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It is well known that, in the beginning of the 19th
century the mathematicians proved the impossibility
of solving algebraically polynomial equations of
degrce greater than four and as a result their attention
focused on numerical methods. During this period
Fourier conceived the idea to proceed in two steps;
that is, first to isolate the roots and then to approxi-
mate them to any desired degree of accuracy. Ap-
proximation is a rather trivial task and will not be
discussed in this paper; moreover, we will be mainly
concerned with the real roots.

Isolation of the real roots of a polynomial equa-
tion is the process of finding real, disjoint intervals
such that each contains exactly one real ront and
every root is contained in some interval. In order to
accomplish this, Sturm’s method is the only one
widely known and used since 1830; since it can be
found in the literature [5] we describe it briefly.

For any given square-free polynomial equation
Pix) = 0, Sturm’s method works as foliows: we com-
pute an absolute upper root bound b, so that all the
cat ioots lie in the interval (-b, b), and then we con-
tinuously subdivide (—b, b) until in each subinterval
there is at most one root; that is, Sturm’s method
uses bisection in order to isolate the real roots. (As
we know, with the help of Sturm’s sequence — derived
from the polynomials P and P’ — we can easily deter-
mine the exact number of real roots in any subinterval
{(p. q}: more details coa be found in the literature.)
The basic drawback o1 Sturm’s method! is the coeffi-
cient growth: that is, 1f the calculations are performed
in the ring of integers, the coefficients of the poly-
nomials in the Sturm sequence become too large, and
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hence. the round-off errors are not at all negligible.
This drawback was overcome, though, in 1970, when
Sturm’s method was programmed in an algebraic
manipulation system [4]; moreover, it was shown [4]
that its theoretical computing time bound is

O(n"’L(IPl..)%) . (1)

where n is the degree of the square-free, integral poly-
nomial equation P(x) = 0, and L(|P|..) the length, in
bits, of the maximum coefficient in absolute value.
The reader immediately feels that Sturm’s method is
very slow; it has been determined that its slowness is
due to the computation of the Sturm sequence.

During this decade new root isolation procedures
appeared in the literature [1, pp.1-8]. However,
despite the fact that their theoretical computing time
bounds are better than (1), they all have one thing in
common, namely, they all use bisection in order to
isolate real roots,

Recently, in our Ph.D. dissertation [1] we devel-
oped our own method for the isolation of the real
roots of a polynomial equaticn, a method which by
far surpasses all the existing ones in beauty, simplicity
and spead; moreover, as we shall see, our method is
the only one with polynomial computing time bound
which isolates the real roots using continued fractions.
It is based on the following:

Theorem (Vincent—Uspensky— Akritas). Let P(x) = 0
be a pclynomial equation of degree n > 1, with ratio-
nal coefficients and without multiple roots, and let
A > 0 be the smallest distance between any two of
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its roots. Let m be the simallest index such that

A 1

Fnoa=>1 and FuFmdA>i+—, (2

2 €n
where Fy is the k'™ member of the Fibonacci sequence
1,1,2,3,5,8,13,21, ...

and

1\V/@-1)
€= (1 + —) —1. @3

n

Then the transformation

LI @

(which is equivalent to the series of successive trans-
formations of the formx=a; + 1/¢,i=1,2, ..., m)
presented in the form of a continued fraction with
arbitrary, positive, integral elements a;, a,, ..., apy,
iransforms the equation P(x) = 0 into the equation
(%) = 0, which has not more than one sign variation,
in the sequence of its coefficients.

The original form of this theorem (that is, without
specifying the quantity m) is due to Vincent alone
[6], and appeared in 1836. The proof is omitted
since it can be found in the literature [1,2]. It should
be mentioned that Vincent’s theorem was so totally
forgotten that even such a capital work as the
Enzyclopaedie der mathematischen Wissenschaften
ignores it. The author of this paper discovered it in
Uspensky’s Theory of Equations [5].

This theorem can be used in order to isolate the
real roots of a polynomial equation. The fact that it
holds only for equations without multiple roots does
not restrict the generality, because in the opposite
case all we have to do is to express P(x) in the form
P= 1%, Si, where each of the S;’s has only single
roots [5, pp.65—69]. Each of these single roots is of
multiplicity i for the polynomial P(x) and thus we
see that our theorem can be applied on the S;’s. So,
in the rest of this discussion it is assumed that F(x)=0
is without multiple roots.

From the statement of the above theorem we
know that a transformation of the form (4), with
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arbitrary, positive integer elements a,, 23, ..., am
transforms P(x) = 0 into an equation P(%) = 0, which
has at most one sign variation; this transfermation
can be also written ds

X = Pms + Pm-—l
QmE + Qm-—l ’

where P./Q. is the k! converee
{Qy 1s the convergen

WALELE 2 K

fraction

as + —
2a3+

(Recall that from the law of convergents we have
Psr = age Pyt Py

Qui1 = ax+1Qk + Qk-1.)

Since tie elements ay, ay, ..., 3, are arbitrary there is
obviously an infinite number of transformations of
the form (4). However, with the help of Budan’s
theorem we can easily determine those that are of
interest to us; namely, there is a finite number of
them (equal to the number of the positive roots of
P(x) = 0) which lead to an equation witk: exactly
one sign variation in the sequence of its coefficients.
Suppose that P(¥) = 0 is one of these equations; then
from the Cardano—-Descartes rule of signs we know
that it has one root in the interval {0, ). If £ was
this positive root, then the corresponding root x of
P(x) = 0 could be easily obtained from (5). We only
know thcugh that £ lies in the interval (0, %); there-
fore, substituting £ in (5) once by 0 and once by =
we obtain for the positive root X its isolating interval,
whose unordered endpoints are Py, _;/Qp.-1 and
Pm/Qu- In this fashion we can isolate all the positive
roots of P(x) = 0. If we subsequently replace x by —x
in the original equation, the negative roots become
positive and hence, they (0o can be isolated in the
way mentioned above. Thus we see that we have a
procedure for isolating all the real roots of P(x) = 0.
The calculation of the quantities ay, aj, ..., ay
for the transformations of the form (4) which lead to
an equation with exactly one sign variation — consti-
tutes the polynomial real root isolation procedure.
Two methods actually result, Vincent’s and Akritas’,
corresponding to the two different ways i which the
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computation of the a;’- may be performed.

Vincewnt's method basically consists of computing
a particular a; by a series of unit incrementations;
that is, a; « a; + |, which corresponds to the substitu-
tion x < x + 1. This ‘brute force’ approach results in
a method with an exponential behavior, namely, for
big values of the a;’s this method will take a long time
{even vears in a computer) in order to isolate the
real roots of an equation. Therefore, Vincent’s meth-
od is of little practical importance. Examples of this
approach can be found in Vincent’s paper [6], and in
Uspensky's book |5, pp.129-137]. The reader should
notice that in the preface of his book Uspensky
claims that he himself invented this method. A simple
comparison with Vincent’s paper though makes clear
that what can be considered a contribution on
Uspensky’s part is only the fact that he used the
Ruffini--Horner method (3] in order to perform the
transformations x < x + 1, whereas Vincent used
Taylor’s expansicn theorem. Moreover, Uspensky
seems (o ignore Budan’s theorem and, while com-
puting a varticular a;, he performs, after each trans-
lation x < x + 1, the unnecessary transformation
x « 1/{x + 1), something which Vincent avoids.

Akritas’ method, on the contrary, is an aestheti-
cally pleasing interpretation of the Vincent—
Uspensk ;- Akritas theorem. Basically it consists of
immediately computing a particular a; as the lower
bound b of the positive roots of a polynomial; that is,
a; < b, which corresponds to the substitution
% « x + b performed on the particular polynomial
under consideration. It is obvious that our method i3
independent of how big the values of the a;’s are.
(An unsuccessful treatment of the big values of the
a;’s can be found in Uspensky [5, p.126]. In this dis-
cussion it is assumed that b = | o |, where agis the
smallest positive root.) Since the substitutions
« < x+ | and x < x + b can be performed in about
the same time [3], we easily see that our method
resuits in enormous savings of computing time. We
have implemented our method in a computer algebra
system and have been able to show that its computing
time bound is

O(n*L(IPL.)°) . (6)
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Table 1

Degree Sturm Akritas
5 2.05 0.26

10 33.28 0.48

15 156.40 0.94

20 524.42 2.36

Comparing (1) and (6) we clearly see the superiority
of our method.

In this paper we present just one table (Table 1)
show/ing the observed times for the methods of Sturm
and Akritas (more examples can be found in [1]).
All times are in seconds and were obtained by using
the SAC-1 computer algebra system on the IBM
S/370 Model 165 computer located at the Triangle
Universities Computation Center, where a subroutine
CCLOCK is available, which reads the computer
clock. All the coefficients of the polynomials (of
degree 5, 10, 15, 20) were nonzero, each ten decimal
digits long and randomly generated.

We see that the most efficient way to isolate the
real roots of a polynomial equation is by using con-
tinued fractions. In our Ph.D. thesis we have given all
the necessary hints as to how the above mentioned
theorem may be used in order to isolate the complex
roots as well. We hope to have more to say on this
subject in the near future.
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