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times of pdynomials, continued fractions 

cc Is wdF krxwn that, 3n the treginning of the 19th 
century the mathematicians proved the impossibility 

ing algebraieaJly polynomial equations of 
gra?wr than four and as a result their attention 
d on numerical methods. During this period 
r conceived the idea to proceed in two steps; 

that is, first to isolate the roots and then to approxi- 
mate them to any desired degree of accuracy. Ap 
proximation is a rather trivial task and will not be 
discussed in this paper; moreover, we will be mainly 
concerned with the real roots. 

Isolation of the real roots of a polynomial equa- 
tmn is the process of finding real, disjoint intervals 

such that each contains exactly one real roqt and 
every root is contained in some interval. In order to 
itccomplish this, Sturm’s method is the only one 
widely known and used since 1830; since it can be 
found in the literature [5] we describe it briefly. 

For any given .iquare-free polynomial equation 
Pix) = 0, Sturm’s method works as follows: we com- 
pute am absolute upper root bound b, so that all the 
KU rnr:rts lie in the interval (-b, b), and then we con- 
tinuously jubclivide (-b, b) until’in each subinterval 

cre is at most one root; that is, Siurm’s method 
WCS bisecthn in order to isolate the real roots, (As 
w know. with the help of Stxm’s sequence - derivecl 

e polynomials P apd P’ - we can easily deter- 
e exact number of real roots in any subinterval 

1s ~$0 be found in the literature.) 
k oi Sturm’s metho is the coeffi- 

cdes~h trr!w41: !hat is, nl’ the calculations are performed 

in GE rkg of’ integers, rhe coefficients of the poly- 
rw%als HI the Sturm sequence become too large, and 
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hence, the round-off errors are not at all negligible, 
This drawback was overcome, though, in 1970, when 
Sturm’s rnethod was programmed in an algebraic 
manipulation system [4] ; moreover, it was shown [4] 
that its theoretical computing time bound is 

o(n13L(IPl,)3) , (1) 

where n is the degree of the square-free, integral poly- 
nomial equation P(x) = 0, and L(IPI,) the length, in 
bits, of the maximum coefficient in absolute value. 
The read.er immediately feels that Sturm’s method is 
very slow; it has been determined that its slowness is 
due to the computation of the Sturm sequence. 

During this decade new root isolation procedures 
appeared in the literature [ 1, pp. l-81. However, 
despite the fact that their theoretical computing time 
bounds are better than (1), they all have one thing in 
common, namely, they all use b&~&n in order to 
isolate real roots. 

Recently, in our Pla.D. dissertation [l] we devel- 
oped our own method for the isolation of the real 
roots of a polynomial equation, a method which by 
far surpasses all the existing ones in beauty, Gmplicity 
and speed; moreover, as we shall see, our method is 
the only one with polynomiril computing time bound 
which isolates the real roots using continued fractions. 
It is based on the following: 

Theorem (Vincent-Uspensky-Akritas). Let P(x) = 0 
be a polynomial equation of degree n > I, with ratio- 
nal coefficients and without multiple roots, and let 
A > 0 be the smallest distance between any two of 
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its roots. Let m be the smallest index such that 

hl-1 
A 
~>l and F,_lFmA>l+’ 3 

en 
(2) 

where Fk is the kth member of the Fibonacci sequence 

1, 1,2,3,5,8,13,21, . . . 

and 

( ) 1 t J l&-l) El,, = - 
rl 

1 . (3) 

Then the transformation 

1 
:K= al t - t 

a2 
. 

‘t l _t’ 
am E’ 

(which is equivalent to the series of successive trans. 
formations of the form x = ai + l/&j, i = 1,2, . . . . m) 
presented in the form of a continued fraction with 
arbitrary, positive, integral elements al, a2, . . . . am, 
transforms the equation P(x) = 0 in.to the equation 
F(g) = 0, which has not more than one sign variation, 
in the sequence of its coefficients. 

The original form of this theorem (that is, without 
specifying the quantity m) is due to Vincent alone 
[6], and appeared in 1836. The proof is omitted 
since it can be found in the literature [ 1,2]. It shodld 
be mentioned that Vincent’s theorem was so totally 
forgotten that even such a capital work as the 
Enzyclopaedie der mathematischen Wissenschaften 
ignores it. The author of this paper discovered it in 
Uspensky’s Theory ofEquations [5]. 

This theorem can be used in order to isolate the 
real roots of a polynomial equation. The fact that it 
holds only for equations without multiple roots does 
not restrict the generality, because in the opposite 
case all we have to do is to exlpress P(x) in the form 
P = I’& Si, where each of the S{s has only single 
roots [S, pp.65-691. Each of these single roots is of 
multiplicity i for the polynomial P(x) and thus we 
see that our theorem can be applied on the Si’s. So, 
in the rest of this discussion it is assumed that P(x) = 0 
is without multiple roots. 

From the statement of the above theorem we 
know that a transformation of the form (4), with 

arbitrary, positive integer elements a11a2, . . . . a, 
transforms P(x) = 0 into an equation P(f) = 0, which 
has at most one sign variation; this transformation 
can be also written as 

(5) 

where Pk/Qk is the kfh convergent to the continued 
fraction 

1 
al+- 1 

a2 +- 
a3 + 

. . 

(Recall that from the law of convergents we have 

pktl = aktlpk t Pk-l , 

Qktl = ak+lQk + c-h-1.) 

Since the elements al, a2, ‘._, a, are arbitrary there is 
obviously an infinite number of transformations of 
the form (4). However, with the help of Budan’s 
theorem we can easily determine those that are of 
interest to us; namely, there is a finite number of 
them (equal to the number of the positive roots of 
P(x) = 0) which lead to an equation witt. exactly 
one sign variation in the sequence of its coefficients. 
Suppose that P(t) = 0 is one of these equations; then 
from the Cardano-Descartes rule of signs we know 
that it has one root in the interval (0, m). If & was 
this positive root, then thlz corresponding root ji of 
P(x) = 0 could be easily obtained from (5). We only 
know though that g lies in the interval (0, 00); there- 
fore, substituting &! in (5) once by 0 and once by -3 
we obtain for the positive root i its isolating interval, 
whose unordered endpoints are P,_ r/Qm._l and 
P,/Q,. Xn this fashion we can isolate all the positive 
roots of P(x) = 0. If we subsequently repla,ce x by -x 
in the original equation, the negative roots become 
positive and hence, they ;oo can be isolated in the 
way mentioned above. Thus we see that we have a 
procedure for isolating all the real roots of P(x) = 0. 

The calculation of the quantities ar, a2, . . . . a, - 
for the transformations of the form (4) which lead to 
an equation with exactly one sign variation - corsti- 
tutes the polynomial real root isolation procedure. 
Two methods actually result, Vincent’s and Akritas’, 
corresponding to the two different ways iit which the 
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:neurpurarion of the ai’ may be performed. 
method btisically consists of computing 

by a &es of unit incrementations; 
+ I, which corresponds to the substitu- 

trsrv x 6 x + I. This ‘brute force’ Jpproach results in 
cthod with an exponential behavior, namely, for 
wafuee of the ai’s this method will take a long time 

[even years in a computer) in order to isolate the 
real roots of an equation. Therefore, Vincent’s meth- 

is of little practical importance. Examples of this 
roach can be found in Vincent’s paper [6], and in 
nsky’s book [S, pp. J 29- 1371, The reader should 

notice that in the preface of his book Uspensky 
s that he himself invented this method. A simple 

comparison with Vincent’s paper though makes clear 
th.da what can be considered a contribution on 
~~,~e~sky~s part is only the fact that he used the 
Ruffirri- Worncr method [3 1 in order to perform the 
~ri~~sf~~rrnat~~~~s x 6 x + 1, whereas Vincent used 
$sylor’s cxpanskn rheorem. Moreover, Uspensky 
S~SHMS its ignore Budan’s theorem and, while com- 
putin; a particular ai, he performs, after each trans- 
Dation x + x + 1, the unnecessary transformation 
x +- 1/(x + I ), something which Vincent avoids. 

Akritas’ method, on the contrary, is an aestheti- 
c:ltly pleasing interpretation of the Vincent- 
I_‘spcnsk;-- Akritas theorem. Basically it consists of 
immediarely computing a particular ai as the lower 
bound b of the positive roots of a polynomial; that is, 
ai +- 5, which corresponds to the substitution 
x +- x -b b performed on the particular polynomial 
tinder consideration. It is obvious that our method is 
independent of how big the values of the ai’s are. 
(An unsuccessful treatment of the big values of the 
:+‘s can be found in Uspensky [S, p.1361. In this dis- 
cussion it is assumed that b = Las], where ov, is the 
r;mallest positive root.) Since the substitutions 
Y +- x f I and x +- x + b can be performed in about 
the same time [3 1, we easily see that our method 
re&ts in enormous savings of computing time, We 
have im@emented our method in a computer algebra 
system and have been able to show that its computing 
time bound is 

Table 1 

Degree Sturm Akritas 

5 2.05 0.26 

10 33.28 0.48 

15 156.40 0.94 

20 524.42 2.36 
-- 

Comparing (1) and (6) we clearly see the superiority 
of our method. 

In this paper we present just one table (Table 1) 
showing the observed times for the methods of Sturm 
and Akritas (more examples can be found in [ 11). 
All times are in seconds and were obtained by using 
the SAC-l computer algebra system on the IBM 
S/370 Model 165 computer located at the Triangle 
Universities Computation Center, where a subroutine 
CCL,OCK is available, which reads the computer 
clock. All the coefficients of the polynomials (of 
degree 5, 10, 15,20) were nonzero, each ten decimal 
digits long and randomly generated. 

We see that the most efficient way to isolate the 
real roots of a polynomial equation is by using con- 
tinued fractions. In our Ph.D. thesis we have given all 
the necessary hints as to how the above mentioned 
theorem may be .used in order to isolate the complex 
roo:ts as well. We hope to have more to say on this 
sub.ject in the near future. 
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