negative integer and α2, α3, . . . are arbitrary
positive integers, αi > 0, i > 1, then the resulting polynomial either has no sign
variations or it has one sign variation. In the last case the equation has exactly
one positive root, which is represented by the continued fraction

α1 + 1
α2+

1
α3+ 1

...

whereas in the first case there are no positive roots.

For a detailed discussion of this theorem, its extension, the geometrical in-
terpretation of the transformations involved and three different proofs see [12],
[13] and [14]; a fourth proof is presented by Ostrowski [27], who rediscovered a
special case of a previously stated theorem by Obreschkoff, ([26], p. 81).

2 These two special cases were known to Cardano; in other words, what Descartes did
was to generalize “Cardano’s special rule of signs”. This detail is mentioned in [6].



The negative roots are treated in the same way — as suggested by Sturm —
after we transform them to positive with the replacement x ← −x performed
on p(x). The requirement that p(x) have no multiple roots does not restrict the
generality of the theorem because in the opposite case we first apply square-free
factorization and then isolate the roots of each one of the square-free factors.

1.1 Isolating the Real Roots of a Polynomial with Vincent’s
Theorem

By cleverly utilizing the two special cases of Descartes’ rule — the case of 0 or
1 sign variation — Vincent’s theorem can be used to isolate the positive roots
of a given polynomial p(x). To see this, note that if we represent by the Möbius
transformation M(x) = ax+b

cx+d the continued fraction that leads to a transformed
polynomial

f(x) = (cx + d)np(
ax + b

cx + d
), (1)

with one sign variation, then the single positive root of f(x) — in the interval
]0, +∞[ — corresponds to that positive root of p(x) which is located in the open
interval with endpoints b

d and a
c . These endpoints are not ordered and correspond

to M(0) and M(∞), respectively3.
Therefore, to isolate the positive roots of a polynomial, all we have to do is

compute — for each root — the variables a, b, c, d of the corresponding Möbius
transformation M(x) = ax+b

cx+d that leads to a transformed polynomial f(x) =
(cx + d)np(ax+b

cx+d ), with one sign variation.

Crucial observation: The variables a, b, c, d of a Möbius transformation
M(x) = ax+b

cx+d (in Vincent’s theorem) leading to a transformed polynomial with
one sign variation can be computed:

– either by continued fractions, leading to the continued fractions method
developed by Akritas and Strzeboński — which in the sequel will be called
the VAS continued fractions method4,

– or, as we will see in the sequel, by bisection, leading to (among others) the
bisection method developed by Collins and Akritas — which in the sequel
will be called the VCA bisection method5.

3 As we will see in the sequel, the endpoints may also be computed from M(0) and
M(1), if we work in the interval ]0, 1[; in that case, Descartes’ rule of signs does not
apply and we use Uspensky’s test instead.

4 To distinguish it from other continued fraction methods such as [7], [18], [32] cited
in ([37], pp. 470–478). In [31] VAS is referred to as the “Akritas’ continued fractions
method”. See also [12] and [15].

5 To distinguish it from Sturm’s bisection method [37].



It is not an accident that Vincent’s theorem is exactly what is needed to
prove termination of both real root isolation methods mentioned above; and
that proof of termination was masterly presented by Alesina and Galuzzi [12],
[14].

The “bisection part” of this all important observation is missing from major
works such as ([37], pp. 470–478) and almost every paper on the subject; to our
knowledge, it appears only in the papers by Alesina and Galuzzi [12], [14].

More explicitly, whereas the association of Möbius transformations of the
form M(x) = ax+b

cx+d — or, equivalently, of Vincent’s theorem — with the VAS

continued fractions method is generally acknowledged, there is a lingering per-
ception that there is no association between the VCA bisection method and Vin-
cent’s theorem. In this paper we debunk this perception, eliminating thus a
source of great misunderstandings and needless duplication of efforts6.

From the crucial observation it becomes obvious that Vincent’s theorem of
1836 is the origin of both the VAS continued fractions method and the VCA bi-
section method mentioned above and, consequently, correctly is Vincent’s name
included in both of them.

Please note that the title of the paper by Collins and Akritas [19] was “Poly-
nomial real root isolation (indirectly) using Descartes’ rule of signs”, where the
emphasis on “using” as well as the word indirectly have been added for clarity.

The fact that Descartes’ rule of signs is used in Vincent’s theorem and,
hence, directly or indirectly in both methods VAS and VCA, should not, under
any circumstances, be used as an excuse to call any of these two methods after
Descartes; to do otherwise — as in the case of the VCA method— creates con-
fusion and is the source of great misunderstandings. In other words, there is no
“Descartes’ method” and this fact is reflected in [28], and [16].

In Section 2 we deal mainly with the VCA bisection method and show its
relation to Vincent’s theorem. Since the relation between Vincent’s theorem and
the VAS continued fractions method is universally acknowledged [2], [12], we use
VAS as a point of reference and we briefly present it below; an excellent survey
of the subject can be found in the papers by Alesina and Galuzzi [12], [13] and
[14].

1.2 The Continued Fractions Method Derived from Vincent’s
Theorem

The VAS continued fractions method is a direct implementation of Vincent’s
theorem. It was originally presented by Vincent in 1836 [36] in an “exponential”
form; namely, Vincent computed each partial quotient ai by a series of unit
6 One cannot help but wonder why neither the work by Alesina and Galuzzi [14] nor

Obreschkoff’s book [26] are cited in papers that deal with “Descartes’ method”.



increments ai ← ai + 1, which are equivalent to substitutions of the form x ←
x + 1.

In 1978 the method was converted into its “polynomial” form by Akritas, who
in his Ph.D Thesis [1] computed each partial quotient ai as the lower bound, `b,
on the values of the positive roots of a polynomial — the so called “ideal” positive
lower root bound, which computes the integer part of the smallest positive root
[9]; that is, we now set ai ← `b or, equivalently, we perform the substitution
x ← x + `b, which takes about the same time as the substitution x ← x + 1. For
details see also [2], [3], [4] and Chapter 7 in [6].

Finally, since the ideal positive lower root bound does not exist, Strzeboński
[8] introduced the substitution x ← `bcomputed · x, whenever `bcomputed > 16 —
where in general `b > `bcomputed and the value 16 was determined experimentally.

In [8] it was also shown that the VAS continued fractions method is faster
than the fastest implementation of the VCA bisection method [28], a result which
was independently confirmed by Tsigaridas and Emiris [33]; see also [10]. In 2007
Sharma removed the hypothesis of the ideal positive lower bound and proved
that VAS is still polynomial in time [30], [31]!

In Algorithm 1 below we present a recursive description of the VAS continued
fractions method. We follow [16], which pedagogically seems to be the most
appropriate style of presentation:

The VAS continued fractions method

Input: A univariate, square-free polynomial p(x) ∈ Z[x], p(0) 6= 0, and the Möbius

transformation M(x) = ax+b
cx+d = x, a, b, c, d ∈ Z

Output: A list of isolating intervals of the positive roots of p(x)

var ←− the number of sign changes of p(x);1
if var = 0 then RETURN ∅;2
if var = 1 then RETURN {]a, b[} // a = min(M(0),M(∞)), b = max(M(0),M(∞));3

`b ←− a lower bound on the positive roots of p(x);4
if `b > 1 then {p ←− p(x + `b), M ←− M(x + `b)};5

p01 ←− (x + 1)deg(p)p( 1
x+1 ), M01 ←− M( 1

x+1 ) // Look for real roots in ]0, 1[ ;6
m ←− M(1) // Is 1 a root? ;7
p1∞ ←− p(x + 1), M1∞ ←− M(x + 1) // Look for real roots in ]1, +∞[ ;8

if p(1) 6= 0 then9
RETURN VAS(p01, M01)

⋃
VAS(p1∞, M1∞)10

else11
RETURN VAS(p01, M01)

⋃{[m, m]}⋃
VAS(p1∞, M1∞)12

end13

Algorithm 1: The VAS(p, M) “continued fractions” algorithm, where
the second argument is the Möbius transformation M(x) associated
with p(x). For simplicity, Strzeboński’s contribution is not included.

Please note the following:
VAS 1: Descartes’ rule of signs is a crucial component of the VAS(p,M)

continued fractions algorithm — lines 1-3. Despite this fact, no one has ever
called the VAS(p,M) method after Descartes — and rightly so, since it is derived



from Vincent’s theorem.
VAS 2: If we remove lines 4 and 5 from VAS(p,M) we are left with an

exponential algorithm.
VAS 3: Any substitution performed on the polynomial p(x) is also performed

on its associated Möbius transformation M(x) — lines 5, 6 and 8.
VAS 4: To isolate the real roots of p(x) in the open interval ]0,+∞[ we

proceed as follows:

– we first isolate the real roots in the interval ]0, 1[ — lines 6 and 10 (or 12),

– we then deal with the case where 1 is a root of p(x) — lines 7, 9 and 12,

– and, finally, we isolate the real roots in the interval ]1,+∞[ — lines 8 and
10 (or 12).

VAS 5: The isolating intervals are computed from the Möbius transforma-
tions in line 3 — except for the integer roots which are computed in lines 7 and
12.

2 One of the Bisection Methods Derived from Vincent’s
Theorem

In an attempt to improve the exponential behavior of Vincent’s algorithm —
the only one existing at that time — Collins and Akritas [19] developed in 1976
the VCA method, the first bisection method derived from Vincent’s theorem;
unfortunately, at that time neither of them realized the dependency of their
method on Vincent’s theorem.

Let p(x) be the polynomial whose roots we want to isolate and let ub be an
upper bound on the values of its positive roots. Then all the positive roots of
p(ub ·x) lie in the interval ]0, 1[ and the VCA method isolates them by repeatedly
bisecting the interval ]0, 1[, while using in the process an appropriate “criterion”
to make inferences about the number of positive roots certain transformed poly-
nomials have in the interval ]0, 1[. Finally, the isolating intervals of the roots of
p(x) are easily computed from the bijection:

α]0,ub[ = a + α]0,1[(b− a), (2)

that exists between the roots α]0,1[ ∈]0, 1[ of the transformed polynomial
p(ub · x) and the roots α]0,ub[ ∈]a, b[=]0, ub[ of the original polynomial p(x).

The appropriate criterion mentioned above is a “test” that determines an
upper bound on the number of positive roots in the interval ]0, 1[.

Please observe that Descartes’ rule of signs cannot be used in the interval
]0, 1[, as it applies only to positive roots in the interval ]0,+∞[. Therefore, we
have to resort to a different “rule” if we want to avoid reinventing Sturm’s



method for isolating the real roots; recall that Sturm’s theorem gives us the
exact number of positive roots in any interval ]a, b[, [12].

Here is the test for determining an upper bound on the number of positive
roots in the interval ]0, 1[; as explained below, we name it after Uspensky, who
was the first to use it.

Uspensky’s test: The number %01(p) of real roots in the open interval ]0, 1[
— multiplicities counted — of the polynomial p(x) ∈ R[x] is bounded above by
var01(p), where

var01(p) = var((x + 1)deg(p)p(
1

x + 1
)), (3)

and we have var01(p) ≥ %01(p)7.

As in the case of Descartes’ rule of signs if var01(p) = 0 it follows that
%01(p) = 0 and if var01(p) = 1 it follows that %01(p) = 1.

Therefore, Uspensky’s test yields the exact number of positive roots only
in the two special cases mentioned above; to wit, whenever var01(p) = 0 or
var01(p) = 1.

Please note in equation (3) that, after the substitution x ←− 1
x+1 , the pos-

itive roots of p(x) that were in the interval ]0, 1[ are now in ]0, +∞[, in which
case Descartes’ rule of signs can be applied.

Uspensky’s test is associated with Budan’s theorem [4] according to which
for a given polynomial p(x) ∈ Z[x] the following two special cases hold:

– if var(p(x)) = var(p(x+1)), then we can conclude that there are no positive
real roots of p(x) in the interval ]0, 1[,

and

– if var(p(x)) − var(p(x + 1)) = 1, then we can conclude that there is one
positive real root of p(x) in the interval ]0, 1[.

Vincent was fully aware of Budan’s theorem and, consequently, the substitu-
tion x ←− 1

x+1 is never used as a test in the VAS method — line 6 of Algorithm
1; it is performed only whenever var(p(x)) − var(p(x + 1)) ≥ 2, in which case
the existence of positive roots in ]0, 1[ has to be investigated.

That, however, was not the case with Uspensky. Whenever he encountered
var(p(x)) = var(p(x + 1)) — not being aware of Budan’s theorem — he could
7 Uspensky’s test is a special instance of the powerful “Vincent’s test”, which is based

on Theorem 2 below, applies to any interval ]a, b[ and states that: If a ≥ 0 and
b > a then the number %ab(p) of real roots in the open interval ]a, b[ — multiplicities
counted — of the polynomial p(x) ∈ R[x] is bounded above by varab(p), where

varab(p) = var((1+x)deg(p)p(a+bx
1+x

)), and we have varab(p) = varba(p) ≥ %ab(p). For

applications see [11].



not conclude that there are no positive roots of p(x) in the interval ]0, 1[; he
would reach that conclusion only if var01(p) = 08.

In other words, Uspensky ([34], p. 128) was the first to use var01(p) = 0
exclusively as a test, in order to verify that there are no positive roots in the
interval ]0, 1[; hence, naming the test after him seems to be very appropriate.
That test was used in his unsuccessful attempt to develop a new procedure for
the isolation of the real roots of polynomials [5], [12]9.

Collins and Akritas [19] used Uspensky’s test in the VCA method — and that
was the main reason they originally (and misleadingly [5]) called it “modified
Uspensky’s method”. However, as we will show in the sequel, the VCA method
is derived from Vincent’s theorem, which we present in yet another way, due to
Alessina and Galuzzi [14].

Theorem2. (Vincent’s theorem — “bisection” version) Let f(z), be a real poly-
nomial of degree n, which has only simple roots. It is possible to determine a pos-
itive quantity δ so that for every pair of positive real numbers a, b with |b−a| < δ,
every transformed polynomial of the form

φ(z) = (1 + z)nf(
a + bz

1 + z
)

has exactly 0 or 1 variations. The second case is possible if and only if f(z)
has a simple root within ]a, b[.

We call this the bisection version of Vincent’s theorem, since, besides the
VCA bisection method, there are several other bisection methods derived from it,
which are studied in detail elsewhere [11].

Below is a recursive description of the VCA bisection method:

8 On the other hand, Uspensky used correctly and to his advantage the other special
case, var01(p) = 1, as well as the case var01(p) ≥ 2.

9 According to Professor Alexei Uteshev [35], of St. Petersburg’s State University, the
reason for Uspensky’s unsuccessful attempt was the fact that he never saw Vincent’s
actual paper of 1836 — where Budan’s theorem is stated right at the beginning.
Instead, Uspensky relied on the Russian translation of J.-A. Serret’s Cours d’Algèbre
Supérieur [29]. Indeed, in Section 167, p.315 of Ñåððå È.À. Êóðñ âûñøåé àëãåáðû.
Ì.- ÑÏá., Âîëüô, Á.ã., 573 ñ. we read:

�Â îäíîì èç ìåìóàðîâ, ñîñòàâëÿþùèõ ÷àñòü ïåðâîãî òîìà Journal de
Math�ematiques pures et appliques, Âåíñåí èçëîæèë ïðåêðàñíîå ñâîéñòâî
íåïðåðûâíûõ äðîáåé è âûâåë èç íåãî äëÿ âû÷èñëåíèÿ âåùåñòâåííûõ êîðíåé
óðàâíåíèÿ ñïîñîá, âûòåêàþùèé îäíîâðåìåííî è èç ñïîñîáà Íüþòîíà, è èç
ñïîñîáà Ëàãðàíæà...�

Please note that Serret presents Fourier ’s theorem under the name “Budan”.



The VCA bisection method — original version

Input: A univariate, square-free polynomial p(ub · x) ∈ Z[x], p(0) 6= 0, and the open
interval ]a, b[=]0, ub[, where ub is an upper bound on the values of the positive
roots of p(x). (The positive roots of p(ub · x) are all in the open interval ]0, 1[.)

Output: A list of isolating intervals of the positive roots of p(x)

var ←− the number of sign changes of (x + 1)deg(p)p( 1
x+1 );1

if var = 0 then RETURN ∅;2
if var = 1 then RETURN {]a, b[};3

p0 1
2
←− 2deg(p)p( x

2 ) // Look for real roots in ]0, 1
2 [ ;4

m ←− a+b
2 // Is 1

2 a root? ;5

p 1
2 1 ←− 2deg(p)p( x+1

2 ) // Look for real roots in ] 12 , 1[ ;6

if p( 1
2 ) 6= 0 then7
RETURN VCA(p0 1

2
, ]a, m[)

⋃
VCA(p 1

2 1, ]m, b[)8
else9

RETURN VCA(p0 1
2

, ]a, m[)
⋃{[m, m]}⋃

VCA(p 1
2 1, ]m, b[)10

end11

Algorithm 2: The original version of the VCA(p, ]a, b[) “bisection” algo-
rithm, where the second argument is the open interval ]a, b[ associated
with p(x). The isolating intervals of the roots of p(x) are computed
directly, without using bijection (2).

To obtain the isolating intervals of the positive roots of p(x) we could have
also used the interval ]a, b[=]0, 1[ along with bijection (2). An excellent discussion
of this algorithm can be found in [16]. Please note the following:

VCA 1: Uspensky’s test is a crucial component of the VCA(p, ]a, b[) bisection
algorithm — lines 1-3. In other words, Descartes’ rule of signs is used only
indirectly, and, hence, calling this method after Descartes is totally misleading;
besides, see [5] and also remark VAS 1 following Algorithm 1.

VCA 2: The substitutions in lines 4 and 6 are performed only on the poly-
nomial p(x), whereas at the same time — in line 5 — the interval ]a, b[ is divided
into two equal parts ]a,m[ and ]m, b[, to be used in line 8 (or 10).

VCA 3: To isolate the real roots of p(x) in the open interval ]0, 1[ we proceed
as follows:

– we first isolate the real roots in the interval ]0, 1
2 [ — lines 4 and 8 (or 10),

– we then deal with the case where 1
2 is a root of p(x) — lines 5, 7 and 10,

– and, finally, we isolate the real roots in the interval ] 12 , 1[ — lines 6 and 8
(or 10).

VCA 4: The isolating intervals are directly obtained from line 3 — except
for those roots that happen to coincide with the midpoint of an interval that
gets bisected, in which case they are computed in lines 5 and 10.

To show that the VCA bisection method is derived from Vincent’s theorem we



have to find a Möbius transformation M(x) = ax+b
cx+d that leads to a transformed

polynomial as in (1) — the characteristic property of Vincent’s theorem.
But alas, there is no Möbius transformation to be found in Algorithm 2.

The substitutions in lines 4 and 6, respectively, x ←− x
2 and x ←− x+1

2 seem
to be purely a byproduct of the bisection of the interval ]0, 1[ and unrelated to
Vincent’s theorem. But this is not the case!

Comparing Algorithms 1 and 2, we see that there exists a striking similarity
in their structure, with the following differences:

– d1 : in Algorithm 1 there is a Möbius transformation M(x) = ax+b
cx+d associ-

ated with each polynomial, whereas in Algorithm 2 there is an open interval
]a, b[ associated with each polynomial,

– d2 : in line 1, Algorithm 1 uses Descartes’ rule of signs, whereas Algorithm
2 uses Uspensky’s test,

– d3 : Algorithm 1 works with the interval ]0,∞[, whereas Algorithm 2 works
with the interval ]0, 1[.

Of the three it is only (d1) — the fact that in Algorithm 2 there is an open
interval ]a, b[ associated with each polynomial, — that obscures the relation of
the VCA bisection method with Vincent’s theorem. The other two differences are
simply procedural ones, due to the bijection (2) that exists between the roots.

In hindsight, the choice made by Collins and Akritas to associate with each
polynomial an interval ]a, b[ has turned out to be both:

– a boon, because the isolating intervals are computed immediately, and be-
cause this approach eventually led to the fastest implementation of the VCA

bisection method — developed by Rouillier and Zimmermann [28],

and

– a bane, because it has obscured the relation of the VCA bisection method
with Vincent’s theorem, resulting in the method being called initially after
Uspensky and presently after Descartes.

Moreover, due to that obfuscation the non-appropriate disks D1 = {z ∈
C : |z| < 1} and D2 = {z ∈ C : |z − 1| < 1} were used in a two-circles
theorem [20]; see also ([25], p. 9). On the contrary, a clear understanding
of the relation between the VCA method and Vincent’s theorem leads to the
determination of the appropriate disks — see ([26], p. 87), [12] and [14].

The relation of the VCA bisection method with Vincent’s theorem is revealed
if we replace the intervals ]a, b[ by the Möbius transformations M(x) = ax+b

cx+d



leading to transformed polynomials as in (1). This is done in the Algorithm 3
below.

The VCA bisection method — second version

Input: A univariate, square-free polynomial p(ub · x) ∈ Z[x], p(0) 6= 0, and the Möbius

transformation M(x) = ax+b
cx+d = ub · x, a, b, c, d ∈ Z, where ub is an upper bound

on the values of the positive roots of p(x). (The positive roots of p(ub · x) are all
in the open interval ]0, 1[.)

Output: A list of isolating intervals of the positive roots of p(x)

var ←− the number of sign changes of (x + 1)deg(p)p( 1
x+1 );1

if var = 0 then RETURN ∅;2
if var = 1 then RETURN {]a, b[} // a = min(M(0),M(1)), b = max(M(0),M(1));3

p0 1
2
←− 2deg(p)p( x

2 ), M0 1
2
←− M( x

2 )// Look for real roots in ]0, 1
2 [ ;4

m ←− M(0)+M(1)
2 // Is 1

2 a root? ;5

p 1
2 1 ←− 2deg(p)p( x+1

2 ), M 1
2 1 ←− M( x+1

2 )// Look for real roots in ] 12 , 1[ ;6

if p( 1
2 ) 6= 0 then7
RETURN VCA(p0 1

2
, M0 1

2
)
⋃

VCA(p 1
2 1, M 1

2 1)8
else9

RETURN VCA(p0 1
2

, M0 1
2
)
⋃{[m, m]}⋃

VCA(p 1
2 1, M 1

2 1)10
end11

Algorithm 3: A second version of the “bisection” algorithm, VCA(p,M),
where the second argument is the Möbius transformation M(x) associ-
ated with p(x). The relation to Vincent’s theorem is now obvious.

To obtain the isolating intervals of the positive roots of p(x) we could have
also used the Möbius transformation M(x) = x along with bijection (2).

Observe in line 3 of Algorithm 3 that, since we work with the interval ]0, 1[,
we now use M(0) and M(1) to compute the endpoints of the isolating intervals
of the roots — as opposed to M(0) and M(∞) used in Algorithm 1, where we
work with the interval ]0, +∞[.

Moreover, we see in lines 4 and 6 of Algorithm 3 that any substitution per-
formed on the polynomial p(x) is also performed on its associated Möbius trans-
formation M(x) — just as in Algorithm 1.

In other words we now have the missing link, to wit Möbius transformations
M(x) = ax+b

cx+d leading to transformed polynomials as in (1) with one sign varia-
tion — the characteristic property of Vincent’s theorem. Therefore, Algorithm
3 — and, hence, Algorithm 2 — is derived from Vincent’s theorem.

3 Conclusion

From the above discussion we see that naming the VCA bisection method ini-
tially after Uspensky and presently after Descartes obscures the important rela-
tion that exists between this method and Vincent’s theorem and creates great
misunderstandings.



As we have seen, this obfuscation has been responsible for

– a two-circles theorem with non-appropriate disks that appeared in 1989 [20]
— whereas the appropriate disks for the case of Vincent’s theorem had been
used by Obreschkoff back in 1952 ([26], p. 87) in his two-circles theorems10,

and

– needless duplication of efforts, whereby published results by Alesina and
Galuzzi [12], [14] — obtained for Vincent’s theorem — are being rehashed
for the seemingly “unrelated” case of “Descartes method” and presented as
independent research.

Therefore, the name “Vincent-Collins-Akritas” given to the VCA bisection
method in France [16] is the correct one; it makes existing relations transpar-
ent, does justice to Vincent and complements the name “Collins-Akritas” given
to VCA earlier, again in France [28]. To continue calling the VCA method after
Descartes is to willfully: (a) ignore scientific realities, (b) distort the history of
mathematics, and (c) perpetuate the obfuscation.
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