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2 Invited Speakers

Teaching Math to Lady M

Bruno Buchberger

Bruno Buchberger Research Institute for Symbolic Computation Johannes Kepler University, Linz /

Hagenberg Castle, Austria

I stopped teaching logic and math to humans. Instead I started to teach logic /
math to Lady M, a machine. She (or he or it) has absolutely no insight and I enjoy
that she does not expect that what I am telling her has any meaning (semantics).
For certain input expressions she produces certain output. Very reliably, for the
same input the same output. By certain input, her inner state changes and she her
input / output behavior changes. Recently, after many layers of communication, I
managed to make her behave the way I behaved when, as a PhD student, I invented
the Gröbner bases algorithm. I.e. I taught her to invent mathematical algorithms
and proofs. Of course, she does not know. Of course, I cannot give a talk on this,
since I stopped talking to mathematicians. However, if you like and you don’t
make me jealous, you may come and watch me talk to Lady M.

1
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Gamma and Factorial in the Monthly

Rob Corless

Western University, London, ON, Canada

Since its inception in the 19th century, the American Mathematical Monthly
has published over fifty papers on the Gamma function or equivalently the factorial
function. Over half of these were on Stirling’s formula. We survey these papers,
which include a Chauvenet prize winning paper by Philip J. Davis [1] and a paper
by the Fields medallist Manjul Bhargava [2], and highlight some features in com-
mon. We also identify some surprising gaps and attempt to fill them, especially on
the "inverse Gamma function".

This is joint work with the late Jonathan M. Borwein.

References
[1] P. J. Davis. Leonhard Euler’s integral: A historical profile of the Gamma function: In memo-

riam: Milton Abramowitz 66(10), 849-869 (1959).
[2] M. Bhargava. The factorial function and generalizations, American Mathematical Monthly

107 (9),pp. 783-799 (2000).
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4 Invited Speakers

Enhancing Teachers’ and Students’ Mathematical
Knowledge in a Technology-Rich Environment

Sara Hershkovitz

The Center for Educational Technology (CET) - Tel Aviv, Israel

In the last century, the main goals of mathematics education were based on
conceptual understanding, problem solving and problem posing, modeling, appli-
cation, reasoning, creativity, and critical thinking ([5], [3], [2]). These goals be-
came possible with the development of technological tools (which had previously
not existed) that could carry out the procedures. The integration of digital tech-
nology into the mathematics classroom is an ongoing process ([4]) which has also
created an ability to focus teaching and learning processes on important ideas in
mathematics. Today, with the aid of the new technologies, it is possible to develop
learning approaches that include the use of representations, research into math-
ematical phenomena through dynamic technological applications, and feedback
from the computer through mirroring ([6]) of the outcome of the student’s action
("intellectual mirroring").

The feedback allows the student to solve problems, to research and test differ-
ent alternatives and decide whether he has achieved what he set out to do, and, by
testing , to generalize ideas and phenomena. Feedback is changed from a confir-
mation of prior knowledge - feed back - to the new knowledge - feed forward1.

In addition, on the one hand, the technology facilitates the assembly of rich
content to develop the required concepts and ideas, together with the disciplinary
goals and learning skills. On the other hand it allows the students’ learning abilities
to be checked and analyzed using analytical tools applied to big data, collected and
analyzed on an ongoing basis. Based on these data, teaching and learning processes
appropriate to each student can be constructed ([7]). These new possibilities carry
with them new ways of content development for all educational stages, and new
methods for teacher development.

In the presentation, mathematics instruction will be presented and discussed
as interaction of teachers, students, and content in technological learning environ-
ments ([1]).

1http://www.jisc.ac.uk/guides/feedback-and-feed-forward

1



5

References
[1] D.K. Cohen, S.W. Raudenbush and D.L. Ball. Resources, instruction, and research. Educa-

tional Evaluation and Policy Analysis, 25(2), 119-142 (2003).
[2] Common Core State Standards Initiative. Mathematics curriculum standards:

http://www.corestandards.org/Math (2010)
[3] J. Kilpatrick, J. Swafford and B. Findell. Adding It Up: Helping children learn mathematics,

Washington, DC: National Academy Press (2001).
[4] C. Laborde, and R. Straber. Place and use of new technology in the teaching of mathematics:

ICMI activities in the past 25 years. ZDM, Int J Math Educ, 42(7), 121-133 (2010).
[5] NCTM - National Council of Teachers of Mathematics. Professional standards for teaching

mathematics. Reston, VA (1991).
[6] Schwartz J. (1989). Intellectual Mirrors: A Step in the Direction of Making Schools

Knowledge-Making Places, Harvard Educ Rev, 59 (1) 51-62.
[7] S. Steenbergen-Hu and H. Cooper. A meta-analysis of the effectiveness of Intelligent Tutoring

Systems on K-12 students’ mathematical learning, Journal of Educational Psychology, 105(4),
970-987 (2013).

2



6 Invited Speakers

Parallel Coordinates: Visual Multidimensional Geometry
and its Applications

Alfred Inselberg

School of Mathematical Sciences, Tel Aviv University

aiisreal@post.tau.ac.il

With Parallel Coordinates the perceptual barrier imposed by our 3-dimensional
habitation is breached enabling the visualization of multidimensional problems.
The foundations are intuitively developed interlaced with applications and inter-
active demonstrations. A powerful knowledge discovery process enables the ex-
ploration of multivariate data with stunning results. The patterns representing re-
lational information reveal properties, like convexity and non-orientability, of hy-
persurfaces unlocking new geometrical insights. Models of multivariate problems
allow for the exploration of interrelations among parameters, sensitivities, trade-
offs and constraints for decision making. These patterns persist in the presence
of errors and that is good news for the applications. We stand at the threshold of
cracking the gridlock of multidimensionality. The parallel coordinates methodol-
ogy is used in collision avoidance and conflict resolution algorithms for Air Traffic
Control (3 patents), Computer Vision (patent), Data Mining (patent), optimization
and process control.
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Computer Algebra in Online STEM Education

C. James Cooper1, Stephen M. Watt2

1 Maplesoft, Waterloo, Canada, cjcooper@maplesoft.com
2 University of Waterloo, Canada, smwatt@uwaterloo.ca

Maplesoft and the Faculty of Mathematics at the University of Waterloo have
recently entered into a collaboration to produce a stream of online STEM courses
based on the Möbius [1] platform. The Faculty of Mathematics already offers
one completely online degree, the Master of Mathematics for Teachers, as well as
online sections of many core courses. The Möbius platform is now being used to
enhance the interactivity of online course assets and to allow fine-grained student
evaluation. The present talk describes the main issues in developing the new online
degrees.

References
[1] Maplesoft, Online courseware environment that puts STEM first, http://www.maplesoft.

com/products/Mobius/ (2016)
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Jonathan Borwein:
a PiONEER of Experimental Mathematics
(Memorial lecture)

Doron Zeilberger

Rutgers University, USA

Jonathan Borwein was not only a great mathematician, he was a visionary who
pioneered Experimental Mathematics, and was also very passionate about mathe-
matical education.
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New in the Wolfram Language - making Machine Learning
and other modern computing disciplines easy to use

Erez Kaminski

July 6, 2017

Abstract

For the past 30 years the Wolfram Language, the language of Mathematica, has continued
to evolve and reach new frontiers in computation and computer algebra. Alongside the contin-
ues development of well known attributes of the Wolfram Language (symbolic computation,
equation solving, etc.), new features and disciplines have been introduced and made easy.
Modern application of the language include Machine Learning, Image Processing, Server-less
API calls, and much more. In this talk we will review these new features and show how to ap-
ply them to education and research, using the same easy to use syntax that made Mathematica
so popular.

1



10 Invited Speakers

Free Students’ Exercise Notebooks and Maple 2017 News

Omer Yagel

VP DigiSec, Israeli rep. of Maplesoft

Maple is known for its ease of use and user friendliness and the latest edition,
Maple 2017, emphasising this point ever so. Maple 2017 has something new for
everyone, whether it be an improvement to the ease of use of plots or an advanced
mathematics feature.

At the outset of the presentation the Maple Tool Chain is fully exposed and
some further emphasis is given to education related tools, such as Maple TA and
the new Möbius project. After, the presentation gets into a more detailed survey of
some of Maple 2017 new or improved features:

• Maple Workbook (2016)

• Maple Cloud

• Plot Builder

• New Plots, Plots annotation, Geographical information projection

• Password Protection

• New Data Types (2016)

• Improved Help

DigiSec is running an academic free content project for the benefit of the stu-
dents community. A short demonstration would show how some of these new
features are helping us in improving some of our existing content.

1
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Using the Universal Math Environment Math-XPress for
teaching and assessment of math courses
Part I, Part II

P. Slobodsky1, A. Ocheretovy2, E. Roiz3, A. Shtarkman4

1 Halomda Educational Software, Israel, halomda@netvision.net.il
2 University of Ivanovo, Russia, alex_ocz@inbox.ru
3 University of Ariel, Israel, roizevg@bezeqint.net
4 Talpiot Teacher’s College, Holon, Israel, anatoly@bezeqint.net

In the talk we describe the main features of the Universal Math Environment Math-
XPress and its use for classroom teaching, home training and assessment of math
students at college and university levels. Math-Xpress includes linked modules of
equation editor, 2D and 3D graph plotter, CAS expression evaluator and step-by-
step solver, dynamic geometry (2D and 3D) and problem solving tutor.
Using the Problem Generator the courses in Calculus, Linear Algebra, Diff Equa-
tions, Statistics, Elementary Algebra, Geometry and others have been developed
and used at Talpiot teacher’s college and Ariel university regularly since 2007, in-
volving thousands of students each academic year.

Part I

Math-Xpress the Universal Math Environment
The basic module of Math-XPress is XPress-editor - a graphical formula editor,

enabling natural WYSIWYG editing of math expressions (Fig. 1), which can be
either embedded into Word- or other format pages, or used by CAS based XPress-
evaluator, XPress-graph plotter or XPress-Tutor.

Fig. 1

Math-Xpress includes also two modules of interactive geometry: 2-D and 3-D
XPress-geometry explorer, which are in turn interrelated to other modules (Fig.
2). XPress-graph plotter enables plotting graphs of functions of 2 and 3 variables,
families of functions and intersections of graphs (Fig. 3). XPress-evaluator per-
forms algebraic operations in final form or step-by-step [1]. The subjects covered
by XPress-evaluator include: Arithmetic, Elementary Algebra, Trigonometry, Cal-
culus, Probability and Statistics, Linear Algebra, Complex numbers.

1
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It enables to factorize polynomials, to solve equations and systems of equations
and to perform most of algebraic operations step-by-step way, or to get numerical
solution (Fig. 4).

Fig. 2

Fig. 3

All the objects created by XPress-editor, Graph Plotter and Geometry Explorer
can be imbedded into Word or pdf-pages and called from them directly in interac-
tive Math-Xpress environment. Closing the objects returns to the page from which
they have been called.
This technology made it possible to develop fully interactive Math textbooks, first
announced at [2] (❤tt♣s✿✴✴❤❛❧♦♠❞❛✳❝♦♠✴▼❛t❤s✲✺✳♣❤♣✮

Part II

XPress-Tutor consists of content-based problems, presented in three modes:
Learning, Training and Test. During a Learning mode, a student is offered a
series of problems on a given subject; every problem includes randomly chosen
parameters, so that different runs exhibit different initial sets of the parameters.

2
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Fig. 4

A student may try solving a problem in his way, by entering an answer or an inter-
mediate step of a solution. The program checks the input expression and responds.
A student can also ask for a Help, that is presented in 3 levels:
1) A General Help, where a method of solution common to all the problems of a
specific subject is described;
2) A List of Steps of a problem solution and the description of every step;
3) The Results of every Step of Solution (numerical or algebraic)
For the demonstration we consider the following example:

After trying to solve the problems a student can enter his result using the Edit-
ing Tools, or, pressing the Help key, he/she can call the Help window, where the
General Method and a List of Solution Steps are presented:

3
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The General Method outlines the general ideas and
methods that should be applied when solving a prob-
lem of a given type. By clicking the keys of solution
steps, a student will see the detailed step-by-step so-
lution of a problem similar to that offered to him/her
(however, with different initial set of parameters).

After reading the description of a current step, the student is supposed to be able to
implement it to the solution of the given problem. If, however, he/she still cannot
get the correct result of the step, clicking on Hint shows the result. A student may
wish to learn how to proceed with the solution, and call for the explanation of the
second step:

4
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After finishing all the steps, a student can either move to the next problem, or
repeat the current one with a new initial data.

In Training mode, instead of viewing the result of every step when clicking
Hint, a multiple choice of 4 possible results is presented, whereas in the Test mode,
no Help is available, and a student solves the series of the problems as during the
regular test.

In both Learning and Training modes all the features of Math Xpress are
available, so that in a course of problem solving a student can explore the problem
using different tools, that can help him/her in better understanding of a solution.

The problems are developed using the XPress Problem Generator external
module, enabling compiling of new items by unexperienced in programming peo-
ple [3].
During the last years thousands of problems have been developed covering the
courses in Arithmetic, Elementary Algebra and Geometry for primary and inter-
mediate schools, Algebra, Trigonometry and Introduction to Calculus for high
schools, and Calculus, Linear Algebra, Differential Equations, Probability and
Statistics for universities and colleges.
During the last academic year a course of Quantitative Thinking has been taught for
2 groups of students at Talpiot teacher’s college, and all the courses on High Math
have been used for teaching and intermediate exams for more than 3000 students
at Ariel University.

References
[1] S.Kornstein, Xpress Formula Editor and Symbolic Calculator, Mathematics Teacher 94, 5, p.

424 (2001).
[2] P.Slobodsky, Computerized textbook in Physics and Math - a new approach to science educa-
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Supporting Mathematical Thinking with CAS: The Need
of Epistemic Change among Teachers.

Rotem Abdu

Levinsky College, Tel-Aviv, Israel

The current abundance of educational technologies, and computer algebra sys-
tems (CAS) in particular, carry a promise: new venues for advanced mathematical
thinking. This promise is a product of teachers’ ability to construct and simulate
mathematical ideas that are dynamic and constrained by the mathematical world
(represented with the CAS). This dynamic attribute is considered to bring a change
in the way mathematical ideas are thought of: instead of prototypical examples that
are drawn with pen and paper, CAS such as Geogebra can provide a dynamic con-
text for inquiry of a full range of examples for mathematical concepts. Ultimately
the goal is to create cohesive mental models of mathematical ideas.

The promise for new mathematical thinking afforded by CAS, however, is im-
peded by several factors. For example, Anthony and Clark, (2011) examine key
factors that cause teachers to refrain from using CAS in their classrooms, includ-
ing dilemmas of misalignment with other curricular goals and limited professional
development. My interest in this talk, however, is in the change of epistemic stance
that is required by teachers; from static prototypes to dynamic and invariant objects.

I will examine this point with a case study in which nine in-service teachers
participated in an activity, in which they were asked to construct invariant models
of mathematical objects — right triangle — with Geogebra. This activity was a part
of a course on methodological issues in mathematics education. The teachers were
familiar with Geogebra as part of their postgraduate curriculum. An analysis of the
activity shows that the mathematical objects that were constructed by the teacher,
at first, neglected the much necessary “invariance” attribute of such object: in the
case of the right triangle created in Geogebra should stay a right triangle even if one
of its vertices or segments is moved by the user. Upon instruction and refinement
of the objective of the activity, teachers were gradually able to construct objects
that are invariant. However, the idea of invariance became what Cobb et al., (2001)
would call “a socio-mathematical norm” among the teachers, only after two more
similar activities.

I conclude that there is a need for epistemic change — even among teachers
that are supposedly familiar with Geogebra — from seeing CAS as tools that af-
ford static prototypes to seeing them as environments for building and simulating
invariant-dynamic objects. For that matter, teachers need to participate in activ-
ities that would provide them with opportunities to make that epistemic change;

1



18 SESSION 1. COMPUTER ALGEBRA IN EDUCATION

namely, they should be engaged in building such models as well as observing other
who do so. These results has also carry a nesting effect: if a teacher is not fa-
miliar with the invariant principle, there are good chances that their students will
not adopt this epistemic stance either. Moreover, the illustrated case also suggest
that “frontal” teaching with CAS — without students’ or teachers’ hands-on expe-
rience and building of objects — will yield limited learning in terms of achieving
advanced mathematical thinking.

References
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Active learning in High-School mathematics using
Interactive Interfaces

E.S. Cheb-Terrab1, K. von Bülow1

1 Maplesoft R&D, Canada, ecterrab@maplesoft.ca

The key idea in this project is to learn through exploration using a web of
user-friendly Highly Interactive Graphical Interfaces (HIGI). The HIGIs, struc-
tured as trees of interlinked windows, present concepts using a minimal amount
of text while maximizing the possibility of visual and analytic exploration. These
interfaces run computer algebra software in the background. Assessment tools are
integrated into the learning experience both within the HIGIs and at a general con-
ceptual map, the Navigator level. The Navigator offers students self-assessment
tools and full access to the logical sequencing of course concepts, helping them
to identify any gaps in their knowledge and to launch the corresponding learning
interfaces. An interactive online set of HIGIS of this kind can be used at school, at
home, in distance education, and both individually and in a group.

References
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Dynamic Computer Illustrations and Didactic
Considerations in the Learning and Teaching of
Mathematics

Michal Fraenkel1

1Center for Educational Technology, Israel

Years ago, as a math teacher, I used to dream of a dynamic way to show my
studen ts mathematical concepts and situations, such as rotating graphs around a
rotati on axis, graphs of functions changing according to the change of parameters,
the range of different situations meeting a certain set of data, etc.

This is no longer a dream — the tools are already here: We have dynamic soft-
ware that opens for us thousands of new ways to show our students this fascinating
world called “mathematics” — alongside which arise thousands of new questions.

How does the use of dynamic computer illustrations affect users’ way of think-
ing ? How does it affect the way teachers think? The way students think? If using
dy namic illustrations has any disadvantages, what may they be?

In my talk, I will show various Geogebra illustrations developed for high-
school students. I’ll discuss different aspects of using them and offer possible
considerations concerning questions such as:

• When should we use a dynamic illustration, and when should we avoid it?

• Should the students’ age and level of the class be taken into account when
considering the use of dynamic computer illustrations?

• What other considerations may help a teacher decide whether or not to use a
dynamic computer illustration?

• Once a teacher decides to use a dynamic computer illustration, what consid-
erations should he or she take into account while actually using it in their
classroom?

• What considerations should be taken into account while developing dynamic
computer illustrations?

1
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Activities in Geometry built with GeoGebra around
traditional Jewish artifacts

Th. Dana-Picard1, S. Hershkovitz2

1 Jerusalem College of Technology, Jerusalem, Israel, ndp@jct.ac.il
2 Center for Educational Technology, Tel Aviv, Israel, sarah@cet.ac.il

Traditional Jewish artifacts show different kinds of symmetries: rotational sym-
metry, axial symmetry, sometimes translations (e.g. in architecture). Other affine
plane transformations may appear, such as affinities (see [1]).

The study of these geometrical features may be a basis for courses in plane
and space geometry and in analytic geometry. This has been the basis for mathe-
matical activities for a population of students coming from the so-called orthodox
population in Israel. Until their arrival to pre-academic programs and then to un-
dergraduate studies, these students have studied previously only Talmudic studies,
therefore the usage of artifacts form their natural environment helps to draw their
attention.

This symbiosis is the basis of various works in Mathematics Education. More-
over, the usage of technology helps the students to find their own experimental way
to acquire more mathematical knowledge, the technological skills being part of this
new knowledge. This has been used a couple of years ago for a course on Analytic
Geometry both for pre-service and for in-service teachers (see [3]).

We are currently experimenting this framework both for high-school students
and for undergraduate students. This fits the official syllabus. The main technolog-
ical tool used in these courses is GeoGebra.

In our talk we will describe an activity built around architectural motives, and
show how students used GeoGebra to build a model, by enhancing knowledge in
Analytic Geometry. If some students use the DGS only as a plotter, many students
use mathematical knowledge (equations of lines, plane geometry, rotations and
axial symmetries) to program their work with the software, plotting a minimal
number of elements and reproducing them using plane transformations. We present
three different approaches for the mind-and-machine interaction.

We wish to mention that this work is part of an ongoing ERASMUS project on
STEAM education headed by Metropolitan University, Budapest.

References
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[2] Yu Manin (2015): Mathematics, Art, Civilization, in Art in the Life of Mathematicians (Anna
Kepes Szemeredi, edt), American Mathematical Society, RI: Providence, 168-186.
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Dynamic Geometry Software Supplemented with
Computer Algebra as a proving tool

R. Hašek

University of South Bohemia in České Budějovice, Czech Republic, hasek@pf.jcu.cz

The topic of this contribution is aimed at lower and upper secondary school
mathematics teaching as well as at university training of teachers of mathematics.

Joint use of computer algebra (CAS) and dynamic geometry software (DGS) or
even an incorporation of CAS into DGS brings new possibilities into the teaching
of mathematics, such as experimentation, the modelling of real-world situations or
deriving and proving of hypotheses [3, 4, 5]. We will deal particularly with the
latter issue of proving, namely with the question of the use of DGS and CAS as a
means of finding a proof. While the positive role of a proof in mathematics teaching
and learning is obvious [2], the beneficial use of computers to find a proof suitable
for teaching still requires detailed research. Also, among others, in connection
with the actual integration of algorithms of the automated theorem proving into
DGS [1]. First, we will briefly present up to date findings of such research. Then,
through specific examples, coming from secondary school mathematics or teacher
training courses, we will introduce several possible ways of using computer algebra
and dynamic geometry when dealing with proofs in mathematics teaching.
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Geometric constructions problems in dynamic
environment: new elegance and new dilemmas in teacher
training

I. Sinitsky1

1 Gordon College of Education, Haifa, Israel, sinitzsk@gordon.ac.il

After almost two decades of ignoring the issue of construction with straight-
edge and compass in Israeli high school curricula, they came back to textbooks
together with technologies and interactive geometry software (IGS). The IGS of-
fers students to discover the properties of geometric objects in the style of inquiry
as a process of problem posing and problem solving. The presentation discusses
horizons and dilemmas of using dynamic geometry environment for solutions of
construction problems in teacher training. Among didactic dilemmas we men-
tion the existing of ’non-classic’ tools of GeoGebra with allow almost immediate
solutions of some ’difficult’ construction problems (for example, three circles Ap-
polonius problem), and the students’ use of built-in tools for simple geometric
constructions. Concerning straightedge-and-compass construction problems, we
suggest the approach based on using the idea of interplay of change and invari-
ance [1, 2]. This approach provides the solution in the manner that fits the typical
way of reasoning of students. Since they have a difficulty to build geometrical
object that simultaneously satisfies different requirements, we suggest to split a
whole problem into multiple stages with the single construction demand at each
one. Technically, the approach use tracing as a tool to discover a hidden invariant
and to construct a suitable change. The approach is illustrated with solutions of
constructions problems that involve different transformations of intermediate ob-
ject: translation, homothety and others.

References
[1] I. Sinitsky and B. Ilany, Change and Invariance. A textbook on Algebraic Insight into Numbers

and Shapes., Sense Publishers, Rotterdam/Boston/Taipei (2016).
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for learning., Levenberg, I.& Patkin, D.(eds.), The many aspects of geometry - From research
to practice in geometry teaching. nd ed., MOFET, (2017, in Hebrew).
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Searching for loci using DGS and CAS

J. Blažek1, P. Pech2

1 University of South Bohemia, Czech Republic, blazej02@pf.jcu.cz
2 University of South Bohemia, Czech Republic, pech@pf.jcu.cz

Searching for geometric loci belongs to the traditional part of mathematics
school curricula all over the world. This topic is generally considered to be quite
difficult for students, despite many well–known loci are around us, such as lines,
circles or conics.

Nowadays new computational technologies substantially facilitate investiga-
tion of loci, especially in a plane. Dynamic geometry software such as Cabri,
GeoGebra, Sketchpad and others offer several methods how to describe the locus.
The use of this software enables to draw the desired locus and mostly to obtain its
locus equation. The use of a new GeoGebra command LocusEquation which pro-
vides an analytic description of the sought locus based on the theory of automated
theorem proving is presented.

In the talk a few examples which are accompanied with possible solutions and
comments are given.

By searching for the locus we will apply Groebner bases and Wu–Ritt methods
using software CoCoA1 and Epsilon library2.
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1Program CoCoA is freely distributed athttp://cocoa.dima.unige.it
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Checking solutions of tasks on expressibility in Boolean
algebra of sets

R. Prank

University of Tartu, Estonia, rein.prank@ut.ee

The paper describes some steps in a trial to computerize a new type of exercises
in Predicate Logic. Many introductory courses contain exercises on expression of
predicates using first order formulas in some given signature of constant, functional
and predicate symbols. Most exploited mathematical topic is here arithmetic of
natural numbers using signature 〈 0 ; ′,+, · ;=〉 (or similar). For example,
"x is even", "x/y = z" and "x ≤ y are quite easy tasks but "x is prime" or
"x is greatest common divisor of y and z" are harder for students.

In this paper we consider another quite reasonable exercise topic - predicates
defined on subsets of a fixed set, for example of set of natural numbers N. Books on
Boolean algebras or lattices show how the elementary statements of these theories
can be formulated in the signature of Boolean operations 〈 ′,∩,∪ ;=〉 or in the
signature of order relation 〈 ⊆ 〉. For example,

X ⊆ Y ⇔ X ∪Y = Y, (1)

X ∪Y = Z ⇔ (X ⊆ Z)∧ (Y ⊆ Z)∧∀W [(X ⊆W )∧ (Y ⊆W )→ (Z ⊆W )]. (2)

In our course we use both signatures for expression of predicates like
"X =Y ", "X = /0", "X ′ =Y ", "X \Y = Z", "|X |=m" but also for their combinations:
"X ∩ (Y ∪Z) =W " or "X is union of Y and some 2-element set".

The weaker students compose often wrong answers to expressibility tasks.
It would be desirable to create a computerized solution environment. Existing
general-purpose methods of expression handling enable detection of (quite fre-
quent) technical errors: incorrect syntax, superfluous or missing free variables, us-
ing symbols that do not belong to the required signature, confusion of set-theoretic
expressions and formulas. But the main problem is checking of correctness of an-
swer. Correctness of answer of expressibility tasks means equivalence with the
’correct’ formula. For arithmetic of natural numbers, equivalence of first order
formulas is undecidable. For being able to evaluate student answers, the Tarski’s
World [1] uses exercises with predicates on finite domains. For the class of all
Boolean algebras and also for any particular Boolean algebra the problem of equiv-
alence is decidable [2, 3]. In our project we investigate the question whether the
equivalence (in algebra P(N)) can be checked sufficiently quickly.

1
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The following propositions describe what defines the truth-value of formulas
of the signature σ = 〈 /0; ′,∩,∪ ;=〉. For sets X1, ...,Xn let πi(X1, ...,Xn) denote
their "Venn intersections" X1 ∩ ...∩Xn, ..., X ′

1 ∩ ...∩X ′
n (where 1 ≤ i ≤ 2n).

Propositon 1. Let F(X1, ...,Xn) be any quantifier-free formula with free vari-
ables X1, ...,Xn in signature σ . If A1, ...,An and B1, ...,Bn are collections of sets
having equal Venn diagrams, i.e.
πi(A1, ...,An) = /0 ⇔ πi(B1, ...,Bn) = /0 (1 ≤ i ≤ 2n).
Then F(A1, ...,An) = t ⇔ F(B1, ...,Bn) = t.

Quantified formulas enable describe also finite cardinalities of sets. For 1 ≤
i ≤ 2n we have
|A|= m ⇔∃Y1...∃Yn(A∩π1(Y1, ...,Yn) 6= /0∧ ...∧A∩πm(Y1, ...,Yn) 6= /0)∧
¬∃Y1...∃Yn(A∩π1(Y1, ...,Yn) 6= /0∧ ...∧A∩πm+1(Y1, ...,Yn) 6= /0).

The following proposition tells that the only expressible predicates are combi-
nations of cardinalities of regions of Venn diagrams.

Propositon 2. Let G(X1, ...,Xn) be any formula of signature σ that does not
contain other free variables beside X1, ...,Xn and where the maximal number of
nested quantifiers is k. If A1, ...,An and B1, ...,Bn are such collections of sets that
for every i (where 1 ≤ i ≤ 2n) the following holds:
1) |πi(A1, ...,An)| ≥ 2k ⇔ |πi(B1, ...,Bn)| ≥ 2k

2) if |πi(A1, ...,An)|< 2k then |πi(A1, ...,An)|= |πi(B1, ...,Bn)|.
Then G(A1, ...,An) = t ⇔ G(B1, ...,Bn) = t.

Corollary. For characterization of any formula it is sufficient to find its truth-
values for all combinations of cardinalities 0, ...,2k of regions of Venn diagram of
the free variables.

If the formula has n free variables and maximal number of nested quantifiers
is k then the Venn diagram contains 2n regions and we should examine 2k + 1
possible cardinalities for each region i.e. our ’extended column’ of truth-values
contains (2k + 1)2n

bits. Numbers of necessary truth-values are presented in the
following table:

Table 1. Free variables, nested quantifiers and numbers of truth-values
k (nested quantifiers) 0 1 2 3 4

n (free variables)
1 4 9 25 81 289
2 16 81 625 6561 83521
3 256 6561 390625 43046721
4 65536 43046721

2
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Most of ’elementary’ predicates in usual student exercises have 1-3 arguments.
Bigger numbers appear when we express composite predicates. Typical examples
are here predicates describing combined set-theoretical expressions like
(X ∪Y )∩Z =W but also X \Y = Z. They require in signature 〈 ⊆ 〉 formulas with
4+2 and 3+3 variables. In case of algebraic signature the formulas are less complex
and this allows also simplifying of internal representations. At the moment of
composing the abstract we work on calculation of cases 4+1 and 3+3 for acceptable
time.

Fortunately the natural solution strategy of expressibility tasks is not immediate
input of the final formula. Already in paper-and-pencil technology we recommend
the students to solve tasks step by step building some intermediate predicates. In
computer environment we can predict this approach more efficiently, proposing
appropriate choice of intermediate predicates (we can also allow substitution of
formulas from earlier tasks). This way allows also checking the intermediate for-
mulas step by step and reducing the number of nested quantifiers.

What kinds of feedback can be provided, using our computing engine? First the
program can use traditional methods for checking the syntax, free variables, usage
of signature symbols and expressions of correct type. Next, the described above
technical reasons enforce the program to reject the formulas that are too complex
(contain too much nested quantifiers). After that the main loop of the program
counts the truth-values of etalon formula and student formula for all cardinality
cases from the Proposition 2. If some distribution of cardinalities of regions of
Venn diagram gives a wrong truth-value then the program can use these cardinali-
ties for building a concrete example of sets where the formula fails. For example,
if the student enters for the predicate X ∪Y = Z the formula (X ⊆ Z)∧ (Y ⊆ Z)
instead of formula (2) then the program can respond with the simplest counterex-
ample X = /0, Y = /0, Z = {0}.
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Constructing Rational Gram–Schmidt Problems
and QR Problems

David J. Jeffrey and Nasir Khattak

Dept Applied Mathematics & ORCCA, University of Western Ontario, Canada, djeffrey@uwo.ca

A standard topic in Linear Algebra is the Gram-Schmidt process. It is equiva-
lent to obtaining the QR factoring of a matrix. When books use the name Gram-
Schmidt, they start with a set of vectors; when they use the term QR decomposition,
they start with a matrix. They are equivalent because each matrix column is a vec-
tor. The aim in either case is to make each column of unit length, in the 2-norm,
and also make each column orthogonal to all others. The resulting matrix is called
orthonormal (or orthogonal). So a matrix A is factored (decomposed) as

A = QR ,

where Q is orthonormal and R is upper triangular, and Q has the property that
QT Q = I, that is, its inverse equals its transpose. In numerical linear algebra, an
important property is that Q can be regarded a rotation matrix, and therefore it
does not amplify rounding errors the way that LU factoring does. The 2-norm is
the square-root of the sum of squares of the components of a vector, and hence the
Gram-Schmidt process includes many square-roots, which make exam questions
painful, because the students get lost. How nice if all square roots were exact!

We all know 32 +42 = 52 (don’t we); so the 2-norm of vector [3,4] is 5. Some
may know that 32 + 42 + 122 = 132; so the 2-norm of [3,4,12] is 13. We can use
this to construct matrices with rational QR factors.

In general, we define a pythagorean n-tuple by the equation

x2
1 + x2

2 + . . .+ x2
n−1 = x2

n ,

where the xk are all integers. Then the above examples are a pythagorean triple
and quadruple. A number of algorithms have been published to generate n-tuples
[1], but we need orthogonal n-tuples. At the moment, the only way we have found
to get the orthogonality property is brute force (exactly what computer algebra
is good at). However, it works quite well, and we have successfully constructed
5-by-5 matrices with rational QR factors.
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How to Use CAS (Maple) to Help Students Learn Number
Theory

M. Durcheva1

1Technical University of Sofia, Bulgaria, {mdurcheva66}@gmail.com

At the Technical University of Sofia (TUS), some topics of Number Theory are
taught in the "Discrete mathematics" course. The notions of the Number Theory
are very important for the students of computer sciences, as they are necessary, for
instance, for the "Cryptography" course.

As it is pointed out in [1], for an effective mathematical education it is useful
the teacher to:

- challenge his students to think deeply about the problems they are solving;
- influence learning by posing challenging and interesting questions;
- encourage students’ ability to "do" mathematics.
This paper will highlight some successful strategies for enhancing students’

learning that the author has used in teaching topics of Number Theory at the TUS.
In particular, the use of the CAS (Maple) expands students’ ability to "do" math-
ematics and to reach beyond the solutions and algorithms required to solve the
problem.

There are some problems in Number Theory where we can apply CAS in prov-
ing a statement, as it is in the

Problem 1. Prove that for all prime p, the number p2017 −1 is a composite.
It is clear that for all odd primes the proposition is obviously true. It remains,

students using CAS, to check it for p = 2.
Another approach we use to influence students’ learning, is to pose concrete

small problems and to ask students to make a hypothesis and then to prove it.
Problem 2. a) Check whether the numbers x = 32016 +22018 and

y = 20174 +42017, are primes.
b) Factorize z = 24n+2 +1.
c) Find the general form of x, y, and z, and try to make a conclusion.
Maple gives the factorization of the general form a4 +4b4.
Another interesting types of numbers are Fermat numbers. To introduce the

properties of these numbers to the students, the teacher could include the following
Problem 3. a) Check whether the numbers of the type 22n

+1 are primes.
b) Find the last digit of their decimal representation for n ≥ 2.
For 3,b, CAS helps students to make a conjecture and then most of them at-

tempt to prove it on their own.
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Because there are some theorems in Number Theory, whose proofs are very
complicated or rely on advanced mathematics, it is useful students "to be con-
vinced" in their truthfulness, as in the

Prime number theorem. [2, 3] The function π(x) (π(x) is the number of
primes ≤ x) is asymptotic to x/ ln(x), in the sense that

lim
x→∞

π(x)
x/ ln(x)

= 1.

At the TUS, Number Theory is taught in the first year, so we do not include
the proof of the this theorem in our course. That is way, it is very important for
us to motivate students to observe the truthfulness of the Prime number theorem.
Maple can help the teacher significantly in this direction. The teacher may pose
the following

Problem 4. Graph on the same plot the graphs of the functions π(x) and
x/ ln(x). Make a conclusion.

Another approach to enhance students’ learning is to pose them challenging
questions that not only stimulate students’ innate curiosity, but also encourages
them to investigate further. For instance, when studying numerical function τ(n),
the teacher can ask the following

Problem 5. Study the function τ(n) (using Maple). What conjectures can you
make about it? Is there a formula for τ(n)? Is the function τ(n) multiplicative?

One of the most difficult topics in Number theory are Diophant equations.
However, using Maple, some kind of linear Diophant equations can be easily
solved. Here the teacher could pose intriguing problems to motivate students to
study this topic.

While we are not in a position to run a controlled experiment to prove the
efficiency of these teaching methods, there have been several benefits in our class-
room. The students are more engaged, more likely to try to solve the problems on
their own, and at the end, they score higher on examinations.

References
[1] N. Protheroe, What Does Good Math Instruction Look Like?, Principal 7, 1, pp. 51-54 (2007).
[2] K. Rosen, Elementary Number Theory and lts Applications, Addison-Wesley Publishing Com-

pany (1986).
[3] N. Obreshkov, Number Theory, University Publishing House "St. Kl. Ohridski" (2004) (in

Bulgarian).

2



32 SESSION 1. COMPUTER ALGEBRA IN EDUCATION

Using Maple cloud computing in financial education of
pre-service teachers

V. Petrášková1, P. Rosa2
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2 University of South Bohemia, Czech Republic, rosapr00@pf.jcu.cz

The presentation deals with an original collection of educational materials de-
veloped by the authors at the Faculty of Education at the University of South Bo-
hemia. Main goal of these materials is to support the financial education of future
teachers with interactive environment in addition to the usual computer means of
financial computation such as spreadsheet and online calculators. Maple enables
to create interactive documents whose interactivity consists in implementation of a
simple user interface beyond the framework of usual document. This fact enables
the user to influence the computation result by a change in input parameters and
thus de facto to simulate an inexhaustible number of situations.
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Some examples of solving nonlinear programming
problems with CAS
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We would like to present some examples of solving nonlinear programming
problems using Mathematica and wxMaxima. It’s a didactic proposal to support
teaching students nonlinear programming (NLP) using CAS. Elements of NLP are
taught in the framework of such university courses as for example: mathematical
analysis, mathematical programming, operation researches or optimization meth-
ods. In the framework of this talk we will present graphical method (dynamic
plots) for solving integer NLP, NLP problems, several examples for Karush-Kuhn-
Tucker conditions and two examples for convex optimization. We will consider
NLP problems in the following form:

maximize
(x1,x2,...xn)

f (x1,x2, . . . ,xn)

subject to: gi(x1,x2, . . . ,xn)≥ 0, i = 1,2, . . .m,

(x1,x2, . . . ,xn) ∈ X ,

where n and m are positive integers, X is a subset of Rn and f ,gi are real-valued
functions on X with at least one function of f ,gi (i = 1,2, . . . ,m) being nonlinear.
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Engineering Mathematics and CAS

Michel Beaudin1
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The computer algebra system TI- Nspire CX CAS will be used to show how
some mathema-tical results can be illustrated by a CAS. The talk will make inter-
esting connections between subjects that seem to be different.

The first example will be about odd, even and periodic functions. Beginning
engineering students have problems to clearly understand the concept of even func-
tions, odd functions and -much more seriously- the concept of inverse functions.
We think the graphical capabilities of Nspire can be used to overcome this prob-
lem. The graphic editor of Nspire CAS will guide us to extend functions that are
first defined over an interval on one side of the origin: extensions will be even or
odd ones. Then the modulo function will be used to extend it periodically. In the
case of inverse functions, the important fact is the concept of one to one function
and the restriction of the domain of a given function. We will be able to do this
very easily because Nspire CAS has nice templates to do such operations.

In the second example, we will use the modulo function and the D’Alembert’s
solution to solve the one dimensional wave equation in the case of zero initial
velocity. We will recall the series solution of this problem, based on the method
of separation of variables. Then, the solution will be obtained, using the sum of
two opposite waves. If, in addition, we take zero initial velocity, then the solution
can be shown to simplify into an odd periodic function: this is where the modulo
function will act and an easy animation will be possible and performed. The big
advantage over the series solution is trivial: no need to take a partial sum to plot
the graph because the infinite series has been simplified into a closed-form.

Finally, we will move to Fourier series in order to connect these two examples.
We showed at ACA 2013 how to define a Fourier function in Nspire CAS able to
do exactly what the good old Derive software Fourier function is doing. Being able
to plot the graph of any periodic function, we will find its Fourier partial sum and
plot both graphs on the same window.

Future engineers at our engineering school are not so different from the ones
in other parts of the world: they use mathematics as a tool. If they want to be
able to see rapidly the results of a computation, their portable TI-Nspire CX CAS
handheld does the job in the classroom and during exams. Of course, outside the
classroom or during a regular course, the software version of Nspire is a more
convenient choice.
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Generating Power Summation Formulas Using a
Computer Algebra System

Michael Xue1
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Mathematical induction is often used in classroom to prove various Power
Summation Formulas such as

n

∑
i=1

i =
n(n+1)

2
(1)

n

∑
i=1

i2 =
n(n+1)(2n+1)

6
(2)

n

∑
i=1

i3 =
n2(n+1)2

4
(3)

However, how the formulas are obtained in the first place is rarely discussed.
In this presentation, we will construct the Power Summation Formulas. Specif-

ically, a recursive algorithm is derived and its implementation in Computer Algebra
generates the formulas. A closer look at this algorithm also reveals the generated
formulas can also be obtained by solving an initial-value problem of difference
equation symbolically.
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A sympy/sage Module for Computing

Polynomial Remainder Sequences

Alkiviadis G. Akritas∗ Gennadi I. Malaschonok† Panagiotis S. Vigklas‡

March 2, 2017

Extended Abstract

Given the polynomials f, g ∈ ❩ [x], we are interested in the following four polynomial remainder
sequences (prs’s):

(a) Euclidean prs,

(b) Modified Euclidean prs,

(c) Subresultant prs, and

(d) Modified Subresultant prs.

The Modified Euclidean prs is obtained by modifying the sign of the remainder of each poly-
nomial division performed for the computation of the Euclidean prs. Analogously, the Modified
Subresultant prs is obtained by modifying the matrix from which the Subresultant prs is obtained.

Even though prs’s (c) and (d) are computed by evaluating sub-determinants of given matrices,
our objective is to compute all four prs’s using the same type of polynomial divisions over the ring
❩[①].

Our objective is not at all trivial and has eluded the efforts of great mathematicians, as our
brief review below indicates.

Initially, Collins, Brown and Traub [8], [9], [11], [12] used the so called prem pseudo-remainder
function defined by

LC(g)δ · f = q · g + h, (1)

where LC(g) is the leading coefficient of the divisor g, and

δ = degree(f)− degree(g) + 1. (2)

∗Department of Electrical and Computer Engineering, University of Thessaly, GR-38221, Volos, Greece, Tel.: +30
242110 74886, Fax: +30 24210 74997, akritas@uth.gr

†Laboratory for Algebraic Computations, Tambov State University Internatsionalnaya, 33, RU-392000 Tambov,
Russia, malaschonok@gmail.com

‡Department of Electrical and Computer Engineering, University of Thessaly, GR-38221, Volos, Greece, pvi-
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However, using prem only the signs of prs (c) can be exactly computed ([10], pp. 277–283).
The signs of the other three prs’s, (a), (b) and (d), may not be exactly computed when the prs is
incomplete, i.e. when there are gaps in the degree sequence of the polynomial remainders.

Basu, Pollack, and Roy [7] employ the so called signed prem function defined by

LC(g)δ · f = q · g + h, (3)

whereby, if mod(δ, 2) = 1 they set it to δ = δ + 1. This way they are able to exactly compute
the signs of prs’s (b) and (d), which are, therefore, called signed prs’s. The signs of the other two
prs’s, (a) and (c), may not be exactly computed, and are, hence, called non-signed prs’s.

Instead, we employ the so called rem z pseudo-remainder function defined by

|LC(g)|δ · f = q · g + h (4)

and are able to exactly compute the signs of all four prs’s. Moreover, we have shown that these
four prs’s are related as shown in Figure 1.

Euclidean PRS modified Euclidean PRS

Subresultant PRS modified Subresultant PRS

sylvester1 (1840) sylvester2 (1853)

AMV-2015

SAM

PG-1917AMV-2015

AMV-2015

Figure 1: The double ended arrows indicate one-to-one correspondences that exist between the
coefficients of the polynomials in the respective nodes. The labels indicate those who first established
the correspondences and when. Two different matrices by Sylvester are used [16], [17].

In our work [1] – [6] — which relies heavily on the work by Pell and Gordon [15] — we have
shown that all four prs’s are signed, i.e. their signs are uniquely defined. To wit, the signs of the
prs’s computed in ❩ [x] are identical to those computed in ◗ [x].

Moreover, we have developed the sympy/sage module subresultants qq zz.py1 for exactly
computing the signs of all four prs’s of Figure 1, employing the so called rem z pseudo-remainder
function defined in (4).

Our talk will focus on the functions included in this module — filling thus a vacuum in the
educational process. Namely, when people teach about prs’s in general — and subresultant prs’s
in particular — they would have a module to work with in order to compute the sequences with
their correct signs. Otherwise they would have to say that they compute the sequences “up to sign”
([13], p. 182) & ([14], Example 4.7).

1https://github.com/sympy/sympy/blob/master/sympy/polys/subresultants_qq_zz.py.
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Automated Function Analysis for Calculus
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When teaching basic mathematics courses, at all levels, there are many oppor-
tunities to include CAS packages like Mathematica [2], Maple [1], REDUCE [3],
Sage [4], amongst many others. Computer algebra packages assist with the prepa-
ration of:

• classroom slides/notes,

• individualized homework assignments,

• in-class, randomized quizzes,

• class projects,

• extra-credit, further reading,

• final examinations,

• etc.

In this paper we discuss only the first area, i.e., that of the preparation of lecture
notes, and particularly, for the teaching of basic, first-semester calculus.

About midway through the semester, one teaches the analysis of various func-
tions: domains, ranges, symmetries, periodicity, monotonicity, extreme values, ze-
ros, (one-sided) continuity, (one-sided) derivatives, etc. Furthermore, one needs to
properly plot these functions for the added visual effect. As the analysis paves the
way for very basic understanding of functions, we present many examples of these
analyses during our lectures.

We have set about achieving effective, pedagogic, step-by-step methods for
teaching this material. In order to convey the recipe for these analyses, we have also
delved into Mathematica to find the most relevant functions. These in turn have
myriads of options, and those we present as well, in order to best take advantage
of the functions and their pedagogic capabilities. Finally, we include some of the
pitfalls (learned the hard way!) of this approach, and how to circumvent them.

The most important aspect of the work, is that the process is automated, to be
able to handle most/all of the basic types of functions learned during this part of
Calculus I. We will present many examples of what does, and does not work, for
these analyses, in the Mathematica environment.
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DUDAMATH The Digital Environment For Demonstrating

Mathematical Ideas and Problem Solving
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Abstract

DUDAMATH is a digital environment for demonstrating mathematical ideas and problem
solving. This environment grew from tools that were developed by the first presenter of this
talk for school classes in order to provide a solution for needs that existing tools could not
address. The main components of this environment are interactive arithmetic and algebraic
expressions that can be manipulated in dynamic and diverse ways. These manipulations
can then be documented and saved. Other highlights of the environment are diversity of
representations, integrality that stresses the relation and connection between different subjects
and aspects, and convenience of use and implementation in classrooms.

The use of technology can offer a lot to school math education. The interactivity and
dynamics that technology can supply allow the creation of ”virtual manipulatives”: virtual
objects that allow teachers to present and demonstrate mathematical principles. It allows
students to explore these objects and reach conclusions about their properties and relations
between them by considering the effect of the manipulations performed on them [1].

The symbolic expressions in DUDAMATH are interactive virtual manipulatives. Dynamic
manipulations of these expressions are done by dragging or clicking them. Students can learn
about the properties and behaviors of these expressions by trial and error, similar to how we
learn about our physical environment. Students can observe dynamically how manipulations
occur from stage to stage, and go back to cancel previous manipulations, lessening the common
fear that results from making mistakes on paper. The way expressions react to manipulations
is designed using the hierarchical structure of the expressions, in a way that is meant to
strengthen the understanding of the relation between the structure of the expressions and the
manipulations that were performed on them.

In the conference we will demonstrate the environment, an example of practical use, and
will discuss its possible implications on mathematics education in school.
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The use of digital tools to confront errors

Regina Ovodenko and Anatoli Kouropatov

Center for Educational Technology, Israel

The math education community places much importance on information re-
garding the conceptualization of learners of different mathematical subjects and
regarding typical errors in these subjects. This type of information is essential for
teachers for teaching planning and practice ([8], [11],[7], [9]). The question that
has engaged math educators for many years is how we can confront these errors
(see [2], [3],[4]).

In recent years, technological tools were developed in order to support the
teaching practice. These tools are supposed to help in confronting typical errors,
especially those related to concepts that possess a strong visual character, such as
the inflection point. Informed use of these tools presents an interesting and actual
didactic challenge (see [6]).

In the spirit of this tendency, the Center for Educational Technology developed
a digital environment for learning and teaching mathematics for 10th, 11th, and
12th grades in high school - Challenge 5. The development of this environment was
informed by research about the use of technological tools in math education and
research about typical errors in specific mathematical subjects, such as the function
(Carlson, 1998), tangent ([1], [10], [13]), inflection point ([12]), and similar.

This environment is made up of teaching units that include PowerPoint pre-
sentations, geogebra labs, interactive digital questionnaires, and videos. The use
of these units allows teachers to plan lessons enriched by technology that, among
other things, should prevent the typical errors .

In the conference we will present typical errors related to the concept of the
inflection point (see [12]) and we will show ways of confronting these errors using
digital tools. We will demonstrate how a specific digital tool can be used to design
a teaching unit that allows teachers to address errors. The teaching unit includes
the tool itself, the investigative assignment based on it, and a variety of other as-
signments. In addition, we will discuss how this approach of using a digital tool to
create a teaching unit can be useful for confronting errors related to other concepts.
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Computer-Algebra-Aided Chebyshev Methods for
Ordinary Differential Equations

M. Xue1

1 Vroom Laboratory for Advanced Computing, USA, mxue@vroomlab.com

The solution of ordinary differential equation can be approximated by a linear com-
bination of so called basis functions. Using the Chebyshev Polynomials as the basis
functions, the approximation can be expressed as

y(x) =
∞

∑
r=0

arTr(x) (1)

where Tr(x)’s are Chebyshev Polynomials of degree r, and ar’s are the coefficients
to be determined. In practice, we seek the approximation using a truncated expres-
sion of (1), namely,

n

∑
r=0

arTr(x) (2)

An online Computer Algebra System (CAS) is used to generate and subsequently
solve a system of equations concerning a finite number of ar’s. The use of CAS
allows the retention of more ar’s in (2). It also obviates the need for the traditional
pad and pencil computations.

Examples will be given to illustrate this approach in solving initial value prob-
lems, boundary value problems as well as eigenvalue problems for ordinary differ-
ential equations whose coefficients and other terms are themselves polynomials.
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Teaching complex potential model to students of
environmental engineering faculty using Mathematica
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In this talk we would like to present some our experiences with teaching el-
ements of complex analysis to students of Environmental Engineering Faculty of
Warsaw University of Life Science. Complex analysis in this faculty was one of
the parts of higher mathematics course. In the framework of this course complex
potential fluid flow model in two dimensions was presented. Complex potential
is defined as a holomorphic function of a complex variable f (z) = f (x + iy) =
g(x,y)+ ih(x,y). To understand this model and to be able to solve connected with
it tasks, the ability to calculate complex derivatives and integrals along a curve is
required. Using CAS programs for teaching the model it seems to be very useful to
simplify complex expressions, calculate complex derivatives and integrals and also
to present trajectories of the fluid particles graphically and dynamic plot of particle
motion. In the framework of our talk we would like to present several examples
solving of typical tasks from complex potential for our students using Mathemat-
ica. They include determination of complex velocity and circulation of velocity
field along a closed curve, determination of the flux of a fluid across the curve and
drawing trajectories of the fluid particles. We will also present particles motion
animation along the trajectories.
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Solving Systems of Equations with Uncertainty

P. Franek, M. Krčál, H. Wagner

1 IST Austria peter.franek@ist.ac.at
2 IST Austria marek.krcal@gmail.com
3 IST Austria, hwagner@ist.ac.at

We study the problem of detecting zeros of continuous functions Rn-valued
functions that are known only up to an error bound, extending the earlier theoretical
work [1] with explicit algorithms and experiments with an implementation [2].

The domain X of f is a simplicial complex and our partial knowledge of f
is based on approximate function values in vertices. The algorithm first identifies
a subdomain A where the function f is provably non-zero, a simplicial approxi-
mation f ′ : A → Sn−1 of f/| f |, and then verifies non-extendability of f ′ to a map
X → Sn−1 to certify a zero. Deciding extendability is based on computing the co-
homological obstructions and their persistence. We describe an explicit algorithm
for the primary and secondary obstruction, two stages of a sequence of algorithms
with increasing complexity. Using elements and techniques of persistent homol-
ogy, we quantify the persistence of these obstructions and hence of the robustness
of zero.

We provide experimental evidence that for random Gaussian fields, the pri-
mary obstruction—a much less computationally demanding test than the secondary
obstruction—is typically sufficient for approximating robustness of zero. Further,
we offer a possible geometric explanation of this observed phenomenon.
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Computing simplicial representatives of homotopy group
elements

Marek Filakovský 1, Peter Franek 2 , Uli Wagner 3 , Stephan Zhechev 4
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A central problem of algebraic topology is to understand the homotopy groups
πd(X) of a topological space X . For the computational version of the problem, it
is well known that there is no algorithm to decide whether the fundamental group
π1(X) of a given finite simplicial complex X is trivial. On the other hand, there are
several algorithms that, given a finite simplicial complex X that is simply connected
(i.e., with π1(X) trivial), compute the higher homotopy group πd(X) for any given
d ≥ 2.

However, these algorithms come with a caveat: They compute the isomorphism
type of πd(X), d ≥ 2 as an abstract finitely generated abelian group given by gener-
ators and relations, but they work with very implicit representations of the elements
of πd(X). Converting elements of this abstract group into explicit geometric maps
from the d-dimensional sphere Sd to X has been one of the main unsolved problems
in the emerging field of computational homotopy theory.

Here we present an algorithm that, given a simply connected simplicial com-
plex X , computes πd(X) and represents its elements as simplicial maps from a suit-
able triangulation of the d-sphere Sd to X . For fixed d, the algorithm runs in time
exponential in size(X), the number of simplices of X . Moreover, we prove that this
is optimal: For every fixed d ≥ 2, we construct a family of simply connected sim-
plicial complexes X such that for any simplicial map representing a generator of
πd(X), the size of the triangulation of Sd on which the map is defined is exponential
in size(X).
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[8] M. Čadek, M. Krčál, J. Matoušek, L. Vokřínek, and U. Wagner. Extendability of continuous
maps is undecidable. Discr. Comput. Geom., 51(1):24–66, 2013.
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Comparison and parallelization possibilities of
algebraic topology-based verification tools for
equations systems
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Let us consider solving the nonlinear system of equations:

f : X → Rm, where X ⊆ Rn and n ≥ m . (1)

Interval methods (see, e.g., [8]) have proven to be useful, in particular, in
solving such systems. One of their advantages is allowing not only to locate
solutions of well-determined and underdetermined systems, but also to verify
them, i.e., prove that in a given box there is a solution point (resp. a segment
of the solution manifold).

The most celebrated tool allowing such verification is the interval Newton
operator (cf., e.g., [8]). Despite its advantages, it is not the only existence
verification test. Other ones, based, i.a., on the theorem of Miranda [8] are
used as well.

Particularly interesting is a class of existence verification tools based on
the algebraic topology notions. They can, for instance, use Borsuk theorem
[5], compute the topological degree [3, 4] or use the obstruction theory and
other advanced tools and notions [2].

This paper has three goals: to make a short survey of such techniques,
to consider their parallel implementation and propose a new potential tech-
nique. As interval algorithms usually are instances of the branch-and-prune
(B&P) or other subdivision-based schemes, their parallelization is often based
of concurrent processing of different boxes and not on parallelizing the in-
vestigation of a single box. Nevertheless, as discussed, i.a., in [11], parallel
processing of a single box is also important and its importance is likely to
increase in the future.

The framework we use for implementing and investigating all tools is
HIBA_USNE [7], described in a series of papers of the first author (see
[9, 10, 11] and the references therein).

Borsuk test. This is one of the tests, dealing – in its original form – with
well-determined problems. It is based on one of theorems of Karol Borsuk

1
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states (slightly simplifying) that the function f(·) must have a zero on the
box x, if:

f(midx+ r) 6= λ · f(midx− r), ∀λ > 0 and midx+ r ∈ ∂x . (2)

The test has to compute the intersection of several interval expressions to
prove that there is no λ for which the disequality (2) becomes an equality.

Such an intersection can be computed in parallel, e.g., using the reduction
operation.

Topological degree test. This is another approach to prove existence of
the solution for well-determined problems.

Computing the topological degree of a function over a box, suggested
in several papers, is very useful to prove the existence of the solution; even
though it requires relatively high computational effort. The algorithm pro-
posed in [3] is recursive; hence, it can be parallelized in a relatively easy
manner. There are several interesting details about this approach and the
paper is going to describe and discuss some of them, in particular data struc-
tures used to store adjacent subboxes in the subdivision of the boundary.

How to deal with underdetermined problems? In [9], the author
described how the interval Newton operator can be used to verify an un-
derdetermined system of equations. Succinctly, if we have m equations in
n > m variables, we need to choose a square submatrix of the Jacobi ma-
trix. Treating the chosen m variables normally and the remaining (n −m)
ones as parameters, we can perform an normal Newton iteration to to nar-
row, discard or verify the existence of solution for all values of the (n−m)
“parameters”.

It can simply be proven that a similar procedure can be performed for
the Borsuk test and topological degree test. It is an open (and interesting)
problem, how to choose the m (out of n) variables for the verification. [9]
proposes a policy, but there is place for further improvements, certainly.

In any case, due to the nature of interval calculus, such an approach can
verify boxes where the solution exists for all values of the other (n − m)
variables. For instance, when we verify a single equation in two variables,
such methods can verify a solution segment on the left in Fig. 1, but not the
one on the right. Actually, for a single equation f(x) = 0, we could find two
points xa and xb such that f(xa) · f(xb) < 0, which would prove that any
connected line containing these points contains a solution. This is a direct
consequence of the intermediate value theorem. Unfortunately, the theorem
does not extend simply to more equations.
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Figure 1: Left: a solution segment relatively easy to verify using interval
tests, right: the hard one

Obstruction theory test. In a series of papers (see, e.g., [2, 3] or refer-
ences therein), Franek et alii propose a fascinating family of methods tar-
geted specifically at underdetermined systems. To be succinct, the methods
try to approximate the “suspicious” box as a cell complex or a simplicial
set and they construct a Postnikov complex, build of Eilenberg-MacLane
spaces. Basing on this representation, we can check possible extendability of
a function for subsequent skeletons of the complex.

This test seems a pretty general tool, suitable for underdetermined prob-
lems as well as well-determined ones (in the latter case it is equivalent to
using the topological degree). Unfortunately, it is also cumbersome to imple-
ment and usually requiring high computational effort. Eilenberg-MacLane
spaces have often infinite dimensionality and thus they can only be repre-
sented implicitly.

Also, please note that existing software such as GUDHI [6] is of little
help when implementing this test and some of the useful algorithms might
even occur to be unimplementable, like, e.g., the Brown’s algorithm [1].

Ironically, though the algorithm is hard to implement, its parallelization
should be natural; operations on various simplices (or cells) of the complex
can be performed concurrently.

A new test for two equations. This test is an original idea of the author.
The test is limited to the case m = 2, n ≥ 2, but it is implementable using
existing software and might be useful in some practical cases. Actually, the
toolset is pretty similar to the one used by Franek et alii [3], but these tools
get arranged in a quite new manner.

Assume we have found in the function’s domain, a cubical complex C
that is homotopically equivalent to a one-dimensional circle S1(other words:
a closed path in the boundary). Assume the image of C is homotopically
equivalent to S1 ⊂ R2, also; other words: it does not contain (0, 0) and
it winds around this point (its winding number aka topological degree is
different from zero). We should be able to find such C, by performing a
graph-like algorithm on the cubical complex representing the boundary of the
considered box (seeking for cycles) and checking the sign vector of adjacent

3
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boxes. Please note that segments of C can belong to arbitrary faces of the
considered box, e.g., Fig. 2.

Figure 2: Representation of C

It can be proven that (under proper technical assumptions) for any k-
dimensional sphere Sk such that C ⊆ Sk ⊆ X, Sk contains a zero of f .

This theorem can probably be generalized to m > 2, but it might not be
efficient for higher dimensions. Details remain to be determined.
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Objective: We aim to develop a classification algorithm based on topological
concepts and to compare it to state of the art classification tools.

Status: Classification is a classical problem in statistics and machine learning
concerned with the identification of classes of data. Typically there is some training
data whose classes are known and the goal is to predict the classes of new data.
Many standard algorithms for classification use the geometry of data as a basis for
classification. These algorithms are often coordinate dependent.

The basic aim of topological data analysis is to study a finite point cloud P in a
metric space M with topological methods, which by nature are coordinate indepen-
dent. Topological features can be calculated by constructing a filtered topological
space from P, and computing its persistent homology. These features have previ-
ously been used as a preprocessing step in classification [Adcock et al., 2016]. As
far as we are aware the topological spaces used to calculate topological features
have not previously been used directly for classification.

Devisive cover is an algorithm that has been developed to approximate per-
sistent homology of the Čech filtration associated to P [Blaser and Brun, 2017].
From the point cloud P it produces a finite cover U = {U1, . . . ,Un} of M with the
property that every element of the cover contains an element of P.

Methodology: The divisive cover algorithm consists of two components: a
method to use a point cloud Q in M to produce a cover U Q = {UQ

0 ,UQ
1 } of M and

a method to decide whether more divisions shall be performed and if so, which
element of U to divide next.

Given these two methods the algorithm goes as follows: start with the cover U
= {M} of M. While more divisions should be performed, do the following:

1. Find the element U of U to divide next

2. For Q = P∩U replace the element U in U by the two elements U ∩UQ
0 and

U ∩UQ
1 obtained from U Q = {UQ

0 ,UQ
1 }.

As in [Blaser and Brun, 2017], our division method finds a pair (a0,a1) of ex-
tremal points in Q and uses these points to find the cover {UQ

0 ,UQ
1 }. For i = 0,1,

the set UQ
i consists of the points in M with distance to ai less than or equal f times

the distance to the other point a1−i for some given factor f = (1−δ )/(1+δ ).

1
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Given a set Y of classes of the elements of P and an element U of U we
choose a dominant class for U , that is a class y containing the maximal number of
points in P∩U . The next element of U to divide is the element with the smallest
proportion of points in the dominant class. We stop dividing when the average
proportion of points in the dominant class in all elements of U is above a chosen
misclassification treshold.

For a point x ∈ M we consider the subset Ux ⊆ U consisting of elements U of
U containing x. To each class y we associate the number ϕ(x,y,U ) given as the
sum over U ∈ Ux of the number of elements in P∩U of class y. We predict that
the class of x is the class y maximizing ϕ(x,y,U ).

To illustrate how our method partitions the space M in classes we use two-
dimensional data from [Hastie et al., 2009, Figure 2.1]. We compare classifica-
tion accuracy of divisive cover, random forests [Breiman, 2001] and suport vector
machines [Cortes and Vapnik, 1995] on datasets from the UCI Machine Learning
Repository [Lichman, 2013]. For each dataset we first chose parameters for di-
visive cover. We then split the data in training and test data and compared the
performance of the classification methods. Categorical data was converted to nu-
meric data by creating a dummy variable for each category. We report the average
accuracy of the methods for 100 random train-test splits.

Results Divisive cover classifications use topological features of a point cloud
for classification. Figure 1 shows the decission boundaries for random forests,
suport vector machines and divisive cover classification.

The classification accuracy of divisive cover classification was comparable
with the classification accuracies of random forest and support vector machine.
Table 1 shows a selection of classification results from different UCI datasets.

Significance of study: We present a new classification method based on topo-
logical ideas. This attempt at using topological methods for classification leads us
to believe that topological methods can improve classification.

References
[Adcock et al., 2016] Adcock, A., Carlsson, E., and Carlsson, G. (2016). The ring of algebraic

functions on persistence bar codes. Homology Homotopy Appl., 18(1):381–402.
[Blaser and Brun, 2017] Blaser, N. and Brun, M. (2017). Filtered covers. ArXiv e-prints.
[Breiman, 2001] Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.
[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine

Learning, 20(3):273–297.
[Hastie et al., 2009] Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical

learning. Springer Series in Statistics. Springer, New York, second edition. Data mining,
inference, and prediction.

[Lichman, 2013] Lichman, M. (2013). UCI machine learning repository.

2



59

Figure 1: Classifications of sample data from [Hastie et al., 2009] by random for-
est, suport vector machine and divisive covers with δ = 0.01 and δ = 0.1 .
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data method metric δ treshold % accuracy
anneal random_forest - - - 99.1

divisive hamming 0.01 0 96.7
svm - - - 95.3
divisive euclidean 0.001 0.0001 94.4

balance svm - - - 89.9
random_forest - - - 83.7
divisive euclidean 0.01 0.01 83.2

breast_w random_forest - - - 96.5
divisive euclidean 0.05 0.0 96.2
svm - - - 95.4

credit random_forest - - - 87.2
divisive hamming 0.05 0.01 83.8
divisive euclidean 0 0.05 67.5
svm - - - 56.6

diabetes random_forest - - - 75.6
divisive euclidean 0.05 0.01 71.4
svm - - - 64.8

digits random_forest - - - 97.3
divisive euclidean 0.01 0.0 89.6
svm - - - 39.0

glass random_forest - - - 75.7
divisive euclidean 0.07 0.0 68.9
svm - - - 61.4

hayes_roth random_forest - - - 80.8
svm - - - 76.6
divisive euclidean 0.02 0.05 70.4

hepatitis random_forest - - - 85.7
svm - - - 80.3
divisive hamming 0.0 0.1 80.0
divisive euclidean 0.005 0.15 78.8

iris svm - - - 97.2
divisive cosine 0.08 0.01 95.9
random_forest - - - 95.1
divisive euclidean 0.05 0.05 94.4

Table 1: Average classification accuracy comparing divisive cover with random
forests and support vector machines on some standard datasets.
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Abstract

Due to the fact that the n-xel value of a digital biomedical image I : D→V
has in general a physical meaning, both texture and shape interpretations
are compulsory steps in biomedical image processing. The first attribute is
commonly described in terms of notions like grain, regularity or homogene-
ity and quantified at pre-segmentation level by using texture metrics based
on local intensity variations (statistical moments, co-ocurrence matrix mea-
sures, spectral measures, fractal dimensions, run-length statistics, Gabor fil-
ters,...). The second attribute is determined once the image has been previ-
ously segmented and it is measured in geometric terms like length, curvature
or chain-code. We set out here a new topological tree-based representation of
an original (non-segmented) 2D biomedical digital image which is contrast-
invariant and from which it may be possible to generate informative many
topological texture metrics, high-level segmentations and shape measures.
This representation is based on the Homological Spanning Forest (HSF, for
short) framework developed in [3, 4, 5]. From a HSF-model of a color dig-
ital image, it is possible to generate tree representations of the image based
on clusters of 4-connected components, similarly to the method for building
tree-of-shapes [1] or inclusion tree [2] models. Some potential descriptions
of these hole tree representations are implemented and compared.
Keywords: 2D digital image, topological representation, tree-of-hole, Ho-
mological Spanning Forest
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The Stanley-Reisner correspondence [2] is one to one between square free
monomial ideals and simplicial complexes. In this context, Hochster’s formula
shows that the Betti numbers of a square free monomial ideal are equivalent to
the dimensions of the homology groups of its corresponding simplicial complex,
cf. [1]. In particular we are interested in the Betti numbers of the ideal that occur
at multi degree x1 · · ·xn (i.e. the product of all variables). Usually, this corre-
spondence is used to obtain resolutions and Betti numbers of monomial ideals via
simplicial homology.

In this paper we explore the opposite direction, i.e. compute the dimensions
of the homology groups of abstract simplicial complexes using monomial ideal
resolutions. In particular we use the mapping cone resolution to either directly
obtain the Betti numbers if possible or bounds for them. Using the Mayer-Vietoris
tree algorithm [4] in a similar way as the authors did in [3] to compute (n− 1)
Koszul homology of monomial ideals we obtain upper bounds for the dimensions
of these groups and also the particular homological dimensions in which there
can be nonzero homology discarding all the others, so that the usual simplicial
homology computations would be reduced.

We propose the following algorithm:
-INPUT: an abstract simplicial complex ∆ given by its facets
-OUTPUT: dimensions of its homology groups (a modifcation allows to obtain

generators)
STEPS OF THE ALGORITHM:
1- Compute the Stanley-Reisner ideal I∆
2- Compute the MVTree of I∆ obtaining βi,µ(I∆) or bounds
3- List the dimensions in which MVTree does not give the actual βx1,...,xn(I∆)
4- In those dimensions apply the classical algorithm to obtain the dimensions

of the homology groups of ∆.
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Multidimensional persistence and directed topology
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1 Directed topology, concurrency and homology

Introduction. Directed algebraic topology is a variant of algebraic topology whe-
re the spaces also have a direction of time [12, 8], and deformations must not only
be continuous but also preserve the direction of time. Directed algebraic topol-
ogy was born out of the so-called geometric semantics of concurrent processes
(progress graphs [3]), and the higher-dimensional automaton model of true con-
currency [14]. Imagine n concurrent processes, each with a local time ti ∈ [0,1].
A configuration is a point in [0,1]n, and a trajectory is a continuous and mono-
tonic map from [0,1] to [0,1]n: monotonicity (a.k.a., directedness) reflects the fact
that no process can go back in time. One can arguably consider as equivalent any
two trajectories that are dihomotopic, namely that can be deformed into each other
continuously, while respecting monotonicity at all times. This not only yields a
geometric semantics for concurrency, but also one that is at the root of fast algo-
rithms for state-space reduction, deadlock and unreachable states detection, and
verification of coordination properties, as in e.g. [9, 7, 10, 11].

Technical context of the talk. The link between directed algebraic topology, and
more particularly natural homology [4], with multidimensional persistent homol-
ogy will be exemplified, for the sake of simplicity, on a simple class of directed
spaces, the cubical complexes of [13, 4].

A cubical complex is a finite union of certain cubes of various dimensions,
but always of side-length 1 parallel to the axes in Rd , whose vertices have integer
coordinates. These cubical complexes K can also be seen as (pre-)cubical sets with
the obvious boundary operators, and as po-spaces (K,≤), the simplest form of
directed spaces, where the global partial order ≤ expressing the time flow is given
by the componentwise ordering on Zd .

A dipath is a path which is also monotonic in the ordering of the cubical com-
plex. Following Raussen [15], a (directed) trace is the equivalence class 〈π〉 of a
dipath π modulo monotonic and continuous reparametrization, and the set of such
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equivalence classes can be given the structure of a topological space Tr(K;a,b) for
all start (resp. end) points a (resp. b).

Directed algebraic topology is the study of directed spaces as our cubical com-
plexes, up to directed homeomorphisms, or some form of homotopy equivalence
[5]. An invariant of these directed spaces [15] is an invariant for classical homotopy
of the traces spaces Tr(K;a,b), for all points a,b∈K, and, even, the full “diagram”
(modulo some form of bisimulation) of spaces Tr(K;a,b) when a and b evolve in
K, meaning that we are also interested in maps Tr(K;a,b)→ Tr(K;a′,b′) (a′ ≤ a
and b ≤ b′) and of their (classical) homotopy types. We refer the reader to [4] for
more explanations and a complete formalization of these ideas in the form of a
natural system [1] of topological spaces : we defined the n-th directed homology
group

−→
H n(X ;a,b) as the ordinary (n−1)st singular homology group of Tr(X ;a,b),

and the diagram of such for a and b varying (over the grid K ∩Zd) is the natural
homology of K denoted by

−→
H ∗(K).

2 Natural homology and multi-dimensional persistence

Main results. For finite K, Raussen [16] shows that singular homology groups of
trace spaces such as Tr(K;a,b) are computable, by computing a finite presentation
of the trace spaces (prod-simplicial complex) from which we can compute homol-
ogy using Smith normal form of matrices. The problem is that this construction is
not nicely behaved in general with respect to changes of base points a, b.

For “nice” precubical sets X (such as our cubical complexes K), and for any
vertices a and b in X , there is a way to get a finite combinatorial model T (X)(a,b)
(a finite CW-complex, or a finite simplicial set) that is homotopy equivalent to the
trace space of X from a to b, Tr(X ;a,b), which is both functorial in X , a, b and
also minimal among such functors [17]. We will show in the talk how to use this
ingredient together with some of the multidimensional persistence theory, such as
rank invariants [2], to get information (in fact, all the information, in many cases)
about natural homology, and develop the corresponding algorithmics.

Example. To give a glimpse of the intimate relationship between multidimen-
sional persistence and natural homology, let us describe our construction on Fahren-
berg’s matchbox example [6], left below (all but the bottom face of the unit cube
[0,1]× [0,1]× [0,1] is in the cubical complex - i.e. there are 5 squares glued to-
gether). Using Ziemiański’s construction [17], the CW-complex/simplicial set cor-
responding to its trace space from beginning to end is shown below, where the
edges A, B, C, D and E correspond to the 5 2-dimensional cubical paths shown in
the picture below :
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γ δ

β ε

α ζ

A

B C

E D

A B C D E

and the vertices α , β , γ , δ , ε and ζ correspond to the 6 1-dimensional dipaths :

ζ ε α β δ γ

Note that β is the geometric intersection of B with E, γ is the geometric intersection
of B with A etc. leading indeed to the simplicial set pictured right-hand side of the
first figure. Now, by functoriality of T in the start and end points, there are maps
from T (K)(a,b) to T (K)(a′,b′), for a ≤ a′ and b′ ≤ b that act as restriction maps :
they just “cut” the combinatorial dipaths so as to only keep the parts (if any) that go
from a′ to b′. Hence, we get a decreasing sequence of simplicial sets as soon as any
of the three coordinates of a increase or any of the three coordinates of b decrease.
Below, we have represented the part of the multidimensional filtration generated,
for the vertical coordinate of b (the end point) and of a (the starting point) ; recall
also that the 5 squares are here unit squares and the lower coordinates are 0, upper
ones are 1. In this filtration below, the restriction maps acting on combinatorial
dipaths generate inclusion maps from bottom to top, and from left to right, of sim-
plicial sets representations of the corresponding trace spaces. For instance, moving
the end point b from vertical coordinate 1 to 0 while keeping vertical coordinate
of a at 0 (right column in the table below), the only 1-dimensional paths going
through coordinate 0 for b are α and ζ , hence all other vertices (and edges) have
to disappear from the simplicial set representation of the trace space. This induces
the upwards inclusion map from the two points simplicial set (α and ζ ) into the
5 edges connected simplicial set above : H0 of these simplicial sets goes from Z2

to Z, “killing” one component when extending paths to reach the end point of the
matchbox. This corresponds, in the natural homology diagram

−→
H 1(K), to part of

3



67

the diagram being a projection map from Z2 to Z when moving b to the endpoint
of the matchbox, while keeping the starting point fixed at the initial vertex :

b/a 1 0

1

γ δ
A

B C

E D

γ δ

β ε

α ζ

A

B C

E D

0 /0

γ δ

β ε

α ζ

A

B C

E D

Algorithms. In the talk, we will also discuss many of the algorithmic issues. A
major one is how to generate efficiently the simplicial sets above, and get efficiently
a representation of the boundary maps as matrices with (multivariate) polynomial
coefficients. Finally, we introduced in [4] a notion of bisimulation of diagrams, so
that different “encodings” of the time coordinates (corresponding to the coordinates
in the multifiltration) of shapes which should be directed homotopy equivalent, give
bisimilar diagrams in (natural) homology. This is akin to interleaving distances
methods in persistence, but their exact relationship is not yet fully understood.
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In this talk we show a combinatorial approach to analyze vector field data sets.
The aim of the method is to work on dynamical systems given as data sets obtained
from numerical or physical experiments however, without any assumptions about
the differential equation model. We provide topological characterization of attrac-
tors and repellers, Conley indices, and Morse decomposition. The work is based
on [1] and our recent results.

Our method accept an input consisted of a point cloud data with a vector at-
tached at each point. Using the points we build a combinatorial structure X of the
phase space (simplicial complex, e.g. Delaunay triangulation). Next we extend
the vector field to each cell of the complex X in a following way. For each cell
σ in dimension greater than 0 we compute a vector vσ which is equal to the aver-
age of the vectors attached to each vertex of σ . Then we use vσ to define a map
m : X → X . The value of m(σ) is a coface of σ , which is a target of vσ . Usually
it is a top dimensional coface of σ . However, for vertices we use a parameter α
which describes closeness of vσ to its cofaces. Let T := {τ1,τ2, . . . ,τk} be a subset
of cofaces of σ such that the angle between vσ and τi is less than α . Then we select
τi with smallest dimension among cells in T and set m(σ) := τi. See Figure 1 as
an example.

Figure 1: A vector field extended
to a mesh. Yellow lines show
the simplicial complex triangles,
blue arrows show a stream plot
of a dynamical system (which is
not known for the method). Red
arrows show the mapping m(σ).
Red arrows which points into an
edge are flattened according to
the rule described above and a
value of the parameter α .

Afterwards we generalize Forman’s theory of combinatorial vector fields [2].

1
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Namely, we build a partition of the space X into multivectors - convex subsets of X
- using the mapping m. The partition leads us to combinatorial description of the
vector field dynamics, i.e. we get a directed graph which encodes the dynamics.
Strongly connected components of the graph give us Morse decomposition of the
dynamical system.

Depends on the value of α we get different approximation of the dynamics
given by the vector field. For the Van der Pol equation:

f (x0,x1) = (−x1,(x2
0 −1)∗ x1 + x0)

we show Morse sets obtained for α = 60◦ and α = 18◦ in Figure 2 and in Figure 3
accordingly.

Varying values of the α parameter allows us to define persistence of the Morse
sets. Namely, we describe structure of the Morse sets using finite topological
spaces theory [3]. Afterwards we can define ZigZag filtration [4] and compute
persistence barcodes of the Morse sets. Figure 4 show barcodes for the Van der Pol
system.

Figure 2: Morse sets for the Van
der Pol equation, α = 60◦. Or-
ange set represents the repeling
periodic orbit of the system. In
the center there is a Morse set for
the attracting point. Other sets
are present due to artifacts of the
method.

Figure 3: Morse sets for the Van
der Pol equation, α = 18◦. Green
set represets the repeling peri-
odic orbit of the system. Blue
set is another periodic orbit how-
ever, it is with trivial Conley in-
dex. In the center there is a
Morse set for the attracting point.
Other sets are present due to arti-
facts of the method.

2
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Figure 4: The persistence barcode for the Van der Pol equation, α ∈ [60◦,0◦].
Yellow bars for homology generators in dimension 0, blue bars for dimension 1.
Labels on the left side show Conley indices of the Morse sets.
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Distributed computation of low-dimensional cup products

N. Alokbi1 & G. Ellis2

1 National University of Ireland, Galway
2 National University of Ireland, Galway graham.ellis@nuigalway.ie

We describe a distributed algorithm for computing the cup product ∪:H1(X ,Z)×
H1(X ,Z) → H2(X ,Z) on the cohomology of a finite regular CW-space. A serial
implementation of the algorithm is illustrated in two applied topological settings:
(i) 3-dimensional digital images; (ii) topological data analysis of a finite sample
of points from a metric space. For the second of these illustrations we introduce
a cohomological enrichment of the Mapper clustering procedure which may be of
independent interest.
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Computation of AT-models based on exploratory trees

P. Real

1 Institute of Mathematics, University of Sevilla (Spain), real@us.es.

This research is supported by the Spaniard (AEI/FEDER, UE) research project MTM2016-81030-P.

Working with coefficients in a field, we design algorithmic work for developing
homology computation within the AT-model (Algebraic Topological model) setting
[2, 1, 3, 5, 4]. More precisely, given a finite (abstract) cell complex X , we design
a polynomial algorithm computing an AT-model based on exploratory trees over a
subdivision of X . Instead of computing an AT-model of X using a previous filtration
over it or the classical Smith normal form diagonalization of incidency matrices,
we use a pre-processing method for decomposing the incidency graph of X into a
suitable hierarchical set of "maximal" connectivity trees over the dual intersection
subdivision of X . This work is a continuation of the study done in [6].
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Modeling and replicating statistical topology, and evidence
for CMB non-homogeneity

R.J. Adler1, S. Agami1, Pratyush Pranav1

1 Andrew and Erna Viterbi Faculty of Electrical Engineering

Technion – Israel Institute of Technology

Under the banner of ‘Big Data’, the detection and classification of structure
in extremely large, high dimensional, data sets, is, one of the central statistical
challenges of our times. Among the most intriguing approaches to this challenge is
‘TDA’, or ‘Topological Data Analysis’, one of the primary aims of which is provid-
ing non-metric, but topologically informative, pre-analyses of data sets which make
later, more quantitative analyses feasible. While TDA rests on strong mathematical
foundations from Topology, in applications it has faced challenges due to an inabil-
ity to handle issues of statistical reliability and robustness and, most importantly, in
an inability to make scientific claims with verifiable levels of statistical confidence.
We propose a methodology for the parametric representation, estimation, and repli-
cation of persistence diagrams, the main diagnostic tool of TDA. The power of the
methodology lies in the fact that even if only one persistence diagram is avail-
able for analysis – the typical case for big data applications – replications can be
generated to allow for conventional statistical hypothesis testing. The methodol-
ogy is conceptually simple and computationally practical, and provides a broadly
effective statistical procedure for persistence diagram TDA analysis. We present
extensive illustration of our methodology, and at the end we present the power of
the approach in a novel and revealing analysis of CMB non-homogeneity.
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Generalized Weyl algebras and diskew polynomial rings

V. V. Bavula

University of Sheffield, Sheffield, UK, v.bavula@sheffield.ac.uk

The aim of the talk is to introduce two new classes of rings – generalized Weyl
algebras and diskew polynomial rings - to consider their properties and to give sev-
eral simplicity criteria for them. The first class is a generalization of the classical
generalized Weyl algebras. Examples are given.
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Differential algebra with mathematical functions,
symbolic powers, and anticommutative variables
E.S. Cheb-Terrab1

1 Maplesoft R&D, Canada, ecterrab@maplesoft.ca

Computer algebra implementations of Differential Algebra typically require
that the systems of equations to be tackled be rational in the independent and de-
pendent variables and their partial derivatives. It is possible, however, to extend
this computational domain and apply Differential Algebra techniques to systems
of equations that involve arbitrary compositions of mathematical functions (ele-
mentary or special), fractional and symbolic powers, as well as anticommutative
variables and functions. In this talk, this extension of the computational domain of
Differential Algebra is explained, and examples of its implementation in the Maple
computer algebra system, as well as of its use in the Maple ODE and PDE solvers,
are shown.

The key observation regarding performing standard differential algebra oper-
ations on expressions that include mathematical functions is the fact that, but for
rather few exceptions, they belong to a set of functions whose derivatives belong
to the same set. For example, the derivative of a hypergeometric function is also a
hypergeometric function, and with that the derivatives of all elementary and special
functions that are particular cases of hypergeometric functions happen to belong to
the same set as the functions themselves. It is then possible to represent each math-
ematical function of this group by an auxiliary function Fi that satisfies a differen-
tial equation, rational in the Fi, their derivatives and the independent variables (the
mathematical functions’ parameters). In brief, in the original system that includes
mathematical functions, each of them is replaced by an auxiliary Fi, the differential
equation it satisfies is added to the system, the differential algebra operations are
performed, and at the end the Fi are substituted back by the mathematical functions
they represent. As the simplest example of this, a system involving the exponential
function of x is one where this function can be replaced by F and the equation
F ′ = F added to the system.

This rewriting of the original system by replacing mathematical functions by
the Fi plus adding the rational differential equations they satisfy is called rewrit-
ing the original system in differential polynomial form, and the whole problem of
performing differential algebra operations on systems that involve mathematical
functions is thus reduced to this rewriting.

Returning to the representation problem, symbolic powers, say F = xn, in turn
satisfy xF ′−nF = 0, and it is not difficult to see that the case where the mathemat-
ical function’s arguments are not simple variables xi, for example an exponential

1
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function of the form ef(x), can also be tackled as just described but for the addition
of a change of variables to handle f (x), provided that f (x) itself can be written
in differential polynomial form. In this way, for example, we find that F = exn

satisfies F ′′Fx− (F ′x+F(n−1))F ′ = 0.
This approach can be used as well for derivatives evaluated at a point, which

appear frequently in the symbolic (exact) solution of systems of partial differential
equations tackled using changes of variables, a standard operation in most methods,
including the Lie symmetry and integrating factor approaches. Indeed, by differ-
entiating one can see that, depending on the evaluation point, the derivative can be
differentiated resulting again in closure (the objects and their derivatives happen to
belong to the same set and therefore are suitable for a differential polynomial rep-
resentation). For example, the function F(x, t) = D( f )(x− t)+D( f )(x+ t), where
D is a differential operator and f is a mapping of one argument (a function of one
variable), by means of this approach can be represented in differential polynomial
form as Fxx −Ftt = 0. In the same way, one can represent integrals, provided that
the integrand admits differential polynomial form; and in general, any arbitrary
mathematical composition of operations (mathematical functions, symbolic pow-
ers, derivatives, integrals, etc.) with no restrictions to the levels of nesting, can be
represented in differential polynomial form provided that the arguments of those
operations in turn admit such rewriting.

Finally, the case of a PDE system involving anticommutative variables and
functions can be reduced to the previous problem by expanding these functions in
powers of the anticommutative variables. In view of the anticommutative charac-
ter, these expansions truncate at first order in each anticommutative variable, so
that each equation of the original system splits into equations without anticom-
mutative variables, which can then be rewritten in differential polynomial form,
tackled using differential algebra techniques, and at the end, the resulting equa-
tions can be recast as a system in the original anticommutative variables. As an
example of an ODE involving anticommutative variables tackled using differential
algebra techniques, consider Q as an anticommutative function, so that Q2 = 0,
then the ODE Q′′ − QQ′ = 0 has for solution Q = (c1x + c2)λ , where λ is an
anticommutative arbitrary constant. For a PDE example, consider an anticommu-
tative function Q(x,y,θ) where Q and θ are anticommutative, then Qxθ = 0 has for
solution Q(x,y,θ) = F1(x,y)λ +F2θ , where F1 and F2 are arbitrary commutative
functions.
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On finite difference approximations to the Korteveg-de
Vries equation and its conservation laws

V. P. Gerdt1, Yu. A. Blinkov2, K. B. Marinov3

1 Joint Institute for Nuclear Research, Dubna, Russia, {gerdt}@jinr.ru
2 Saratov State University, Saratov, Russia, blinkovua@info.sgu.ru
3 University Dubna, Dubna, Russia, marinov.kohctahtih@gmail.com

Let ∂x be the derivation operator w.r.t. x and R := Q(a1, . . . ,ai){u} be the or-
dinary differential polynomial ring over the parametric field Q(a1, . . . ,ai) of real
constants. Based on the methodology of paper [1], we suggested in [2] an approach
to algorithmic generation of finite difference approximations to the nonlinear evo-
lution equations of the form

ut = aum +F(um−1, . . . ,u1,u) , 0 6= a ∈ R , m ∈ N>0 . (1)

Here uk := ∂ k
x u (0 ≤ k ≤ m), u0 := u, F ∈ R is a differential polynomial of the

order m−1 in ∂x and such that there is a differential polynomial P ∈ R satisfying
F = ∂xP.

The class (1) contains the classical Korteveg-de Vries (KdV) equation which
we shall write as

f = 0 , f := ut +α uux +β uxxx , u = u(t,x) , α,β ∈ R . (2)

The finite difference approximation (FDA) to Eq. (2), generated by the pro-
cedure described in [2] and based on application of difference Gröbner bases [3]
reads

f̃ = 0 , f̃ :=
un+1

j −un
j

τ
+α

(Pn+1
j+1 −Pn+1

j−1 )+(Pn
j+1 −Pn

j−1)

8h

+β
(un+1

j+2 −2un+1
j+1 +2un+1

j−1 −un+1
j−2)+(un

j+2 −2un
j+1 +2un

j−1 −un
j−2)

4h3 .

(3)

where un
j := u(τ ·n,h · j) (n, j ∈ Z) is the grid function which approximates u(t,x)

on the Cartesian solution grid with spacings τ := tn+1− tn,h := x j+1−x j and Pn
j :=

(u2)n
j , . The FDA (3) has accuracy O(τ2,h2) and is consistent with (2). Besides,

as a difference scheme, it is implicit, and hence unconditionally stable. Therefore,
the scheme (3) is convergent.

Apparently, the differential ideal ❏ f ❑, generated by f in (2), is radical, and the
difference ideal ❏ f̃ ❑, generated by f̃ in (3), is a perfect one (cf. [4]) in the inversive
difference ring Q(α,β ){u} with differences σt , σx,σ−1

t ,σ−1
x acting as

σt ◦un
j = un+1

j , σx ◦un
j = un

j+1, σ−1
t ◦un

j = un−1
j , σ−1

x ◦un
j = un

j−1 .
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Since f̃ is a Gröbner basis of ❏ f̃ ❑, the consistency implies s(strong)-consistency [5]
by the following theorem.

Theorem 1 [5] A FDA F̃ to a (system of) differential polynomial(s) F is s-consistent
iff every element in the Gröbner (standard) basis of the difference ideal generated
by F̃ provides FDA to an element of the radical differential ideal generated by F.

The property of s-consistency of f̃ with f means that any element in ❏ f̃ ❑ is a
FDA to an element in ❏ f̃ ❑. Among elements in ❏ f̃ ❑ there are infinitely many (local)
conservation laws

{Ci := ∂tTi +∂xXi ∈ ❏ f ❑=⇒ d
dt

∫ ∞

−∞
Ti dx =−[Xi]

∞
−∞ | i ∈ N≥1 , Ti,Xi ∈ R}

where Ti = Ti(u) are densities and Xi = Xi(u) are fluxes.
The conservation laws of KdV admit algorithmic construction. There are com-

puter algebra packages, e.g. the Maple package PDEBELLII [6], which recursively
compute Ti and Xi . Then one can express Ci via f with a help of the Maple pack-
age the DIFFERENTIALTHOMAS implementing differential Thomas decomposi-
tion [7]. The first five conservation laws presented in Table 1.

Table 1: Low order conservation laws of KdV in terms of f

i Ci ordx(Ci)

1 f 3
2 fx 4
3 fxx +2u f 5
4 fxxx +u f 4

x +u4
x f 6

5 fxxxx +6u fxx +5ux fx +6uxx f +6u2 f 7
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Exact or approximate inheritance of conservation laws at the discrete level is
one of the most important qualitative requirements to finite difference schemes [8].
Due to the s-consistency with (2), the discretization (3) approximately inherits all
its conservation laws as the following theorem states. It is the main theoretical
result of this note.

Theorem 2 For each conservation law Ci of KdV there is an element f̃i in the per-
fect difference ideal ❏ f̃ ❑ such that f̃i approximates Ci with the accuracy O(τ2,h2)
corresponding to the accuracy of f̃ .

2
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We illustrate this fact by the 3rd and 4th KdV conservation laws of Table 1. With
regard to forward and backward differences

∆p :=
1
h
(σx −1) , ∆m :=

1
h
(1−σ−1

x ) ,

the spatial derivatives occurring in C3 and C4 are approximated, with the prescribed
accuracy, by the elements in R and ❏ f̃ ❑ as follows

1
2
(∆p +∆m)◦u −−−→

h−→0
ux +O(h2) ,

1
2
(∆p +∆m)◦ f̃ −−−→

h−→0
fx +O(h2) ,

∆m ∆p ◦ f̃ −−−→
h−→0

fxx +O(h2) , ∆p ∆m ∆p ◦ f̃ − h
2

∆m ∆p ∆m ∆p ◦ f̃ −−−→
h−→0

fxxx +O(h2) .

We correlated numerical behavior of our scheme (3) with two other schemes
taken from the book [9]. Both of them have the same accuracy O(τ2,h2) as (3).

Explicit Scheme I ([9], Eq.1.80)

un+1
i =un−1

i − ατ
h

un
i
(
un

i+1 −un
i−1

)
− βτ

h3

(
un

i+2 −2un
i+1 +2un

i−1 −un
i−2

)
.

stable for

τ ≤ 2h3

3
√

3β
∼= 0.384

h3

β
.

Implicit Scheme II ([9], Eq.1.96)

un+1
j −un

j

τ
+

α
4h

[
un

j

(
un+1

j+1 −un+1
j−1

)
+un+1

j

(
un

j+1 −un
j−1

)]
+

+
β

4h3

((
un+1

j+2 −2un+1
j+1 +2un+1

j−1 −un+1
j−2

)
+
(

un
j+2 −2un+1

j +2un
j−1 −un

j−2

))
= 0 .

As a benchmark, we used the exact one-soliton solution

uexact(x,y) =
2k2

1

cosh(k1(x−4k2
1t))2

to (2) with α = 6, β = 1 and k1 = 0.4. In so doing, we fixed h = 0.25 and con-
sidered the solution in interval −50 ≤ x ≤ 50 with periodic boundary conditions
(cf. [9], p.49). The numerical inaccuracy was estimated by the Frobenius norm.
The following picture shows numerical superiority of our scheme.
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Bivariate Dimension Quasi-polynomials of
Difference-Differential Field Extensions with Weighted
Basic Operators

Alexander Levin

The Catholic University of America, Washington, D.C., USA, levin@cua.edu

We prove the existence and determine some invariants of a Hilbert-type bivari-
ate quasi-polynomial associated with a difference-differential field extension with
weighted basic derivations and translations. We show that such a quasi-polynomial
can be expressed in terms of univariate Ehrhart quasi-polynomials of rational conic
polytopes.

1. Preliminaries

Let K be a difference-differential field of zero characteristic with basic sets
of derivations ∆ = {δ1, . . . ,δm} and automorphisms σ = {α1, . . . ,αn} (any two
mappings from the set ∆∪σ commute) and let every δi, 1 ≤ i ≤ m (respectively,
every α j, 1 ≤ j ≤ n), be assigned a positive integer weight vi (respectively, w j). Let
Λ be the free commutative semigroup generated by the set ∆∪σ whose elements
are written as power products λ = δ k1

1 . . .δ km
m α l1

1 . . .α ln
n (ki, l j ∈ N).

We define the orders of λ with respect to the sets ∆ and σ (and with respect to
the given weights) as ord∆ λ = ∑m

i=1 viki and ordσ λ = ∑n
j=1 w jl j, respectively, and

set ΛV,W (r,s) = {λ ∈ Λ | ord∆ λ ≤ r, ordσ λ ≤ s} for all r,s ∈ N.
In what follows, we will use the prefix ∆-σ - instead of the adjective ”difference-

differential”. If η = {η1, . . . ,ηq} is a finite subset of a ∆-σ -overfield of K, we write
K〈η1, . . . ,ηq〉 for the ∆-σ -field extension of K generated by the set η . (As a field,
it coincides with K({λ (ηi) |λ ∈ Λ, 1 ≤ i ≤ q}).)

2. Dimension quasi-polynomials of subsets of Np

A function f : Z → Q is called a (univariate) quasi-polynomial of period q
if there exist q polynomials gi(x) ∈ Q[x] (0 ≤ i ≤ q− 1) such that f (n) = gi(n)
whenever n ∈ Z and n ≡ i(mod q).

An equivalent way of introducing quasi-polynomials is as follows.
A rational periodic number U(n) is a function U :Z→Q with the property that

there exists (a period) q ∈ N such that U(n) =U(n′) whenever n ≡ n′ (mod q).
A rational periodic number can be represented by a list of q its possible values:

U(n) = [a0, . . . ,aq−1]n. For example, U(n) =
[ 1

2 ,
3
4 , 1

]
n is a periodic number with

period 3 such that U(n) = 1
2 if n ≡ 0(mod 3), U(n) = 3

4 if n ≡ 1(mod 3), and
U(n) = 1 if n ≡ 2(mod 3).

1
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With the above notation, a (univariate) quasi-polynomial of degree d is a func-
tion f : Z→Q such that

f (n) = cd(n)nd + · · ·+ c1(n)n+ c0(n)

where ci(n)’s are rational periodic numbers and cd(n) 6= 0 for at least one n ∈ Z.

One of the main applications of the theory of quasi-polynomials is its applica-
tion to the counting of integer points in polytopes.

Recall that a rational polytope in Rd is the convex hall of finitely many points
(vertices) in Qd or, equivalently, the set of solutions of a finite system of linear
inequalities Ax ≤ b, where A is an l ×d-matrix with integer entries (l is a positive
integer) and b ∈ Zl , provided that the solution set is bounded.
Let P ⊆ Rd be a rational polytope. In what follows, we assume that P has dimen-
sion d, that is, P is not contained in a proper affine subspace of Rd . Then a polytope
rP = {rx |x ∈ P} (r ∈ N) is called the rth dilate of P. (Clearly, if v1, . . . ,vk are all
vertices of P, then rP is the convex hall of rv1, . . . ,rvk.) The number of integer
points (that is, points with integer coordinates) in rP is denoted by L(P,r). The
following result is due to E. Ehrhart, see [3].

Theorem 1 L(P,r) is a degree d quasi-polynomial of r whose leading coefficient
is equal to the Euclidean volume of P.

The main tools for the computation of Ehrhart quasi-polynomials are Alexan-
der Barvinok’s polynomial time algorithm and its modifications, see [1] and [2].

Let p = (p1, . . . , pr) be an r-dimensional parameter vector. An r-dimensional
periodic number U(p) on p1, . . . , pr is a function U : Zr →Q such that there exists
q = (q1, . . . ,qr) ∈ Nr with the property that U(p1, . . . , pr) = U(p′1, . . . , p′r) when-
ever pi ≡ p′i (mod qi), 1 ≤ i ≤ r. The least common multiple of all qi is called a
period of U . Say, [[1, 3

2 ]p2 , [0,
3
4 ]p2 , [−1, 1

5 ]p2 ]p1 is a 2-periodic number with period
6 (q = (3,2)).

A polynomial in r variables p1, . . . , pr, where each coefficient is a multidimen-
sional periodic number on a subset of {p1, . . . , pr}, is called a multivariate quasi-
polynomial (in p1, . . . , pr). Its period is defined as the least common multiple of
the periods of the coefficients.

Let m,n ∈ N, A ⊆ Nm+n and XA = {x = (x1, . . . ,xm+n) |x is not greater than or
equal to any a ∈ A with respect to the product order <P on Nm+n}. (Recall that
(a1, . . . ,am+n)<P (x1, . . . ,xm+n) if ai < xi for i = 1, . . . ,m+n.)

Let us fix two sets of positive integers V = {v1, . . . ,vm} and W = {w1, . . . ,wn}
(“weights”) and define the orders of an (m+n)-tuple a = (a1, . . . ,am+n) ∈ N with

2
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respect to these sets as ordV a = ∑m
i=1 viai and ordW a = ∑m+n

i=m+1 wiai, respectively.
Furthermore, for any set A ⊆ Nm+n and for any r,s ∈ N, let

A(r,s) = {a ∈ A | ordV a ≤ r, ordW a ≤ s}.

Theorem 2 With the above notation, there exists a bivariate quasi-polynomial
φV,W (t1, t2) such that
(i) φV,W (r,s) = CardXA(r,s) for all sufficiently large (r,s) ∈ N2. (It means that
there is (r0,s0) ∈ N2 such that the equality holds for all integers r ≥ r0, s ≥ s0.)
(ii) degt1 φV,W ≤ m and degt2 φV,W ≤ n.
(iii) degφV,W = m+n if and only if A = /0
(iv) φV,W (t1, t2) = 0 if and only if (0, . . . ,0) ∈ A.

3. The main result

In what follows we keep the notation of section 1.

Theorem 3 Let K be a ∆-σ -field and let L = K〈η1, . . . ,ηq〉 be a ∆-σ -field ex-
tension of K generated by a finite set η = {η1, . . . ,ηq}. For any r,s ∈ N, let
Lr,s = K({λ (ηi) |λ ∈ ΛV,W (r,s), 1 ≤ i ≤ q}). Then there exists a bivariate quasi-
polynomial Φ(V,W )

η |K (t1, t2) such that

(i) Φ(V,W )
η |K (r,s) = tr.degK Lrs for all sufficiently large (r,s) ∈ N2.

(ii) degt1 Φ(V,W )
η |K ≤ m = Card ∆ and degt2 Φ(V,W )

η |K ≤ n = Card σ .

(iii) Φ(V,W )
η |K is an alternating sum of bivariate quasi-polynomials of the form

g(t1)h(t2) where g(t1) and h(t2) are (univariate) Ehrhart quasi-polynomials asso-
ciated with rational conic polytopes.

(iv) The total degree and the coefficient of tm
l tn

2 of the quasi-polynomial Φ(V,W )
η |K (t1, t2)

are constants that do not depend on the set of difference-differential generators η
of the extension L/K.

This theorem generalizes the result on a bivariate difference-differential di-
mension polynomial proved in [4]. Furthermore, Theorem 3 allows one to assign
a bivariate quasi-polynomial to a system of algebraic difference-differential (∆-σ -)
equations with weighted basic derivations and translations

fi(y1, . . . ,yq) = 0 (i = 1, . . . , p) (1)

( fi ∈R=K{y1, . . . ,yq} (1≤ i≤ p) where K{y1, . . . ,yq} denotes the ring of difference-
differential polynomials in q variables over K) such that the ∆-σ -ideal P of R gen-
erated by the ∆-σ -polynomials f1, . . . , fp is prime (e. g., to a system of linear

3
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difference-differential equations). Systems of this form arise in connection with
systems of PDEs with weighted derivatives (see, for example, [7] and [8]) and
their finite difference approximations.

In this case, the reflexive closure P∗ of the ∆-σ -ideal P is also prime, so one
can consider the quotient field of R/P∗ as a finitely generated ∆-σ -field extension
of K: L = K〈η1, . . . ,ηq〉 where ηi is the canonical image of yi in R/P∗. The cor-
responding bivariate dimension quasi-polynomial Φ(V,W )

η |K (t1, t2) can be viewed as
the Einstein’s strength of the system (1) in the sense of the corresponding concepts
for systems of partial differential and difference equations (see [6] and [5, Section
7.7] for detail descriptions of these concepts and their expressions as dimension
polynomials).
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Higher-order symmetries and creation operators for linear
equations via Maxima and SymPy
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Computation of symmetries of systems of partial differential equations is one
of the oldest applications of computer algebra in the field of differential equa-
tions and mathematical physics. Already in the late eighties and early nineties
several packages to compute symmetries have been developed in Macsyma, Re-
duce, Mathematica and Maple[1, 2]. Today, it is actually difficult to imagine not
to use computer algebra when one faces analysis of complex differential (or differ-
ence) system. Skillful application of existent packages leads to efficient analysis of
even very complicated systems like those encountered in theory of elasticity, see,
e.g., [3].

Let us consider a system of partial differential equations:

U = 0, (1)

and let X denotes the so-called inifinitesimal generator of symmetries which
is a first-order linear partial differential operator. Then there exists the following
infinitesimal criterion of symmetry (please see, e.g., [4]):

X (pr)U |U=0 = 0, (2)

where X (pr) is the prolongation of the operators X . The above formula has
a simple geometric meaning: the symmetry of Q is such a tranformation (in the
space of independent variables, dependent variables, and their derivatives) which
leaves the hypersurface of solutions invariant. From the above condition a system
of linear partial differential equations can be obtained to compute X . They are
called determining equations. Even writing down all the determining equations is
a very tedious procedure, ideally suited for computers.

In this contribution we, however, take advantage of the fact that for linear sys-
tems the way to obtain the determining equations is much simpler. Let us restrict
ourselves to systems of the form:

1
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QΨ = 0, (3)

where Q is a (variable-coefficient) matrix partial differential operator, and Ψ is
a vector of dependent variables. Then, a first-order matrix linear partial differential
operator L is called a symmetry operator if and only if [5]:

[L,Q]−RQ = 0, (4)

where [, ] denotes the commutator and R is a function of independent variables.
An important point is that the Eq. (4) can easily be generalized to the higher-

order symmetry operators [5]. For instance, in the second-order case we have the
following condition:

[L(2),Q]−R(1)Q = 0, (5)

where L(2) is a second-order, and R(1) - a first-order linear partial differential
operators. Unlike the operators L, operators L(2) which satisfy (5) usually do not
form a Lie algebra. Computing operators L,L(2) from Eqs. (4, 5) is by far simpler
that from (2) but still sufficiently difficult as to require assistance from the computer
algebra systems.

We have, in particular, applied both Maxima and SymPy to study the following
Schrödinger equation:

(
i

∂
∂ t

−H
)

Ψ = 0, (6)

where t denotes time and H - a Hamiltonian operator which is given in the
representation of second-quantization as:

H = ∑
j

α ja j +∑
j,k

β j,ka†
jak + ∑

j,k,l,m
γ j,k,l,ma†

ja
†
kalam +h.c.,

where a j, a†
k are the annihilation and creation operators which satisfy:

[a j,a
†
k ] = δ jk, (7)

δ jk is the Kronecker delta, “h.c." denotes Hermitian conjugate symbol while
α j, β j,k, and γ j,k,l,m are complex constants. To apply computer algebra, we could,
in principle, work directly with the above Hamiltonian using only (7). However,
we have found it convenient to use the following Bargmann representation:

a j →
∂

∂ z j
and a†

k → zk.

2
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In this representation, Ψ becomes a function of time and an analytic function
of all z j.

Using (independently) Maxima and SymPy we have determined the first-, second-
and third-order symmetries for a generalized Bose-Hubbard model which describes
systems of interacting bosons on a lattice. We also found first- and second-order
generalized creation (A†) and annihilation A operators for such model; they have
to satisfy the relations:

[H,A†] = A† and [H,A] =−A.

We have found it expedient to work with Maxima and SymPy firstly in the in-
teractive modes, and write the corresponding scripts only later. Regarding Maxima,
we observe that its feature which allows to use functions as first-order variables,
inherited from Lisp, is a particular advantage. In several cases the symmetries ob-
tained could be used to provide us with separation of variables. In other cases,
special interesting exact solutions have been found.
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Towards a symbolic package for systems of nonlinear
difference equations

D. Robertz1

1 Centre for Mathematical Sciences, Plymouth University, 2-5 Kirkby Place, Drake Circus,
Plymouth PL4 8AA, UK, daniel.robertz@plymouth.ac.uk

Difference algebra has been studied in analogy to differential algebra. How-
ever, concepts such as characteristic sets for differential systems have not been
developed in the same generality for difference systems yet. In particular, methods
such as the Rosenfeld-Gröbner algorithm, regular chains and Thomas decomposi-
tion for differential systems are not available for difference systems. Among the
many applications of difference algebra is, e.g., the consistency analysis of finite
difference schemes for partial differential equations.

This talk presents results of trying to transfer the concept of differential Thomas
decomposition to systems of nonlinear difference equations and develop a sym-
bolic package for systems of nonlinear difference equations. It reports on joint
work with Vladimir Gerdt.
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Matrices over Differential-difference Algebras

Yang Zhang

University of Manitoba, Winnipeg, Canada, Yang.Zhang@umanitoba.ca

Let R be a ring and σ be a ring endomorphism of R. A σ -derivation on R is
a map δ : R −→ R satisfying: δ (a+ b) = δ (a)+ δ (b) and δ (ab) = σ(a)δ (b)+
δ (a)b, for all a,b ∈ R. The skew polynomial ring (also called Ore polynomial ring)
R[x;σ ,δ ] over R is the set of usual polynomials in x over R, i.e., {∑rixi | ri ∈ R},
with usual “+ ” and

xr = σ(r)x+δ (r), ∀r ∈ R.

We refer to Cohn [1], Goodearl and Warfield [2], Levin[4], and van der Put and
Singer[3] for more details and the related topics.

Matrices over skew polynomial rings (also called Ore matrices) have been stud-
ied for decades with many applications in other areas like control theory and engi-
neering. In this talk, we focus on various generalized inverses of Ore matrices.

Let K be a ring with an involution “∗”. For A ∈ Km×n and X ∈ Kn×m, consider
the following equations:

(i) AXA = A, (ii) XAX = X , (iii) (AX)∗ = AX , (iv) (XA)∗ = XA,

where A∗ is the transpose conjugate of A. If a matrix X ∈ Kn×m satisfies (i), then
X is called a {1}-inverse of A. A matrix X ∈ Kn×m satisfying both of (i) and (ii)
is called a {1,2}-inverse of A, and so on. In particular, X satisfying {i, ii, iii, iv} is
called the Moore-Penrose inverse of A, denoted by A†. More generalized inverses
of matrices like group inverses and Drazin inverses of matrices can be found in [5].

We first use Jacobson forms of Ore matrices to discuss {1}-inverses. One of
theorems is as follows:

Theorem. For any A ∈ R[x;σ ,δ ]m×n, A has a {1}-inverse over R[x;σ ,δ ] if

and only if its Jacobson form equals
[

Ir 0
0 0

]
, that is, there exist invertible ma-

trices P ∈ R[x;σ ,δ ]m×m and Q ∈ R[x;σ ,δ ]n×n such that A = P
[

Ir 0
0 0

]
Q. Fur-

thermore, if X is a {1}-inverse of A over R[x;σ ,δ ], then X can be written as

Q−1
[

Ir W2
W3 W4

]
P−1, where W2,W3,W4 are arbitrary matrices over R[x;σ ,δ ].

As applications of {1}-inverses, we discuss Roth theorems and generalized
Sylvester matrix equation, for example,

Theorem. If Ore matrices A, B, C and D all have {1}-inverses over R[x;σ ,δ ],
then the following statements are equivalent:

1
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1. The matrix equation AXB+CY D = E has solutions over R[x;σ ,δ ].

2. The matrix equations AX1+Y1D = E and X2B+CY2 = E have solutions over
R[x;σ ,δ ].

3. rank




C E 0 0
0 B 0 0
0 0 A E
0 0 0 D


= rank




C 0 0 0
0 B 0 0
0 0 A 0
0 0 0 D


 over R[x;σ ,δ ].

4. The matrix equation
[

C 0
0 A

]
X3+Y3

[
B 0
0 D

]
=

[
E 0
0 E

]
has solutions

over R[x;σ ,δ ].

For Moore-Penrose inverses, assume that R is a division ring with an involution
“ ∗ ”. We give the sufficient and necessary conditions for extending “ ∗ ” to be an
involution on R[x;σ ,δ ], and then prove the following theorems:

Theorem. For any A ∈ R[x;σ ,δ ]m×n, A† exists over R[x;σ ,δ ] if and only if
A∗AA∗ has a {1}-inverse over R[x;σ ,δ ], and rank(A) = rank(AA∗) = rank(A∗A).
Moreover X = A∗(A∗AA∗)(1)A∗ is the unique MP-inverse of A over R[x;σ ,δ ].

Theorem. For any A ∈ R[x;σ ,δ ]m×n, if the Jacobson form of A is
[

Ir 0
0 0

]
,

i.e., there exist invertible matrices P ∈ R[x;σ ,δ ]m×m and Q ∈ R[x;σ ,δ ]n×n such

that A = P
[

Ir 0
0 0

]
Q, where P =

[
P1 P2

]
, Q =

[
Q1
Q2

]
, P1 ∈ R[x;σ ,δ ]m×r

is the first r columns of P and Q1 ∈ R[x;σ ,δ ]r×n is the first r rows of Q, then A†

exists over R[x;σ ,δ ] if and only if the Jacobson form of P∗
1 P1Q1Q∗

1 is Ir.
As applications, we give the general solutions for the linear systems of differential-

difference polynomials, and some types of matrix equations.
This is a joined work with Qiwei Feng.
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Finite Fields, Computer Algebra Systems, and Non-Linear
Coding

S. Engelberg1, O. Keren2

1 Department of Electrical and Electronics Engineering, School of Engineering and Computer
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We consider linear and non-linear codes. We start by developing a conserva-
tion law for codes. We then explain why linear codes, which are easy to understand
and implement, are useful when one is interested in protecting data from rarely oc-
curing random errors. By a simple argument, we demonstrate that linear codes are
not a good way to protect data from an attacker. Having ruled out linear codes
for this purpose, we take up non-linear codes. We explain what a finite field is and
how data can be represented by elements of a finite field. We then consider codes
that are non-linear functions of the data – of the elements of the finite field. We
show that quadratic codes suffer from the same drawbacks as linear codes. Next
we consider cubic codes. First we show that if all that one is concerned with
are attackers, cubic codes are optimal. Many of the above results are due to M.
Karpovsky and his co-workers. (See, for example, [2].)

Then we show how by making use of a computer algebra system we were
able to formulate a conjecture that certain cubic codes provide optimal protection
against attackers and some protection against certain relatively common random
errors. We will then sketch the proof of this result and describe some extensions
of the result [1].
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A Modified Hermite Interpolation with Exponential
Parameterization

R. Kozera1,2 and M. Wilkołazka3
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This work addresses the problem of estimating the unknown trajectory of a
regular curve γ : [0,T ] → En based on the so-called reduced data Qm. The latter
represent m+ 1 ordered interpolation points Qm = {qi}m

i=0 (with qi+1 6= qi) in ar-
bitrary Euclidean space En subject to the constraint qi = γ(ti). We assume that the
respective knots Tm = {ti}m

i=0 satisfying ti < ti+1 are not given. In order to fit Qm
with the prescribed interpolation scheme, one also needs to substitute somehow
the unknown knots Tm with another family of parameters T̂m = {t̂i}m

i=0 satisfy-
ing t̂i < t̂i+1. In doing so, the so-called exponential parameterization depending
on a single parameter λ ∈ [0,1] and Qm can e.g. be used. This ultimately yields
T̂ λ

m = {t̂λ
i }m

i=0 ≈ Tm - see e.g. Refs. [1, 2]. Note that a special case of λ = 1 in-
troduces the so-called cumulative chord parameterization of reduced data Qm (see
e.g. Ref. [1]). In the next step a classical Hermite interpolation (see Ref. [3])
γ̂H : [0, T̂ ] → En based on Qm and T̂ λ

m can be invoked (with T̂ = t̂λ
m). However,

the respective missing velocities {vi = γ̇(ti)}m
i=0 along Qm are approximated here

according to v̂i = γ̂ ′
3,i(t̂

λ
i ), where γ̂3,i : [t̂λ

i , t̂
λ
i+3]→ En denotes a standard Lagrange

cubic satisfying γ̂3,i(t̂i+ j) = qi+ j (for j = 0,1,2,3) - see Ref. [3]. Note that here
we apply in fact “overlapped” Lagrange cubics to estimate all velocities {vi}m

i=0 at
{Qm}m

i=0. More precisely, for γ̂3,i+1 : [t̂λ
i+1, t̂

λ
i+4] interpolating {qi+1+ j}3

j=0 we adopt
a similar estimate i.e. v̂i+1 = γ̂ ′

3,i+1(t̂
λ
i+1) of γ̇(ti+1). For the last four interpolation

points {qi}m
i=m−3 the above procedure can be repeated upon changing the order of

points and taking the computed derivatives with the opposite sign. Such construc-
tion of γ̂H based on T̂ λ

m , {v̂i}m
i=0 and Qm is coined a modified Hermite interpolation.

A special case when λ = 1 is discussed in more details in Refs. [4, 5].
Given δm = max0≤i≤m−1{ti+1 − ti} the sampling Tm is called admissible if

limm→∞ δm = 0. The subfamily of admissible samplings is called more-or-less
uniform if there exists β ∈ (0,1] such that δmβ ≤ ti+1 − ti, holding for all i =
0,1, . . . ,m−1 and arbitrary m. The question of approximating γ by modified Her-
mite interpolant γ̂H is studied merely for the special case of λ = 1 i.e. for cu-
mulative chord parameterization in Refs. [4, 5]. More specifically, quratic order
of convergence in trajectory approximation is proved and confirmed numerically
in the above last cited papers. We extend this result to the remaining λ ∈ [0,1)

1
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determining the exponential parameterization. Indeed the following holds:

Theorem 1 Assume that a regular γ : [0,T ]→ En of class C4 with the unknown in-
terpolation knots {ti}m

i=1 is sampled more-or-less uniformly. If γ̂H represents a mod-
ified Hermite interpolant based on reduced data Qm and exponential parameteri-
zation governed by λ ∈ [0,1], then for some piecewise-cubic-C∞ ψ : [0,T ]→ [0, T̂ ]:

(γ̂H ◦ψ)(t)= γ(t)+O(δ 1
m) for λ ∈ [0,1) and (γ̂H ◦ψ)(t)= γ(t)+O(δ 4

m) for λ = 1.
(1)

Theorem 1 establishes a substantial deceleration in convergence rates for tra-
jectory estimation (to the linear one) while λ runs over [0,1). The latter contrasts
with the fast quartic order holding for λ = 1 as specified in (1) (see also Ref. [4]).
The numerical tests conducted in this work (with the aid of Mathematica pack-
age - see Ref. [7]) confirm the sharpness of the estimates from (1). A similar
effect of the left-hand side discontinuity in convergence rate at λ = 1 is proved for
piecewise-quadratic Lagrange intepolation based on exponential parameterization
and Qm - see Refs. [2, 6]. Fitting reduced data is an important problem in com-
puter vision and graphics, as well as in engineering, microbiology, physics and
other applications like medical image processing - see e.g. [1].
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Training various arti�cial intelligence (AI) tools is a hard problem, of-
ten requiring to solve a di�cult nonlinear optimization problem. Numerical
�nding its solution can be signi�cantly accelerated by proper symbolic tech-
niques.

This is the case as for arti�cial neural networks (ANN); e.g., [8], as for
support vector machines (SVM); e.g., [10], and for many other techniques.

To be succinct, we can either solve the optimization problem:

min
w

∑

i

||f(xi, w)− yi|| , (1)

or the nonlinear system:

f(xi, w)− yi = 0 for all i = 1, . . . , N . (2)

In the above formulae, (xi, yi) are training examples and w is the vector of
parameters, we are trying to determine in the learning process. For an ANN
w represents weights of links between neurons; for SVM � parameters of the
Gaussian kernel and of the soft margin.

To train the AI tools we can, in particular, solve the system of nonlinear
equations, representing the necessary conditions for optimality of (1) or solve
the system (2) directly. Other equations systems also arise in training such
tools (e.g., [3]).

Solutions of such systems can be found by a few algorithms. We propose
using interval methods (see, e.g., [5]), as this approach has proven to be useful
in solving nonlinear systems � both well-determined and underdetermined
ones.

One of the advantages of interval calculus is that it can deal with un-
certainties in data, in a natural manner: instead of taking speci�c numbers
(xi, yi) as inputs, we can use intervals (xi,yi), containing the perturbed
values.

1
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The solver we use for training all these tools is HIBA_USNE [4], de-
scribed, i.a., in [6], [7]. Interval arithmetic is augmented by the use of al-
gorithmic di�erentiation [1] and symbolic preprocessing techniques, based
on CoCoALib [2] to improve the performance of the interval solver. For
an ANN, the systems of equations are non-polynomial, but it can still ben-
e�t from some symbolic techniques. As we encounter terms of the form

exp
(∑N

i=1wixi

)
, we can add new terms ti = exp(wixi). In case the terms

repeat in other equations, they can be removed using the Gröbner basis the-
ory. The paper is going to discuss possible improvements, obtained by this
approach.

As an illustrative example, we consider the problem of determining the
state of a drill (good, suspicious, damaged). We apply ANNs and SVMs to
solve it.

In the paper we are going to present computational results for both AI
tools. We show how interval methods combined with computer algebra and
algorithmic di�erentiation help to model perturbations and tune the classi-
�ers in their presence.
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An Atwood machine is a well-known device that consists of two bodies of
different masses m1, m2 attached to opposite ends of a massless inextensible thread
wound round a massless frictionless pulley (see Ref. [1]). It is assumed that each
body can move only along a vertical, and the thread doesn’t slip on the pulley.
Such Atwood’s machine is a simple mechanical system with one degree freedom
that is usually used in the course of physics for demonstration of the uniformly
accelerated motion of the system.

However, it is very difficult in practice to attain such a simple translational
motion and the oscillations of the bodies inevitably arise. These oscillations may
modify the system motion significantly and so the swinging Atwood machine has
been a subject of a number of papers (see, for example, Refs. [2, 3, 4, 5, 6]). In
particular, it has been proven that the system of differential equations describing
dynamics of swinging Atwood’s machine is not integrable, in general. It has been
shown also that, depending on the mass ratio m2/m1, the system can demonstrate
different types of motion, namely, periodic, quasi-periodic, or chaotic motion.

To clarify the physical reasons of such influence of oscillation on the system
motion in the previous paper [7] we considered the simplest generalization of the
Atwood machine when only one body of mass m1 is allowed to swing in a plane
while the other body of mass m2 > m1 can move only along a vertical. We have
shown that oscillation results in increasing of the averaged thread tension which
depends on the amplitude of oscillation. If increase of the averaged tension exceeds
(m2−m1)g, where g is a gravity acceleration, the body of smaller mass m1 can pull
the body m2 up what is not possible in the system without oscillation.

In the present paper we consider the more complicated Atwood machine when
both bodies are allowed to swing in the plane. Such a system has three degrees of
freedom and can demonstrate different kinds of quasi-periodic motion depending
on the masses difference and initial conditions. However, the equations of motion
become more complicated and their analysis requires to combine symbolic and
numerical calculations. We demonstrate here that such analysis can be successfully
done with the computer algebra system Mathematica (see Ref. [8]) that is used for
doing all relevant calculations and visualization of results.

1
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Figure 1: Atwood’s machine with three degrees of freedom.

1 Equations of Motion

We consider a generalized model of the simple Atwood machine when both bodies
are allowed to swing in the plane (see Fig. 1). Such a system has three degrees
of freedom and its geometrical configuration can be described in terms of three
variables, for example, two angles ϕ1 and ϕ2 determining deviations of the thread
from the vertical and a length r of the thread between the body m1 and the point,
where the thread departs from the pulley in case of ϕ1 = 0. Note that a length of
the thread between the body m2 and the point, where the thread departs from the
pulley, is given by (L−πR− r−Rϕ2), where L is the length of the thread and R is
a radius of the pulley.

The Lagrangian of the system can be written in the form

L =
(m1 +m2)R2 + I0

2R2 ṙ2 +
m1

2
(r+Rϕ1)

2 ϕ̇2
1

+
m2

2
(L− r−πR−Rϕ2)

2 ϕ̇2
2 −m1g(Rsinϕ1 − (r+Rϕ1)cosϕ1)

+m2g(Rsinϕ2 +(L− r−πR−Rϕ2)cosϕ2) , (1)

where the dot denotes differentiation with respect to time, and I0 is a moment of
inertia of the pulley. Using Eq. (1) and doing standard symbolic calculations, we
obtain the equations of motion in the form

κ r̈ = g(cosϕ1 −µ cosϕ2)+(r+Rϕ1)ϕ̇2
1 −µ(L− r−πR−Rϕ2)ϕ̇2

2 , (2)

2
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Figure 2: Motion of the Atwood machine in case of m1 = m2.

(r+Rϕ1)ϕ̈1 =−gsinϕ1 −2ṙϕ̇1 −Rϕ̇2
1 , (3)

(L− r−πR−Rϕ2)ϕ̈2 =−gsinϕ2 +2ṙϕ̇2 +Rϕ̇2
2 , (4)

where µ = m2/m1,

κ =
I0 +(m1 +m2)R2

m1R2 .

2 Main result

One can readily check that equations of motion (2)-(4) cannot be solved sym-
bolically. However, choosing some realistic values of the system parameters, we
can obtain the corresponding numerical solution for different initial conditions and
analyze motion of the system.

As an example, let us consider the case of equal masses (m1 = m2) and assume
that the bodies are at rest. If the body of mass m1 gets a small horizontal initial
velocity it starts to oscillate. As a result an average value of the thread tension
becomes greater than the gravity force m2g and the oscillating body starts to move
down and pull up the second body (see [7]). However, if both bodies being at
rest get different horizontal initial velocities then both of them start to oscillate
with different amplitudes. Solving Eqs. (2)-(4) with the initial conditions ϕ1(0) =
ϕ2(0) = ṙ(0) = 0, r(0) = 0.3, ϕ̇1(0) = 0.4, ϕ̇2(0) = 0.1, for instance, we obtain a
solution shown in Fig. 2.

3
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One can readily see that initially the body of mass m1 oscillates with the ampli-
tude being greater than that of the body m2. Consequently, the thread tension in the
right-hand side of the system is greater than in the left-hand side and the body m1
moves down and pull up the body m2. However, a length of the thread between the
body m1 and the pulley increases and amplitude of its oscillation decreases while
amplitude of the body m2 oscillation grows up. Finally, an average tension of the
thread between the body m2 and the pulley becomes greater that the tension in the
right-hand side of the system. As a results the pulley stops and then starts to rotate
in opposite direction. Then the roles of the bodies change and the system continues
its motion. Thus, due to oscillations of the bodies the system demonstrates quasi-
periodic motion which is not possible in case of the classical Atwood machine with
bodies of equal masses.

3 Conclusions

In the present talk we have demonstrated an influence of oscillation on the Atwood
machine motion in the case when both bodies are allowed to oscillate in a plane.
Simulating motion of such Atwood’s machine with the computer algebra system
Wolfram Mathematica, we have shown that even small oscillations can completely
modify its motion, while the simple Atwood machine demonstrates only the uni-
formly accelerated motion of the bodies. Note that such simulation promotes de-
velopment of physical intuition and better understanding of the subject.
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Two Dimensional Dipole-Dipole Interaction and
Generalized Orbitals Under the Influence of Noncentral
Forces

Haiduke Sarafian
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In this investigation with two objectives we augment the scope of our previ-
ous analyses addressing the impact of two mutually interactive magnetic dipoles.
First we deviate from restricting the movement of one of the loose magnets to one
dimension; this is addressed in [1]. In this scenario the interactive force is a
distance dependent function only. The resulting equation of motion is a nonlin-
ear differential equation. Utilizing a computer algebra system, Mathematica [2]
numeric solution of the equation of motion including viscosity is proven in agree-
ment with data. Second, we apply our theory analyzing the orbitals of a loose
particle under the influence of a hypothetical noncentral force [3,4,5]. Because of
the noncentrality of the force the resulting equations of motion are coupled ODEs.
Applying Mathematica and utilizing the numeric solutions deducing the orbits. In
this current analysis by adopting the same strategy we utilize a realistic format for
the mutual interaction force between two planar magnetic dipoles [6]. In this
scenario one of the magnets is kept in place and the second one is mobile. The
force is realistic, its format coincides with the fifteenth class of the forces reported
in [5], namely, f44(r,θ)r̂+g44(r,θ)θ̂ , Table 1. Here depending to the orientation
of two planar magnets we consider four different scenarios. For each situation
we solve the associated coupled nonlinear differential equation of motions numer-
ically; Mathematica provides the solutions. Utilizing the solutions we deduce
the kinematics of the mobile magnet displaying the orbitals. We provide also
an interactive Mathematica simulation program addressing the potential “what if”
scenarios.
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Time-fractional differential equations have been attractive in the past decades
since many natural phenomena in physics, biology and chemistry can be described
more precisely in this way. Numerous effort has been devoted in developing effec-
tive methods for time-fractional differential equations and simulations on a large
range of physical problems. However, numerical analysis for time-fractional dif-
ferential equations has not been well done, mainly due to the lack of a fundamental
Gronwall type inequality. Such an inequality for first-order derivative and its ap-
proximations services as an essential tool in analysis of ODEs and PDEs. In this
talk, we shall present our recent work in establishing a new fundamental alge-
braic Gronwall type inequality for several approximations to the Caputo fractional
derivative, in terms of Mittag-Leffler function. Matlab software has also been used
to verify our formulations. With the proved Gronwall type inequality, we provide
theoretical analysis for several discrete algebraic methods. The theoretical results
are illustrated by applying our proposed methods to three examples: linear Fokker-
Planck equation, nonlinear Huxley equation and Fisher equation.
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A translational surface is a rational tensor product surface generated from two ra-
tional space curves by translating either one of these curves parallel to itself in
such a way that each of its points describes a curve that is a translation along the
other curve. Translational surfaces, ruled surfaces, swept surfaces, along with low
degree surfaces such as quadratic and cubic surfaces, are basic modeling surfaces
that are widely used in computer aided geometric design and geometric modeling.

Since translational surfaces are generated from two space curves, translational
surfaces have simple representations. The simplest and perhaps the most common
representation of a translational surface is given by the rational parametric rep-
resentation h∗(s; t) = f∗(s) + g∗(t), where f∗(s) and g∗(t) are two rational space
curves. Translational surfaces represented by h∗(s; t) = f∗(s)+g∗(t) have been in-
vestigated by differential geometers, and also studied from a geometric modeling
point of view.

Translational surfaces defined by h∗(s; t) = f∗(s)+g∗(t) are not translation in-
variant: translating both curves f∗ and g∗ by the vector v translates the surface h∗

by the vector 2v. One would like to define translational surfaces in such a way that
translating the two generating curves by the same vector v, also translates every
point on the surface by the vector v. In this presentation, we offer an alternative
definition of translational surfaces given by the rational parametric representation
h∗(s; t) = f∗(s)+g∗(t)

2 , where f∗(s) and g∗(t) are two rational space curves. Under this
definition, these translational surfaces consist of all the midpoints of all the lines
joining a point on f∗ to a point on g∗, so these translational surfaces are invariant un-
der rigid motions: translating and rotating the two generating curves translates and
rotates these translational surfaces by the same amount. Hence, applying a rigid
motion to a translational surface can be achieved by applying the same rigid mo-
tion to the two rational space curves that generate the surface. Therefore, one can
control these translational surfaces simply by manipulating the generating curves.

In this presentation, we will investigate the translational surfaces given by the
rational parametric representation h∗(s; t) = f∗(s)+g∗(t)

2 . Our main goal is to utilize
syzygies to study translational surfaces. We will construct three special syzygies
for a translational surface from the µ-basis of one of the generating space curves. In
addition, we will examine many properties of translational surfaces, and compute
the implicit equation and singularities from these three special syzygies.

1
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The outline of the presentation is structured as the following. First, we intro-
duce the definition of translational surfaces, provide a few examples of translational
surfaces generated from two rational space curves, and investigate a few special
characteristics of translational surfaces. Second, we study syzygies of translational
surfaces, relate the syzygies of the generating curves to the syzygies of the cor-
responding translational surface, and compute the implicit equation of a transla-
tional surface from the resultant of the three moving planes. Third, we focus on
ruled translational surfaces and compute their implicit equations based solely on
the µ-bases of the generating curves. Fourth, we detect the self-intersections of
translational surfaces. Finally, we observe that the techniques used in this paper
can be applied with only minor modifications to the translational surfaces defined
by h∗(s; t) = af∗(s)+ bg∗(t), where a,b are real numbers and ab 6= 0. In the case
of a = b = 1, we provide a necessary and sufficient condition for a rational tensor
product surface to be a translational surface.

Systems of polynomial equations arise throughout mathematics, science, and
engineering. Algebraic geometry provides powerful theoretical techniques for
studying the qualitative and quantitative features of their solution sets. This talk
presents algorithmic tools for algebraic geometry and experimental applications,
as well as introduces software systems in which the tools have been implemented
and with which the experiments can be carried out. Computer algebra system such
as Singular [1], Macaulay 2 [2], Maple [3], and Mathematica [4] are used to com-
pute examples and generate graphics.

For instance, consider the translational surface given by

h∗(s; t) =
(s2 −1,s(s2 −1),0)

2
+

(t,0,−t2)

2
=

f∗(s)+g∗(t)
2

. (1)

Figure 1 generated by Mathematica [4] is an affine view of the surface h∗(s; t)
given in Equation (1), where the highlighted curves are the curves f∗(s) and g∗(t).

Figure 1: Surface h∗(s; t) = (t+(s2−1),s(s2−1),−t2)
2

The translational surface given by Equation (1) has a base point. The search

2
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for techniques for implicitizing rational surfaces with base points is a very active
area of research because base points show up quite frequently in practical indus-
trial design. It is often difficult to compute the multiplicity of base points, and to
implicitize a surface that has a complicated collection of base points. Singular [1]
and Macaulay 2 [2] have computer algebra packages aimed at algebraic geome-
try and commutative algebra to compute the multiplicity of the base points. The
implicit equation of the surface h∗(s; t) in Equation (2) is computed from the re-
sultant of three moving planes. Maple [3], Singular [1], and Macaulay 2 [2] have
implemented packages to compute multivariate resultant. We carried out our com-
putation via Macaulay 2 [2].

F(x,y,z) = 4x4 +16x5 +16x6 −8x2y2 −16x3y2 +4y4 +4x2z+16x3z

+24x4z+4y2z+24xy2z+ z2 +4xz2 +12x2z2 +2z3 (2)

= 0.
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Length-based attacks on a cryptosystem based on polycyclic groups

David Garber

The Anshel-Anshel-Goldfeld (AAG) key-exchange protocol was implemented and
studied with the braid groups as its underlying platform. The length-based attack,
introduced by Hughes and Tannenbaum, has been used to cryptanalyze the AAG
protocol in this setting. Eick and Kahrobaei suggest to use the polycyclic groups
as a possible platform for the AAG protocol.

In a joint work with Delaram Kahrobaei and Ha T. Lam, we apply several
known variants of the length-based attack against the AAG protocol with the poly-
cyclic group as the underlying platform. The experimental results show that, in
these groups, the implemented variants of the length-based attack are unsuccessful
in the case of polycyclic groups having high Hirsch length. This suggests that the
length-based attack is insufficient to cryptanalyze the AAG protocol, when imple-
mented over this type of polycyclic groups. It has to be mentioned that Kotov and
Ushakov recently cryptanalyzed this cryptosystem.

Moreover, we compare for the first time between the success rate of the different
variants of the length-based attack. These experiments show that, in these groups,
the memory length-based attack introduced by Garber, Kaplan, Teicher, Tsaban
and Vishne does better than the other variants proposed thus far in this context.

I will start my talk by describing the polycyclic groups and the AAG cryptosys-
tem. Then, I will present the different variants of the length-based attack and the
experimental results we have achieved.

1
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On an efficient digital signature for the age of quantum
computers

Y. Peretz1 and N. Granot2

1 Senior Lecturer at the Computer Sciences Department, Lev Academic Center, Jerusalem, Israel.
yosip@g.jct.ac.il
2 Student at the Computer Sciences Department, Lev Academic Center, Jerusalem, Israel.
neriagr@gmail.com

Many encryption schemes based on Multivariable Quadratic Equations (MQE)
over finite fields were suggested in the last three decades and many were broken
(see [1]). Apparently, the broken systems were based on some hidden structure,
which on one hand enabled the efficient invertibility of the system, but on the other
hand was found to be vulnerable to algebraic attacks. Almost all the MQE based
encryption schemes that were proved to be insecure, share the common drawback
that some quadratic forms associated to their central maps have low rank (see [2])
and therefore are vulnerable to the Min-Rank Attack (see [3]). On the other hand,
the belief that random quadratic systems are hard to solve on average (see [4],
[5] and references therein), points towards designing trap-door primitives based on
randomness, which raises difficulties in designing immune invertible primitives.
Little was done in this direction in the context of asymmetric public-key cryptog-
raphy (see [4]). For digital signatures based on multivariate system of equations
see e.g. [10] and [11].

An overview of Multivariate Public-Key Cryptography (MPKC) is given in [6],
where the authors call for a unifying framework for cryptanalysis of MPKC sys-
tems in order to build confidence in their security. They also point out to potential
applications of such systems in the realm of limited computing power (e.g. in
Smart Cards, in Radio Frequency Identification Devices (RFID) and in Wireless
Sensing (WS)), where other cryptographic systems (e.g. RSA, ELGAMAL, ECC)
are irrelevant. A summary of the main developments in the cryptanalysis of multi-
variate cryptosystems is given in [7] and [5].

Let F denote any finite field. Non-symmetric Algebraic Riccati Equation (ARE)
over F is an equation of the form:

XCX +XD−AX −B = 0, (1)

where A,B,C,D are m×m,m×n,n×m,n×n matrices and the solution X is a m×n
matrix over F. The complexity of computing X is equivalent to the complexity of

1



117

the constrained generalized eigenvalue-eigenvector problem defined by:

T
[

X
I

]
=

[
X
I

]
L, (2)

where

T =

[
A B
C D

]
, (3)

and L = CX +D is n × n matrix. The Non-symmetric Simultaneous Algebraic
Riccati Equations problem (NSARE) is the following: given t quadruples

(Ai,Bi,Ci,Di) , i = 1, . . . , t, (4)

find X such that all the equations:

XCiX +XDi −AiX −Bi = 0, (5)

are satisfied simultaneously for i = 1, . . . , t. The NSARE is known to be NP-
complete over any finite field and NP-hard over any infinite field (see [8]).
It follows that any set of multivariable polynomial equations can be reduced (by
polynomial-time reduction) to the NSARE problem (the converse is obvious) and
thus any encryption scheme based on multivariable polynomial set of equations can
be crypt-analyzed to vulnerabilities by investigating the related equivalent NSARE
problem.

Based on the NSARE problem, two pubic-key encryption schemes (called TP-I
and TP-II) were defined in [8], having the following features:

♣ The security of the schemes is based on provable NP-complete problem.
Thus, the suggested schemes fit to the age of post-quantum cryptography.

♣ The schemes involves truly (pseudo) random choice of the coefficients
of the core equations and thus can have no vulnerable hidden structure.

♣ The schemes are very flexible in the ability of matching the security
level to the needs and to the given computing power.

♣ The schemes fit to the realm of limited-power computing devices
since they involve only matrix summation and multiplication (matrix
inversion is made once for the whole system life).

2
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♣ The schemes has a very fast encryption and decryption time.
They have several magnitudes of improvement over the RSA
and they outperform the AES for equivalent level of security.

♣ The schemes are highly parallelizable in parallel software
or hardware and thus the encryption and decryption time
can be speeded-up to a fantastic time.

Finally, the urgent call for new multivariable public-key cryptosystems (see
[9]) and the call for a unifying framework for cryptanalysis of MPKC systems (see
[6]) are also fulfilled by the research of [8].

Based on the TP-I pubic-key encryption scheme introduced in [8], in the cur-
rent lecture we suggest a new digital signature. The security and performance of
the suggested digital signature and the comparison with other multivariable based
existing digital signature schemes, will also be discussed.
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A New Quartic Multivariate Cryptosystem

Lih-Chung Wang

National Dong Hwa University, Taiwan, R.O.C., lcwang@gms.ndhu.edu.tw

We propose a new quartic multivariate cryptosystem, which is a generalization
of TRMC with the aide of medium field trick. The new encryption scheme has the
remedy for the weakness of the original TRMC. However, the large key size of a
quartic system is unavoidable. In fact, the main method to improve security can be
applied to other cryptosystems. Hence, we wish that the idea we propose can help
to reduce the difficulty for creating secure encryption system.

Let F be the finite field of Z17 or Z19. Let φ1 be a random quadratic map from
F4 to F4. Let φ2,φ3,φ4,φ5, be random quadratic maps from F4 to F8. Let L1 and
L2 be random linear maps from F4 to F8. Let Q1,Q2,Q3 and Q4 be 4 random
quadratic polynomials with 30 variables over F . The central map of our scheme
is a quartic system of 36 polynomials with 30 variables. The public key is the
composition of the central map and two invertible affine maps, one is before and
one is after the central map. The private key is these three maps. The following is
the 36 polynomials with 30 variables.

The first 4 quartic polynomials with 30 variables is

φ1(Q1,Q2,Q3,Q4)

.
The other 32 polynomials is the following.

X1 ∗L C3 +X2 ∗L C4 +φ2(Q1,Q2,Q3,Q4)

X1 ∗L C4 +φ3(Q1,Q2,Q3,Q4)

X2 ∗L C3 +φ4(Q1,Q2,Q3,Q4)

(T RM(X1)+L1(Q1,Q2,Q3,Q4))∗L L2(Q1,Q2,Q3,Q4)+X2∗LC4+φ5(Q1,Q2,Q3,Q4)

where ∗L is the multiplication of the degree 8 extension field L of the field F , X1
is an element in L which 8 components are linear combinations of first 7 variables
out of the 30 variables, X1 is an element in L which 8 components are linear com-
binations of second 7 variables out of the 30 variables, C3 and C4 are elements
composed of 8 triangle-like cubic polynomials and T RM(X1) is an element com-
posed of 8 triangle-like quadratic polynomials of the first 7 variables.

During the talk, we will give the encryption and decryption details and discuss
how to resist all known attacks to multivariate encryption systems.

1
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Fast construction of a lexicographic Gröbner basis of the
vanishing ideal of a set of points

X. Dahan1

1 Ochanomizu University, Japan, dahan.xavier@ocha.ac.jp, xdahan@gmail.com

Problem Given a set V of Zariski-closed points lying in k̄n, k̄ an algebraic closure
of a base field of interest k, its vanishing ideal I(V )⊂ k[X1, . . . ,Xn] is the radical, 0-
dimensional ideal of polynomials vanishing on V . We are interested in constructing
a minimal lexicographic Gröbner basis G of I = I(V ).

Result The main outcome is Result 1. below. In HPC, a complexity analysis
often precedes an implementation, and a challenge is indeed that benchmarks meet
the expected complexity bounds. This is where lies this work (A preliminary im-
plementation is available in Maple, but cannot be qualified as HPC currently).

Notations Lex, LexGB stands for lexicographic and lexicographic Gröbner basis
respectively. Given a set E ⊂ k[X1, . . . ,Xn], then E≤ℓ denotes the set E∩k[X1, . . . ,Xℓ].
The projection of n-uplet that forgets the last n− i coordinates is denoted πi, that is
πi(a1, . . . ,an) = (a1, . . . ,ai).

1. There is a minimal lexicographic Gröbner basis G whose any of its polyno-
mial can be computed in O(A(D1)+A(D2)+ · · ·+A(Dn)) arithmetic oper-
ations where Di = |πi(V )|= dimk(k[X1, . . . ,Xi]/I≤i), and A(d) is the number
of arithmetic operations over k necessary to build Lagrange idempotents of
d points by using sub-product tree techniques (A(d) = M(d) log(d) using
Schönhage-Strassen fast multiplication, or d2 log(d) using naive polynomial
multiplication).

2. the polynomials in G present a special structure, sort of redundant factors
that allows to recycle already computed polynomials and Lagrange cofac-
tors (and those computed in the sub-product trees) to considerably lower the
number of arithmetic operations to compute new polynomials in G .

3. Any polynomial in G , say w.l.o.g. in k[X1, . . . ,Xn] \ k[X1, . . . ,Xn−1], verifies
a generalization of Gianni-Kalkbrener theorem: if α ∈ πℓ(V ) is such that
degXℓ+1

(g(α ,Xℓ+1, . . . ,Xn))< degXℓ+1
(g), then g(α,Xℓ+1, . . . ,Xn) = 0.

4. G is not the reduced Gröbner basis in general, hence has more coefficients,
but its coefficients are smaller.

1



123

5. to V , we first build its decomposition points tree T (V ). The arithmetic
complexity for solving “Problem” depends only of the shape of this tree (of
course not the case for the bit complexity where the bit-size of the input
points matters also).

Brief overview of previous works The above results are related to a number of
previous works. We only refer to the most relevant ones that put into perspective
the above statements. The numbering below refers to that of above.

1. Lederer [10] who has produced the most accomplished interpolation formu-
las focuses on the reduced Gröbner basis, which complicates his task quite con-
siderably. This leaves a sharp complexity analysis quite difficult — indeed there
is none; this stems for the fact that many additional polynomials must be com-
puted on demand to cancel too large monomials. The reduced lexGB has a less
satisfactory specialization property (see [1, 8]).

Before it was understood that the configuration of points in V could give the
set of standard monomials for the lexicographic oder (Cf. [3, 13, 6, 5]), algorithms
based on linear algebra were predominant. They give roughly an O(nD3) [2, 14]
arithmetic cost (but are not constrained to the lex order).

A related problem concerns the computation of a separating basis of the vector
space k[X1, . . . ,Xn]/I. By “separating” we mean polynomials {pv}v∈V such that
pv(w) = δvw (Kronecker symbol). Such a basis is closely related to multivariate
Lagrange bases: Lundqvist [12] claims a cost of O(D2) points, but using fast inter-
polation it can be reduced to a complexity similar to that stated in Result 1. above.
As for Hermite interpolation, in [11] linear algebra exploits the possibly very low
displacement rank of the interpolating matrix to propose O((τ + 3)D2) (for Van-
dermonde we have τ = 2 hence of the same order of Lagrange interpolation with
naive multiplication).

2. Starting with Lazard’s structural theorem ([9], lexGB in two variables), sev-
eral authors have shown that a somewhat comparable result holds for more than
two variables (to cite a few [13], and implicitly in [5, 10, 6]), at least in the radical
0-dimensional case. However, few, if none, considered the relationship between
factors of two different polynomials in G . This is a key point to recycle computa-
tions and to dramatically decrease the complexity, even if it is not easy to quantify.

3. The stability of Gröbner bases under specialization refers to the fact that a
specialized Gröbner basis remains a Gröbner basis of the specialized ideal. Beyond
the seminal Gianni-Kalkbrener result [7], Becker [1] then Kalkbrener [8] showed
that whenever a degree decrease occurs after specialization, then the polynomial
reduces to zero modulo the other polynomials. As stated, the specific Gröbner
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basis that we construct verifies a stronger property: no degree decrease, or else it
specializes to zero, as in Gianni-Kalkbrener’s theorem.

4. The maximal bit-size among all coefficients of polynomials appearing in G
can be estimated to be roughly in O(nD2h2) where h is the maximal bit-size of the
components of input points. This strategy follows that of [4]. Again, obtaining
such a sharp result for the reduced lexGB is not easy.

5. this is interesting if we see the formula constructing the basis G as an alge-
braic circuit that computes the polynomials in G . This circuit depends only of the
shape of the tree.

Implementation We have implemented naively the interpolation formula that
computes G in Maple and will show experimental results that illustrate all the
points mentioned above.
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Computer Algebra in Theoretical Physics

E.S. Cheb-Terrab1

1 Maplesoft R&D, Canada, ecterrab@maplesoft.ca

Generally speaking, physicists still experience that computing with paper and
pencil is in most cases simpler than computing on a Computer Algebra worksheet.
On the other hand, recent developments in the Maple system have implemented
most of the mathematical objects and mathematics in theoretical physics computa-
tions, and have dramatically approximated the notation used in the computer to the
one used with paper and pencil, diminishing the learning gap and computer-syntax
distraction to a strict minimum. In this talk, the Physics project at Maplesoft is pre-
sented and the resulting Physics package is illustrated by tackling problems in clas-
sical and quantum mechanics, using tensor and Dirac’s Bra-Ket notation, general
relativity, including the equivalence problem, and classical field theory, deriving
field equations using variational principles.
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Sliding of a Block on the Plane with Variable Coefficient of
Friction: Simulation with Mathematica
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Dry friction of solids is often encountered both in engineering practice and in
our everyday life. Its study has a long history and many different models were
proposed to explain its physical properties (see [1, 2]). In spite of a complexity
of the dry friction as a physical phenomenon, its basic laws are known since the
works of Amontons and Coulomb (see [3, 4]), and they give simple quantitative
estimates of the friction forces which are widely used in engineering applications.
Remind that a body sliding on a rough surface is acted on by a friction force that
is parallel to the surface and is directed opposite to the velocity of the body. The
friction force does not depend on the area of contact of the body and the surface
and is proportional to the normal reaction force, where the proportionality constant
is known as the coefficient of friction.

In the case when the body contacts the surface in one or two points one can
easily obtain the equations of motion of the system because the points of applica-
tion of the friction forces and the normal forces are known. But in case of a finite
dimension of the contact area the normal force is inevitably a distributed force. It
does not essential matter if the body slides on the surface with constant coefficient
of friction but may become very important when the body crosses a boundary of
two domains with different coefficients of friction.

As an example let us assume that a homogeneous rectangular block sliding on
a smooth horizontal plane enters the domain with nonzero coefficient of friction.
To write the equations of motion and to analyze dynamics of the block we need to
know a distribution of the normal force along the block length. In the present talk
we propose the following model of dry friction of the block and the plane. First,
we assume that deformation of the block is negligible and it may be considered
as a rigid body. Besides, the elastic properties of the plane are the same in all
its points and does not depend on the coefficient of friction. In the framework
of such a model one can consider that a density of the normal force is a linear
function N(x) = kx+ b, where x is a local coordinate measured along the block
from its center of mass, and k, b are the two constants which may be found from
the conditions of the block motion without rotation.

Note that the normal force and the friction force become dependent of position
of the body at the plane and this complicates the equations of motion considerably.
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And one has to combine symbolic and numerical calculations for solving these
equations. However, such a problem can be efficiently solved with some modern
computer algebra system.

Doing necessary calculations, we analyze motion of the system and demon-
strate some peculiarities of the block sliding on the plane with variable coefficient
of friction in the case when the area of the bodies contact is finite. We use the
computer algebra system Mathematica (see [5]) to do all relevant calculations and
visualization of the results.
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Normal forms of perturbed Hamiltonians: symbolic
computation and applications
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For simplicity, we will consider Hamiltonians defined on the symplectic man-
ifold R2n, with coordinates (q j, p j) (1 ≤ j ≤ n), endowed with the canonical form
w = dp j ∧ dq j, although all the results remain valid for an arbitrary symplectic
manifold (and even arbitrary Poisson ones).

Given a Hamiltonian system defined by the Hamiltonian function H ∈C ∞(R2n),

q̇ j =
∂H
∂ p j

ṗ j =− ∂H
∂q j , (1)

two of the main goals in the theory of dynamical systems are the determination
of possible closed, stable orbits, and the computation of adiabatic invariants (of
course, taking for granted the impossibility of solving (1) explicitly). Of particular
interest is the case in which the Hamiltonian H is a perturbation of an integrable
one, say, H = H0 +∑n

j=1 ε jH j. A widely used procedure to study it, consists in
writing the Hamiltonian in the so-called normal form, that is, as a formal series
[7, 8, 9]

H =
∞

∑
j=0

ε jN j (2)

where N0 = H0, and each N j commutes with the unperturbed Hamiltonian,

{H0,N j}= 0 .

Notice that transforming to the normal form introduces a (possibly infinite) family
of first integrals which are not present in the original system. These additional,
spurious symmetries must be removed [6], and this is usually done by restricting
the system to a reduced phase space through symplectic (singular) reduction. A
number of well-known theorems are available to do this [4, 5, 10, 9, 11].

Even more, truncation of the formal series (2) is the starting point for proving
the existence of closed orbits [4, 6], and the computation of adiabatic invariants [2].
In the talk, I will show how to use a Maxima package to compute normal forms as
in (2), illustrating the procedure with some examples based on joint work with Yu.
Vorobiev and M. Avendaño-Camacho [1, 2, 3].
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Singular Perturbad Vector Fields (SPVF) Applied To

Combusion of Spray of Diesel Droplets

O. Nave1

1 Jerusalem College of Technology, Israel, {naveof}@gmail.com

In our research we present the concept of singularly perturbed vector field

method (SPVFM) [1], and its application to thermal explosion of diesel spray com-

bustion. Given a system of governing equations, which consist of hidden Multi-

scale variables, the SPVF method transfer and decompose such system to fast and

slow singularly perturbed subsystems (SPS). The resulting subsystem enable us to

understand better the complex system, and simplify the calculations. later powerful

analytical, numerical and asymptotic methods (e.g method of integral (invariant)

manifold (MIM) [2], the homotopy analysis method (HAM) etc.) can be applied

to each subsystem. In this paper we compare the results obtained by the methods

of integral invariant manifold and SPVFM apply to spray (polydisperse) droplets

combustion model.

The algorithm for SPVFM: 1: Select the linear points Γ = {x1, ...,xN} where

N >> n, uniformly distribute in the domain V by using quasi-stochastic distribu-

tion.

2: Compute the mean value of the vector filed over the point from step 1: F̄ =
1
N ∑N

i=1 F(xi),
3: Define the so-called the control set (the separated set) as follow:

{xi ∈ Γ : ‖F(xi)‖> ‖F̄‖ , i = 1, ...,k ·n}, where k >> n,

4: Build the approximation of Ti for i = 1, ...,k based of the control set from step 3

as: ~x∗i =
{

x(i−1)·n+1, ...,xi·n
}

,

5: Select only the reference set from step 4 which have |Det(~x∗i )| above the average

level over all subsets: Ω = 1
k ∑k

i=1 |Det(~x∗i )|, and denoted by:

{~xi : xik ∈ Γ : |Det(~xi)| ≥ Ω, i = 1, ...,k} the control set of ordered subsets of length

n from set Γ,

6: Compute the eigenvalues of Ti∗ , i.e., λ j(Ti∗), j = 1, ...,n,

7: The final reference sequence ~xi∗ =
{

x(i∗−1)·n+1, ...,xi·n
}

and the approximation

of T = Ti∗ is found simultaneously as:

T = Ti∗ =
(
F(x(i∗−1)·n+1), ...,F(xi∗·n)

)
(~xi∗)

−1
. by the maximum gap for the given

dimension of the reduced model ns as:

i∗ : ε = mini (|λns+1(Ti∗)|/ |λns
(Ti∗ |))−1

.
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Figure 1: The solution profiles of x1 the transform model after changing the coor-

dinate..

1 Results

We present in this section the results of the algorithm for SPVFM
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Computer algebra in nanotechnology: Modelling of Nano
Electro-Optic Devices using Finite Element Method (FEM)

Avi Karsenty and Yaakov Mandelbaum

Jerusalem College of Technology

We will discuss the simulation of Silicon-based light-emitting and photodetec-
tors nano-devices using computer algebra. These devices couple the hyperbolic
equations of Electromagnetic Radiation, the parabolic equations of Heat Conduc-
tion, the elliptic equations describing electric potential, and the eigenvalue equa-
tions of Quantum Mechanics - with the nonlinear drift-diffusion equations of the
semiconductor physics. These must be solved subject to generally mixed Dirichlet-
Neumann boundary conditions in three-dimensional geometries.

Comsol Multiphysics modelling software is employed integrated with Matlab-
Simulink and Zemax. The physical equations are discretized on a mesh using the
Galerkin Finite Element Method (FEM), and to a lesser extent the method of Fi-
nite Volumes (FVM). The equations can be implemented in a variety of forms such
as directly as a PDE, or as variational integral, the so called weak form. Bound-
ary conditions may also be imposed directly or using variational constraint and
reaction forces. Both choices have implication for convergence and physicality of
the solution. The mesh is assembled from triangular or quadrilateral elements in
two-dimensions, and hexahedral or prismatic elements in three dimensions, using
a variety of algorithms. Solution is achieved using direct or iterative linear solvers
and non-linear solvers. The former are based on conjugate gradients, the latter
generally on Newton-Raphson iterations.

The general framework of FEM discretization, meshing and solver algorithms
will be presented together with techniques for dealing with challenges such as mul-
tiple time scales, shocks and non-convergence; these include load-ramping, segre-
gated iterations, and adaptive meshing.
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Algebraic Processing of Sequential Fluoroscopy Images
for Quantitative Evaluation of Partial Obstruction of the
Upper Urinary Tract

T. Yeshua1, O. Gleisner 2, V. Neeman1, R. Lederman3,
M. Duvdevani4, I. Leichter 1,3

1 Dept. of Electro-optics, Lev Academic center, Jerusalem, Israel
2 Dept. of Electro-Optics Engineering, Ben Gurion University, Beer-Sheva, Israel
3 Dept. of Radiology. Hadassah University Hospital, Jerusalem, Israel
4 Dept. of Urology. Hadassah University Hospital, Jerusalem, Israel

Objective: To develop a novel method for the quantitative evaluation of par-
tial obstruction of the upper urinary tract in patients who have undergone percuta-
neous nephrolithotomy (PCNL). For this purpose, sequential fluoroscopic images
obtained during a postoperative nephrostogram were processed in order to calcu-
late the residual amount of contrast material in the renal collecting system and
evaluate the urine flow rate.

Background: Obstruction of the upper urinary tract is a blockage that inhibits
the free flow of urine from the kidneys, through the ureters to bladder. It is a com-
mon urological pathology that may lead to renal dysfunction, and when untreated,
it can lead to infection and progressive atrophy of the kidney [1]. It is mostly caused
by the formation of stones in the renal pelvis. Failure of normal drainage of urine
from the kidney collecting system typically causes hydronephrosis - distension and
dilation of the renal pelvis and calyces [2]. To resolve the obstruction, the kidney
stones are usually removed by a minimally-invasive procedure called PCNL [3]. In
a nephrostogram [4], which is routinely performed on the second postoperative day,
contrast material is inserted into the renal collecting system in order to demonstrate
passage of contrast material to the bladder by fluoroscopy [5]. However, this pro-
cedure does not allow calculating quantitative parameter reflecting the urine flow
rate. The algebraic processing of fluoroscopy images may replace renal scintigra-
phy, which involves the use of radioactive materials, and is used today to diagnose
obstruction of the upper urinary [6]. Material and methods: Study cohort consisted
of 27 patients (13 females, 14 males) with a mean age of 48.7± 13.2 years, who
underwent a PCNL. Post-operative nephrostograms of 12 patients showed no evi-
dence of hydronephrosis, while in 15 patients, hydronephrosis was demonstrated.
Sequential fluoroscopic images obtained during the nephrostogram were analyzed
in order to estimate the urine flow rate from the renal collecting system. An algo-
rithm was developed in the MATLAB (MathWorks, USA) computing environment
to calculate the gray level values of the contrast material in each sequential image.

1
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Based on this calculation, the residual amount of contrast material within the renal
collecting system was evaluated at a given time. Algebraic evaluation shows that
the amount of contrast material should decrease exponentially with time. The cal-
culated values of the amount of contrast material were plotted as function of time
to yield the clearance curve and the time at which half of the contrast material had
been drained from the renal collecting system. Results: The clearance curve based
on calculating the residual amount of contrast material in the renal pelvis fitted,
as expected, an exponential regression function with a mean correlation coefficient
of 0.954± 0.008 (p < 0.02). From the exponential function the decay constant,
τ was calculated to yield t1/2 and the flow rate in the renal pelvis was evaluated.
Since obstruction of the upper urinary tract is associated with hydronephrosis, the
flow rate of cases with evidence of hydronephrosis was compared to that of normal
cases. For cases with hydronephrosis, the mean t1/2 value calculated from the fitted
exponential regression curve (6.37± 1.79 minutes) was markedly longer than the
mean t1/2 value of normal cases (1.25±0.87 minutes).

Conclusions: Processing of images acquired during a nephrostogram provides
a quantitative assessment for the urine flow rate in the kidney collecting system.
The flow rate in cases with evidence of hydronephrosis was markedly lower, with
a 5 times longer t1/2 than in normal cases. Therefore, this method may provide a
quantitative parameter for diagnosing partial obstruction of the upper urinary tract.
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Computer algebra in satellite image processing

David Kamoun, Yishai Arieli, Shaul Golan, Moshe Hababou and Shalom Dimant

Jerusalem College of Technology, paulk@g.mail.jt.ac.il

Computer algebra is ubiquitously used in satellite imaging (see [1]) and in
particular in the autonomous exploitation of satellite images. A couple of examples
developed in our Remote Sensing Laboratory are given (as in [2]), one related to the
automatic atmospheric correction of images, the other related to the deconvolution
of images to improve the image exploitation process. These applications have been
carried out with the standard use of MATLAB, an important and efficient tool for
student projects.
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On the Applicability of Pairwise Separations Method in
Astronomy: Influence of the Noise in Data

J. Benjamin1, D. Walker1, A. Mylläri1, T.Mylläri1

1 St. George’s University, Grenada, West Indies {amyllari}@sgu.edu

Small number of objects poses often a problem in the analysis of large-scale
structure of the Universe, especially if one is interested in studying fractal struc-
tures – estimating the fractal dimension or similar characteristics. So, pairwise
separations method that uses not coordinates of objects (n sets of coordinates for
n objects) but pairwise distances (n(n− 1)/2 distances) looks very attractive. We
studied the applicability of the pairwise separations method in astronomy. De-
scription of the method and some applications of it in astronomy can be found in
[1] and [2]. This method may be used, in particular to analyze fractal sets: for
a fractal set with Hausdorff-Bezicovich dimension D, the distribution of pairwise
distances f (l) behaves asymptotically as f (l) ∝ lD−1 for small l.

Since large enough data set is needed to estimate the fractal dimension, using
this method looks promising, especially in the case when using a small sample of
data - as pairwise separations method indicates, pairwise distances are used rather
than points; thus, dealing with n(n−1)/2 distances as compared to n original data
points.

In [2], the authors made simulations to estimate applicability of the method,
however, large noiseless data sets for experiments were used. Here, we use more
realistic data for simulations. Iterated function systems (IFS, see, e.g., [3]) were
used to generate model fractal sets, then noise was added to the data. Estimates of
fractal dimension using pairwise-separations method were conducted where results
were compared with the dimension of the attractor of the IFS and with estimates
of the box-counting dimension. In the simulations, classic 2D fractals - Sierpinsky
carpet and Sierpinsky gasket as well as 3D fractals of the Menger Sponge family
were used. These simulations were executed using computer algebra system Wol-
fram Mathematica 11 to generate fractal sets and estimate dimension of these sets
using pairwise separations method. To test applicability of the method in practice,
noise to the data was added in order to evaluate how it affects the results. A series
of simulations were also done without noise to test the influence of the sample size.
Results of the tests are illustrated in Tables 1 and 2, and examples of simulations
are shown on Figures 1 and 2 below.

As highlited in the noiseless cases the method works quite well, even for small
n. However with the addition of noise the picture changes. This could be expected
since the noise influences small distances. Since observational data have limited

1
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accuracy, one must be coucious when using pairwise separations method in prac-
tice, especially with small and noisy datasets.

noise level \ n 100 200 500 1000
0 1.58±0.10 1.58±0.06 1.58±0.02 1.58±0.01

1% 1.59±0.11 1.58±0.06 1.58±0.03 1.58±0.01
2.5% 1.60±0.12 1.61±0.06 1.62±0.02 1.61±0.01
5% 1.66±0.15 1.67±0.07 1.70±0.03 1.68±0.02

10% 1.74±0.14 1.77±0.08 1.78±0.04 1.77±0.02

Table 1: Estimated dimension for the Sierpinsky gasket (dimension 1.58).

noise level \ n 100 200 500 1000
0 1.78±0.16 1.87±0.09 1.88±0.03 1.88±0.02

1% 1.78±0.20 1.88±0.09 1.88±0.09 1.88±0.02
2.5% 1.79±0.19 1.89±0.10 1.90±0.04 1.89±0.02
5% 1.83±0.19 1.93±0.11 1.94±0.04 1.90±0.02

10% 1.92±0.21 1.99±0.13 2.00±0.04 1.94±0.02

Table 2: Estimated dimension for the Sierpinsky carpet (dimension 1.89).
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Figure 1: Estimated dimensions for 1000 simulations of the Sierpinsky gasket. 200
points, no noise added.
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Figure 2: Estimated dimensions for 1000 simulations of the Sierpinsky carpet. 200
points, 2.5 % noise added.
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The construction of averaged planetary motion theory by
means computer algebra system Piranha

A.S. Perminov, E.D. Kuznetsov

Ural Federal University, Ekaterinburg, Russia, perminov12@yandex.ru, eduard.kuznetsov@urfu.ru

The investigation of planetary systems dynamical evolution is one of important
problems of celestial mechanics. In this work we consider the construction of
averaged semi-analytical motion theory for a planetary system with four planets.
We need to obtain motion equations in time-averaged orbital elements. The use
of these elements allows to eliminate short-periodic perturbations in the planetary
motion and to construct the motion theory for a long-time period.

For our purposes the non-averaged Hamiltonian of the four-planetary problem
is written in Jacobi coordinates.

h =−
4

∑
i=1

Miκ2
i

2ai
+µ ×Gm0

{ 4

∑
i=2

mi(2riRi +µR2
i )

riR̃i(ri + R̃i)
−

4

∑
i=1

i−1

∑
j=1

mim j

|ρi −ρ j|
}
. (1)

Here

Ri =
i

∑
k=1

mk

m̄k
rk, R̃i =

√
r2

i +2µriRi +µ2R2
i , (2)

and

|ρi −ρ j|= ri − r j +µ
i−1

∑
k= j

mk

m̄k
rk, (3)

where numbers i and j satisfy a condition 1 ≤ j < i ≤ 4; ρk is the barycentric
radius vector of k-th planet, rk is Jacobi radius vector of the same planet; µmk is
the mass of the planet in items of the Sun mass m0, m̄k = 1+ µm1 + . . .+ µmk,
Mi = mim̄i−1/m̄i, κ2

i = Gm0m̄i/m̄i−1 is the gravitational parameter and µ is the
small parameter of the problem, which is equal to the ratio of the sum of planetary
masses and the mass of the star. For instance, if we take into account the Solar
system then the value of µ can take equal to 0.001.

The first sum in (1) is the undisturbed part of the Hamiltonian, which describes
the Keplerian motion of planets around the Sun. The expression in figure brackets
is the disturbing function. Double sum in (1) is the main part of the disturbing
function, which describes the interaction between planets.

Further it is expanded into the Poisson series in orbital elements of the Poincare
second system. This system has only one angular element – mean longitude. It

1



147

allows to simplify an angular part of the series expansion. The elements of the
second Poincare system are defined through classical Keplerian elements by the
following way

Li = Mi

√
κ2

i ai, λi = Ωi +ωi + li,

ξ1i =

√
2Li(1−

√
1− e2

i )cos(Ωi +ωi), ξ2i =

√
2Li

√
1− e2

i (1− cos Ii)cosΩi,

η1i =−
√

2Li(1−
√

1− e2
i )sin(Ωi +ωi), η2i =−

√
2Li

√
1− e2

i (1− cos Ii)sinΩi,

where Mi is normalized mass, κ2
i is normalized gravitational parameter, ai – semi-

major axis of the orbital ellipse, ei – eccentricity of this ellipse, Ii – inclination of
the orbital plane relative to the reference plane, quantities Ωi, ωi, li are longitude
of the ascending node, argument of the pericenter and mean anomaly of the planet
respectively.

The elements of second Poincare system are canonical and three pairs of these
are canonical conjugated as the momentum and its the corresponding coordinate,
namely L and λ , ξ1 and η1, ξ2 and η2.

The Hamiltonian of the planetary problem can be expanded into the Poisson
series in the following form

h = h0 +µh1 = h0 +∑
k,n

Aknxk cos(nλ ), (4)

where h0 is the undisturbed Hamiltonian, µh1 is the disturbing function, Akn is
numerical coefficients, xk is the product of Poincare elements with corresponding
degrees, cosine is represent the angular part of the series, nλ is the linear combi-
nation of mean longitudes of planets.

In our work the expansion of the Hamiltonian is constructed up to the second
degree of the small parameter. The algorithm of the Hamiltonian expansion is
described more detail in [1].

The averaged Hamiltonian of the four-planetary problem is constructed by the
Hori-Deprit method. This averaging method based on using of Poisson brackets
formalism and theory of Lie transformation. It is characterized by efficiency and
very ease for the computer implementation. More detail see in [2].

Let us divide the variables of the problem into two parts – slow variables
x = (L,ξ1,η1,ξ2,η2) and fast λ . The rates of change for slow variables are pro-
portionally the small parameter while the rates of change for fast variables are
proportion to the mean motions. After averaging transformation with respect to the
mean longitudes λ , the Hamiltonian is written in averaged slow variables X as the
series of the small parameter

2
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H(X) = H0 +
∞

∑
m=1

µmHm(X), (5)

where quantities Hm are obtained from the main equation of the Hori–Deprit method

Hm(X) = hm +∑ 1
r!
{Tjr ,{· · · ,{Tj1 ,h j0}}}. (6)

The summation is over the domain 0 ≤ j0 ≤ m−1; j1, j2, · · · , jr ≥ 1; ∑k
s=0 js = m;

1 ≤ r ≤ m. The figure brackets is Poisson brackets with respect to the Poincare
elements. hm are items of not averaged Hamiltonian h, and the generating function
of the transformation between osculating and averaging elements is defined as

T (X ,Λ) =
∞

∑
m=1

µmTm(X ,Λ). (7)

Averaged motion equations can be obtained using Poisson brackets

dX
dt

= {H,X}, dΛ
dt

= {H,Λ}. (8)

The transformation from osculating to averaged elements gives by functions
for the change of variables um, vm

X = x+
∞

∑
m=1

(−1)mµmum(x,λ ), um = ∑ 1
r!
{Tjr ,{· · · ,{Tj1 ,X}}} (9)

Λ = λ +
∞

∑
m=1

(−1)mµmvm(x,λ ), vm = ∑ 1
r!
{Tjr ,{· · · ,{Tj1 ,Λ}}} (10)

where the summation over the domain j1, j2, · · · , jr ≥ 1; ∑k
s=0 js = m; 1 ≤ r ≤ m.

All analytical transformations in our work are implemented by means of com-
puter algebra system Piranha [3]. Piranha is an echeloned Poisson series processor.
It is new, specified, high-efficient C++ code for analytical manipulations with dif-
ferent series. Piranha is freeware, object-oriented and cross-platform software. For
the convenience Piranha has Python user-interface which is the set of some Python
libraries. This program was written by Francesco Biscani from Heidelberg Univer-
sity, Germany.

Piranha can works with multivariable polynomials, Poisson series and eche-
loned Poisson series (Poisson series with denominators). It is possible to use real
or rational types of series coefficients and powers of variables. In this work we
used echeloned Poisson series with rational coefficients and powers that allows to
eliminate rounding errors and provides arbitrary precision of resulting series.

3
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In the process Piranha showed a high speed of analytical transformations and
ability to work with the series of a very large number of terms (up to 108 − 109

terms).
Finally we have applied our averaged motion theory to the investigation of or-

bital evolution of Solar system’s giant planets. The results of numerical integration
of the averaged motion equations for Sun - Jupiter - Saturn - Uranus - Neptune’s
system on a time interval of 10 billion years is considered. The obtained results
show qualitative agreement with other motion theories.
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Study of nonlinear degenerated ODEs

Victor F. Edneral

Lomonosov Moscow State University, Russian Federation, edneral@theory.sinp.msu.ru
Peoples′ Friendship University of Russia, edneral_vf@rudn.university

The report describes power transformations of autonomous degenerated ODEs
polynomial systems which reduce such systems to a non-degenerate form. There
is an example of building exact first integrals of motion of some planar degenerate
system in a closed form by the normal form method.

We consider an autonomous degenerated ODEs system of the form

dx/dt =−y3 −bx3y+a0 x5 +a1 x2y2 ,
dy/dt = cx2y2 + x5 +b0 x4y+b1 xy3 .

(1)

The following result was proven in [4, 5].
Theorem 1.In the case D def

= (3b+ 2c)2 − 24 6= 0, system (1) is locally inte-
grable only if the number (3b−2c)/

√
D is rational. When c = 1/b this condition

is satisfied. So we put below c = 1/b.
Systems with a nilpotent matrix of the linear part were thoroughly studied by

Lyapunov and others. In system (1) there is no linear part and the first approxi-
mation is not homogeneous. This is the simplest case of a planar system without
linear part and with Newton’s open polygon [1, 2] consisting of a single edge. In
general case such problems have not been studied.

In the report we demonstrate the technique based on the Power Geometry
method [3] which allows to transform the problem above to a set of problems with
a nilpotent matrix of the linear parts. Really, by using the power transformation
[3, 4]

x = uv2, y = uv3 (2)

and the time rescaling u2v7dt = dτ , we obtain system (1) in the form

du/dτ = −3u− [3b+(2/b)]u2 −2u3 +(3a1 −2b1)u2v+
(3a0 −2b0)u3v ,

dv/dτ = v+[b+(1/b)]uv+u2v+(b1 −a1)uv2 +(b0 −a0)u2v2 .
(3)

Under the power transformation (2) the point x = y = 0 blows up into two
straight invariant lines u = 0 and v = 0. Along the line u = 0 the system (3) has a
single stationary point u = v = 0. Along the second line v = 0 this system has four
elementary stationary points

u = 0, u =−1
b
, u =−3b

2
, u = ∞ . (4)

1
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For studying system (1) near the point x = y = 0 one needs investigate it near
all stationary points (4) of the system (3).

Realization of this approach allowed to get six exact families of the first in-
tegrals of motion of (1) in finite terms. Each family is function of two from five
parameters of system (1).

The author was supported by the grant NSh-7989.2016.2 of the President of
Russian Federation and by the Ministry of Education and Science of the Russian
federation (Agreement number 02 A03.21.0008).
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Symbolic Dynamics in the Equal Mass Free-Fall
Three-Body Problem: Analysis of Ergodic Components

A.Mylläri1, N. Vassiliev2, T. Mylläri1, A. Myullyari3

1 St. George’s University, Grenada, West Indies {amyllari}@sgu.edu
2 V.A. Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia
3 Accendo Data LLC Coral Springs, Florida, USA

We consider equal mass free-fall three-body problem. Symbolic sequences
are constructed numerically using close binary approaches. Shannon entropy is
estimated for each sequence as well as length of the sub-sequence that provides
maximum value of the entropy for each sequence. Here, we analyse some features
revealed on the diagram maximum value of the entropy - corresponding length of
the sub-sequence (see Fig. 3 below).

Equal mass free-fall three-body problem is convenient for study since it allows
easy visualization of initial configuration: if we place two bodies in the points
(−0.5;0) and (0.5;0), then all possible configurations will be covered if we place
the third body inside the region D bounded by two straight line segments and arc
of the unit circle centered at (−0.5,0) (Fig. 1) [1].

Raspberry Pi cluster was used for numerical integration of trajectories and
construction of symbolic sequences, Wolfram Mathematica is used to analyze se-
quences received. We used symplectic code by Seppo Mikkola (Tuorla Observa-
tory, University of Turku) [2] for numerical simulations.

M3
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Figure 1: Agekian-Anosova region D.
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We scan Agekian-Anosova region D and construct symbolic sequences of length
50 using close binary approaches – we detect minimum distance between two bod-
ies, and corresponding symbol is the number of the distant body. Thus, our symbols
are from the alphabet {1, 2, 3}. Some systems disrupt fast, so some sequences are
short. Some systems live long (e.g. metastable systems [3]), so corresponding se-
quences are long. To have a reasonable computing time, we constructed symbolic
sequences length 50. Since we are interested in the analysis of active three-body
interactions, we consider sub-sequences of each of these sequences, increasing the
length step-by-step, calculate entropy for each of these sub-sequences, and find
maximum value of these entropies. Maximum value (and moment of time/length
of the sub-sequence) correspond to the stage of active interaction between bodies.

0.2 0.4 0.6 0.8 1.0

100000

200000

300000

400000

500000

600000

Figure 2: Histogram of maximum values of the entropy.

Histogram of maximum values of the entropy shows two distinct modes (Fig.
2). Left mode corresponds to the sequences with only two symbols equally rep-
resented: Entropy[{1, 2, 1, 2}]=0.693147. Second mode corresponds to the se-
quences where all three symbols are equally presented: Entropy[{1, 2, 3, 1, 2,
3}]=1.09861. Interesting structures can also be seen on the scatterplot of max-
imum values of the entropy - corresponding length of symbolic sequence in the
neighborhood of these modes (Fig. 3). We analyze these structures and trace core-
sponding initial conditions in the Agekian-Anosova region D.

Authors acknowledge Dr. Ian V. J. Murray, Dept Physiology and Neuroscience,
St. George’s University for the collaborative purchase of Wolfram Mathematica.
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Figure 3: Scatterplot of maximum values of the entropy - corresponding length of
symbolic sequence.

[2] Mikkola, S. and Tanikawa, K. 1999, Celest. Mech. Dyn. Astron., 74, 287-295.
[3] Martynova A.I., Orlov V.V., Rubinov A.V.,2003, MNRAS, 344, 1091
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On the Stability Criteria for Hierarchical Three-Body
Systems

A.Pasechnik1, M. Valtonen,2 , A. Mylläri3
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2 Finnish Center for Astronomy with ESO (FINCA), Piikkiö, Finland
3 St. George’s University, Grenada, West Indies {amyllari}@sgu.edu

It is often important to decide if a given hierarchical triple star system is stable
over an extended period of time. Here, we test a stability criterion, modified from
earlier work, where we use the closest approach ratio Q of the third star to the inner
binary centre of mass in their initial osculating orbits. We study by numerical
integration the orbits of over 100,000 triple systems varying masses, outer and
inner eccentricities, and inclinations i. The definition of the instability is either the
escape of one of the bodies, or the exchange of the members between the inner
and outer systems. The dependence of Qst (the smallest Q value which allows the
system to be stable over N = 10,000 revolutions of the initial outer orbit) on the
mass values and on the outer orbit eccentricity eout is briefly explored, and it is also
found to agree with the analytical theory. The final stability limit formula is

Qst = 101/3A[( f ·g)2/(1− eout)]
1/6

where the coefficient A = 1 should be used in N-body experiments, and A = 2
when the absolute long term stability is required. The functions f (ein,cosi) and
g(m1,m2,m3) are

f (ein,cos i) =

{
1− 2

3
ein

[
1− 1

2
e2

in

]
−0.3cos i

[
1

− 1
2

ein +2cos i
(

1− 5
2

e3/2
in − cos i

)]}
.

g(m1,m2,m3) =

(
1+

m3

m1 +m2

)
.

At the limit of ein = i = m3 = 0, f ·g = 1.
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The study of Markov processes on 3D Schur graph

V. Duzhin1, N. Vasilyev2

1 Saint Petersburg Electrotechnical University, Russia, vduzhin.science@gmail.com
2 St.Petersburg department of Steklov Institute of mathematics RAS, Russia, vasiliev@pdmi.ras.ru

The three-dimensional Schur graph is an infinite graded graph whose vertices
are three-dimensional strict Young diagrams (strict planar partitions). Young graph
and Schur graph are related to various problems of asymptotic combinatorics.
Some of these problems show the connection between the combinatorics of these
graphs and special Markov processes on them. From this point of view, the most
important Markov processes are those which generate a central measure [1].

A central measure is a measure where the probabilities of different paths be-
tween given pair of diagrams are the same. For two-dimensional case there exists
a central process called Plancherel process. Papers [2, 3, 4] were devoted to inves-
tigation of sequences produced by Plancherel process on two-dimensional Young
and Schur graphs. Unfortunately, there are no known central processes on three-
dimensional Young and Schur graphs. Markov processes on three-dimensional
Young graph which generate asymptotically central measure were investigated in
[5, 6]. These are so-called pseudo-Plancherel processes.

Here we construct an analogous process on three-dimensional Schur graph. In
order to show the asymptotic centrality, we study the ratios of probabilities of dif-
ferent paths between a pair of diagrams. We define the normalized dimension for
three-dimensional strict Young diagrams. We investigate both random and greedy
paths for pseudo-Plancherel processes on Schur graph. A greedy path is a deter-
ministic sequence of diagrams built in the following way: on each step the box with
the maximum possible probability is added to the diagram. Also we investigate the
growth and oscillations of normalized dimensions along greedy trajectories of pro-
cesses. We study the limit shape of a strict three-dimensional diagram produced by
pseudo-Plancherel process.
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Computing Automorphism Groups of Designs - a Way to
Produce New Symmetric Weighing Matrices

Giora Dula1, Assaf Goldberger2, Yossi Strassler3

1Netanya Academic College, Israel, giora@netanya.ac.il
2Tel Aviv University, Israel assafg@post.tau.ac.il
3 Dan Yishai, Israel danyishay@gmail.com

A weighing matrix of size n and weight k, also denoted as W (n,k) is a {0,1,−1}-
n× n matrix W such that WW T = kIn. Two weighing matrices V and W are said
to be isomorphic (or Hadamard equivalent), if there exist two signed permutation
matrices P and Q auch that W = PV Q. In this work we have developed an efficient
algorithm, implemented in sage, to find an isomorphism between weighing matri-
ces if one exists. Our algorithm works well with designs in general, and in fact the
case of weighing matrices is more difficult because of the presence of signs. In par-
ticular, we are able to compute automorphism groups of weighing matrices. One
application of this is to search for a (anti-)symmetric weighing matrix in a class of
a given matrix W . If a matrix W is isomorphic to W T , then we compute the iso-
morphism PWQ = W T , and the automorphism group of W . If a (anti-)symmetric
representative of this class exists, then for a specific isomorphism P′WQ′ = W T ,
it will happen that P′W is (anti-)symmetric. We have been able to implement this
to a newly discovered weighing matrix W (23,16) and obtain a symmetric matrix
with the same parameters.

Our algorithm uses certain strong invariants that may separate nonisomorphic
classes. If two matrices V and W have the same invariant, then we have some initial
clue on the desired permutations. Then, after considerably small enumeration we
are able to reduce the problem to unsigned permutations. Then we use an algorithm
based on the singular value decomposition to discover the full permutations.

One interesting (future) application of automorphisms, may apply to the prob-
lem of ’coloring’ a matrix. Namely, if we are given only the elementwise abso-
lute value |W | of a weighing matrix W , then we need to recover W from |W |, at
least if we believe that W has rich automorphism group. If we compute the group
Aut(|W |), then we need to find a signed permutation group G and an embedding
G → Aut(|W |). If we find such G, then its orbits give us much information as to
how to color |W |. Finding such G is a problem in Group Theory and it is inter-
esting to understand how the orthogonality of W projects on this Group-Theoretic
problem.

1



161

Patterns in Random Permutations

Chaim Even-Zohar1

1 University of California, Davis, USA, chaim@math.ucdavis.edu

The density at which fixed patterns occur in large permutations has received
much attention in Combinatorics. Pattern densities give rise to extremal questions,
and play a role in the construction of limiting objects for permutations, and in
permutation property testing. The case where some patterns are avoided is studied
extensively.

We report on the study of pattern densities in random permutations. Our work
extends the discussion by Janson, Nakamura and Zeilberger in Section 4 of [1].
In particular, we address the question in its closing paragraph, on the emerging
general structure. To this end, we analyze the distribution of pattern densities using
representations of the symmetric group.

This viewpoint of pattern densities provides a unified framework for several
measures from non-parametric statistics, such as Kendall’s τ , Spearman’s ρ and
some two-sample independence tests. It is also related to the spectral analysis of
statistical data on nonabelian groups, as introduced by Diaconis [2].

We present some definitions before stating the main questions and results. Let
π ∈ Sn and let k ≤ n. Consider all

(n
k

)
restrictions of π to k entries πa1 . . .πak where

a1 < a2 < .. . < ak. The relative ordering of such k values induces a pattern σ ∈ Sk.
For example, the restriction of π = 41253 to the marked entries induces the 3-
pattern σ = 213.

Let the density of σ ∈ Sk be Pσ (π) := Nσ (π)/
(n

k

)
, where Nσ (π) is the number

of times σ occurs as a k-pattern in π . The k-profile of π is the k!-dimensional
vector of all k-pattern densities Pk(π) := (Pσ (π))σ∈Sk . When π ∈ Sn is sampled
uniformly at random, we denote its k-profile by Pkn.

A first observation is that Pkn → Uk :=
( 1

k! , . . . ,
1
k!

)
in probability as n → ∞. It

is hence interesting to understand how the k-profile deviates from this limit. What
is the order of magnitude of (Pkn −Uk) as n grows? What directions in the k!-
dimensional space are typical of this vector? Does it have a natural decomposition
into lower-dimensional components? What is the shape of the distribution when
properly normalized?

It turns out that linear representations of Sk provide some answers to these
questions. Recall that each simple representation Rλ corresponds to an integer
partition k = λ1 + . . .+λℓ where λ1 is the largest. Consider the subspace spanned
by the matrix elements (Rλ

i j(σ))σ∈Sk viewed as k!-dimensional vectors.

1
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Orthogonal projections on these subspaces provide an initial decomposition of
the k-profile. We show that the component that corresponds to Rλ has order of
magnitude n(λ1−k)/2 asymptotically as n grows. One can use this decomposition to
normalize the distribution of the profile, multiplying the different components by
the appropriate powers of n.

We also show that components of different orders are asymptotically uncorre-
lated, in the sense that the cross-covariance matrix of the two normalized vectors
converges to zero. This indicates that representations of the symmetric group may
also help to diagonalize the profile’s distribution.

Indeed, for k ≤ 6 we found specific unitary matrix representations of Sk, whose
matrix elements diagonalize the normalized distribution of the k-profile. This
means that its covariance matrix, with respect to that basis, converges to a diag-
onal with positive entries. We hope to extend this result to every k in future work.

The above results were discovered by computer exploration. Our starting point
was the interpolation of the profile’s covariance matrix, symbolically as rational
functions of n. This allowed us to extract several leading coefficients that deter-
mined the asymptotic behavior, and to look at their diagonal forms.

The full analysis and verification of the cases k = 3,4,5,6 were undertaken
by explicit computation of appropriate unitary representations, that seem to have
interesting properties by their own.
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Reconstructing Weighing Matrices From Their
Automorphism Group
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A weighing matrix of order n and weight k, generally denoted by W (n,k) is a
n×n {0,1,−1}-matrix W such that WW T = kIn. We say that two matrices W1 and
W2 in W (n,k) are (Hadamard) equivalent, if W2 = LW1R for monomial matrices
L,R. The Automorphism group of a weighing matrix W ∈W (n,k) is the group

Aut(W ) = {(L,R) |LWR =W, L,R monomial}

with multiplication given by (L,R) · (L′,R′) := (LL′,R′R).

Suppose now we are only given the group Aut(W ) and we would like to recon-
struct W from it. Then Aut(W ) gives us a lot of information on W : The action of
Aut(W ) on pairs (i, j), 1 ≤ i, j ≤ n splits the space of n2 pairs into orbits, and a sin-
gle entry in each orbit, determines all remaining entries in the orbit. This suggests
a massive reduction in the search space for W .

Moreover, suppose for the moment that Aut(W ) acts bi-transitively on the rows
of the matrix. Then for any candidate matrix W the resulting Gram matrix WW T

is constant (up to sign) off the diagonal. In particular, this value has fairly good
chances to be zero, hence W will be a weighing matrix. Even when it is nonzero,
in some cases there are augmenting constructions that can fix the problem.

To obtain such constructions, we first need to construct candidates for the au-
tomorphism groups. To this end we begin with two embeddings L0,R0 : G → Sn

(considered as action of G on the rows and columns), and then lift them to embed-
dings L,R : G ⊂ Bn using Group Cohomology. We now analyze the orbits of the
action on pairs of row and column. Some orbits will result in conflicting signs, and
must be given the value zero, the other orbits may be given any value in {0,1,−1}.

This method was applied to various cases: Some well known families such
as Payley’s Conference and Hadamard Matrices, as well as projective spaces are
all a special case of this construction. We have also obtained some seemingly new
families. We also can construct matrices from groups that are not doubly transitive.
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We obtain gram matrices with some interesting structure, and they can serve as
building blocks for weighing matrices.
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D-finite Numbers∗

Hui Huang, Manuel Kauers
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D-finite functions have been recognized long ago [6, 5] as an especially at-
tractive class of functions. The defining property of a D-finite function is that it
satisfies a linear differential equation with polynomial coefficients. In a sense, the
theory of D-finite functions generalizes the theory of algebraic functions. Many
properties enjoyed by the latter carry over to the former.

It is well-known that the class of algebraic numbers and the class of algebraic
functions are naturally connected to each other. Motivated by this relation, we
have established in [3] a similar correspondence between numbers and the class of
D-finite functions, More precisely, we introduced the following class of numbers.

Definition 1 ([3]). Let R be a subring of C and let F be a subfield of C. A number
ξ ∈ C is called D-finite (with respect to R and F) if there exists a convergent se-
quence (an)

∞
n=0 over R with limn→∞ an = ξ and some polynomials p0, . . . , pr ∈ F[n],

pr 6= 0, not all zero, such that p0(n)an + p1(n)an+1 + · · ·+ pr(n)an+r = 0 for all
n ∈ N. The set of all D-finite numbers w.r.t. R and F is denoted by DR,F.

It is clear that DR,F contains all the elements of R, but it typically contains many
further elements. For example, let i be the imaginary unit, then DQ(i),Q(i) contains
many (if not all) the periods [4] and, as we will see from Theorem 3, all the values
of G-functions [1] as well as many (if not all) regular holonomic constants [2]. In
addition, thanks to many mathematicians’ work, we can easily recognize that many
constants like e, 1/π , Euler’s constant γ are D-finite.

The definition of D-finite numbers given above involves two subrings of C as
parameters: the ring to which the sequence terms of the convergent sequences are
supposed to belong, and the field to which the coefficients of the polynomials in the
recurrence equations should belong. One of the goals of [3] is to investigate how R
and F can be modified without changing the resulting class of D-finite numbers. We
have found some interesting properties pursuing this goal. For example, algebraic
extensions of F are useless to extend the class; and it is also not useful to make F
bigger than the quotient field of R. Moreover, we showed that

Theorem 2 ([3]). For every D-finite number ξ ∈ DR,F, there exists g(z) ∈ R[[z]]
D-finite over F such that ξ = limz→1− g(z).

∗The research was funded by the Austrian Science Fund (FWF) under grants Y464-N18, F5004,
and W1214-N15 (project part 13).
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The above theorem implies that D-finite numbers are computable when the
ring R and the field F consist of computable numbers. Consequently, all non-
computable numbers have no chance to be D-finite. Besides these artificial exam-
ples, we do not know of any explicit real numbers which are not in DQ,Q, and we
believe that it may be very difficult to find some.

On the other hand, the values D-finite functions can assume at non-singular
algebraic points are all D-finite, as indicated by the following theorem.

Theorem 3 ([3]). Let F be a subfield of C with F \R 6= /0 and let R be a subring
of C containing F. Assume that f (z) ∈ DR,F[[z]] is analytic at zero and D-finite
over F. Further assume that zero and ζ ∈ F̄ are not singularities of an annihilating
operator for f (z). Then the derivative f (k)(ζ ) ∈ DR,F for all k ∈ N.

We have made some first steps in [3] towards understanding the nature of D-
finite numbers. We believe that, similarly as for D-finite functions, the class is
interesting because it has good mathematical and computational properties and
because it contains many special numbers that are of independent interest. At last,
we list some possible directions of future research.

1. After proving Theorem 3, it would be natural to wonder about the values of
a D-finite function at singularities of its annihilating operators.

2. It would be interesting to know precisely under which circumstances the
multiplicative inverse of a D-finite number is D-finite. Are there choices
of R and F for which DR,F is a field?

3. A similar pending analogy concerns compositional inverses. Is it true that the
values of compositional inverses of D-finite functions are D-finite numbers?
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Let V =V0⊕V1, a 2n-dimensional Z2-graded complex vector space, where dimV0 =
dimV1 = n. Then the endomorphism algebra End(V ) inherits the structure of a vec-
tor superspace gl(n|n) from V .

Now suppose V is equipped with a nondegenerate odd symmetric form on V ⊗
V satisfying

β (v,w) = β (w,v) and β (v,w) = 0 if v = w, (1)

where v is the parity of a homogeneous element v∈V . We define the periplectic (or
strange) Lie superalgebra p(n) as the set of all X ∈ End(V ) preserving the bilinear
form β , i.e., X satisfies

β (Xv,w)+(−1)Xvβ (v,Xw) = 0. (2)

With respect to a fixed basis V0 = spanC{e1, . . . ,en} and V1 = spanC{ f1, . . . , fn}, a
periplectic Lie superalgebra is described as

p(n) =
{(

A B
C −At

)
: B = Bt ,C =−Ct

}
.
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I will introduce the representation theory of periplectic Lie superalgebras by pro-
viding the combinatorics of the category and its underlying highest weight struc-
ture, and I will discuss weight diagrams, which are a useful combinatorial tool,
allowing us to compute the multiplicities of standard modules in indecomposable
projective modules and of simple modules in standard modules.

More precisely, translation functors on the category Fn of finite-dimensional
representations of p(n) using the endomorphism of the endofunctor −⊗V will
be defined. I will then define the actions of translation functors on thick and thin
Kac modules, which categorically lift the Temperley-Lieb relations associated to
the infinite symmetric group. Next, I will define the notion of weight diagrams
for dominant weights and explain the associated combinatorics of the actions of
translation functors on standard and costandard objects in terms of the diagrams.
This involves moving a shaded ball left or right, depending on the translation func-
tor and the weight. I will also explain the duality for simple modules in terms of
weight diagrams.

Finally, we define the minimal equivalence relation on the set of dominant
weights λ and µ such that λ ∼ µ if µ is obtained from λ by sliding a shaded ball
in a certain way. This implies that simple modules L(λ ) and L(µ) belong to the
same block if and only if λ ∼ µ . I will give a classification of the blocks in Fn and
describe the action of translation functors on these blocks.
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Bernoulli symbol on multiple zeta values at negative
integers
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The multiple zeta functions are defined by, for {ni}r
i=1 ⊂ C

ζr (n1, . . . ,nr) = ∑
0<k1<···<kr

1
kn1

1 · · ·knr
r
, (1)

provided that ∑k
j=1 Re(nr+1− j) > k , 1 ≤ k ≤ r ([2, S3]). Values at integer points

n = (n1, . . . ,nr) satisfying the constraints are called multiple zeta values (MZV).
Zhao [4] showed that (1) has an analytic continuation to Cr, not uniquely, due to the
Hartogs’ phenomenon. Thus, several authors have proposed different approaches.
For example, Sadaoui [3] used Raabe’s identity to compute the values.

Theorem 1. (Sadaoui) [3, eq. (4.10)]

ζr (−n1, . . . ,−nr) =
(−1)r

nr +1 ∑
k2,...,kr

r
∏
j=2

A

(
r
∑

i= j
(ni + r− j+1)−

r
∑

i= j+1
ki

∣∣∣∣ k j

)

(
n̄+ r− k̄

)

× ∑
l1,...,lr

(
n̄+ r− k̄

l1

)(
k2

l2

)
. . .

(
kr

lr

)
Bl1 · · ·Blr ,

where k2, . . . ,kr ≥ 0, l j ≤ k j for 2 ≤ j ≤ r and l1 ≤ n̄+ r+ k̄ with n̄ = ∑r
j=1 n j, k̄ =

∑r
j=2 k j, A(t|s) :=

(t
s

)
/t, and Bn is the nth Bernoulli number.

On the other hand, Akiyama and Tanigawa [1] used the Euler-MacLaurin sum-
mation formula to obtain results, one of which is the following recurrence. (Here,
the notation ζ̄ instead of ζ is used to distinguish two continuations.)
Theorem 2. (Akiyama and Tanigawa) [1, eq. (15)]

ζ̄r (−n1, . . . ,−nr) =−ζ̄r−1 (−n1, . . . ,−nr−2,−nr−1 −nr −1)/(nr +1)

− ζ̄r−1 (−n1, . . . ,−nr−2,−nr−1 −nr)/2

+
nr

∑
q=1

(−nr)q aqζ̄r−1 (−n1, . . . ,−nr−2,−nr−1 −nr +q) ,

where (−nr)q = (−nr)(−nr +1) · · ·(−nr +q−1) and aq := Bq+1/(q+1)!.

We generalized the idea of Bernoulli symbol to the following C symbols.

1
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Definition 1. C1,2,...,k is defined recursively via Bernoulli symbols B1, . . . ,Br as

Cn
1 =

Bn
1

n
, Cn

1,2 =
(C1 +B2)

n

n
, . . . , Cn

1,2,...,k+1 =
(C1,2,...,k +Bk+1)

n

n
.

Each symbol C1,2,...,k should be expanded only involving Bk, and then:
1. each power Bp

k should be evaluated as Bp
k → Bp;

2. if k 6= l, product Bp
k B

q
l is evaluated as Bp

k B
q
l → BpBq.

Theorem 3. (L. Jiu, V. H. Moll, and C. Vignat)

ζr (−n1, . . . ,−nr) =
r

∏
k=1

(−1)nk Cnk+1
1,...,k = ζ̄r (−n1, . . . ,−nr) .

Not only do we obtain a symbolic, more compact, effective expression leading
to further results such as (denote ak = (a1, . . . ,ak) for a = (a1, . . . ,ar) and k < r)
• recursion formula

ζr (−n;z) =
(−1)nr

nr +1

nr+1

∑
l=0

(
nr +1

l

)
(−1)l ζr−1 (−nr−2,−nr−1 − l;z)Bnr+1−l (zr) ;

• contiguity identity: for Z l
r = ζr (−nr−1,−nr − l;z);

ζr (−n;zr−1,zr +1) = ζr (−n;zr−1,zr)+(−1)nr (zr −Zr−1)
nr ;

• and generating function

Fr (w1, . . . ,wr) := ∑
n1,...,nr≥0

wn1
1 · · ·wnr

r

n1! · · ·nr!
ζr (−n1, . . . ,−nr)

=
(
F1 (wr,−∂r−1) · · ·F1 (w2,−∂1)

)
•F1 (w1,0) ,

where ∂i = ∂/∂wi and F1 (w,z) = e−wz

e−w−1 − 1
w , but also it surprisingly reveals that

both analytic continuations in Theorem 1 and Theorem 2 coincide. An explanation
of such phenomena is part of future work.
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Bounds for D-Finite Substitution

Manuel Kauers1, Gleb Pogudin1

1 Institute for Algebra, Johannes Kepler University Linz, Austria,
{manuel.kauers,gleb.pogudin}@jku.at

A function f is called D-finite if it satisfies a linear differential equation with
polynomial coefficients,

p0(x) f (x)+ p1(x) f ′(x)+ · · ·+ pr(x) f (r)(x) = 0.

Typical examples include ex, log(x), as well as non-elementary functions such as
Bessel functions or the Error function. A function g is called algebraic if it satisfies
a polynomial equation,

q0(x)+q1(x)g(x)+ · · ·+ ps(x)g(x)s = 0.

Typical examples include
√

x or 3
√

5x2 −3+28x9.
It is well-known that every algebraic function is D-finite, and that, more gener-

ally, whenever f is D-finite and g is algebraic, then the composition g◦ f is again
D-finite. Algorithms for computing a linear differential equation for g ◦ f from a
given linear differential equation for f and a given polynomial equation for g are
part of the standard repertoire of software packages for D-finite functions.

We consider the question how big an equation for g◦ f will be in dependence
of the sizes of the equations of f and g. In a first approach, we use a standard
argument based on linear algebra: we set up a linear system over the constant field
and balance the number of variables and equations. This leads to a so-called order-
degree curve, a curve in R2 such that for all points (r,d) ∈ N2 above the curve,
there exists an equation for g◦ f of order r with polynomial coefficients of degree
at most d.

The order-degree curve obtained in this way is far from tight. In a second
approach, we derive a formula for an order-degree curve by analyzing the singular-
ities of the resulting operator. This requires some work because these singularities
are not directly accessible from the given data for f and g. However, the work pays
off because the resulting curve turns out to be extremely tight, at least generically.
We will show some examples during the talk.

Formulas for the resulting curves as well as full details of our derivations can
be found in the preprint [1].
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Algorithmic Aspects of the Černý Conjecture

Andrzej Kisielewicz
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In this talk we present the use of computer search and the role of algorithms
in attempts to solve the Černý Conjecture, which is one of the most longstanding
open problems in automata theory.

We deal with finite deterministic automata A = (Q,Σ,δ ), where Q is a finite set
of the states, Σ is a finite input alphabet, and δ : Q×Σ→Q is the transition function
defining the action of the letters in Σ on Q. The action extends in the natural way
to the action of words over Σ on Q and is denoted simply by qw = δ (q,w).

An automaton A is synchronizing if there exist a word w over Σ and a state
q0 ∈ Q such that for each state q ∈ Q the image qw = q0. In other words, the word
w brings the automaton A to the state q0 with no regard to in what state it happens
to be. Such a word w, if exists, is called a reset word for A.

The Černý conjecture states that if an automaton A with n states is synchroniz-
ing, then it has a reset word of length not exceeding (n−1)2. It has been proved in
many particular cases, but in general, is still open. The best general bound achieved
so far for the shortest reset word in synchronizing automata is (n3−n)/6. The most
general result proving the conjecture for a class of automata has been obtained in
[2]. (See also [7] for an excellent survey of the topic).

We present our two recent results on the Černý conjecture involving an exten-
sive use of computers and dedicated algorithms. The first concerns the verification
of the conjecture for small automata. In [1] all binary automata (that is, those with
a two-element alphabet) having at most n = 9 states have been checked. Note that
there are 918 labeled binary automata with n = 9 states, so some more sophisticated
approach than brute force must be applied. In [1], the authors have managed to re-
strict the search to the class of the so-called initially connected automata. Earlier,
the checking of all automata with at most n = 10 states was reported in [5], yet no
details of computation have been described.

In [4], using a dedicated algorithm for parallel computation, we have verified
the conjecture for all binary automata with n ≤ 12 states. The case of automata
with n = 12 states took about 100 years of computation time of a single processor
core. The number of automata generated by our algorithm in this case was about
1015, which should be compared with about 2.2×1017 of non-isomorphic initially
connected automata (that one would need to generate applying the technique de-
scribed in [1]), and 1224 of all binary automata with n = 12 states.

1
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In [2], the conjecture is considered in terminology of colored digraphs, which
refers to the famous Road Coloring problem [6]. We consider edge-colored di-
graphs with the property that no two edges leaving a vertex have a common color.
Such an assignment of colors to edges is called a road coloring. Then, given a
vertex x, each finite sequence of colors α1, . . . ,αm (repetitions allowed) may be
considered as a description of a path (road) starting in x and leading to a uniquely
determined vertex y ∈ V . (Absence of an edge of a given color α leaving a given
vertex x is interpreted as a loop at x colored α).

We are interested in “universal instructions” making it possible to reach a fixed
vertex y with no regard at which vertex we start. A sequence of colors α1, . . . ,αm

such that for each vertex x it describes a path from x to the given y is called a
synchronizing sequence (for the vertex y).

We define a class of colored digraphs, having a relatively small number of junc-
tions between paths determined by different colors, and prove that the automata
corresponding to the digraphs in this class satisfy the Černý conjecture. From
computational point of view, we present a number of algorithms finding short syn-
chronizing sequences for various types of graphs. We show that in spite of that
the class is defined in a uniform way and the digraphs in the class seem very sim-
ilar, it requires to apply very different types of algorithms to find a synchronizing
sequence short enough.

This suggests that the difficulty in proving the Černý conjecture in its gener-
ality may lie in that the solution consists of a large collection of very different
algorithmic ideas covering the whole spectrum of synchronizing automata.
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[2] M. Grech, A Kisielewicz The Černý conjecture for automata respecting intervals of a directed

graph, Discrete Math. Theoretical Comput. Sci. 15, pp. 61-72 (2013).
[3] M. Grech, A. Kisielewicz Synchronizing sequences for road colored digraphs, to appear.
[4] A. Kisielewicz, J. Kowalski, M. Szykuła, Experiments with Synchronizing Automata, CIAA

2016, LNCS 9705, pp. 176-188 (2016).
[5] A. N. Trahtman, An efficient algorithm finds noticeable trends and examples concerning the

C̆erný conjecture, in Mathematical Foundations of Computer Science, LNCS 4162, pp. 789–
800 (2006).

[6] A. N. Trahtman, The road coloring problem, Israel J. Math. 172, pp, 51–60 (2009).
[7] M. V. Volkov. Synchronizing automata and the C̆erný conjecture, LATA 2008, LNCS 5196,

pp. 11–27 (2008).

2



175

Algorithms and open problems for weighing matrices
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Weighing matrices are generalizations of Hadamard matrices, that arise in con-
structive and algorithmic combinatorics and have applications in Coding Theory,
Cryptography, Quantum Computing and other areas. The concepts of periodic and
aperiodic autocorrelation can be used to provide a succinct and unified descrip-
tion of several different classes of combinatorial matrices [1], including weighing
matrices of special structure. We will survey some algorithms to construct such
weighing matrices, with emphasis on their computer algebra, data analytics, big
data and parallel computing aspects. We will also mention some conjectures and
open problems.
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Wilf classification of subsets of four-letter patterns
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In the last decades, the problem of avoiding patterns in different combinatorial
structures like permutations, coloured permutations, compositions, partitions, set
partitions, etc. has been studied by many authors from many different point of
views. In this talk, we restrict to permutations and the problem of pattern avoidance
for them.

Let Sn be the symmetric group of all permutations of [n] ≡ {1, . . . ,n}. Let
π = π1π2 · · ·πn ∈ Sn and τ = τ1τ2 · · ·τk ∈ Sk be two permutations. We say that
π contains τ if there exists a subsequence 1 ≤ i1 < i2 < · · · < ik ≤ n such that
πi1πi2 · · ·πik is order-isomorphic to τ , that is, πia < πib if and only if τa < τb; in such
a context τ is usually called a pattern. For example, π = 35412 contains the pattern
τ = 231. We say that π avoids τ , or is τ-avoiding, if such a subsequence does not
exist. For example, 35412 avoids 123. The set of all τ-avoiding permutations in
Sn is denoted by Sn(τ). For an arbitrary finite collection of patterns T , we say
that π avoids T if π avoids every pattern τ in T ; the corresponding subset of Sn is
denoted by Sn(T ), i.e., Sn(T ) =

⋂
τ∈T Sn(τ). The sets of patterns T and T ′ belong

to the same Wilf class (or are Wilf-equivalent) if and only if |Sn(T )|= |Sn(T ′)| for
all n ≥ 0.

In 1985, Simion and Schmidt found the cardinality of Sn(T ), where T ⊆ S3.
Thus, the case of patterns of length three is well-known. Let us turn to patterns
of length four. For this case, much less is known and is seems hopeless to get
an explicit formula for |Sn(T )| where T ⊆ S4 is arbitrary. Already the case of
avoiding exactly one pattern τ ∈ S4 is not trivial. It was shown that there are three
essentially different cases, namely Sn(τ) where τ ∈ {1342,1234,1324}. Since
|S7(1342)|= 2740, |S7(1234)|= 2761 and |S7(1324)|= 2762, these three patterns
comprise three different Wilf classes. If we denote the number of symmetry classes
and Wilf classes of subsets of k patterns in S4 by sk and wk, respectively, then this
means that w1 = 3.

Let us turn to subsets T = {τ1,τ2} with exactly two patterns in S4. There do
exist

(24
2

)
= 276 such subsets T . Le established that these 276 subsets form 38

distinct Wilf classes, i.e., w2 = 38. It seems that the case of k with 3 ≤ k ≤ 23 has
not been studied in the literature before the recent work of Mansour and Schork.
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Thus, the aim of this talk is discuss how to determine wk for 3 ≤ k ≤ 24. Since
the number of subsets of S4 containing at least 3 patterns is given by ∑24

k=3
(24

k

)
=

16776915, it seems to be impossible to reach by constructing explicit bijections be-
tween sets of permutations. The way out is to combine several software programs
to do the work for us!!

This talk based on recent works of the author with David Callan, Mark Shattuck
and Matthias Schork.
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Automatic proofs for establishing the structure of integer
sequences avoiding a pattern

Lara Pudwell1, Eric Rowland2
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Is there an infinite sequence on the alphabet {0,1,2} containing no block that
occurs twice consecutively? Questions like this were investigated a century ago
by the Norwegian mathematician Axel Thue, who produced some of the earliest
results in combinatorics on words. If a pattern is avoidable on a given alphabet,
it is natural to ask about the lexicographically least sequence that avoids the pat-
tern. Occasionally the structure of this sequence can be discovered and proved by
hand. But for many patterns this sequence is sufficiently complex that computer-
assisted discovery, followed by automated proofs, seems to be necessary to make
any progress.

Here we are interested in the lexicographically least integer sequence avoiding
a given fractional power. Let a and b be relatively prime positive integers with
a
b > 1. We say that a word w is an a

b -power if w can be written vex where e is a
non-negative integer, x is a prefix of v, and |w|/|v|= a/b. For example, 011101 =
(0111)3/2 is a 3

2 -power. A sequence is a
b -power-free if none of its nonempty factors

are a
b -powers. Avoiding 3

2 -powers, for example, means avoiding factors xyx where
|x|= |y| ≥ 1.

Notation. Let sa/b denote the lexicographically least a
b -power-free infinite sequence

on the alphabet Z≥0.

Guay-Paquet and Shallit [2] described the structure of the lexicographically
least square-free sequence

s2 = 01020103010201040102010301020105 · · · .

More generally, for an integer a ≥ 2 we have sa = ϕ∞(0), where ϕ : Z∗
≥0 → Z∗

≥0
is the morphism defined by ϕ(n) = 0a−1(n+ 1). Rowland and Shallit [4] gave a
recurrence for

s3/2 = 001102100112001103100113001102100114001103100112 · · · .

The sequence s3/2 is 6-regular in the sense of Allouche and Shallit [1]; informally,
this means that the ith term can be computed directly from the base-6 digits of i.

1
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Significant motivation for the present study is to put this ‘6’ into context by
studying sa/b systematically. We show that for many rational numbers a

b , the se-
quence sa/b is the fixed point of a k-uniform morphism for some integer k. (A
morphism ϕ on an alphabet Σ is k-uniform if |ϕ(n)|= k for all n ∈ Σ.)

For example, consider

s5/3 = 0000101000010100001010000101000010200001010000102 · · · .
This sequence belongs to an infinite family of sequences, all generated by similar
morphisms.

Theorem. Let a,b be relatively prime positive integers such that 5
3 ≤ a

b < 2 and
gcd(b,2) = 1. Let ϕ be the (2a−b)-uniform morphism defined by

ϕ(n) = 0a−1 10a−b−1 (n+1)

for all n ∈ Z≥0. Then sa/b = ϕ∞(0).

There are two steps in the proof of this theorem. The first step is to verify
that the morphism ϕ is a

b -power-free (that is, ϕ(w) is a
b -power-free whenever w is

a
b -power-free). The second step is to verify that ϕ is lexicographically least with
respect to a

b (that is, if w is a
b -power-free and decrementing any term introduces an

a
b -power, then decrementing any term in ϕ(w) introduces an a

b -power ending at that
position). Since the word 0 is a

b -power-free and lexicographically least of its length,
if ϕ is an a

b -power-free, lexicographically least morphism then sa/b = ϕ∞(0). For
details, see [3].

We use software to carry out these steps, establishing the structure of several
families of sequences sa/b. As a consequence, it follows that these sequences are
k-regular for various values of k depending on a

b . This suggests the following main
question.

Open question. For which rational numbers a
b > 1 does there exist an integer k

such that sa/b is k-regular?
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External Littelmann paths for crystals of Type A
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Affine Lie algebras of type A and their highest weight representations are im-
portant in physics. They correspond to the symmetric group, the most important of
the reflection groups. The basis elements of a highest weight representation with
highest weight Λ of level r, organized into a Kashiwara crystal, correspond to the
simple modules of the cyclotomic Hecke algebras of weight Λ and have three com-
binatorial representations: as multipartitions, as Littelmann paths and as canonical
basis elements.

We wrote a computer program in Sage which calculated all three of these com-
binatorial representations simultaneously for the beginning degrees of a Kashiwara
crystal. The program slows down at around degree 16, so most of our examples
are in the range up to 16. We began with the case of rank e = 2, for which the
multipartitions corresponding to basis elements, called the e-regular multipartions,
are completely understood by work of Mathas [M]. We succeeded in finding a di-
rect connection between the multipartitions at the corners of the Kashiwara crystal,
which we called extremal, and Littelmann paths of a type we call standard.

Following Mathas, we write

Λ = aΛ0 +bΛ1. (1)

We started with the easy case r = 1, and by constructing an object called the
block-reduced crystal graph [AS], discovered that the corner points were alternat-
ing, i.e., had odd and even length rows alternating. Defining segment boundaries
when the differences were more than one, we were able to find a representation of
the external Littelmann paths which depended on the length of the first row of the
segment and the distance to the top of the partitions.

A Littelman path [L] is a piecewise linear path from the unit interval to the
weight space, represented in the computer by a sequence of vectors called defect 0
weights, together with coefficients which are rational numbers and determine the
endpoints of the piecewise linear subpaths of the Littelmann path. The first and last
vectors are called the ceiling and the floor [AKT]. We were able to show that there
were no gaps between the ceiling and the floor and give exact formulae for the
coefficients. For a segment i, we let bi be the distance from the top of the partition
to the bottom of the segment, and let n′i be the number we would get if the top row
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of the segment is continued up in a triangular fashion to the top row. Then we get
parameter boundaries bi

m for m with n′i ≥ m > n′i+1. The paths had an interesting
structure: long paths where the segments were being widened, and short oscillating
paths where the segments were being deepened.

We then turned to the case of r > 1, which was considerably more challeng-
ing. However, we were helped along by the intuition we had gained from working
with the r = 1 case. We again divided the multipartition into segments, but now
a segment could contain more than one subpartition. We replaced the alternating
condition with a condition we called "residue homogeneous", which ensured that
the end points of all the rows would have the same residue 0 or 1. We no longer
had a simple, gapless Littelmann path between ceiling and floor. To deal with this
situation, we defined a multipartition which we called a pseudo-floor, which was
a defect 0 partition truncated by replacing some of the subpartitions by the emply
partition. We believe this object to be new.

The induction for the r >1 case started by constructing the Littelmann path for
the pseudo-floor of the highest segment and began adding segments going down-
ward. The resulting Littelmann paths, projected onto the hubs, looked very similar
to the paths we had found for the r = 1 case, except that the end was quirky because
of the pseudo-floor.

Finally, the rational numbers which gave the boundaries for the parametrization
were also more complicated. Each was of the form

em =
cm

dm
, (2)

where dm was the number of nodes added to a defect 0 multipartion with first row
m− 1 to get that for m. Similarly cm is the number of nodes added to widen the
segment. Standard Littelmann paths have parameter boundaries in this form and
are quite common, as we found from our experimental work on the case e = 3. In
the general case they usually had gaps, which occurred when em = em+1. There is
no known non-recursive criterion for e-regular multipartitions for e = 3 and level
r > 3. We are hoping to get results in this direction for the external basis elements.
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Time for the New Ansatz (?)

Thotsaporn Thanatipanonda1
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Mathematics is a science of describing patterns. It is a commonly known technique
to describe the patterns of sequences using recurrence relations, both by using con-
stant coefficients (aka C-finite ansatz, [1, 4]) i.e. the sequence {a(n)}∞

n=0 where
there are constants c0,c1, . . . ,ck−2,ck−1 such that

c0a(n)+ c1a(n+1)+ · · ·+ ck−1a(n+ k−1)+a(n+ k) = 0, for all n ≥ 0,

or by using polynomial coefficients (aka holonomic ansatz, [1, 3]) i.e. the sequence
{b(n)}∞

n=0 where there are polynomials p0(n), p1(n), p2(n), . . . , pk−1(n), pk(n) with
pk(n) 6= 0, such that

p0(n)b(n)+ p1(n)b(n+1)+ · · ·+ pk(n)b(n+ k) = 0, for all n ≥ 0.

However there are still many important sequences that do not belong to these
classes. The first example is the (Somos) sequence defined by a complicated look-
ing non-linear recurrence relation:

a(n)(a(n+1) ·a(n+3)−a(n+2)2)−a(n+2) ·a(n+1)2 = 0, for all n ≥ 0

where a(0) = 1,a(1) = 1 and a(2) = 2.

Here are the first ten terms of the sequence:

1,1,2,6,30,240,3120,65520,2227680,122522400

This sequence is growing too fast to be C-finite or holonomic, but still simple
enough for a human to detect the pattern. This strongly suggests us to create a new
ansatz for this type of sequences.

The second example came up when I worked on Schmidt’s number, [2]. This
is part of the main theorem. For k ≥ 0 and r ≥ 1, define a(r)k, j as follows:

(
n
k

)r(n+ k
k

)r

= ∑
j

a(r)k, j

(
n
j

)(
n+ j

j

)
.
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It is not clear at all that this multi-dimensional sequence a(r)k, j are integers until we

discover the non-holonomic recurrence relation of a(r)k, j :

a(1)k,k = 1, a(1)k, j = 0 ( j 6= k) and

a(r+1)
k, j = ∑

i

(
k+ i

i

)(
k

j− i

)(
j
k

)
a(r)k,i .

In conclusion, we will explore many of these examples and propose some new
types of ansatz accordingly.
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Computer Algebra Algorithms for Proving Jacobi Theta
Function Identities
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Many number theorists, e.g., Ramanujan, Hardy, Rademacher, Berndt, Borwein,
etc., have proved a substantial amount of theta function relations by hand (see [1]–
[8]). There was no general method for proving such relations, and the computation
in their proofs are usually tedious.

Example 1. [7, (93.22)]

θ (4)
3 (0|τ)θ3(0|τ)−3(θ ′′

3 (0|τ))2 −2θ3(0|τ)2θ2(0|τ)4θ4(0|τ)4 ≡ 10.

Example 2. [5, p. 17]

4

∑
j=1

θ j(x|τ)θ j(y|τ)θ j(u|τ)θ j(v|τ)−2θ3(x1|τ)θ3(y1|τ)θ3(u1|τ)θ3(v1|τ)≡ 0,

where x1 := 1
2(x+y+u+v) and y1 := 1

2(x+y−u−v), u1 := 1
2(x−y+u−v) and

v1 := 1
2(x− y−u+ v).

Example 3. [3, p. 218] A form of the cubic modular equation is

θ3(0|τ)θ3(0|3τ)−θ4(0|τ)θ4(0|3τ)−θ2(0|τ)θ2(0|3τ)≡ 0.

Example 4. [1, p. 285] Let η(τ) := eπiτ/12
∞
∏

k=1
(1− e2πiτk). Then

θ3(0|τ)2θ3(0|5τ)2 −θ2(0|τ)2θ2(0|5τ)2 −θ4(0|τ)2θ4(0|5τ)2 ≡ 8η(2τ)2η(10τ)2.

By using such theta function relations, several important results can be ob-
tained. For instance, by using Example 1, Rademacher derived the formula for the
number of presentations of a natural number as a sum of 10 squares. Moreover,
those types of relations also play an important role in physics and in the evaluation
of π .

1We use the notation f1(z1,z2, . . .) ≡ f2(z1,z2, . . .) if we want to emphasize that the equality
between the functions holds for all possible choices of the arguments z j.
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Our goal is to automatize the proving procedures of relations and the discovery
of relations. As a first step, in [9] we provided an algorithm to prove identities
involving

θ (k)
j (0|τ) :=

∂ kθ j

∂ zk (z|τ)
∣∣∣∣
z=0

, k ∈ N := {0,1,2, . . .}.

Then, in [10], we extend the function space in [9] and provided two algorithms to
prove identities in the form of

∑c(i1, i2, i3, i4)θ1(z|τ)i1θ2(z|τ)i2θ3(z|τ)i3θ4(z|τ)i4 ≡ 0

with c(i1, i2, i3, i4) ∈K[Θ], where K is a computable field and

Θ :=
{

θ (2k+1)
1 (0|τ) : k ∈ N

}
∪
{

θ (2k)
j (0|τ) : k ∈ N and j = 2,3,4

}
.

In addition, by our approach, we can also produce two general classes of relations.
In this talk we will briefly show the essence of our methods for [9] and [10], which
is mainly based on modular form techniques and the theory of elliptic functions.
We will also demonstrate our Mathematica package "ThetaFunctions".
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Apparent Singularities of D-finite Systems
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A D-finite function is specified by a linear ordinary differential equation with
polynomial coefficients and finitely many initial values. Every singularity of a
D-finite function will be a root of the coefficient of the highest order derivative
appearing in the corresponding differential equation. For instance, x−1 is a solution
of the equation x f ′(x)+ f (x) = 0, and the singularity at the origin is also the root
of the polynomial x. However, the converse is not true. For example, the solution
space of the differential equation x f ′(x)− 4 f (x) = 0 is spanned by x4 as a vector
space, but none of those functions has singularity at the origin.

More specifically, for an ordinary equation p0(x) f (x)+ · · ·+ pr(x) f (r)(x) = 0
with polynomial coefficients p1, . . . , pr and pr 6= 0, the roots of pr are called the
singularities of the equation. A root α of pr is call apparent if the differential
equation admits r linearly independent formal power series solutions in x−α . De-
ciding whether a singularity is apparent is therefore the same as checking whether
the equation admits a fundamental system of formal power series solutions at this
point. This can be done by inspecting the so-called indicial polynomial of the equa-
tion at α and solving a system of finitely many linear equations. If a singularity α
of an ordinary differential is apparent, then we can always construct a second or-
dinary differential equation whose solution space contains all the solutions of the
first equation, and which does not have α as a singularity any more. This process
is called desingularization.

The purpose of our work is to generalize the facts sketched above to the multi-
variate setting. Instead of an ODE, we consider systems of PDEs known as D-finite
systems. A D-finite system is a finite set of linear homogeneous partial differential
equations with polynomial coefficients in several variables, whose solution space
is of finite dimension. For such systems, we define the notion of a singularity in
terms of the polynomials appearing in them. We show that a point is a singularity
of the system unless it admits a basis of power series solutions in which the start-
ing monomials are as small as possible with respect to some term order. Then a
singularity is apparent if the system admits a full basis of power series solutions,
the starting terms of which are not as small as possible. We then prove that ap-
parent singularities can be removed like in the univariate case by adding suitable
additional solutions to the system at hand. The details can be found in [1].

1
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Inflection points of bisoptic curves of conics

Th. Dana-Picard

Jerusalem College of Technology, ndp@jct.ac.il

Let be given a plane curve C and an angle θ . If it exists, the geometric locus
of points through which passes a pair of tangents to C making an angle equal to
θ is called an isoptic curve of C . The name comes from the fact that from points
on this geometric locus the curve C is seen under an angle equal to θ . If C is an
ellipse and θ = 90o, the isoptic curve is the so-called director circle of the ellipse.
The study of isoptic curves has been an active field of research for along time, both
for strictly convex curves and for open curves; see for example [1], [7], [8].

With the developments of Computer Algebra Systems (CAS) and of Dynamical
Geometry Systems (DGS), the study of isoptic curves has found new energies. In
[2] and [3], it has been shown that if C is either an ellipse or a hyperbola, for a
non-right angle, the isoptic curve is Spiric of Perseus (also called Oval of Cassini)
(see [9], i.e. the intersection of a torus with a plane parallel to the axis of the torus;
see Figure 1.

Figure 1: A spiric curve

Technology is used both to visualize the geometric situation and to solve the
systems of equations yielded by the algebraic translation of the geometric data. For
conic sections, the equations which have been obtained are non linear polynomial
equations. The systems of equations have been solved using algorithms based on
Gröbner bases computations; for this the polynomials are viewed as generating ide-
als in a polynomial ring. Partial results are obtained as a parametric representation
of a curve, then implicitization is performed using similar techniques. A notice-
able feature we have to deal with is that the curve may not be given by a single
parametrization, but is rather presented as the union of numerous parameterized

1
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arcs.
It must be mentioned that in order to obtain polynomial equations, squaring

both sides is often used. The computations provide at the same time isoptic curves
for angle θ and for 180o −θ , whence the name bisoptic curves.

In this case, the bisoptic curve is the intersection of a self-intersecting torus
with a plane parallel to the torus axis. The curve may be either a single closed
curve or the union of two disjoint components. The curve may also have inflection
points (flexes) or not, according to the distance from the plane to the torus axis.

In this paper, we study the existence of points of inflexion (flexes) for general
spirics, using computations of Hessians. If the curve C is given by an implicit
equation of the form F(x,y) = 0, then its Hessian curve is given by the vanishing
points of the determinant det ∂d2F

∂xi ∂y j , for i+ j = 2 (necessary condition, but not suf-
ficient). The flexes of C are intersections of the curve with its Hessian curve ([4],
[5]). The GeoGebra system is used for dynamical visualization, and the Maple
software is used for automated study of the curves and their intersections. In par-
ticular, it must be noted that the equations involved here are of high degree (not
less than 4).
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On the closest distance between a point and a convex body
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In this talk we fix a strictly convex body in the plane and a point in its exterior.
We investigate the following problem with possible practical applications: find the
point on the boundary of the fixed body, for which the distance to the given point
is minimal. The focus of the paper is on the practical aspect of computational
algorithm, which can be applied to obtain approximate or exact solution of the
aforementioned problem.

Let C be a plane closed strictly convex curve, and the origin of coordinate
system lies in the region bounded by C. We denote by p the support function
of C with respect to the origin. The support function p is differentiable and the
parametrization of C in terms of this function is given by

z(t) = p(t)eit + ṗ(t)ieit , (1)

cf. [1]. We assume that z(0) lies in the first quadrant. First we find the equation

Figure 1: Definitions of a, h(s), sa

of support line to C passing through a given point (b,0), where b > p(0). We
introduce the notations as on the Figure 1, where h is a function of the variable

1
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s ∈ (s∗,+∞) with values in the interval
(
0, π

2

)
. Let us introduce a function f (u) =

p(u)
acosu . for u ∈

(
0, π

2

)
. Then f ◦h = id and the function f is invertible, so if b = sa

then our support line has the following equation

x+ y tan f−1
(

b
a

)
−b = 0. (2)

In the further part of the talk we assume that C be a strictly convex curve given by
(1) and a = z(t∗) > 0. If C satisfies the condition Im z(0) < 0, then the function
Q:(0, t∗)→ R given by the formula Q(u) = − ṗ(u)

asinu is positive-valued and strictly
decreasing. We then prove the main theorem of the talk
Theorem Let C be a strictly convex curve given by (1) and a = z(t∗)> 0. If b > a
and Im z(0)< 0 then the point z

(
Q−1

(b
a

))
, realizes the shortest distance between

(b,0) and C.

Figure 2: Point z
(
Q−1

( b
a

))
realizes the minimal distance

In general it is not trivial, or even impossible, to obtain the inverse of the func-
tion Q but at the end of the talk we describe how to approximate its inverse, which
gives us the possibility of finding the approximation yielding the shortest distance
between a given point and a strictly convex curve. We introduce an algorithm,
which applies the ideas presented above which can be divided into two parts, the
first one is to be done for a given convex set, the second one for a given point. The
algorithm will be illustrated on two examples.
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Isoptic curves of Fermat curves
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Let be given a plane curve C and an angle θ . If it exists, the geometric locus
of points through which passes a pair of tangents to C making an angle equal to θ
is called an isoptic curve of C . The name comes from the fact that from points on
this geometric locus the curve C is seen under an angle equal to θ . The study of
isoptic curves has been an active field of research for a long time, both for strictly
convex curves and for open curves; see for example [2], [6], [7], [3] and [4].

We call Fermat curves the plane curves whose equation is of the form xk +
yk = 1, where k is a non-negative integer. In [5], we considered paths of light
trapped in Fermat curves, with a given number of reflection points. Theoretical
developments, such as a general theorem by Birkhoff [1], saying that if the given
curve is strictly convex, then such paths of light exist for any number of vertices,
and in parallel, more elementary theorems from Calculus, ensured the existence of
the paths of light under study, but their actual construction requested the solution
of systems of two non linear equations. The usage of Gröbner bases packages led
to contradictions: the output said that no solution. It appeared that the reason was
that the reflection points have irrational coordinates, when the algorithms work
over the rational numbers. Therefore work had to be performed using methods
from numerical analysis and visualization has been obtained.

Denote by C T one of these curves; it is a closed convex curve when the pa-
rameter k is even, and open otherwise (see Figure 1: the blue curve corresponds to
k = 4, the green one to k = 6 and the red one to k = 3).

Figure 1: Different Fermat curves

1



195

For even k, the given curve defines a partition of the plane: through an interior
point passes no tangent to C , through a point on C there exists a unique tangent,
and through an exterior point passes a pair of tangents (see Figure 2, which has
been obtained during experimentations with the GeoGebra software).

Figure 2: Tangents to a closed Fermat curve

Finding the tangents to C through a given exterior point requires the solu-
tion of a system of nonlinear equations. The situation here is similar to the above
mentioned one, and a purely algebraic approach (i.e. via computations of Gröb-
ner bases) does not yield a complete solution. Therefore, for various angles, we
constructed isoptic curves of C using numerical methods.

In our talk we will present three approaches:

• a 2D, third order numerical approach which quickly yields a good visualiza-
tion of the isoptic curves (see an example in Figure 3).

• a numerical approach of nonlinear fitting the (orthoganal or polar) mesh of
θ values, to various families of functions, and

• an algebraic approach, using the Gröbner package of the software, with a
discussion of the problems arising in the process.

These methods may be applied to generalized Fermat curves, we mean curves
whose equation is of the form |x|k + |y|k = 1, where k may be any positive real
number. When k ≥ 1, the curve is strictly convex. If k < 1, the curve has cusps and
the desired isoptic curve may be inside the given Fermat curve.

For our work, we use Mathematica, Maple and the Dynamical Geometry Sys-
tem Geogebra.
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Figure 3: Numerical analysis of isoptics of a Fermat curve for k = 4
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Constructing Linkages for Drawing Plane Curves
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We describe an application of computer algebra to the construction of mecha-
nisms with certain prescribed properties. For this purpose, we have developed the
package PlanarLinkages in Mathematica; it provides commands for construct-
ing and visualizing planar linkages that draw a prescribed algebraic curve. The
construction procedure is based on so-called motion polynomials; their basic arith-
metic and a factorization algorithm is also provided by the package.

A linkage is a mechanical device consisting of rigid bodies (called links) that
are connected by joints. We restrict our attention to planar linkages, i.e., to linkages
all of whose links move in parallel planes. Moreover, we consider only rotational
joints, i.e., we don’t allow prismatic joints. We say that a linkage has mobility one,
if it has only one degree of freedom; if we move a linkage of mobility one, the
trace of any point located on one of the links yields a bounded curve in the plane.

The problem of constructing a planar linkage that draws a finite segment of a
given algebraic curve was first addressed and solved in full generality by Kempe [2].
While his construction is very elegant in theory, it yields quite complicated link-
ages in practice. In a recent article [1], the symbolic computation group in Linz
designed a novel algorithm for basically the same problem. The advantage of the
new algorithm is that it yields much simpler linkages: the number of links and
joints is only linear in the degree of the curve. Moreover, it allows for a simple col-
lision detection, which for general linkages is a very hard problem. The drawback
of our method is that it is only applicable to bounded rational curves, i.e., to curves
that are parametrizable by rational functions and that are contained in some disk of
finite radius.

A motion is a one-dimensional family of direct isometries (i.e., translations and
rotations). We denote by SE2 the special Euclidean group, which is the set of direct
isometries in the plane with composition as the group operation. For a convenient
treatment in a computer algebra system, we encode direct isometries as elements
of the noncommutative R-algebra K of dual complex numbers:

K= C[η ]/(η2, iη +η i).

Its elements are of the form z+ηw with complex numbers z,w ∈C, and according
to the defining relations, which can be seen as rewriting rules, they are multiplied
as follows:

(z1 +ηw1) · (z2 +ηw2) = z1z2 +η (z1w2 + z2w1). (1)

1
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By defining on K the equivalence relation

k1 ∼ k2 :⇐⇒ k1 = αk2 for some α ∈ R\{0}, (2)

we can show that the multiplicative group

{z+ηw ∈K | z 6= 0}/∼

is isomorphic to SE2. A univariate polynomial in K[t] then gives rise to a one-
dimensional family of direct isometries and is therefore called a motion polyno-
mial. Motions that can be represented in this way are called rational motions. Our
algorithm takes as input a motion polynomial and outputs a planar linkage of mo-
bility one realizing the corresponding rational motion. This task is slightly more
general than drawing a rational curve, since also the orientation of the end effector
can be taken into account.

A motion polyomial P = Z+ηW ∈K[t] is called bounded if the complex poly-
nomial Z ∈ C[t] does not have any real roots; the connection to the boundedness
of the corresponding curve (the orbit of the origin) is established by the fact that Z
appears as the denominator of its parametrization.

In order to construct a linkage that realizes the motion described by P(t), we
want to decompose it into simpler motions, namely into revolutions; these cor-
respond exactly to motions that can be realized by a single (rotational) joint. We
find [1, Lemma 4.3] that each linear motion polynomial, whose orbits are bounded,
represents a revolute motion. Therefore, the desired decomposition is obtained by
a factorization of P into linear polynomials; we present an algorithm for this task.

The factorization allows us to construct a linkage, in the form of an open chain,
whose links can move according to the revolutions represented by the linear fac-
tors. Since such a linkage has many degrees of freedom, we need to constrain its
mobility. This is done by adding more links and joints, which is achieved by an
iteration of the so-called flip procedure [1, Sections 6–7].
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Computer-mediated thinking

R. M. Corless

ORCCA and the Department of Applied Mathematics, University of Western Ontario, Canada,
rcorless@uwo.ca

This talk discusses computer-mediated thinking and some of its possible im-
plications for curriculum design in mathematics education. We begin with a dis-
cussion of today’s context and of ideas related to computer-mediated thinking. We
continue with examples of the use of computer-mediated thinking in modern ap-
plied mathematics. We then extract some suggestions for a curriculum in mathe-
matics centred at the calculus level. We include specific suggestions for removing
material from the current syllabus. We end with a discussion of the unintentional
power of the calculus.
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Automated study of a curve and its associated curves:
the case of an astroid

Th. Dana-Picard

Jerusalem College of Technology, ndp@jct.ac.il

In [1] and [2] we studied isoptic curves of conics and showed a unifying frame-
work for conics (in 2D) and toric sections (in 3D). In other works such as [3], we
studied envelopes of parametric families of plane curves, etc. A common aspect of
these works relies in the double trend, geometrical experiments using technology
and algebraic proofs relying on the solution of non linear polynomial equations.
For this, we used packages relying on the computation of Gröbner bases.

In this talk, we focus on one family of curves, namely astroids, and study var-
ious aspects of it using CAS or DGS. Denote by C by the following equivalent
definitions:

• An implicit equation: |x| 2
3 + |y| 2

3 = k, k > 0;

• A parametric presentation (x(t),y(t))=
(
a cos3 t,a sin3 t

)
, t ∈ [0,2π], where

a is a non negative real number.

WLOG we work with k = a = 1. The curve is displayed in Figure 1.

Figure 1: An astroid

From another point of view, this curve can be obtained as the envelope of the
family of segments with fixed length (in our case the length is equal to 1) and

1
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whose endpoints are on the coordinate axes. Translating the data into polynomial
equations is a central issue.

Using technology, we study the astroid (C) as an envelope. Afterwards we
study the orthoptic curve of the astroid C , namely the geometric locus of the points
through which pass two perpendicular tangents to the astroid; see Figure 2. This is
a well-known question when dealing with conics, but much less with other curves.
The curve which is found is a 4-folium, which can be viewed also as the projection
onto the plane of a specific space curve. We have here a new case where a unified
study, both in 2D and in 3D, of geometrical objects can be performed.

Figure 2: The orthoptic of the astroid

The orthoptic curve is non convex and has a singular point. We refer to [4] for
conditions for convexity of an isoptic curve.

In this talk, we will discuss various methods, and also how to generalize the
question to any angle, i.e. how we can study other isoptic curves of C . The ex-
perimental part of the work is performed using Maple and GeoGebra. Of course,
for building curves, the slider bar available in GeoGebra (or, as an alternative, the
“Move” feature), is a central tool.
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Automated theorem proving in school mathematics

R. Hašek

University of South Bohemia, Czech Republic, hasek@pf.jcu.cz

Particular examples of possible ways to utilize the methods and tools of au-
tomated theorem proving in secondary school mathematics teaching and learning
will be presented. Questions on the current use of these methods and their perspec-
tives in school mathematics will also be issued.
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Achievements and challenges in automatic locus and
envelope animations in dynamic geometry environments

Z. Kovács

The Private University College of Education of the Diocese of Linz, Austria, zoltan@geogebra.org

Recent researches on computing Gröbner bases significantly faster than earlier
opened the road to manipulate on tens of equation systems in many variables within
a second. Thus nowadays it is possible to create real-time interactive animations
based on purely symbolic computations. Such real-time dynamic geometry ani-
mations include computing and plotting locus or envelope equations for geometry
constructions on various software platforms [1].

We highlight GeoGebra’s [2] animation related features on using such
heavy computations. By analyzing more than 100 of test cases we can
classify locus/envelope problems into smooth, lagging, heavy and infeasi-
ble sets. Our database at ❤tt♣✿✴✴❞❡✈✳❣❡♦❣❡❜r❛✳♦r❣✴tr❛❝✴❜r♦✇s❡r✴

tr✉♥❦✴❣❡♦❣❡❜r❛✴t❡st✴s❝r✐♣ts✴❜❡♥❝❤♠❛r❦✴❛rt✲♣❧♦tt❡r is continu-
ously tested against GeoGebra’s current source code on a daily basis and
evaluated at ❤tt♣s✿✴✴♣r♦✈❡r✲t❡st✳❣❡♦❣❡❜r❛✳♦r❣✴❥♦❜✴●❡♦●❡❜r❛✲❛rt✲

♣❧♦tt❡rt❡st✴✇s✴t❡st✴s❝r✐♣ts✴❜❡♥❝❤♠❛r❦✴❛rt✲♣❧♦tt❡r✴❤t♠❧✴❛❧❧✳❤t♠❧

by using the Jenkins open source automation server for multiple platforms.
The classification allows us to propose some novel methods [3] in computer

aided teaching of planar geometry in the classrooms. On the other hand, we call
for collaboration to attempt handling non-smooth problems by working together
with authors of open source implementations of efficient elimination algorithms.

This on-going work is a cooperation with F. Botana, B. Parisse, T. Recio and
M. P. Vélez.
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Investigation of geometric loci using DGS and CAS

J. Blažek1, P. Pech2

1 University of South Bohemia, Czech Republic, blazej02@pf.jcu.cz
2 University of South Bohemia, Czech Republic, pech@pf.jcu.cz

The tool Locus belongs to one of traditional functions of dynamic geometry
systems (DGS). We cannot use it always, to its application we need two points.
The first point is a mover, the point which usually moves along a certain object.
The second point—a tracer—is somehow dependent on the mover and draws the
sought trajectory. The command Locus is very simple and useful, its disadvantage
is that we cannot apply it to every problem. Problems that we will present in the
talk are of this case.

To determine these problems we have to use a more advanced tool LocusEqua-
tion which has recently been implemented into GeoGebra version 5 (see [1] and
[3]). This command brings a completely new approach in searching for loci. This
approach belongs to automated discovery [8], the part of the theory of automated
theorem proving [5]. The tool is based on elimination of variables in a system of
algebraic equations describing the locus. It returns an implicit equation of a curve.
It is well known that the result is the Zarisky closure of a projection on the space
of local coordinates [6]. This often leads to the fact that instead of a real locus we
get the smallest variety which contains, besides the locus, also some extraneous
objects not pertaining to it. Before using the command LocusEquation we have to
construct in GeoGebra a geometric diagram describing the locus. After construct-
ing the diagram we apply the command LocusEquation which has two parameters.
The first one is the thesis T (which must be a Boolean expression), the second one
is a free point P whose locus we investigate. The result of LocusEquation [T,P]
produces the set V such that “if T is true then P ∈V ” (see [2]).

Several Boolean expressions in the form of commands such as AreCollinear
or AreConcyclic are tested in some examples which results to various loci, usually
curves, in the plane (see [7]). Here we encounter problems which can occur in loci
investigation and which could be possibly solved in the future.

By searching for the locus we will apply Groebner bases and Wu–Ritt charac-
teristic methods using software CoCoA [4] and Epsilon library [9].
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Automated Reasoning Tools in GeoGebra

T. Recio

University of Cantabria, Spain, tomas.recio@unican.es

GeoGebra [4] is a dynamic geometry software with tenths of millions users world-
wide. Despite its original merely graphical flavor, successful attempts were per-
formed during the last years towards combining standard dynamic geometry ap-
proaches with automated reasoning methods using computer algebra tools.

Since Automated Theorem Proving (ATP) in geometry has reached a rather
mature stage, a multinational group (see the authors of [2] for a partial relation of
its members) started in 2010 a project of incorporating and testing a number of dif-
ferent automated geometry provers in GeoGebra. This collaboration was built upon
previous approaches and achievements of a large community of researches, involv-
ing different techniques from algebraic geometry and computer algebra. Moreover,
various symbolic computation, open source, packages have been involved, most
importantly the Singular [3] and the Giac [8] computer algebra systems. See [6]
and [7] for a more detailed overview.

As a result of this collaboration, we have been able to recently announce the
implementation [1] of three automated reasoning tools (ART) in GeoGebra, all of
them working in the desktop, web, tablet or smartphone versions of GeoGebra: the
automated derivation of (numerical) properties in a given construction, by means
of the Relation Tool; the verification of the symbolic truth of these properties, by
means of the Prove and ProveDetails tools; and the discovery of missing hypothe-
ses for a conjectural statement to hold true, through the LocusEquation tool.

The Relation Tool, in its original form, allows selecting two geometrical ob-
jects in a construction, and then to check for typical relations among them, in-
cluding perpendicularity, parallelism, equality or incidence. Finally, it shows a
message box with the obtained information (yes/no the relation holds). GeoGe-
bra version 5 now displays an extra button in the message box with the caption
“More. . .” which results in some symbolic computations when pressed. That is, by
pressing the “More. . .” button, GeoGebra’s Automatic Theorem Proving subsys-
tem starts and selects (by some heuristics) an appropriate prover method to decide
if the numerically obtained property is indeed absolutely true in general. The cur-
rent version of GeoGebra is capable of choosing a) the Gröbner basis method, b)
Wu’s characteristic method, c) the area method, or d) sufficient number of exact
checks, deterministic method (see [5] and [9]), as the underlying ATP technique
addressed by the Prove command. See [7] for more details on this portfolio prover.

Moreover, if the conjectured relation does not (mathematically speaking) hold,

1
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the first two methods can determine some geometrical extra-conditions, which need
to hold true in order to make the given statement generally correct, either using the
ProveDetails tool (in the generally true case) or the LocusEquation tool (in the
generally false case).

In the talk I will outline, through examples, some features of the ART in Ge-
oGebra, providing some details on the underlying algebraic methods and reporting
on our current work-in-progress concerning this topic, done in cooperation with F.
Botana, Z. Kovács and M.P. Vélez.

Acknowledgement: Partially supported by the Spanish Ministerio de Economía
y Competitividad and by the European Regional Development Fund (ERDF), un-
der the Project MTM2014-54141-P.
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On the computation of the straight lines contained in a
rational surface.

J.G. Alcázar1, J. Caravantes2

1 Universidad de Alcalá, Madrid, Spain, juange.alcazar@uah.es
2 Universidad Complutense, Madrid, Spain, jcaravan@mat.ucm.es

Straight lines are certainly notable curves in an algebraic surface. Probably
the most famous result on algebraic surfaces containing straight lines is related to
cubic surfaces: G. Salmon [3], after correspondence with A. Cayley, proved that
projective smooth cubic surfaces contain exactly 27 (projective, complex and real)
straight lines, some of them at infinity. These surfaces happen to be rational, and
one can compute the straight lines contained in the surface from the base points of
the parametrization [2].

However, unlike cubics, surfaces of degree higher than 3 do not necessarily
contain straight lines. Furthermore, in the affirmative case, up to our knowledge
there is no known algorithm other than the brute-force approach to find them. In
this talk we will present the ideas in [1] to solve the problem of determining the
straight lines contained in a surface defined by a rational parametrization of any
degree. The main idea is to exploit the well-known result in Differential Geometry
that characterizes real non-singular straight lines contained in a surface, as curves
that are simultaneously asymptotic lines, and geodesics. This characterization pro-
vides differential conditions to find the straight lines contained in the surface, that
we transform into algebraic conditions; this way, we can take advantage of clas-
sical methods in polynomial algebra, mainly factoring and resultants, to solve the
problem. Other special straight lines, in particular the ones contained in the singu-
lar part of the parametrization, can also be found. Additionally, the same method
allows to compute the complex straight lines contained in the surface too.
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Modeling and rationalization of free-form surfaces

M. Bartoň1

1 Basque Center for Applied Mathematics (BCAM), Bilbao, Spain, mbarton@bcamath.org

Free-form surfaces are a popular modeling tool for engineers, architects, and
designers in general. Most commonly represented as non-uniform rational B-
splines (NURBS), these surfaces are supported by a vast majority of the state-of-
the-art computer-aided design (CAD) software. Using such software, the modeling
stage of a free-form surface is intuitive via local adjustment of the control points.
In contrast, the manufacturing (or rationalization) stage is difficult, particularly be-
cause of the very diverse nature of a general free-form surface.

In this talk, I will discuss our recent work in this reverse engineering direction
and discuss possibilities and limitations of geometrical approaches that aim at ap-
proximating general free-form geometry by manufacturable patches. In particular,
I will briefly discuss three projects that use circular arc splines [1], sweeps of pla-
nar profiles [2], and envelopes of surfaces of revolution [3]. Finally, I will indicate
future research directions that point towards manufacturing-aware modeling, i.e.,
a methodology that directly considers the manufacturing technology already in the
modeling stage.
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Precise Construction of Micro-structures and Porous
Geometry via Functional Composition

G. Elber1

1 Technion, Israel, gershon@cs.technion.ac.il

We introduce a modeling constructor for micro-structures and porous geometry
via curve-trivariate, surface-trivariate and trivariate-trivariate function (symbolic)
compositions. By using 1-, 2- and 3-manifold based tiles and paving them multi-
ple times inside the domain of a 3-manifold deforming trivariate function, smooth,
precise and watertight, yet general, porous/micro-structure geometry might be con-
structed, via composition. The tiles are demonstrated to be either polygonal meshes,
(a set of) Bézier or B-spline curves, (a set of) Bézier or B-spline (trimmed) sur-
faces, (a set of) Bézier or B-spline (trimmed) trivariates or any combination thereof,
whereas the 3-manifold deforming function is either a Bézier or a B-spline trivari-
ate.

We briefly lay down the theoretical foundations, only to demonstrate the power
of this modeling constructor in practice, and also present a few 3D printed tangi-
ble examples. We will then discuss these results and conclude with some future
directions and limitations.
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Solving Multivariate Polynomial Systems using
Hyperplane Arithmetic and Linear Programming

I. Hanniel1

1 Technion, currently at Mobileye Vision Technologies Ltd., iddo.hanniel@mobileye.com

Solving polynomial systems of equations is an important problem in many
fields such as computer-aided design and manufacturing [1] and robotics [2]. In
recent years, subdivision-based solvers, which typically make use of the properties
of the Bézier / B-spline representation, have proven successful in solving such sys-
tems of polynomial constraints [3, 4, 5]. A major drawback in using subdivision
solvers is their lack of scalability [6]. When the given constraint is represented as
a tensor product of its variables, it grows exponentially in size as a function of the
number of variables.

In this paper, we present a new method for solving systems of polynomial con-
straints, which scales nicely for systems with a large number of variables and rela-
tively low degree. Such systems appear in many application domains. The method
is based on the concept of bounding hyperplane arithmetic, which can be viewed
as a generalization of interval arithmetic [7]. We construct bounding hyperplanes,
which are then passed to a linear programming solver in order to reduce the root
domain. We have implemented our method and present experimental results. The
method is compared to previous methods and its advantages are discussed.
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Efficient Algorithms using Dynamic Bounding Volume
Hierarchy for Freeform Geometric Shapes under
Deformation

M.-S. Kim1

1 Seoul National University, South Korea, mskim@snu.ac.kr

We consider the construction of dynamic bounding volume hierarchy (BVH)
for planar freeform curves and surfaces under deformation. The dynamic BVH
construction is compared with conventional spatial data structures. The effective-
ness of our BVH structure is then demonstrated using a few test examples of de-
signing efficient algorithms for freeform geometric shapes under deformation.

In collaboration with Gershon Elber, Yong-Joon Kim, and Jaewook Lee
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Efficient methods for roots of univariate scalar Bèziers

Jinesh Machchhar1, Gershon Elber1

1 Technion-Israel Institute of Technology, Israel, {jineshmac, gershon}@cs.technion.ac.il

Finding roots of polynomials is a fundamental problem lying at the core of
many applications in science and engineering. For instance, defining manifolds
implicitly, computing intersection of manifolds, computing offsets and sweeps,
kinematic analysis/synthesis, etc. In this work we focus on finding zeros of uni-
variate scalar polynomials. We choose the Bernstein basis for the representation
due to their several desirable properties such as numerical stability, convex-hull
property and variation diminishing property.

Traditional methods for numerically computing the zeros of univariate scalar
Bèziers [2] employ subdivision to recursively subdivide the interval of interest, in
the middle, until either the topology of the interval is known or the width of interval
falls below the specified subdivision tolerance. Once the topology of the interval
is known, a numerical method such as Newton-Raphson is employed to locate the
roots within specified numerical tolerance.

In contrast, our method [5] begins by guessing one of the roots using the
Newton-Raphson method. The Bèzier polynomial is then subdivided at the root.
The two resulting polynomials have roots at their respective end-points which are
factored out algebraically in order to obtain polynomials of lower degree. The
algorithm then recurses on these polynomials. The reduction in the degree of poly-
nomials results in reduces complexity of the problem and higher computational
efficiency.

A salient feature of our algorithm is the ability to count the multiplicities of
roots. This is done by inspecting the terminal coefficient of the polynomial ob-
tained after factoring out root at the respective end-point of the domain. If this
coefficient is found to be zero, within specified numerical tolerance, then it indi-
cates the presence of a repeated root, which is again factored out.

The algorithm is implemented in the IRIT [1] solid modeling kernel. Com-
parison of running times of our method with previous state of the art [3, 4] over
polynomials of varying degrees shows about an order-of-magnitude speed-up.
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Rational parametrizations of Darboux and isotropic
cyclides

R. Krasauskas1, S. Zube1

1 Vilnius University, Vilnius, Lithuania, severinas.zube@mif.vu.lt

Darboux [2] and isotropic [4] cyclides are projections of intersections of cer-
tain pairs of quadrics in P4. Therefore, they are particular cases of real Del Pezzo
surfaces, that are are known to be rational. Cyclides are important for modeling ap-
plications because they contain several families of circles (Darboux case), and be-
cause they are dual to certain surfaces with rational offsets (isotropic case). There
are three topological types of real cyclides: torus topology T 2, one real spherical
component S2, or two real spherical components S2⊔S2. The latter case is the most
complicated, since R-birational parametrization is not possible, and one can only
hope to parametrize both components separately.

In this talk we represent rational parametrizations of cyclides described in
Clifford–Bézier formulas. Let A P1 be a projective line over two cases of Clifford
algebras A = Cl(R3),Cl(R2,0,1), generated by euclidean space R3 and pseudo-
euclidean space R2,0,1 with signature (++0). Our approach is to treat A P1 as an
ambient space and to consider toric Bezier patches in the corresponding homoge-
neous coordinates. It is proved that such patches of formal degree 2 with standard
and non-standard real structures cover all cases of real Darboux and isotropic cy-
clides. In particular, the case with T 2 topology has parametrization of bidegree
(1,1), and one component of case S2 ⊔S2 can be parametrized with bidegree (2,1)
in the corresponding Clifford algebra terms.

The MAPLE package "Clifford" [1] was essential for all our results that were
derived using symbolic computations. We employ the Clifford algebra Cl(R3) for
Darboux cyclides. It is remarkable that the same formulas generate parametriza-
tions of isotropic cyclides if one uses the Clifford algebra Cl(R2,0,1) instead.

Recently, studying low degree rational patches on isotropic cyclides in [4],
we noticed relations with offsets of quadrics. Oriented tangent planes of a given
quadric in R3 define a surface on the Blaschke cylinder, which is actually an
isotropic cyclide, i.e. dual to quadric. In the standard way [3], using duality, we
obtain the offset stable parametrization of the quadric. In particular, the following
offset bidegrees are obtained: (4,4) for one-sheeted hyperboloids and hyperbolic
paraboloids, (4,8) for ellipsoids and two-sheeted hyperboloids. It seems the ob-
tained degrees are minimal.
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On Multivariate Hermitian Quadratic Forms

R. Fukasaku1, H. Iwane2

1 Tokyo University of Science, Tokyo, Japan, fukasaku@rs.tus.ac.jp
2 Fujitsu Laboratories LTD/National Institute of Informatics, Kanagawa/Tokyo, Japan,
iwane@jp.fujitsu.com

Quantifier elimination over real closed fields (real QE) is an important area of
research for various fields of mathematics and computer science. Though the cylin-
drical algebraic decomposition (CAD) algorithm introduced by G. E. Collins [4]
and improved by many successive works has been considered as the most efficient
method for a general real QE problem up to the present date, we may have a more
practical method for a special type of real QE problems.

When the given quantified formula contains many equalities, before directly
applying the CAD algorithm we can eliminate all possible quantifiers using the un-
derlying equational constraints by the method introduced in [9]. The essential part
of the method is the algorithm which eliminates all quantifiers ∃X̄(= ∃X̄1 · · ·∃X̄n)
from the following basic first order formula based on the theory of real roots count-
ing by multivariate Hermitian quadratic forms introduced in [1, 7]:

φ(Ā)∧∃X̄ ( f1(Ā, X̄) = 0∧·· ·∧ fs(Ā, X̄) = 0∧h1(Ā, X̄)> 0∧·· ·∧ht(Ā, X̄)> 0),

where f1, . . . , fs,h1, . . . ,ht are polynomials in Q[Ā, X̄ ](= Q[A1, . . . ,Am,X1, . . . ,Xn])
such that the parametric ideal I = ⟨ f1, . . . , fs⟩ is zero-dimensional for any special-
ization of the variables Ā satisfying φ(Ā). The algorithm computes a comprehen-
sive Gröbner system (CGS) of I regarding Ā as parameters, then computes the
multivariate Hermitian quadratic form MI

he1
1 ···het

t
for each (e1, . . . ,et) ∈ {1,2}t and

produces the following equivalent quantifier free formula:

∑
(e1,...,et)∈{1,2}t

sign(MI
he1

1 ···het
t
) ̸= 0.

In [5] we improved the algorithm as follows. We compute a CGS of the parametric
saturation ideal I′ = I : (h1 · · ·ht)

∞ regarding Ā as parameters, then compute the
multivariate Hermitian quadratic form MI′

he1
1 ···het

t
for each (e1, . . . ,et) ∈ {0,1}t and

produce the equivalent quantifier free formula:

∑
(e1,...,et)∈{0,1}t

sign(MI′

he1
1 ···het

t
) ̸= 0.

This formula is much simpler than the first one in general and we can have a pro-
gram which is superior to any other existing implementations for many examples
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containing many equalities as is reported in [5]. Our program is further improved
by several techniques introduced in [6] and released as free software in [2]. By
the fast CGS computation algorithm introduced in [8] together with improvements
by the successive works we can now have a powerful implementation to compute
CGSs. Nevertheless, there are many real QE problems such that we can compute
a CGS of the associated parametric ideal I but cannot compute a CGS of the para-
metric saturation ideal I : (h1 · · ·ht)

∞ since the computation of a saturation ideal is
very heavy in general. As a result, there are some examples of real QE problems
containing many equalities which cannot be handled by our program but can be
handled by some other existing implementation.

In this talk, we study multivariate Hermitian quadratic forms introduced in [7]
in more detail and show several facts which are proved by our group and especially
important in a parametric polynomial ring. Using them we give an efficient method
to compute the parametric saturation ideal I : (h1 · · ·ht)

∞. It is implemented and
embedded in our new real QE program released as free software in [3]. Our new
program achieves a drastic improvement.
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On continuity of the roots of a parametric zero
dimensional multivariate polynomial ideal

Yosuke Sato1 and Hiroshi Sekigawa2

1 Tokyo University of Science, Japan, ysato@rs.kagu.tus.ac.jp
2 Tokyo University of Science, Japan, sekigawa@rs.tus.ac.jp

Continuity of the roots of a parametric unary polynomial is easily obtained
using Rouche’s Theorem. For a system of multivariate parametric polynomials,
however, it becomes a much subtler problem. The continuity property strongly
depends on a generator of the corresponding parametric zero dimensional ideal. It
seems that there have not been published any decisive paper on this problem.

In the talk, we show the following resultTheorem 1which gives a sufficient
condition of a generator of a parametric zero dimensional ideal for the continuity
property of its roots. The notion of a comprehensive Gröbner system introduced in
[4] and further developed by the successive works such as [1, 2, 3] plays a key role
in our work.

In what follows,Ā = A1, . . . ,Am andX̄ = X1, . . . ,Xn denote variables, we con-
siderĀ as parameters̄X as main variables. The symbol≻ denotes an admissible
term order on the set of all terms of̄X , for a polynomial f in Q[Ā, X̄ ], LM( f ),
LT ( f ) andLC( f ) denote the leading monomial, the leading term and the leading
coefficient of f respectively regardingf as a member of the polynomial ring over
the coefficient ringQ[Ā], i.e. f ∈ (Q[Ā])[X ].

Definition 1 Let S be an algebraically constructible subset of an affine spaceCm

for some natural numberm. A finite set{S1, . . . ,Sk} of non-empty subsets ofS is
called an algebraic partition ofS if it satisfies the following properties 1, 2 and 3:

1. ∪k
i=1Si = S.

2. Si ∩S j = /0 if i ̸= j.

3. Si is a locally closed set for eachi, that isSi =VC(I1)\VC(I2) for the varieties
VC(I1),VC(I2) of some idealsI1, I2 of Q[Ā].

EachSi is called a segment.

Definition 2 Let S be an algebraically constructible subset ofCm. For a finite sub-
setF of Q[Ā, X̄ ], a finite setG = {(S1,G1), . . . , (Sk,Gk)} satisfying the following
properties 1, 2, 3 and 4 is called a comprehensive Gröbner system ofF overS with
parameters̄A w.r.t. ≻:
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1. EachGi is a finite subset ofQ[Ā, X̄].

2. {S1, . . . ,Sk} is an algebraic partition ofS.

3. For each ¯c ∈ Si , Gi(c̄) = {g(c̄, X̄)|g(Ā, X̄) ∈ Gi} is a Gröbner basis of the
ideal⟨F(c̄)⟩ in C[X̄] w.r.t. ≻, whereF(c̄) = { f (c̄, X̄)| f (Ā, X̄) ∈ F}.

4. For each ¯c∈ Si , LC(g)(c̄) ̸= 0 for any elementg of Gi .

In addition, if eachGi(c̄) is a minimal (reduced) Gröbner basis,G is said to be
minimal (reduced). Being monic is not required. WhenS is the whole spaceCm,
the words “overS” is usually omitted.

Theorem 1 Let G = {(S1,G1), . . . , (Sk,Gk)} be a minimal comprehensive Gröb-
ner system w.r.t. an arbitrary term order. If the ideal⟨Gi(c̄)⟩ is zero dimensional
for eachc̄∈ Si , then the set of all roots of the system of the parametric polynomial
equations g(Ā, X̄) = 0,g∈ Gi is continuous in the segmentSi as a function of the
parametersĀ.
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An algorithm for computing Grothendieck local residues I
— shape basis case —

K. Ohara1, S. Tajima2
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In this talk, we will give an algorithm for exactly computing Grothendieck
local residues for rational n-forms of n variables under certain condition and show
an implementation on a computer algebra system Risa/Asir. Grothendieck local
residue is natural generalization of the well-known residue for complex functions
of one variable and is defined as an integration of meromorphic n-form of complex
n variables on a real n-cycle around an isolated common zero. Let us recall the
analytic definition of Grothendieck local residues. (see [1] chapter 5 for detail.)

Definition. Denote by O(U) a ring of holomorphic functions on a ball U ⊂Cn.
Suppose that f1(x), . . . , fn(x) ∈ O(U) make regular sequence and have only one
isolated common zero β ∈ U . Let Γ(β ) be a real n-cycle around β defined by
Γ(β ) = {x ∈ U | ∥ f1(x)∥ = ε , . . . ,∥ fn(x)∥ = ε} and oriented by d(arg f1)∧ ·· · ∧
d(arg fn)≥ 0. Denote τF =( f1(x) · · · fn(x))−1dx1 ∧·· ·∧dxn, where x=(x1, . . . ,xn).
For any ϕ(x) ∈ O(U), the integration

Resβ (ϕ(x)τF) =

(
1

2π
√
−1

)n ∫

Γ(β )
ϕ(x)τF

is called the Grothendieck local residue of meromorphic n-form ϕ(x)τF .

Grothendieck local residue is a quite important concept in pure mathematics.
However it is hard to directly evaluate them from the definition because of compli-
cated geometric shape of the real n-cycle in 2n-dimensional real space. The corre-
spondence ϕ 7→Resβ (ϕτF) given by the local residue can be regarded as a distribu-
tion on O(U) and can be expressed by a linear partial differential operator. That is,
there exists a linear partial differential operator TF = ∑α cα(x) ∂ α

∂xα determined by
the regular sequence F = { f1, . . . , fn} such that Resβ (ϕτF) = (TF •ϕ)|x=β . Here
“•” is notation to express action by a differential operator to a function. Thus, the
local residue can be evaluated if the operator TF can be calculated. Our purpose is
to develop new and effective method for exactly computing the operator TF from
the regular sequence under certain condition.

To treat the local residue using computer algebra system, we suppose that the
regular sequence consists of polynomials. The set F generates a zero-dimensional

1



227

ideal I in C[x] = C[x1, . . . ,xn]. Then the local residue ϕ 7→ Resβ (ϕτF) is deter-

mined by the algebraic local cohomology class σF =
[

1
f1··· fn

]
∈ Hn

[Z](C[x]). The
linear partial differential operator TF is called Noether differential operator with
respect to the algebraic local cohomology class σF .

As it is well known, a polynomial ideal is decomposed to an intersection of
primary ideals. Then the algebraic local cohomology class is also expressed as

σF = σF,1 + · · ·+σF,λ + · · ·+σF,N ,

where the support Zλ of σF.λ coincides the zero set of corresponding primary com-
ponent of I. Let β ∈ Zλ and ϕ(x) ∈ C[x]. Since σFdx = σF,λ dx on Zλ , we have
Resβ (ϕ σFdx) = Resβ (ϕ σF,λ dx). Thus is allows to compute expression of the lo-
cal residue on each irreducible components. We denote by TF,λ the corresponding
Noether differential operator to the local residue ϕ 7→ Resβ (ϕ σF,λ dx). Hence the
set {(TF,λ ,Zλ ) | λ = 1,2, . . . ,N} gives an expression of the Noether differential
operator TF .

In this talk, we treat the special case that the primary ideal Iλ is expressed by
shape bases. Our purpose is to determine the differential operator TF,λ from Iλ .
We use two tools to solve this problem. One is Noether differential operator bases
which describes a relation between Iλ and

√
Iλ . Another is a suitable subset of the

annihilating ideal AnnDn(σF,λ ) of the algebraic local cohomology class σF . The
annihilating ideal is a left ideal in the Weyl algebra Dn. So the cost of computation
of AnnDn(σF,λ ) is high in general.

Under the shape base condition of primary ideals, we can explicitly construct
Noether differential operator bases and suitable subset of AnnDn(σF,λ ) without
Gröbner bases in Weyl algebra. Hence our algorithm is effective.
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An implementation of the Lê -Teissier method for
computing local Euler obstructions
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In this talk, we present an algorithm for computing local Euler obstructions of
a hypersurface with singular locus of positive dimension. The key ingredients of
our approach are the concept of parametric local cohomology system and that of
parametric polynomial systems.

The local Euler obstruction was introduced by R. D. MacPherson in a paper
[6] publishied in 1974, as a key concept to prove the existence of Chern classes for
possibly singular complex algebraic varieties, which was conjectured by P. Deligne
and A. Grothendieck.

In 1973, M. Kashiwara published a short paper [4] on holonomic D-modules
and presented an index theorem for a holonomc D-module. The index formula
involves certain geometric invariants, called a local characteristics. Here we briefly
recall the definition of the local characteristic.

Let X be an open neighborhood of the originO in Cn, Let S be an irreducible
variety and letS = ∪Sα be a Whitney stratification ofS. Let S0 denote the open
stratum ofS.Let dα be the dimension ofSα and letxα be a point inSα . Let x be
a point inS. The local characteristiccx(S)of S at x is defined inductively by the
following formula:

cx(S) = ΣSα ̸=S0cx(Sα )χ(Uα ∩S0∩Zα )

whereUα is a sufficiently small ball with centerxα , Zα is a(dα +1)-codimensional
linear plane in a general position inCn sufficiently close toxα andχ denotes the
Euler characteristic. The sum is taken all over the strataSα with x ∈ Sα .

These two concepts were independently introduced in different contexts, namely
algebraic geometry and the theory of D-modules. It turened out in [3] surprisingly
that the notion of local Euler obstruction and that of local characteristic are equiv-
alents. The local Euler obstruction has been deeply investigated and utilised by
everal authors, eapecially in the theory of singularities. Now it is known that the
notion of local Euler obstruction can be defined in several different ways. Hereas,
the computation of local Euler obstructions is quite difficult.
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For the case where the hypersurface has an isolated singularity, we alredy have
constructed in [8] an algorithm for computing local Euler obstructions. The key is
the use of the concept of parametric local cohomology systems([9]).

We address in this talk the problem of construction of an algorithm for comput-
ing local Euler obstructions of hypersurfaces with possitive dimensional singular
locus. For this purpose, we adopt the polar variety method developed by D. T. Lê
and B. Teissier [5]. We show that the use of the parametric polynomial systems and
that of parametric local cohomology systems arrows us to construct an algorithm
of computing local Euler obstructions.

We present some examples of computation.
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In this talk, first we present a new algorithm for computing integral numbers
w.r.t. an ideal in a ring of convergent power series. Second, we likewise address
the question of how to generalize the algorithms to parametric cases.

Let X be an open neighborhood of the originO in Cn, OX the sheaf of holo-
morphic functions andOX,O the stalk at the origin ofOX.

Definition 1 Let I be an ideal in the ring of convergent power seriesOX,O (i.e.,
OX,O = C{x1,x2, . . . ,xn} ). An element h∈ OX,O is said to beintegral over I if
there exists an integer r and elements ai ∈ I i , i = 1,2, . . . , r, such that

hr +a1hr−1+a2hr−2+ · · ·+ar−1h+ar = 0.

Such an equation is calledan equation of integral dependence ofh over I . The
set of all elements that are integral overI is calledthe integral closureof I .

Definition 2 Assume that h∈ OX,O is integral over I . The smallest number r
that satisfies

hr +a1hr−1+a2hr−2+ · · ·+ar−1h+ar = 0,

is said to beintegral number of h w.r.t. I where ai ∈ I i , i = 1,2, . . . , r.

Let F be a set of polynomialsf1, f2, . . . , fs in C[x1, . . . ,xn] such that{x ∈
X| f1(x) = f2(x) = · · · = fs(x) = 0} = {O}. Let IO be the ideal generated by
F in the ring of convergent power seriesOX,O andh∈ C[x1, . . . ,xn].

The first aim of this talk is giving a new algorithm for computing the integral
number ofh w.r.t. IO. The second aim is extending the algorithm to parametric
cases by using comprehensive Gröbner systems.

Let ℓ be the integral number ofh w.r.t. IO. Then,

hℓ + a1hℓ−1+a2hℓ−2+ · · ·+aℓ−1h+aℓ = 0

hℓ = −a1hℓ−1−a2hℓ−2−·· ·−aℓ−1h−aℓ,

1
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whereai ∈ I i
O, 1≤ i ≤ ℓ. That is,

hℓ ∈ (hℓ−1IO+hℓ−2I 2
O+ · · ·+I ℓ

O).

Therefore, solving the integral number ofh w.r.t. IO is equivalent to solving the
ideal membership problem in the ring of convergent power series.

We have the following lemma for solving ideal membership problems in the
ring of convergent power series.

Lemma 3 Let q be a polynomial inC[x1, . . . ,xn] and I be an ideal generated by
F in the polynomial ringC[x1, . . . ,xn]. Then, q∈ IO in OX,O if and only if there
exists a polynomial g∈ I : ⟨q⟩ such that g/∈m, where I: ⟨q⟩ is the ideal quotient in
C[x1, . . . ,xn] andm= ⟨x1,x2, . . . ,xn⟩ is the maximal ideal inOX,O.

As an algorithm for computing a basis of an ideal quotient is based on a Gröb-
ner basis computation, thus we can construct an algorithm for computing the inte-
gral number ofh w.r.t. IO via Gröbner basis.

If h or f1, . . . , fs has parameters, then we need a comprehensive Gröbner system
to solve (parametric) ideal membership problems, namely, we need it to compute
a basis of an ideal quotient. In parametric cases, the ideal quotient algorithm is
more complicated than the non-parametric ones. In fact, an extended Gröbner
basis algorithm is required to obtain a basis of ideal quotient. In this talk, we give
the detail of the algorithm and demonstrations of our implementation.

Let h= ay4z+z4 and f = x2z+yz2+y6+ay4z+z4 wherex,y,z are variables
anda is a parameters. Our implementation outputs the integral numbers ofh w.r.t.
⟨ ∂ f

∂x ,
∂ f
∂y ,

∂ f
∂z⟩ in OX,O, as follows.

· If a ̸= 0, then the integral number is 2.

· If a= 0, then the integral number is 1.
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Objective: 

The aim of the study is to develop a computer algorithm to automatically calculate 

the percentage of glandular tissue in a mammogram, making the results 

independent of the estimation of the interpreting radiologist. 

Background:  

A few studies have demonstrated a  relationship between breast composition, tissue 

density in particular, and the risk of breast cancer [1]. Breast tissue which appears 

brighter on the mammogram is  considered dense breast, and is due to a high 

percentage of glandular tissue. By contrast a high percentage of adipose (fatty) 

tissue in the breast reduces the breast density, and the resulting mammogram 

brightness. To date, the estimation of the percentage of glandular tissue is based on 

the subjective evaluation of the radiologist who must visually estimate the 

perĐentage of “ďright areas" ;glandular tissueͿ relative to the total breast image 

under consideration. This estimation is subjective and known to be imprecise and 

not consistent.  

A typical mammography study contains four standard images, taken from different 

angles. In the MLO views the pectoral muscle, extraneous to the breast tissue, 

occupies a significant portion of the image. Any computerized analysis must start 

with the removal of the pectoral muscle from the image. 

Material and Methods 

The calculation of the percentage of glandular tissue was accomplished in two 

stages. First the subtraction of the pectoral  muscle from the mammographic image 

was accomplished using a thresholding operation which creates a black and white 
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image in which the pectoral muscles appears differentiated from the adjacent breast 

tissue. The optimal threshold is determined by an algorithm which combines 

morphological methods with empirical results. 

Following segmentation of the pectoral muscle, the glandular tissue is identified by 

classification of the mammographic images into 3 classes based on the 

characteristics of the histogram as well as texture analysis. For one class the 

glandular tissue was segmented using Seed Region Growing (SRG). For the other two 

classes, a threshold value was computed using a multivariate linear regression 

model, correlating histogram characteristics to an empirically specified threshold, 

determined by participating medical experts. Following identification of the 

glandular tissue, its area by percentage of the total breast tissue is computed. 

 

Results: 

The resulting algorithm was developed based on a training set, as described. Testing 

was performing on a verification set of 160 mammogram images.  The results were 

compared to the area percentage computed based on the evaluation of independent 

radiologists, who manually defined the glandular tissue on the image. A high 

correlation of 0.92 was found between the results of the algorithm and those of the 

radiologists.  

 

Conclusion:  

The computerized algorithm developed presents an objective and systematic 

method to quantitatively evaluate the tissue density of breast tissue and thus 

improve the diagnostic accuracy of mammography.   
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The study of functions of two real variables can be supportedby visualization
using a Computer Algebra System (CAS).Historically, contour plots were the first
type of graphical representations. With the development ofscientific computing,
3D plots were introduced and plotting the graph of a two-variable function has
been made possible, including parametric plotting and implicit plotting. In most
of the CAS such as MATLAB, Maple, Mathematica, the 3D plot maybe builded
using local coordinates systems and linear interpolation of the function using local
parameters.

When the function is continuous, the uniform convergence ofthe approximated
function to the function is proved by Bernstein Theorem [5].Then the 3D plot is
independent of the type of local coordinate system. Therefore, the same 3D plot is
generated by different local coordinates; see [2].

However, in a neighborhood of a discontinuity, Bernstein Theorem fails and
the 3D plot is strongly dependant on the type of local coordinates chosen for the
3D plot.

In this present paper, we analyze the various aspects of the 3D plot created by
different local coordinates. The study focuses on functions of the typef (x,y) =
P(x,y)
Q(x,y) whereP(x,y) andQ(x,y) are polynomials of degree 2.

We distinguish different types of discontinuities:

1. Q(x,y) is a linear function;

2. Q(x,y) is a quadratic function;

3. Q(x,y) contains linear and quadratic functions.

The choice of an adequate coordinate system is required before generating a
3D plot because of two main problems:

1. A non suitable choice of local coordinates may yield an inaccurate plot. In
this case, the discretization of the function on the local coordinates miss the
discontinuity points or lines.

2. Non accurate erratic behavior along the discontinuitiesappears.

1
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3. Regular plots may be obtained when geodesics on the surfaceQ(x,y) = k are
used.

4. Multiple discontinuities are also analyzed. This analysis is based on image
processing algorithm used for curve extractions.

Finally, a comparison of some different plotting software such as MATLAB,
Maple, K3Dsurf around the choice of local coordinate systems, will be presented.
We will focus on the application of image processing for the visualization of the
discontinuities surfaces.
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CAS for Simulating Modern Art: Enforcing "Fractal"
Structure
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We experiment in emulating modern art with CASs. We start with grey-scale
image and enforce self-similar ("fractal") structure on it. If one looks on the result
close-up, only a collage of the same image is observed, but when one moves away,
the real picture reveals itself.

At the core of this project lies the concept of fractals, a phenomena that is
seen throughout nature in everything from the cauliflower to the coastline paradox.
The seemingly hidden intricacies can add complexity to even the most basic struc-
tures. Mosaics and impressionisms are excellent examples of subtle complexities
in imagery, at a glance, a given image can appear as one unit, yet when scrutinized
up close can be seen as comprising of many distinct subunits. This project utilizes
computer algebra systems to create imagery that imitates fractals in a finite manner.

Images constructed as a collage have a long history in arts, e.g. a cycle dedi-
cated to the four seasons by Giuseppe Arcimboldo (1526-1593) in Kunsthistorisches
Museum, Vienna, Austria. As a more fresh example one can mention Salvador
Dali’s Painting "Gala Contemplating the Mediterranean Sea which at a distance
of 20 meters is transformed into the portrait of Abraham Lincoln (Homage to
Rothko)" (1976). From the other side, fractal analysis is used as a tool for au-
thentication of Jackson Pollock paintings [1]. Recent studies of the fractality of
the boundaries of the Rorschach Blots shows that the number of images perceived
when observing the blots decreases with increasing of fractal dimension [2].

Here, we emulate "fractal" structure by enforcing self-similarity into the image.
We start with a grey-scale image and make two low-resolution images of it, one to
be used for the collage, another as a base for the collage. Then we divide the
base image into blocs (2x3) or (3x4) depending on the scale of the original image
and replace these blocks by the small copy of the original image with adjusted
brightness and contrast. The resulting image looks like a collage (repetition) of the
same image when observed close-up, but reveals original image when seen from
far away. Some examples are given in Figures 1-4.
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Figure 1:

Art (SPIE-2008), Bellingham, WA, ed. D. G. Stork, J. Coddington, 6810, pp. 68100F (2008)
[2] Taylor RP, Martin TP, Montgomery RD, Smith JH, Micolich AP, Boydston C, et al. Seeing

shapes in seemingly random spatial patterns: Fractal analysis of Rorschach inkblots, PLoS
ONE 12(2): e0171289 (2017).
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Figure 2:
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Figure 3:
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Figure 4:
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Evolution of the olive pit from the time of the Mishna to present time, based on 3D 
image processing techniques. 

 
Fredj Erick*(a) and Friedman Naftali(a) 

 
(a) Jerusalem College of Technology, Dept. of Computer Science, Jerusalem. 

 

Abstract 

A seemingly innocuous question in the realm of Halakha raises challenges in other 

areas, spanning the disciplines of history, botany, mathematics and computer 

sciences. There is a known discrepancy between the Halachic measurement units of 

length and volume and those known to us today, which has led to the opinions that 

some changes have occurred in the physical world, even if the possibility of inner 

contradictions within halachic definitions are disregarded.  Specifically, there may be 

a contradiction between Hazal’s measurements of olives and modern 

measurements, with the result that the halakhic ͞kazayit͟ differs from the size of the 
olive.  Assuming the discussions of Hazal actually referenced ͞medium olives͟ during 

that era, it is imperative to identify the type and average size of this olive. Several 

dominant olives have been identified in the Mediterranean area. Additionally, some 

archeological digs have revealed olive pits dating to the time of Hazal. Correlating 

these pits with olive pits prevalent today might give us a clue, though each pit needs 

to be identified as a certain specimen in order to measure the relation between 

modern olives and olives of the past. A series of verifications should clarify the 

classification issue. The research we present includes manual tests to check several 

characteristics of the olive pits and identify them based on this classification. State of 

the art three-dimensional scanning technology allows digitization of data such as 

these olive pits, and classification tests can be done much more quickly and with 

greater accuracy. 
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Cayley graphs based on octonions, and their
implementation in MAGMA
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Cayley graphs occupy an important part in algebraic graph theory. Beyond the
classical construction that requires groups, it is less known that quasi-groups are
sufficient [4], e.g. to obtain regular graphs (under very mild assumptions). We
have constructed new infinite families of regular Cayley graphs based on Moufang
loops [1]. These loops (non-associative counterpart of a group) arise naturally
as the multiplicative subloops O⋆(Fq) of octonion algebras over a finite field Fq.
There are striking analogies between quotients of these loops by their center Z ,
denoted O⋆(Fq)/Z , and the groups PGL2(Fq). This stems for the fact that the 2-
by-2 matrices over Fp (p an odd prime) are isomorphic to some quaternion algebras
H(Fp), and that octonions are doubling algebras of quaternions.

While Cayley graphs on PSL2(Fp) have been extensively studied with respect
to many aspects, their non-associative counterparts much less (besides [2], we are
not aware of concrete examples of construction of Cayley graphs on loops). The
construction we have provided [1] is inspired by the famous Ramanujan graphs of
Lubotzky-Phillips-Sarnak (LPS) [3]: first construct a free group on some gener-
ators of the integral octonions (say over Z) of given norm p, yielding an infinite
regular tree, and by reducing modulo another prime q, to obtain finite quotients of
the infinite regular tree.

• For each odd prime p, there is a distinguished family P(p)⊂O(Z) of p3+1
integral octonions of norm p whose Cayley graph is an infinite regular tree.

• for each prime q> p, let Sp,q be the canonical image of P(p) in O⋆(Fq)/Z :
this yields a Cayley graph

Xp,q = Cay(Sp,q,O⋆(Fq)/Z ), (1)

of degree p3+1, connected bipartite if
(

p
q

)
=−1 and non-bipartite with two

connected components of same order otherwise. The order is |O⋆(Fq)/Z |=
q7 −q3.

Despite these analogies with the LPS Ramanujan graphs, studying the proper-
ties of the graphs Xp,q is much more difficult than for Cayley graphs on PSL2(Fp).
We conjecture that:

1
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1. the graphs Xp,q are not vertex-transitive

2. the bipartite graphs Xp,q are semi-symmetric (edge-transitive, non vertex
transitive).

However describing even a single non-trivial automorphism is not easy (note that
the automorphism obtained by the multiplication by a group element in Cayley
graphs on groups does not exist in Cayley graphs on loops). The sole construction
of non-vertex transitive Cayley graphs on Moufang loops is in [2] where the authors
used the notion of regular maps, thereby constraining to degree 3 regular graphs.

The investigation of the properties of the graphs Xp,q has motivated an imple-
mentation 1 in MAGMA; And in order to check the implementation, of the LPS
Ramanujan graphs as well for which theoretical results are known and thus can be
verified. Due the rapidly increasing order/size of these graphs when q or p grows,
it becomes quickly impossible to build or even store the whole adjacency table of
the graphs. We could compute however the second largest eigenvalue using the
power method, and the girth (they are not Ramanujan graphs, neither have they
large girth as the LPS Ramanujan graphs). However, these computations support
the conjecture above (the girth is not uniform as in vertex-transitive graphs).
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A Collection of Procedures for Working with Directed
Strongly Regular Graphs in GAP

Š. Gyürki1

1 Matej Bel University, Banská Bystrica, Slovakia, stefan.gyurki@umb.sk

We report about a collection of routines written in computer algebra system
GAP [2] which allow efficient working with directed strongly regular graphs. Since
the main objects of interest in algebraic graph theory are highly symmetric graphs,
strongly regular graphs are playing a central role in this area. One of their possible
generalization for directed graphs was given by Duval in 1988, see [1]. These
objects started to receive more and more attention recently, therefore we developed
a package of routines in GAP in order to make easier working with them. Several
successful experimentations have been already reported (see [3, 4]), while other
computer results are still waiting for theoretical generalizations.

A directed strongly regular graph (DSRG) with parameters (n,k, t,λ ,µ) is a
regular directed graph on n vertices with valency k, such that every vertex is inci-
dent with t undirected edges, and the number of paths of length 2 directed from a
vertex x to another vertex y is λ , if there is an arc from x to y, and µ otherwise.
In particular, a DSRG with t = k is an SRG, and a DSRG with t = 0 is a doubly
regular tournament. The adjacency matrix A = A(Γ) of a DSRG with parameters
(n,k, t,λ ,µ), satisfies AJ = JA = kJ and

A2 = tI +λA+µ(J− I −A). (1)

Dealing with a DSRG always provides a challenge and poses a lot of questions:

- Does it contain subgraphs with nice properties?
- Can we interpret and generalize the idea of its construction?
- What are its connections to other combinatorial structures?

Answering these questions can be made easier with a few routine inspections
which can be left as a job for a computer.

IsDSRG: Checks whether a zero-one matrix A corresponds to a DSRG, or not. In
the first step it determines the candidates for the parameters t,λ ,µ , after that
checks equation (1).

AllInducedDSRGs, AllQuotientDSRGs: For a given graph it computes the sys-
tem of imprimitivity of its group of automorphisms and checks for all block
systems, whether there appear DSRGs among the graphs induced by the
blocks, or on the quotient graphs with respect to blocks.

1
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DSRGfromColorGraph: Starting from a color graph it checks all the possibilities
for creating digraphs as union of colors, up to algebraic automorphisms. It
uses the SetOrbit package written by Pech and Reichard, see [5, 6].

WLClosureOfDSRG: It computes the smallest coherent configuration, which con-
tains the given DSRG. It is based on Matan Ziv-Av’s procedure for comput-
ing WL-closure (Weisfeiler-Leman closure) of a graph [7].

It is needless to mention the importance of the procedure IsDSRG. Using of
procedures AllInducedDSRGs and AllQuotientDSRGs resulted in the understand-
ing of some bigger DSRGs. Their computer-free interpretation on the theoretical
level lead to the results published in [4], where we report about a construction
which creates bigger DSRGs from smaller ones under certain conditions. The pro-
cedure DSRGfromColorGraph played the key role in the discovery of DSRGs as
union of relations in association schemes. The results are reported in [3].
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Classification of discrete group actions on Riemann
surfaces of higher genera
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Discrete actions of finite groups on surfaces appears in many situations in nu-
merous branches of mathematics, cryptography, quantum physics, and many other
fields of science. In topological graph theory they can be used to derive lists of
highly symmetrical (oriented) maps of fixed genus: regular maps, vertex-transitive
maps, Cayley maps, or edge-transitive maps. In particular, the classification of
actions of cyclic groups is essential for solving enumeration problems of combina-
torial objects, i.e. maps, graphs and others.

The classification of groups acting on the sphere is a classical part of crystal-
lography. In case of torus the situation is in principle known, though there are
infinitely many group actions. The problem of classification of discrete actions of
groups on orientable surfaces of genera g ≥ 2 is nowadays challenge. Due to Hur-
witz bound there are just finitely many finite groups acting on a surface of given
genus g ≥ 2. The solution to the problem turned to be “realisable”: the classifica-
tion can be done with help of computer algebra systems. Published lists of actions
(without help of CAS’s) go up to genus five [1, 3, 5].

Using MAGMA [2] we already derived the list of actions of discrete groups on
surfaces of genus 2 ≤ g ≤ 21 [4]. We shall discuss the details of the procedure,
further improvements and applications.
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A physics perspective on Algebraic Graph Theory (AGT)

M. Kagan1

1 Pennsylvania State University, Abington, PA, USA, mak411@psu.edu

Our knowledge and intuition about electrical circuits can provide an interesting
insight on AGT. One of the prime concepts adopted from electric circuits is the
equivalent resistance, Req (resistance distance in [1]). A particularly simple ex-
presssion for Req, recently obtained in [2], yields a convenient tool to

• Investigate and make analytical statements about connectivity of graphs.

• Count the number of spanning trees and forests of certain type.

• Compute the resistance distance for generic graphs of finite size, as well as
for infinite or large graphs (with explicit dependance on the graph size) that
exhibit some symmetry or pattern [5].

• Allow for complex valued edge weights by considering the complex impedance
of AC-circuits. The expression for the equivalent impedance readily allows
to investigate the resonance phenomena in AC-circuits.

• Given the analogy between electric circuits and random walks on graphs [3],
one can readily obtain the corresponing quantities of interest for the latter,
such as, for instance, the escape probability.

Consider a graph G with n vertices and designate the edge conductance (inverse
resistance) between vertices i and j as σi j = 1/Ri j = σ ji. Without loss of gener-
ality, assume that every vertex is connected to every other vertex. If, in reality,
some vertices are not connected by an edge, we simply put the corresponding edge
conductance to zero. The weighted Laplacian (Kirchhoff) matrix for G is given by

Li j =−σi j for i 6= j, and Lii =
n

∑
j=1

σi j. (1)

The equivalent resistance between vertices i and j can be written as [2]

Req(i, j) =
∆′′

i j

∆′ , (2)

where ∆′ is (any) co-factor of the Laplacian matrix and ∆′′
i j the determinant of

L with rows and columns i and j removed. These determinants have several key

1
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properties. Both ∆′ and ∆′′
i j are polynomials (of degree n−1 and n−2 respectively)

in the edge conductances σi j and contain only positive monomials (nn−2 and 2nn−3

respectively) which are linear in each particular σi j.
Furthermore, the set of edges appearing in each such monomial of ∆′ represents

a spanning tree of graph G. Putting each non-zero σi j to 1, yields the Kirchhoff
theorem (∆′ = number of spanning trees). The set of edges in each monomial of
∆′′

i j represents a forest of two trees in G: one connected to vertex i and the other one
to vertex j. (One of the trees to be just vertex i or just vertex j.) By putting each
non-zero σi j to 1, ∆′′

i j would count the number of ways to have all vertices of G
connected (through a path) to either i or j. We can define analogous determinants
∆′ ′ ′

i jk and so on, by removing from L the rows and columns i, j, and k and so on.
∆′ ′ ′

i jk correspond to forests with trees connecting all vertices in G to either i, j, or k.
In the physics (electric) context, the two special vertices i and j in ∆′′

i j are
understood as the terminals of the voltage source (battery). If ∆′′

i j = 0, it follows
from the Kirchhoff’s vertex equations [4] that some vertex potentials cannot be
determined, which implies that there are components of G that are not connected
to the battery. Moreover, the multiplicity of zero eigenvalue in ∆′′

i j gives the number
of such disconnected components. Since any circuit with finite (or zero) values of
edge conductance must have a finite value of equivalent conductance, it follows
from Eq. (2) that if ∆′′

i j = 0 then so is ∆′. Also on the grounds of equivalent
conductance, if ∆′′

i j 6= 0, G is connected (disconnected) if and only if ∆′ 6= 0 (∆′= 0).
Finally, it can be shown that

∆′′
i j =

∂∆′

∂σi j
, =⇒ Req(i, j) =

∂ ln∆′

∂σi j
. (3)

Thus for many analytical purposes it is sufficient to know ∆′ as a function of the
edge conductances σi j. For relatively small graphs, such explicit expressions can
be obtained using widely avilable mathematical packages.
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Some new computer-aided models for the exceptional
Zara graph on 126 vertices

Mikhail Klin1,2 (Jointly with Leif Jørgensen and Matan Ziv-Av)

1 Ben-Gurion University of the Negev, Beer Sheva, Israel. klin@cs.bgu.ac.il
2 Matej Bel University, Banska Bystrica, Slovakia.

The exceptional Zara graph Z has the following properties:

• it is regular connected undirected graph on 126 vertices of valency 45;

• it contains a maximal clique C of size 6;

• each vertex x outside of clique C is adjacent to the same number ec = 2 of
neighbours in C.

The number ec is called the nexus of C. (In fact all maximal cliques of Z have the
same size 6 and nexus equal to 2.)

It was proved in [1] that these properties define unique, up to isomorphism,
graph, namely the strongly regular graph Z with the parameters (126,45,80,12,18).
The automorphism group G = Aut(Z) is a rank 3 group of order 13063680.

Our interest to the graph Z stems from the investigation of so-called total graph
coherent configurations. Namely, it was proved in [5] that an SRG Γ1 with the
same parameters and order of group appears as a suitable merging of the total
graph coherent configuration, defined by the triangular graph T (7). On this way
we get a new model Γ1 of Z, which is invariant with respect to S7, having orbits
of length 21 and 105 on vertices and 6 orbits on edges. This was established via
the use of computer package COCO [2]. It is known that the graph Z has exactly
567 maximal cliques. For the created model Γ1 these cliques split into three orbits
of lengths 105, 210, 252; the members of each orbit have a nice combinatorial
interpretation in terms of considered action of S7.

The group G=Aut(Z) contains as a subgroup of index 4 simple group PSU(4,9)
aka U4(3). This simple group is isomorphic to PΩ−(6,3). Exactly this latter group
was investigated by W.L. Edge in [3], where its primitive actions of degree 126 and
567 were clearly explained in classical terms of finite geometries.

In our attempts to create a reasonably clear model of Z, starting from a rela-
tively small subgroup of G, acting transitively on the point set of Z, our attention
was attracted to two conjugacy classes of subgroups of U4(3), both isomorphic
to PSU(3,3) of order 6048. In fact, for each of these two classes an overgroup
H = PΓU(3,3) of order 12096 is also a subgroup of G.

1
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First, the group H was regarded as the group Aut(H(3)) of the automorphisms
of the classical hermitian unital with 28 points and 63 blocks of size 4. This uni-
tal H(3) has exactly one orbit of spreads of length 63. Some properties of these
spreads, that is partitions of the vertex set into 7 blocks, were carefully investi-
gated. Using GAP [4], two conjugacy classes of subgroups L1 and L2 of H of order
96, both having orbits of length 4 and 24 on the points of H(3), were detected and
interpreted in ad hoc combinatorial terms. Transitive actions of H of degree 126
on cosets of L1 and L2 have rank 6 and 8 respectively. In each of the appearing
association schemes there exists a rank 3 merging, with basic graphs Γ2 and Γ3,
both isomorphic to Z.

Finally, a suitable amalgam of groups S7 and H in G is investigated. It allows
to outline a computer free proof of the fact that all the three graphs Γi, i = 1,2,3,
are isomorphic to Z.
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Automorphism groups of classical amorphic association
schemes of Latin type

N. Kriger1, A. Woldar2

1 Achva Academic College, nkriger1966@gmail.com
2 Villanova University, USA, andrew.woldar@villanova.edu

An association scheme is said to be amorphic if every possible merging of its
classes yields an association scheme. We base our investigation on the family of
classical amorphic association schemes of order p2, p an odd prime, and auto-
morphism group H =

(
Z2

p
)
⋊Z∗

p. By definition, such schemes are mergings of the
complete classical affine association scheme Ap of order p2 and rank p+ 2, as
introduced in [2] (see also [5]). Notably, there exists a bijection between classical
amorphic schemes and partitions of the point set of the projective line PG(1, p) of
cardinality p+1. To each such partition π with s classes of respective cardinalities
i j, 1≤ j ≤ s, there corresponds an amorphic scheme M (π) of rank s+1 whose ba-
sis graphs have valency (p− 1)i j, 1 ≤ j ≤ s. Moreover, the automorphism group
Aut(M (π)) contains H ⋊ S where S the stabilizer of π in the group PGL(2, p).
Note that here π is regarded as an ordered partition. As a consequence we obtain a
proof of the following nice folklore result:

Proposition 1.1 Amorphic scheme M (π) is Schurian if and only if S acts transi-
tively on each class of π .

An amorphic association scheme is said to be of Latin type if each class of its
corresponding partition has size of at least 3. In other words, each basis graph of
the scheme has valency at least l(p−1), l ≥ 3 and this naturally corresponds to a
set of l −2 pairwise orthogonal Latin squares.

Extending investigations in [6], the author NK arranged a new round of com-
puter experimentation aimed at classifying, up to isomorphism, all classical amor-
phic schemes of Latin type for primes p ∈ {5,7,11,13}. Schemes were summarily
generated, checked to see if Schurian, and their automorphism groups determined.
Full results were obtained for p = 5,7,11, and partial results for p = 13 (due to
limited computer memory). The number of considered schemes is indicated be-
low.

prime p 5 7 11 13
number of schemes 1 4 526 3251

More detailed information about these schemes will be presented in our talk, espe-
cially with regard to the following curious observation.

1
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Proposition 1.2 For all considered values of p and ordered partitions π , one has

Aut(M (π))∼= H ⋊S

In other words, all automorphisms of association schemes of Latin type are of
geometric nature.

In our talk, we shall also discuss recent theoretical activity aimed at extending
Proposition 1.2 to all primes p. A promising pathway is suggested, namely the
amalgamation of two diverse methodologies: classical results on transitive permu-
tation groups of prime-square order on one hand (e.g., see [1, 4, 7]) and symmetries
of nets and Desarguesian planes of order p on the other hand (e.g., see the discus-
sion in [3]).

Acknowledgment. Special thanks are due to Misha Klin for helpful intermedia-
tion between the two authors. We are also grateful to Matan Ziv-Av for creating a
few helpful GAP routines used in the course of computer experimentation.
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Enumeration of actions of cyclic groups on compact closed
surfaces

R. Nedela1

1New Technologies for Information Society, University of West Bohemia, Pilsen, Czech Republic,
nedela@savbb.sk

Between discrete actions of groups on surfaces, the actions of cyclic groups
play a central role. They appear naturally as coefficients in enumeration formulae
for coverings between manifolds, for maps and hypermaps with given number of
edges and in many other problems. Therefore, we need to count the number of them
up to an equivalence relation given by the conjugacy of the kernels of the natural
epimorphisms from the associated orbifold fundamental groups. For surfaces of
small genera g, the size of the cyclic group is bounded by a linear function of g. For
small genera one can solve the problem by the standard procedure enumerating low
index subgroups in a group given by a presentation. The respective commands are
implemented in MAGMA or in GAP. In the particular case of cyclic groups, Harvey
(1966) derived a criterion for an existence of a cyclic action on a surface of genus
g determining an orbifold with a prescribed signature. In a paper with A. Mednykh
(2006) we have derived a multivariable multiplicative function determining the
number of cyclic actions on a surface of genus g of a prescribed signature. The
function was determined in an additive form.

Later, V. Liskovets derived an equivalent multiplicative expression of the func-
tion. This simplifies the computations significantly, and as a result, we are able to
classify the cyclic actions for surfaces of genera up to 300. The tables determining
the numbers of cyclic actions were done with the help of the software packages
MAGMA and MATHEMATICA.

1
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Algebraic Graph Theory Algorithms For Modern
Computer Architectures

S. Reichard1

1 Institut für Algebra, Technische Universität Dresden, Germany, sven.reichard@tu-dresden.de

Algorithms play a big role in AGT. Examples of tasks that are solved algorith-
mically include the following:

• Isomorphism tests of coherent configurations;

• Finding the full automorphism group of a coherent configuration;

• Stabilization procedures such as Weisfeiler-Lehman, which finds the small-
est coherent configuration containing a given set of relations;

• Enumeration of mergings of coherent configurations.

Whereas computers used to be modeled using a single central processing unit
having access to a uniform random access memory this description is no longer
accurate.

Modern computers, even in the consumer PC range, provide parallelism on
several levels. Wide registers can accomodate lots of data and the possibility of
SIMD processing (Single instruction, multiple data). Processors contain several
more or less independent processing units or cores. Moreover, single cores can ex-
ecute interleave several threads of instruction, leading to apparent parallel execu-
tion (SMT, simultaneous multithreading). Computers appear which contain several
processors, and finally, large numbers of computers are interconnected in networks.

Since each of the processors has its own memory the assumption of uniform
memory the assumption of uniform memory access is not fulfilled either. But even
on a single processor we deal with the fact that faster memory is more expensive
than slower memory. This leads to a hierarchical organization of memory, with six
or more levels of slower and more abundant memory, ranging from hundreds of
bytes of registers over caches and DRAM to terabytes on a hard drive.

Since memory access dominates arithmetical computations in many problems
in AGT, the layout of data in memory is crucial for high performant algorithms.

We look at implementations of two algorithms:
The algorithm for finding coherent configurations by Weisfeiler-Lehman [3]

was originally stated in terms of matrices:

1. Replace entries of the given matrix with non-commuting indeterminates

1
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2. Compute the square of the matrix

3. Repeat until the number of distinct entries is stable.

Two implementations have been described [1], with different practical and theo-
retical complexity properties. We give a new implementation which is practically
faster on many examples and has moderate space requirements.

S-rings are particular instances of association schemes. They are invariant un-
der a regular permutation group. S-rings over a group H are thus mergings of the
centralizer ring of a regular action of H. These correspond to certain partitions of
H.

Ziv-Av has enumerated all S-rings over groups of order up to 63 [4]. The
elementary abelian group of order 64 was previously dealt with by the author.

The enumeration of mergings proceeds in two stages:

1. Enumeration of "good" subsets of H.

2. Constructing adequate partitions from those sets.

For most groups the first stage is the hardest part. Here we need to consider all
subsets of H, so the search space has the shape of a hypercube. We consider the
following optimizations:

• Using the automorphism group to reduce the search tree.

• Coarse parallelism, processing different parts of the tree simultaneously.

• Using the self-similarity of the search space. By reordering the search we
can make use of SIMD instructions.
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The Clebsch graph on the crossroads of Algebraic
Geometry and Algebraic Graph Theory
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The Clebsch graph Cl is a strongly regular graph (SRG) with the parameters
(16,5,10,0,2)S and primitive rank 3 automorphism group of order 1920, isomorphic
to the spilt extension E16 : S5. It is one of the six known primitive triangle free
SRGs with 5,10,16,56,77 and 100 vertices. All these graphs appear as (induced)
subgraph of the graph NL2(10) with 100 vertices, discovered by Dale Mesner in
1956 and also known as the Higman-Sims graph, see [6] for details. The question
about the existence of other primitive triangle-free SRGs remains open for a long
while and seems to be one of the most challenging problems in AGT.

The name Clebsch graph was coined by J.J. Seidel in [8], sometimes this name
is attributed to the complementary to Cl graph of valency 10. Many nice models of
Cl appear on the home page of Andries Brouwer [1].

Being originally educated in classical geometry of XIXth century, Seidel was
referring to the paper [2]. While the name itself was commonly used for about half
a century, it seems that its roots were not discussed properly in literature.

According to procedure, described by A. Rudvalis [7], starting from Cl, one
gets a symmetric design on 16 vertices, usually called biplane. All biplanes on 16
points are well-known, see e.g. [5]. The one, which appears from Cl is sometimes
called the nicest biplane B6 (on 16 points). According to the procedure by Rudvalis,
which involves polarities of designs, the graph Cl is reconstrutable from B6.

A remarkable issue is that some of the objects equivalent to biplanes on 16
points were also discoverdd in AG, in the framework of Kummer surfaces, see
[4]. The new incaranation of the classical results by Hudson in modern clothes of
AG appears in [3]. In this talk we are trying to tie all these loose ends, using in
particular facilites of computer packages.

In fact, Clebsch studied in his classical paper [2] a class of quartic surfaces in
P3 obtained as the image of four generic cubic homogeneous polynomials in three
variables, that vanish at a given set of of five points in generic position in P2. In
modern terms we can construct the surface by looking at the blowup of P2 in five
points in general position. The blowup surface is smooth and can be embedded
in P4. This is a Del Pezzo surface of degree 4 in P4 and projecting this surface
from a generic point not on the surface, we obtain the Clebsch quartic in P3. The
surface has 16 lines on it obtained as the images of the exceptional divisor, the

1
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line connecting two points in the blowup set and the unique conic passing through
all of the five points. These are the vertices of the classical copy of Cl and the
edges connect intersecting pairs of lines. We use Macaulay2 to construct Cl using
the original Clebsch surface and the routine for constructing the Fano scheme of
lines on the surface. An interesting connection, highlighted by Sturmfels and his
collaborators, is that the Clebsch graph appears also via tropicalization of a degree
four Dnl Pezzo surface, namely the tropicalization is a cone over the Clebsch graph.

One can also consider a Kummer surface, namely a singular quartic in P3 that
has only nodes as singularities and a maximal number of them (sixteen in this case).
A Kummer surface gives naturally a rise to a biplane via considering the sixteen
nodes and the sixteen curves passing each through exactly six of those nodes. As
mentioned above, one can obtain Cl from the configuration by the use of polarities.

A main question is can one obtain Cl from a Kummer surface using only the
algebro-geometric toolkit? It was shown by Skorobogatov in [9], that every Del
Pezzo surface of degree 4 admits a degree 2 branched covering map from the desin-
gularization of a Kummer surface, that sends lines on the desingularization to the
16 lines on our Del Pezzo surface. It is now natural to ask whether this gives a
geometric picture of the above stated classical combinatorial fact? Thus finally we
report about our computer aided efforts to clarify this issue.
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Constructive enumeration of the coherent configurations
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A coherent configuration is a partition of the arc set of a complete directed graph
with some extra requirements [1]. Coherent configurations correspond to (some)
subalgebras of the complete matrix algebra of the corresponding order. As such
a two faced concept, coherent configurations play a significant role in algebraic
graph theory.

Using a computer we constructed all coherent configurations of orders no more
than 15 (up to isomorphism). One result of this enumeration is discovery of (the
unique) non-Schurian coherent configuration of order 14 [2]. All coherent con-
figurations of orders up to 13 are Schurian, so this is the smallest non-Schurian
coherent configuration.

We will consider this project in a wider context by discussing computer aided
enumeration efforts for some subclasses of coherent configurations such as associ-
ation schemes, Schur rings, and strongly regular graphs.

The talk will also include a description of the techniques used to achieve the
reported results.
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Interactions between high-performance computing and
computer algebra: overview and perspectives

Jeremy Johnson1, Gennadi Malaschonok2, Marc Moreno Maza3
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This introductory talk is a (certainly subjective) presentation of the interactions
between high-performance computing (HPC) and computer algebra. We shall start
with an overview of passed achievements based, in particular, on the PASCO work-
shop series. Then, we shall discuss the many opportunities and challenges that
modern computer hardware offer to computer algebraists. This latter part will also
serve as a short tutorial for participants unfamiliar with fundamental HPC concepts
and techniques.
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Fast construction of a lexicographic Gröbner basis of the
vanishing ideal of a set of points

X. Dahan1

1 Ochanomizu University, Japan, dahan.xavier@ocha.ac.jp, xdahan@gmail.com

Problem Given a set V of Zariski-closed points lying in k̄n, k̄ an algebraic closure
of a base field of interest k, its vanishing ideal I(V )⊂ k[X1, . . . ,Xn] is the radical, 0-
dimensional ideal of polynomials vanishing on V . We are interested in constructing
a minimal lexicographic Gröbner basis G of I = I(V ).

Result The main outcome is Result 1. below. In HPC, a complexity analysis
often precedes an implementation, and a challenge is indeed that benchmarks meet
the expected complexity bounds. This is where lies this work (A preliminary im-
plementation is available in Maple, but cannot be qualified as HPC currently).

Notations Lex, LexGB stands for lexicographic and lexicographic Gröbner basis
respectively. Given a set E ⊂ k[X1, . . . ,Xn], then E≤ℓ denotes the set E∩k[X1, . . . ,Xℓ].

1. There is a minimal lexicographic Gröbner basis G whose any of its polynomial
can be computed in O(A(D1) +A(D2) + · · ·+A(Dn)) arithmetic operations
where Di = |V≤i| = dimk(k[X1, . . . ,Xi]/I≤i), and A(d) is the number of arith-
metic operations over k necessary to build Lagrange idempotents of d points
by using sub-product tree techniques (A(d) =M(d) log(d). Using Schönhage-
Strassen fast multiplication one has M(d) = O(d log(d) log log(d)), or M(d) =
d2 using naive polynomial multiplication).

2. the polynomials in G present a special structure, sort of redundant factors that
allows to recycle already computed polynomials and Lagrange cofactors (and
those computed in the sub-product trees) to considerably lower the number of
arithmetic operations to compute new polynomials in G .

3. Any polynomial in G , say w.l.o.g. in k[X1, . . . ,Xn] \ k[X1, . . . ,Xn−1], verifies a
generalization of Gianni-Kalkbrener theorem: if α ∈V≤ℓ is such that
degXℓ+1

(g(α,Xℓ+1, . . . ,Xn))< degXℓ+1
(g), then g(α,Xℓ+1, . . . ,Xn) = 0.

4. G is not the reduced Gröbner basis in general, hence has more coefficients, but
its coefficients are smaller.

5. to V , we first build its decomposition points tree T (V ). The arithmetic com-
plexity for solving “Problem” depends only of the shape of this tree (of course

1
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not the case for the bit complexity where the bit-size of the input points matters
also).

Brief overview of previous works The above results are related to a number of
previous works. We only refer to the most relevant ones that put into perspective
the above statements. The numbering below refers to that of above.

1. Lederer [10] who has produced the most accomplished interpolation formu-
las focuses on the reduced Gröbner basis, which complicates his task quite con-
siderably. This leaves a sharp complexity analysis quite difficult — indeed there
is none; this stems for the fact that many additional polynomials must be com-
puted on demand to cancel too large monomials. The reduced lexGB has a less
satisfactory specialization property (see [1, 8]).

Before it was understood that the configuration of points in V could give the
set of standard monomials for the lexicographic oder (Cf. [3, 13, 6, 5]), algorithms
based on linear algebra were predominant. They give roughly an O(nD3) [2, 14]
arithmetic cost (but are not constrained to the lex order).

A related problem concerns the computation of a separating basis of the vector
space k[X1, . . . ,Xn]/I. By “separating” we mean polynomials {pv}v∈V such that
pv(w) = δvw (Kronecker symbol). Such a basis is closely related to multivariate
Lagrange bases: Lundqvist [12] claims a cost of O(D2) points, but using fast inter-
polation it can be reduced to a complexity similar to that stated in Result 1. above.
As for Hermite interpolation, in [11] linear algebra exploits the possibly very low
displacement rank of the interpolating matrix to propose O((τ + 3)D2) (for Van-
dermonde we have τ = 2 hence of the same order of Lagrange interpolation with
naive multiplication).

2. Starting with Lazard’s structural theorem ([9], lexGB in two variables), sev-
eral authors have shown that a somewhat comparable result holds for more than
two variables (to cite a few [13], and implicitly in [5, 10, 6]), at least in the radical
0-dimensional case. However, few, if none, considered the relationship between
factors of two different polynomials in G . This is a key point to recycle computa-
tions and to dramatically decrease the complexity, even if it is not easy to quantify.

3. The stability of Gröbner bases under specialization refers to the fact that a
specialized Gröbner basis remains a Gröbner basis of the specialized ideal. Beyond
the seminal Gianni-Kalkbrener result [7], Becker [1] then Kalkbrener [8] showed
that whenever a degree decrease occurs after specialization, then the polynomial
reduces to zero modulo the other polynomials. As stated, the specific Gröbner
basis that we construct verifies a stronger property: no degree decrease, or else it
specializes to zero, as in Gianni-Kalkbrener’s theorem.
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4. The maximal bit-size among all coefficients of polynomials appearing in G
can be estimated to be roughly in O(nD2h2) where h is the maximal bit-size of the
components of input points. This strategy follows that of [4]. Again, obtaining
such a sharp result for the reduced lexGB is not easy.

5. this is interesting if we see the formula constructing the basis G as an alge-
braic circuit that computes the polynomials in G . This circuit depends only of the
shape of the tree.

Implementation We have implemented naively the interpolation formula that
computes G in Maple and will show experimental results that illustrate all the
points mentioned above.
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A Parallel Compensated Horner Scheme
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The Compensated Horner Scheme [1, 2] is an accurate and fast algorithm to
evaluate univariate polynomials in floating-point arithmetic. The accuracy of the
computed result is similar to the one given by the Horner scheme computed in twice
the working precision. The implementation of the Compensated Horner Scheme
runs at least as fast as existing implementations of Horner Scheme producing the
same output accuracy.

It is based on the so-called error-free transformations. These are algorithms
that make it possible to compute (in pure floating-point arithmetic) the rounding
error for the elementary operations (addition, subtraction and multiplication). In-
deed, it is possible to show that these elementary rounding errors can be represented
exactly as floating-point numbers (unless underflow or overflow occurs).

Parallelizing compensated algorithms is tedious even for summation and dot
product algorithms [3]. In this talk, we will present a parallel version of the Com-
pensated Horner Scheme. Some experiments on multicore and Graphics Processor
Units (GPU) architectures will be presented to show the efficiency of this algo-
rithm.
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Exhaustive search of optimal formulae for bilinear
maps

S. Covanov1

1 Université de Lorraine, France, {svyatoslav.covanov}@inria.fr

Finding optimal formulae for computing bilinear maps is a problem of alge-
braic complexity theory [3, 2, 16, 8], initiated by the discoveries of Strassen [16]
and Karatsuba [9]. It consists to determine almost optimal algorithms for
important problems of complexity theory, among which the well studied
complexity of matrix multiplication [16, 5, 10] and the complexity of poly-
nomial multiplication [9, 17, 15, 6].

In the field of complexity of polynomial multiplication, the first improve-
ment over the schoolbook method came from Karatsuba [9] in 1962, who
proposed a decomposition of the bilinear map corresponding to the product
of two polynomials of degree 2

� = �0 +�1� and � = �0 + �1�. (1)

The product � · � requires, to be computed, 4 multiplications using the
schoolbook algorithm: �0�0, �1�0, �0�1, �1�1. With the Karatsuba algorithm,
the coefficients of the product � ·� can be retrieved from the computation of
the 3 following multiplications: �0�0, (�0 + �1)(�0 + �1), �1�1. In particular,
Karatsuba’s algorithm can be used to improve the binary complexity of
the multiplication of two �-bit integers: instead of �(�2) with the naive
schoolbook algorithm, we obtain �(�log2 3). Then, given a degree � > 1,
computing the minimal amount of multiplications required for the product
of polynomials of degree � leads to even better complexities and produces
optimal formulae for a particular product.

The main obstacle to finding optimal formulae is the fact that the decom-
position of bilinear maps is known to be NP-hard [7]. Montgomery proposed
in [11] an algorithm to compute such a decomposition for the particular case
of polynomials of small degree over a finite field. The author takes advan-
tage of the fact that the number of all optimal formulae is limited on a finite
field. He gets new formulae for the multiplication of polynomials of degree
5, 6 and 7 over F2. In [12], Oseledets proposes a heuristic approach and uses
the formalism of vector spaces to solve the bilinear rank problem for the
polynomial product over F2. Later, Barbulescu et al. proposed in [1] a uni-
fied framework, developping the idea proposed by Oseledets using the vector
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spaces formalism, permitting the authors to compute the bilinear rank of
different applications, such as the short product or the middle product over
a finite field. Their algorithm allows one to generate all the possible rank
decomposition of any bilinear map over a finite field. This work is the main
inspiration of the current presentation.

Our work is an improvement to the algorithm introduced in [1], allowing
one to increase the family of bilinear maps over a finite field for which we
are able to compute all the optimal formulae. Our algorithm relies on the
automorphism group stabilizing a bilinear map, seen as a vector space, and
on a topological invariant of such a vector space. It can be used for proving
lower bounds on the rank of a bilinear map and it has applications for
improving upper bounds on the Chudnovsky-Chudnovsky algorithms [4, 14,
13]. Especially, we compute all the decompositions for the short product of
polynomials P and Q modulo X5 and the product of 3×2 by 2×3 matrices.
The latter problem was out of reach with the method used in [1]: we prove,
in particular, that the set of possible decompositions for this matrix product
is essentially unique, up to the automorphism group.
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Minimizing arithmetic and communication costs for faster
matrix computations

Oded Schwartz1

1 School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel

odedsc@cs.huji.ac.il

Algorithms are often evaluated in terms of the number of arithmetic operations
they performed. However, on today’s machines, communication, i.e., moving data
through memory hierarchies and among processors often requires much more time
(and energy) than performing computations. Hardware trends suggest that the rel-
ative costs of such communication will only increase. In this talk I will review
several recent algorithms for reducing both arithmetic and communication costs,
and show matching lower bounds, proving them to be optimal.

Based on joint papers with Grey Ballard, James Demmel, Andrew Gearhart,
Olga Holtz, Elaye Karstadt, Ben Lipshitz, Yishai Oltchik, and Sivan Toledo.

1



276 SESSION 15. HIGH-PERFORMANCE COMPUTER ALGE ...

Communication-efficient parallel Bruhat decomposition

Alexander Tiskin1

1 University of Warwick, Coventry, UK, A.Tiskin@warwick.ac.uk

We consider the problem of computing the Bruhat decomposition of a matrix
on a parallel computer with p processors. The communication and synchronisa-
tion between processors are accounted for according to Valiant’s bulk-synchronous
parallel (BSP) computation model [?, ?, ?]. Our algorithm obtains the Bruhat de-
composition of an n×n matrix in local computation O(n3/p) per processor, com-
munication O(n2/pα) per processor, and O(pα) barrier synchronisations, for an
arbitrary α , 1/2 ≤ α ≤ 2/3. The algorithm generalises the previously known ap-
proaches to generic and generic pairwise Gaussian elimination [?, ?], and matches
the communication lower bound Ω(n2/p2/3) on parallel matrix multiplication [?].
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Efficient Algorithms for Evaluating High-Degree Matrix
Polynomials

Niv Hoffman1, Oded Schwartz2, Sivan Toledo1
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In the early 1970s, Patterson and Stockmeyer discovered a surprising, elegant,
and very efficient algorithm to evaluate a matrix polynomial. Later in the 1970s,
Van Loan showed how to reduce the memory consumption of their algorithm, ad-
dressing an issue that was important back then. There has not been any significant
progress in this area since, in spite of dramatic changes in computer architecture
and in closely-related algorithmic problems.

We revisit the problem and apply to it both cache-miss reduction methods and
new algorithmic tools. Our main contributions are:

• We develop a new block variant of Van-Loan’s algorithm, which is usually
almost as memory-efficient as Van-Loan’s original variant, but much faster.

• We develop two algorithms that reduce the matrix to its Schur form, to speed
up the computation relative to both Patterson and Stockmeyer’s original al-
gorithm and Van Loan’s variants, including the new block variant. One al-
gorithm exploits the fact that multiplying triangular matrices is faster (by up
to a factor of 6) than multiplying dense square matrices. The other algorithm
partitions the problem into a collection of smaller ones using a relatively
recent algorithm due to Davies and Higham.

• We analyze the number of cache misses that the main variants generate,
thereby addressing a major cost on modern architecture. The analysis is
theoretical and it explains our experimental results, discussed below.

• We evaluate the performance of the direct algorithms (the ones that do not
reduce the matrix to Schur form), both existing and new, pinpointing algo-
rithms that are particularly effective.

• We predict the performance of algorithms that reduce the matrix to Schur
form using an empirically-based performance model of the performance of
their building blocks.
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High-Performance Kernels for Exact Linear Algebra

Jeremy Johnson1, Tze Meng Low2, Matthew Lambert3, Peter Oostema2, B. D.
Saunders3

1 Drexel University, Philadelphia PA, USA, jjohnson@cs.drexel.edu
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High-performance linear algebra libraries are typically built on top of fast
matrix-matrix multiplication kernels. Significant effort, by the numerical linear
algebra community, has been devoted to the implementation and optimization of
these kernels on a wide variety of computer architectures [1, 3, 4].

The computer algebra community has taken advantage of this work in [5],
avoiding duplication of effort by calling numeric kernels with block size chosen
so that overflow is guaranteed not to occur and exact results are provided. Other
efforts have been devoted to specialized coefficients domains, such as GF(2) [6, 7]
and GF(3) [8], where domain specific optimizations, such as bit packing, bit slicing
and table lookup have been used together with domain specific algorithms such as
four Russians. These efforts have tended to focus on the domain specific optimiza-
tions and not necessarily memory hierarchy and architecture specific optimations
that have been the focus of the numeric linear algebra community.

The BLIS (BLAS-like Library Instantiation Software) framework [2] is an ef-
fort to provide easy access to the optimizations used in fast matrix kernels. By
rewriting a few key kernels, the user can take advantage of the framework for
efficient use of the memory hierarchy and other architectural features. In this pre-
sentation we report on an investigation of the use of BLIS to develop matrix-matrix
multiplication kernels over various exact coefficient domains.
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Sparse matrices in computer algebra when using
distributed memory: theory and applications

G. Malaschonok1, E. Ilchenko2

1 Tambov State University, Russia, malaschonok@gmail.com
2 Tambov State University, Russia, ilchenkoea@gmail.com

J. Dongarra at his talk at International Congress ICMS-2016 [1] put attansion
on the several difficult challenges. The task of managing calculations on a cluster
with distributed memory for algorithms with sparse matrices is today one of the
most difficult challenges.

Here we must also add problems with the type of the basic algebra: matrices
can be over fields or over commutative rings. For sparse matrices, it is not true that
all computations over polynomials or integers can be reduced to computations in
finite fields. Such reduction may be not effective for sparse matrices.

We consider the class of block-recursive matrix algorithms. The most fa-
mous of them are standard and Strassen’s block matrix multiplication, Schur and
Strassen’s block-matrix inversion [2].

Class of block-recursive matrix algorithms

Block-recursive algorithms were not so important as long as the calculations were
performed on computers with shared memory. The generalization of Strassen’s ma-
trix inversion algorithm [2] with additional permutations of rows and columns by
J. Bunch and J. Hopkroft [3] is not a block-recursive algorithm. Only in the nineties
it became clear that block-recursive matrix algorithms are required to operate with
sparse super large matrices on a supercomputer with distributed memory.

The block recursive algorithm for the solution of systems of linear equations
and for adjoint matrix computation which is some generalisation of Schur inversion
in commutative domains was discraibed in [7], [8] and [10]. See also at the book
[9]. However, in all these algorithms, except matrix multiplication, a very strong
restriction are imposed on the matrix. The leading minors, which are on the main
diagonal, should not be zero.

This restriction was removed later. The algorithm that computes the adjoint
matrix, the echelon form, and the kernel of the matrix operator for the commutative
domains was proposed in [11]. The block-recursive algorithm for the Bruhat de-
composition and the LDU decomposition for the matrix over the field was obtained
in [12], and these algorithms were generaized for the matrices over commutative
domains in [14] and in [15].
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Some important areas of sparse matrix applications

Calculation of electronic circuits

The behavior of electronic circuits can be described by Kirchhoff’s laws. The three
basic approaches in this theory are direct current, constant frequency current and a
current that varies with time. All these cases require the compilation and solution of
sparse systems of equations (numerical, polynomial or differential). The solution
of such differential equations by the Laplace method also leads to the solution of
polynomial systems of equations [16].

Control systems

In 1967 Howard H. Rosenbrock introduced a useful state-space representation and
transfer function matrix form for control systems, which is known as the Rosen-
brock System Matrix [17]. Since that time, the properties of the matrix of polyno-
mials being intensively studied in the literature of linear control systems.

Groebner basis.

Another important application is the calculation of Gröbner bases. A matrix com-
posed of Buchberger S-polynomials is a strongly sparse matrix. Reduction of the
polynomial system is performed when calculating the echelon and diagonal forms
of this matrix. The algorithm F4 [18] was the first such matrix algorithm.

Solving ODE’s and PDEâs.

Solving ODE’s and PDE’s is often based on solution of leanear systems with sparse
matrices over numbers or over polynomials. One of the important class of sparse
matrix is called quasiseparable. Any submatrix of quasiseparable matrix entirely
below or above the main diagonal has small rank. These quasiseparable matrices
arise naturally in solving PDEâs for particle interaction with the Fast Multi-pole
Method (FMM). The efficiency of application of the block-recursive algorithm of
the Bruhat decomposition to the quasiseparable matrices is studied in [20].

2



282 SESSION 15. HIGH-PERFORMANCE COMPUTER ALGE ...

Development of the matrix recursive agorithms in integral
domain

Algorithms for solution of a system of linear equations of size n in an integral
domain, which served as the basis for creating recursive algorithms

(1983) Forward and backward algorithm (∼ n3) [4].
(1989) One pass algorithm (∼ 2

3 n3) [5].
(1995) Combined algoritm with upper left block of size r (∼ 7

12 n3 for r = n
2 ) [6].

Recursive algorithms for solution of a system of linear equations and for ad-
joint matrix computation in an integral domain without permutations

(1997) Recursive algorithm for solution of a system of linear equations [7].
(2000) Adjoint matrix computation (with 6 levels) [8].
(2006) Adjoint matrix computation alternative algorithm (with 5 levels) [10].

Main recursive algorithms for sparse matrices

(2008) Computation of adjoint and inverse matrices and the operator kernel [11].
(2010) Bruhat and LEU decompositions in the feilds [12].
(2012) Bruhat and LDU decompositions in the domains [13], [14].
(2015) Bruhat and LDU decompositions in the domains (alternative algorithm)
[15].

New achivements

(2013) It is proved that the LEU algorithm in the feild has the complexity O(n2rβ−2)
for matrices of rank r. [19].
(2017) It is proved that the LEU algorithm in the feild has the complexity O(n2sβ−2)
for quasiseparable matrix, if any it’s submatrix which entirely below or above the
main diagonal has small rank s [20].

Sparse matrices when using distributed memory

The block-recursive matrix algorithms for sparse matrix require a special approachs
to managing parallel programs. One approach to the cluster computations manage-
ment is a scheme with one dispatcher (or one master).

3
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We consider another scheme of cluster menagement. It is a scheme with mul-
tidispatching, when each involved computing module has its own dispatch thread
and several processing threads [21], [22].

We demonstrate the results of experiments with parallel programms on the base
of multidispatching.
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Overview

It is well-known that the advent of hardware acceleration technologies (multicore
processors, graphics processing units, field programmable gate arrays) provide vast
opportunities for innovation in computing. In particular, GPUs combined with
low-level heterogeneous programming models, such as CUDA (the Compute Uni-
fied Device Architecture, see [17, 2]), brought super-computing to the level of the
desktop computer. However, these low-level programming models carry notable
challenges, even to expert programmers. Indeed, fully exploiting the power of
hardware accelerators by writing CUDA code often requires significant code op-
timization effort. While such effort can yield high performance, it is desirable
for many programmers to avoid the explicit management of the hardware accel-
erator, e.g. data transfer between host and device, or between memory levels of
the device. To this end, high-level models for accelerator programming, notably
OPENMP [10, 4] and OPENACC [21, 3], have become an important research di-
rection. With these models, programmers only need to annotate their C/C++ (or
FORTRAN) code to indicate which portion of code is to be executed on the device,
and how data is mapped between host and device.

In OPENMP and OPENACC, the division of the work between thread blocks
within a grid, or between threads within a thread block, can be expressed in a loose
manner, or even ignored. This implies that code optimization techniques must be
applied in order to derive efficient CUDA code. Moreover, existing software pack-
ages (e.g. PPCG [22], C-TO-CUDA [6], HICUDA [13], CUDA-CHILL [14])
for generating CUDA code from annotated C/C++ programs, either let the user
choose, or make assumptions on, the characteristics of the targeted hardware, and
on how the work is divided among the processors of that device. These choices and
assumptions limit code portability as well as opportunities for code optimization.

To deal with these challenges in translating annotated C/C++ programs to
CUDA, we propose in [8] to generate parametric CUDA kernels, that is, CUDA
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kernels for which program parameters (e.g. number of threads per thread block)
and machine parameters (e.g. shared memory size) are symbolic entities instead
of numerical values. Hence, the values of these parameters need not to be known
during code generation: machine parameters can be looked up when the generated
code is loaded on the target machine, while program parameters can be deduced,
for instance, by auto-tuning.

A proof-of-concept implementation, presented in [8] and publicly available1,
uses another high-level model for accelerator programming, called METAFORK,
that we introduced in [9]. The experimentation shows that the generation of para-
metric CUDA kernels can lead to significant performance improvement w.r.t. ap-
proaches based on the generation of CUDA kernels that are not parametric. More-
over, for certain test-cases, our experimental results show that the optimal choice
for program parameters may depend on the input data size.

In this work, our goal is to enhance the framework initiated in [8] by gener-
ating optimized parametric CUDA kernels. As we shall see, this can be done in
the form of a case discussion, based on the possible values of the machine and
program parameters. The output of a procedure generating optimized paramet-
ric CUDA kernels will be called a comprehensive parametric CUDA kernel. A
simple example is shown on Figure 2. In broad terms, this is a decision tree where:

1. each internal node is a Boolean condition on the machine and program pa-
rameters, and

2. each leaf is a CUDA program P , optimized w.r.t. prescribed criteria and
optimization techniques, under the conjunction of the conditions along the
path from the root of the tree to P .

The intention, with this concept, is to automatically generate optimized CUDA
kernels from annotated C/C++ code without knowing the numerical values of some
or even any of the machine and program parameters. This naturally leads to case
distinction depending on the values of those parameters, which materializes into
a disjunction of conjunctive non-linear polynomial constraints. Symbolic compu-
tation is the natural framework for manipulating such systems of constraints; our
RegularChains library2 provides the appropriate algorithmic tools for that task.

Other research groups have approached the questions of code portability and
code optimization in the context of CUDA code generation from high-level pro-
gramming models. They use techniques like auto-tuning [12, 14], dynamic in-
strumentation [15] or both [20]. Rephrasing [14], “those techniques explore em-
pirically different data placement and thread/block mapping strategies, along with

1www.metafork.org
2This library, shipped with the commercialized computer algebra system MAPLE, is freely avail-

able at www.regularchains.org.
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other code generation decisions, thus facilitating the finding of a high-performance
solution.”

In the case of auto-tuning techniques, which have been used successfully in
the celebrated projects ATLAS [23], FFTW [11], and SPIRAL [18], part of the
code optimization process is done off-line, that is, the input code is analyzed and
an optimization strategy (i.e a sequence of composable code transformations) is
generated, and then applied on-line (i.e. on the targeted hardware). We propose
to push this idea further by applying the optimization strategy off-line, thus, even
before the code is loaded on the targeted hardware.

We conclude this extended abstract with an example illustrating the notion
of comprehensive parametric CUDA kernels, along with a procedure to gener-
ate them. Our input is the for-loop nest of Figure 1 which computes the sum of two
matrices b and c of order N using a blocking strategy; each matrix is divided into
blocks of format B0×B1. This input code is annotated for parallel execution in the
METAFORK language. The body of the statement meta_schedule is meant to be
offloaded to a GPU device and each meta_for loop is a parallel for-loop where all
iterations can be executed concurrently.

int dim0 = N/B0, dim1 = N/(2*B1);
meta_schedule {

meta_for (int v = 0; v < dim0; v++)
meta_for (int p = 0; p < dim1; p++)

meta_for (int u = 0; u < B0; u++)
meta_for (int q = 0; q < B1; q++) {

int i = v * B0 + u;
int j = p * B1 + q;
if (i < N && j < N/2) {

c[i][j] = a[i][j] + b[i][j];
c[i][j+N/2] =

a[i][j+N/2] + b[i][j+N/2];
}

}
}

Figure 1: A meta_for loop nest for adding two matrices.

We make the following simplistic assumptions for the translation of this for-
loop nest to CUDA.

1. The target machine has two parameters: the maximum number R of registers
per thread, and the maximum number T of threads per thread-block; all other
hardware limits are ignored.

2. The generated kernels depend on two program parameters, B0 and B1, which

3
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define the format of a 2D thread-block.
3. The optimization strategy (w.r.t. register usage per thread) consists in reduc-

ing the work per thread (by reducing loop granularity).
A possible comprehensive parametric CUDA kernel is given by the pairs (C1,K1)
and (C2,K2), where C1,C2 are two sets of algebraic constraints on the parameters
and K1,K2 are two CUDA kernels that are optimized under the constraints respec-
tively given by C1,C2, see Figure 2. The following computational steps yield the
pairs (C1,K1) and (C2,K2).
(S1) The METAFORK code is mapped to an intermediate representation (IR) say

that of LLVM3, or alternatively, to PTX4 code.
(S2) Using this IR (or PTX) code, one estimates the number of registers that a

thread requires; on this example, using LLVM IR, we obtain an estimate of
14.

(S3) Next, we apply the optimization strategy, yielding a new IR (or PTX) code,
for which register pressure reduces to 10. Since no other optimization tech-
niques are considered, the procedure stops with the result shown on Figure 2.

Note that, strictly speaking, the kernels K1 and K2 on Figure 2 should be given by
PTX code. But for simplicity, we are presenting them by counterpart CUDA code.

C1 :
{

B0 ×B1 ≤ T
14 ≤ R

__global__ void K1(int *a, int *b, int *c, int N,
int B0, int B1) {

int i = blockIdx.y * B0 + threadIdx.y;
int j = blockIdx.x * B1 + threadIdx.x;
if (i < N && j < N/2) {

a[i*N+j] = b[i*N+j] + c[i*N+j];
a[i*N+j+N/2] = b[i*N+j+N/2] + c[i*N+j+N/2];

}
}
dim3 dimBlock(B1, B0);
dim3 dimGrid(N/(2*B1), N/B0);
K1 <<<dimGrid, dimBlock>>> (a, b, c, N, B0, B1);

C2 :
{

B0 ×B1 ≤ T
10 ≤ R < 14

__global__ void K2(int *a, int *b, int *c, int N,
int B0, int B1) {

int i = blockIdx.y * B0 + threadIdx.y;
int j = blockIdx.x * B1 + threadIdx.x;
if (i < N && j < N)

a[i*N+j] = b[i*N+j] + c[i*N+j];
}
dim3 dimBlock(B1, B0);
dim3 dimGrid(N/B1, N/B0);
K2 <<<dimGrid, dimBlock>>> (a, b, c, N, B0, B1);

Figure 2: A comprehensive parametric CUDA kernel for matrix addition.

While this was a toy-example, advanced test cases can be found in Chapter 7
of the PhD thesis of the first author at

http://ir.lib.uwo.ca/etd/4429
3 Quoting Wikipedia: “The LLVM compiler infrastructure project (formerly Low Level Virtual

Machine [16, 7]) is a framework for developing compiler front ends and back ends”.
4The Parallel Thread Execution (PTX) [5] is the pseudo-assembly language to which CUDA pro-

grams are compiled by NVIDIA’s NVCC compiler. PTX code can also be generated from (enhanced)
LLVM IR, using nvptx back-end [1], following the work of [19].
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The FunctionAdvisor: extending information on
mathematical functions with computer algebra algorithms
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A shift in paradigm is happening, from: encoding information into a database,
to: encoding essential blocks of information together with algorithms within a
computer algebra system; so that the information is not only searchable but can
also be recreated in many different ways, as well as actually used to compute. This
talk focuses on this shift in paradigm over a real case example: the digitizing of in-
formation regarding mathematical functions as the FunctionAdvisor project of the
Maple computer algebra system. Examples of algorithms at work, for differential
polynomial representations, nth order symbolic differentiation, and computation
of branch cuts of arbitrary algebraic expressions, as well as a network of relations
between mathematical functions, all this extending the information typically found
in textbooks like Abramowitz and Stegun, are shown.
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The four double-hypergeometric Appell functions, a
complete implementation in a computer algebra system

E.S. Cheb-Terrab1
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The four multi-parameter Appell functions, AppellF1, AppellF2, AppellF3,
and AppellF4 are double hypergeometric functions that vastly extend the 2F1 hy-
pergeometric and some cases of the MeijerG functions, and through them also
include as particular cases most of the known functions of mathematical physics.
These Appell functions have been popping up with increasing frequency in applica-
tions in quantum mechanics, molecular physics, and general relativity. In this talk,
a full implementation of these functions in the Maple computer algebra system,
including, for the first time, their numerical evaluation over the whole complex
plane, is presented, with details about the symbolic and numerical strategies used.
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The International Mathematical Knowledge Trust
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A long-term goal, espoused by the International Mathematical Union (IMU)
a decade ago, has been to make available the totality of mathematical knowledge
in digital form, with human- and machine-usable tools to build on that knowledge.
This talk presents the steps being taken by an IMU working group toward this goal.

It is essential to have an organization so that the attempts the global task of
making mathematical knowledge better available. Projects that serve this goal,
those already underway and those proposed in the immediate future, can then be
brought together as whole, providing a public good for the world. Without such
coordination, many useful initiatives have limited lives and the work they have
done may be lost or duplicate other projects.

The organization, which we call the International Mathematical Knowledge
Trust (IMKT), is being set up to coordinate contributing participants working to-
ward the Global Digital Mathematics Library. The immediate objectives, in the
first year, are to create the not-for-profit organization, establish its boards and gov-
ernance, to set out suitable technical frameworks for cooperative development, and
to undertake seed projects.

More than any other field, mathematical knowledge is unique in its precision
and its enduring utility. The literature containing this mathematical knowledge
is, however, widely dispersed, uses a variety of inconsistent conventions and no-
tations, and for the most part is not in a form that admits automated use. Few
except disciplinary experts can combine results from several papers and be sure
of the results’ correctness and consistency. The correct and reliable application of
sequences of mathematical results lies at the heart of our ever-expanding technical
infrastructure. Advances here propel our society. Errors can cause disasters.

The long-term plans must address this issue from both the technical and the
organizational sides. The technical questions are such as

• “How can the existing literature repositories be united?”,

• “What forms of semantic representation are most achievable and useful for
mathematical knowledge?”,

• “How can mathematical OCR and natural language processing be used in a
semi-supervised machine learning bootstrap process?”

1
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The organizational side addresses questions such as

• “How can we build upon existing research projects around the globe?”

• “How can we most effectively engage relevant commercial enterprises in-
cluding publishers and software companies?”

• “How can these efforts be brought to the public in a coherent and sustainable
fashion?”

There are compelling arguments to create a comprehensive knowledge base from
the mathematical literature. The present organizational environment of mathemat-
ics seems to have been largely hostile to development of significant open data re-
sources in mathematics. This leaves an organizational vacuum which we propose
be filled by the IMKT, with moral support from the IMU (International Mathemat-
ical Union). The hope is that IMKT may incrementally grow a prospering network
of open mathematical knowledge providers, a union of which will provide the long-
awaited global digital mathematics library.
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How a code for verifying our conjecture opened

new directions -Abstract

Eli Bagno

May 22, 2017

Abstract

A common tool used in enumerating combinatorial objects is the gener-
ating function, which is an algebraic way of presenting all the enumerative
information in one glance. When the generating function is a polynomial
which can be factorized, the factorization may provide important infor-
mation about the objects themselves. Nowadays many mathematicians
use computer code to test their conjectures before attempting to prove
them in a rigorous form. While trying to find a closed formula for the
length function of a certain group of symmetries, we used a Sage code
to obtain a polynomial generating function. When we then used Mathe-
matica to factorize this polynomial, the results provided us with a very
significant insight: the formula we were looking for must consist of two
parts, corresponding to a specific known decomposition of the group into
cosets.

1 Complex reflection groups

Let Sn be the symmetric group on n letters 1, . . . , n. For σ ∈ Sn with σ(i) = ri,
1 ≤ i ≤ n, we denote by ((a1, . . . , an), (r1, . . . , rn) the n × n monomial matrix
with non-zero entries ai in the (i, ri)− positions. For p|m in N, we set:

G(r, p, n) = {((a1, . . . , an), σ) ∈ GLn(C) | ari = 1}.

We denote an element of G(r, p, n) in a more concise manner:

(σ, k) = ak1
1 · · · akn

n

for σ = a1 · · · an and k = (k1, . . . , kn).

Example 1.1.
π = (312, (1, 3, 3)) = 311323

Various sets of generators have been defined for complex reflection groups
but (as far as we know), no length function has been formulated.

In a separate paper [1] we provide such a function for the case of G(r, r, n)
with a specific choice of generating set proposed by Shi. (See [2]).

1
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1.1 Shi’s Generators for G(r, r, n)

For each i ∈ {1, . . . , n− 1} let si = (i, i+ 1) be the well-known adjacent trans-
positions generating Sn.

Define t0 = (1r−1, n1). In [2] the following theorem is proven.

Theorem 1.2. The set {t0, s1, . . . , sn−1} generates G(r, r, n).

After we found a length function for the elements of the group G(r, r, n),
we proceeded to seek a generating function. In order to be able to get a grasp
on the form that generating function should take, we composed a simple Sage
program which went over all the elements of G(r, r, n) for some small values of
r and n and calculated the length, using the length function we had discovered.
When we used the Mathematica program to factor the resulting polynomial,
we found out that in all the cases which had been checked, the factor [n]q! =
(1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1) appeared. Here are two examples of
the factorizations we have obtained:

Example 1.3.

G4,4,4(q) = [4]q!(1+2q2+3q3+4q4+5q5+7q6+8q7+10q8+12q9+7q10+3q11).

Example 1.4.

G6,6,3(q) = [3]q!(1 + q + 2q2 + 2q3 + 3q4 + 3q5 + 4q6 + 4q7 + 5q8 + 5q9 + 6q10).

Since [n]q! is the generating function of the length function of Sn, these and
other examples led us to the conclusion that the correct way of presenting the
length function for the elements of G(r, r, n) must be based on a decomposition
of G(r, r, n) into cosets of Sn.

In [1] we provide the following length function for G(r, r, n).

Theorem 1.5. Let π = ak1
1 · · · akn

n ∈ G(r, r, n).
Write π = u · σ where u ∈ Sn and σ is the minimal length representative.

Then: ℓ(π) =
∑

1≤i<j≤n

|kj − ki| − noninv(k) + inv(u)
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Using Gröbner basis theory for an interval method
solving underdetermined equations systems
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Let us consider solving the nonlinear underdetermined system of equa-
tions:

f : X → Rm, where X ⊆ Rn, n ≥ m . (1)

Interval methods (see, e.g., [6]) have proven to be useful, in particular, in
solving nonlinear systems of type (1). One of their advantages is allowing
not only to locate all solutions of underdetermined systems; i.e., the whole
solution manifold can be enclosed by a set of boxes (typically we compute
two sets: of verified and possible solutions, cf., e.g., [9]).

Due to the nature of interval arithmetic, it is pretty important, what
formulae we compute in it. The simplest example is [x, x] − [x, x], which,
according to the rules of interval arithmetic is equal to [x− x, x− x] and it
is in general different from zero.

It might be unlikely that we found a x − x in our formulae, but also
x2 + x, x · (x+ 1) and (x+ 1

2)
2 − 1

2 , obviously equivalent for real numbers,
may have different results for an interval argument.

Hence, combining interval methods with some symbolic transformations
might be very worthwhile.

Benhamou et alii were, to the best knowledge of the author, the first
ones to propose preprocessing equations systems under consideration using
the Gröbner basis theory [2], [3]. Computing the Gröbner basis of a set of
polynomials, corresponding to the equation system, in lexicographic order
x1 ≺ x2 ≺ · · · ≺ xn, results in a system in triangular form:





p1(x1, x2, . . . , xn) = 0
. . .
pn−1(x1, x2) = 0
pn(x1) = 0

.

Obviously, variables in the above ordering can be permuted, resulting in a
different transformed system, but also in a triangular form.

The transformation thus allows us to reduce solving the whole system to
subsequent solving of univariate equations: pn(x1) = 0, p2(x1, x2) = 0, for
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solutions x∗1 of the previous equation, etc. The procedure, according to the
quoted papers is efficient. A similar idea has been applied by the author for
solving optimization problems; see [7].

In all above cases, the system of transformed conditions gets reduced to
the triangular form. It is not so for an underdetermined system of equations,
where we only get the following transformed system:





p1(x1, . . . , xn−m+1, . . . , xn) = 0,
. . .
pm−1(x1, . . . , xn−m+1, xn−m+2) = 0,
pm(x1, . . . , xn−m+1) = 0

.

Here, we need to start with solving a multivariate underdetermined equation
pm(x1, . . . , xn−m+1) = 0. Let us denote the solution manifold of this equa-
tion M = {(x1, . . . , xn−m+1) | pm(x1, . . . , xn−m+1) = 0}. We obtain M as a
set of boxes enclosing its segments (cf., e.g., [9]).

For all these boxes, we can proceed with solving univariate equations to
find the solution of the initial system (1), as in the well-determined case.

Computing M is obviously, much more demanding and cumbersome than
solving a univariate equation, but still it is an improvement: instead of
solving a system of m equations in n variables, we need to enclose the solution
manifold of a single equation in (n−m+ 1) variables.

What is more, next steps, in which we compute feasible values of xn−m+2,
xn−m+3, . . . , xn can be parallelized in a pretty scalable manner: M is prob-
ably enclosed by a large number of boxes and computations for each of these
boxes are independent on computations on the others.

To the best knowledge of the author, this approach has not been consid-
ered or tested for underdetermined systems of equations and this paper is
going to fill this gap.

The solver used by the author is HIBA_USNE [5], written by himself
and described, i.a., in [9], [10]. For symbolic preprocessing, CoCoALib [1] is
applied.
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