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D UNE EXRIATTON POLYNOMTALE ET TSOLEMENT DE LA RACINE LA PLUS
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Abstracr ~ P shoun thut Vincen:r'

evious work by the firsc aurhor has

36 forms che basis of the for che i
S of s polynoanial equacion [3]--when cxact integer arfrimetic
thiz paper we show how this theorem can be wsed Lo:

fastest

stest mwel g

o :

T
theoren of 18
the real t
i used.

TOO

In

(a) approxinate the real roora af a0 equacrion to any dexired degree of
Accurycy——realizing chus = proposal by Lagrange £91-—, and (B) imclate

only the snallesc rout of a given equation.

Re&suné -« Les
théordae de

CuvrAges antéricurs par le premier aucewy ont
Vincent de 1836 est 1 la base de la néthode la

dénontzé que le
plux rapide pour

1'1s0lement des racines réclles < 'une &quation polyncainie [ 3i—en
ulilizanc une srithoet 1qué exycte de noshres entfers. Dans cor article

nous démantrons comment peut 2rre utilisé ce théordme a in de:

(&) xpproxine" les racines réelles d"une équution 3 o' importe quel degpré
désiré d' exactitude--réylizant afnsi une proposilion presentfe par
Lagrange [9)—er (b) @' izoler seulezent 1a racine la plux petite d'une
équa:ion dommée,
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1. Iatroduct

Vincent " theoren ot 18736 was discovered by the Firxt sutbar in Uspensky's
Theary of Equation [13], and it formed the subjecr of Lis Ph.D. chesis

(15,0151, An exrended versiaon of this theorem is the following [2]1:

[V

rmominl eguxst ion

Theoren L. Lec P(x) = 0 be a p
rationsl cowef cienra amxl vich r
snallest distance betwesn any two of 18 roors. let o be the snullest index

auch thar
2

3 >1and F_ F A -
I‘m]z 1 and l'n_l?nx>l

where F,‘ iz the k-rh menber of che Fibonacel sequence
1,1,2,3,5,8,13,21, ...

and .

Then the transformarion
- + = 4
X al ry

(which 1z cquivalent to the seriex of successive transformations of che
formx=a; +¢, 1 = 1.2,...,2) presented in the form of a coatinued
fracecion with Rrhiz.—.-ry, poairive, intcgral cloemeats 37,37, 0-,%,, traps-
forms the equation FP{x) = 0 into the wquxtion 2(£) = 0, which has not =ure
than one sign variacion in the scquence of its coefficients.
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fin [2]) can be used to izolate

The above cheorem (whoxe proof can be found
the real raors of o polynomial equation [ 41,031, [13]. The calculation of
the partial gquotientls #),89,-.-,a, for che transformations of the form

(1)-—which lcad o an equation with exsctly one sign variation—-consritutes
the polymmixl rex] rooc isolation procedure, There are fwo nethodx for

doing this, one due to Vincent and one due to the first author; each of
Lhe=e correspomnis ro a different way in which the cospurarion of rhe
nay be performed. Tt was shown [1],[£),[5], chas Vincent's method b
exponencially, whercas the method developed by the firsc author has «

polyns } 1

mis] computiag rime bournd; that is, the Lime to Esolate &il the real

rootz of 2 polvnomial equation is
kT 2%
O(n"L(|Pi _)) (2)

where o 15 che degree of the polyunomisal sl
the naximan coeflicient in absoluece value.
icular purtial quocient a4 o
of a polyow

schivved

inl. (We as=ume tha

) The computaction of zhis

hound nod with the belp
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b= 2 AC
e
1<kzn
rn_kno

is an upper bound on rhe values of (he posizive roots of P(x) = .

In the sequel we cxamine two applications of Viacent's ctheerem, First we
show that, after the real roors have boen fsolated, we can casily approxi-
the

nate them to any desived depree ot Accuracy, by baxically continudng
sane process used in the 1zolation. In thix way, we reslize a pProposal
Lagracge, who was the first to supgest the approxination of real! raots
canlinued fractfons [9]). (We actually fmproved his original fden, since o
zethod has 8 polynonisl coapucting !ime bound. Moreover, It =hould b noted
tistl Lagrange”s spproximacion nethod could not work il there were more riwn
one root In the inrerval (k,k*1), k integer. (At that rime Vincenrc's

theerem did nor exisc.)) Secondly, we give an answer to the quextion

whether fo i possible to 1so0lale Jjust the saxllesc root of a3 polyaieeis
equstion in rine less chan (2).

Bote: In bork spplications mentioned above we are concerned only with the
positive voote; the same resules beld for the negative rool=, too, it ue
seplace x by -x in the oripinsl eguacion. Alzo, the coefficicnrs of the

k L
polyooniala sre all integers.
¥ - L)

2. Approxinazion of the Real Reois of a Polynomisl Equation

Pursuing studies 1o rthe dircction outlined above, it was observed that
Theoren 1 can be xlxo used to spproxinate the real roors 1o any desir
degrec of accuracy. This is eazily schieved by extending (comput ing nore
parctisl quotdenrs of) the continged fracrien CTO, which t:unxforms che
original polynomial cquation inco one with exactly one sipn varfarfaon in
the sequence of fra coefficicncs. (The reoader should notice thal, now, che
spproxinacion aethod depemds beavily oa the izolation process. 1o ofher
worde, 4T ¢an not work il it is provided only with the izolaring intervals
of rhe roots.)

ol

Tn what follows we descerilbe fwo ways of implementing the idea nent ioned
adove] details can be found 10 [11). It was shown (121} p. 47) thac (usiag
exyct integer aritimetic) the conputarion time (for the approximarfon of
one root) for boch ways is
R Ry 3 3 i
(L) (e L(|P] )7 + a’LC[P] 3°)
» L
ahere n 4z the depree of the polynonial, L{,PE“) iz rhe length, in bits, of
the maxismnm coeffictent in adbzolute value, and ¢ ix the desired depr
accurscy {(tolarance).

15t way t¢ exlend the continued fracrion CFO 15 To roapute ¢ach

i
additional parcial guotient again with the help of Cxuchy's rule (see Figarc
'

1). However, nxinly due to Cauchy's rule, thizx ypproach iz Incfticient ux
can be scen from Table 1 (at the end of this section). Actually, it i=s even
slover thun the hisection method (8], a mechod well-knows feor itz sloumess.
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help of Cxuchy's rule.

flere k iz computed with

our approximation mathod, we

Trying to improve the emplrical performance of
whose lower bhounds D ww arce

cbserved the special nature of che polyponials
compat Ing. They are special in the sense that rhey bave one sigo vaciation

(and, hence, ealy one posirive root) and consequently, they cross rhe X=axis
only once. We Lhen proceaded o compute esch additions] parcial guotient

of the canrinued fraction CFy by successively biseering (and evalcating !

nidpointy) the inzerval (0,b), where b 15 an casily compucted vpper hound on
the value of the pesficive root (see Figure 7).

-

Figure 2: llere k iz computed by spcecssively bisccring the facerval (O,0)

bound b on the value of the positive Yoot ix ensily compt vl

with rhe help of the follauing theorem found in [11].

- P n r+l r
Theoren 2: Let Fix} = op¥ +oeee FoCgX - ¢gX = ase = ¢g bec an
intepral polynontial with oniy ooe sign wariacion in the sequence of Its
cocfficients. An upper bound on the (only one) positive rool s given by
] |
nax 'l"’.]
b * -D-J.Jl‘ — L,
n
P 5
<
frr+l ©
Canschy's rule. As can be seen

Obvicuxly, Theores 2 1z much sispler thun Cauchy s ¢

lrore Table 1 below, this approach resulzed in grear saviog
time. (To see how nech tioe iz actually speat compul i:
parcial guoriancs of CFg, coapare the last {wu colunns
e indicates the tine needed Lo spproximate 5 roor,
quotients arc providei, that in, chey were previously

o
(preconditiontng).)
I O,

ot coapuli

additio

of

o




Eopirical Results

RS

Approximation af rhe Roolx of Chedyshev's Polynomtals (2« = 10 ’))

Degree Bisection Contfnued fractions using:
Cauchy"s Rule Theores 2 Precondicioning

n
s

!
]
! Y, 17.2 11.5 6.7
|

3 17.9 10.3 5.9 5.8
$ 42. 8.7 15.7 10.3 -
: 5 45.8 40.0 16.5 1D.8
! 6 83.1 %9.8 46.2 29.2
7 90.9 105.1 44.6 27.2
’ 3 146.3 257.8 93.0 50.2
i 3 170.6 277.6 106.2 62,2
j 10 243.2 5243 202.8 116.2

; Table 1: Tines fndicated yre in seconds, and were obtained by using the
SAC-1 computer algebra sysiem on the Honevwell &6/60 computer ol
: the Universicy of Kanswx,

A direcet comparison with Verhacren's method [ 14 ] was sor
his programs wore not availsble to us. However

is somewhat faster thyn ours.
:

po=zible because
s ww believe chac his method

From Table 1 ir becowmes chvious that there

i8 20ill more rescarch 1o be
doce in rhis sreg. Ezpecially, it

ix very desirable to haxve x very cffi-
clent and inexpensive procedure to compute the bound of the posicive roat
of a polynomfal equation; this would reduce the compuring time of vur mechod
even furthes.

3. Isolatioa of the Smullest Root of a Polymamisl Fquation

As we mentioncd fa the Tatroduction the compuring time baund for the fsuls-
tion of all the real roots of a polynoeial equation is Ofn ’l.(ll‘"“]"). the
queslion naturally arises wvhelher it is possible o fsolsyte just the

smallest root of 3 polynemial cquacion in time less than (2).

The study of
this question is T

of interesc becsuxe in certain applicacions one peeds o
compute only the sxallest seol of an cquarfon. A3 # resyglt of our vork we
will iomediarely =es that the answer to rhe abave question 15 0or alwsys

posicive: we di

S S —— s M A O =

stinguish the following two cases:

K
I} (T) The roots of the polymoaial equation are all real. Tn this case

it was showm 1in

{77 thyt the isolation of only the =mallest root
i3 schieved in cine

4 -
A o(a LC|e] )

(3
3 vhich iz beccer than (2).
(1) roots of the polynomisl equation are complex. Far

shawn in [ 7] that the fsolal ion of only the
can be done in tine

0{aL(|B] )

(%)

L 391




which i) nor [
only ian this case).

roots it ix

thus becones obvious that in the presence ol o

T
preferable to isolate all che real roots and then choose the zsmallest one.

heaorere [ can be used to i=olate
noaial equation P(x) = 0, consider an infinice bimary tree in which che
roor corraesponds ro Pi(x) = O, and euch nxde correxpomds to 4 translormed
wqualion rexulling from the original after a =eriex of wuccessive trans-
formations of the form x = a; + - The path from each made to rhe right
descendent corresponds to the substitution x + 1 + x, wheres=s, Lhe path to
the left descendent correspomds to the substitution x 4 Tox - ALl the nodes
bclc.fxging £o a4 speciflic path, finite or Infinite will be considered ax
menbers of disjoint secs, which can be of three types. A set of type V,,
Vy. or ¥V, contains nodes corvesponding te pelynomials with zero, onc or
moYe Than ome sign variation, respectively. Sets of lype “-(l or Vy are
called termipal sets. Tu & Censinal ser, the node having che shortest pach
froe the vool of Lhe tree will be called s terminsl node.

xnyliexl root of a poly-

T =ee law

at

wWhat we are aller s u ’l'l-l.t'rﬂiﬂ-‘ll nixle yxsocisted withh the ssallest posi-
tive oot (4f 4c oxists). However, in moving down the tree, every time we
perform Lhe (ransformation x + = Che s=nullest rool of the corresponding
polynomial cquation becomes the Jargest onc of the resulting cquation and
vice-veraxn. Therelore, we need (o keep rrack of che pesition of the
snxllest positive root., Thiz ix schieved with the help of a boolesn
variable COUNTER (sec ¥Figurce 1), which is indcialized o zero.

i frr—— i~ i
g s £ 0

-
LY

COUNTER = O COUNTER = 1
(a) (b)

Figure 3: The positions of the smallest and largest posicive roots when
COINTER = 0 (&) and COUNTER = 1 (b).

Tn what tollows wWe give briet descriprions of the two xipaorithms used to

isolate the smallest root of a polynomial equation for cases (1) and (II)

mentioned above. Borh algoriches were obrafned by acdifying procedure ;
AMPRRT found in [&] (pp. 308-310); for detyile =ee [7], We used the &
compater algebra system vhich is implenented on the Honeywell 66/60
conputer of the Infversicy of Kanzas.

(1) PROCEDURE: Isolate the Smallest Root of 2 Polynoaial Equation (which

has anly rexl roots). i
:

Tel '
P(x) = 0 (%) ‘

e a polynomtfal equarion with v zign variationz in the zcquence of fis
coefilflicients and withioul sny sultiple roosts.

Case (£): w = Dor w 1. From the Cardano-Descartes rule orf 3

know thyt v = O implies that (3) has no poafrive roors, whereas, v = |
indicat that (5) has exactly one pomitive root which i=x «» the sn
one and (0,=) 1z its fsolacing faterval; in cicher case no cransfarmati

of (3) is necessury sl the methad rerninares.
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Case (21): w > L. In chis case (5) hyx to be §
Tirst compute the lower hound b on che values of
ssume b » | ez] vhere o, is the snallest ) and

hen we abtain rthe rrans :quacion Fy(x) = ¢ (D+x) = D which has alxo v
variations ﬁrn:i ded P(h) £ Do (T0 P(h) = 0 W& hwve found an Entweger

of che original cquation and v is decreas=d; moreaver, 1t QD .
Wwe are asrer, and, S0, We arc done.

) = D and let

urcher investigated. We
the poxitive roats {

ive root--sec =lso ! 6

pasil

slated

AN

- W
5 e

-
a3

"o

thix root s the anxllesr one
obtain Py3(x) = P
Obviocusly, v ¥ v, .:ml ve conzider t

be the oumsber of ts xipgn

folloving poesibilities:

(fi-a): COUNTER - 0. In ¢
Prpix} = 05 we Lhen ohixin p\,’.!.l - D"T‘.*J 0, ser DOUNTER =« )
and apply thiz procodure again with P \x} = D in place of (5).

iy case, x-rehr—LLl"ﬂ of vy, we dixreg

(11—b]; COUNTER - 1, Now we consider the lollowing (wo subcases depending

on the value o v]-

(£1-bl): wy = O. Here we disregard P, (x) = 0; we then obtxin
°bolx) - h.,L*J = 0, sct COUNTER ~ 0 and apply this
procedure again wvith Pb' ) = 0 in place of (5).

(2i-b2): wv) # 0. We oow apply this procedure agata with
1{x) = 0 1in place of (5).

{11) PROCEDU isolate the Sosllest Root of x Poalynoeial Equarion (soae
roots of uhich are couplex).

Our approach here iz similar to (i), except thxt now the following
additionsl subcsses have o he considered:

(IT-x) OCOUNTER = O and v-v; 1z cvean. In order to decide how Lo
proceed in this caxe we have Lo tesl whether rhere are any real roots
of Pu(x) = 0 ia che incerval (0,1). One way to test thix ix (o use
Sturn's sequence; bavever, we wse another approach (described below)
which has the same theoretlics] compuling ( » bound as Scurn's ctest.
1f chere are some real roots in (0,1) then the somllext one 1S anong
thee and we are back In case (11-a) of (1); otherwise we apply this
procedure again with Ppi(x) = 0 in place of the equacion Lorros>-ﬂdln.
co (9).

{(11-b) Likewise, if OGUNIER = 1 and vq I8 ewven we have to te

L

whethwr lTherwe xre any real roots of :-'(,(x} = 0, areater than '..1 This
text thouph ix reduced o the previous one Lf we replace x by o in
Po(x) = O, and sct COUNTER = Q. (If v, is odd rhen there fs (at lecast)
b- - l

one real rootl)

The test we use o decide L’hc’rnr L'-u»r- Mre any rexl roors in che tnterval

(0,1) i=s the lfollowing (s¢¢ aiso L2D:

: 1
Tesl: On tiwe conplex plane, the trapsformstion v + 1 1 maps cvery point
' 1y TR .
outside che circle | 3

half plae with negarive real part).

the late half plance {i.e., into Lis

See xlso [9] of thix test aml
tine conmes | forned, we have
complex roots tnidea 1he cirele

achieved with ‘s inequality (s [ 142]) or the ninicun
F 0Ot =epars
> 73 n . - 1P| (n=1)




nl "
=" o
: 2 . {n-1)
har e act do {5 ro compure the prein " amal
v, (X 0 s ) renit *ainisus
them obtala Pl Py e 0. Thux we xee poasrant ved nininun

value of

e Then rest

root separstion of Fo(
isagimary part of sy

in particular the

D is ¢clrher D o

o]

Ia the course af our vork it becane
ldzerature ix 3 pood Jowwr houmnd on
roors (or, cquivalencly, on the adsolu
Brther sesearch Into o

our algor

0! v canplex conl

of their imaginury part

" "
his topic will <mprove the cupirical performance of
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