[10] Vainberg,M.M., Trenogin,V.A., Theory of Branching of Solutions of Non-linear Equations, Leyden, Noordhoff International Publishing, 1974.
[11] Zippel,R., Newton's Iteration and the Sparse Hensel Algorithm, P.S.Wang, ed., Proc. 1981 ACM Symp. on Symbolic and Algebraic Computation, New York, ACM, 1981, pp.68-72.

A Note on a Paper by M. Mignotte
Alkiviadis G. Akritas
University of Kansas
Department of Computer Science
Lawrence, Kansas 66045

In his paper "An Inequality About Factors of Polynomials" [1]
M. Mignotte proved the following sharp inequality about the product of some roots of a polynomial. (This inequality was then used to bound the coefficients of the factors of a polynomial.)

Theorem. Let $P=\sum_{i=0}^{d} a_{i} x^{i}$ be a polynomial with complex coefficients. Let $z_{1}, z_{2}, \ldots, z_{k}$ be those zeros of P (counted with their multiplicities) such that $1 \leq\left|z_{1}\right| \leq\left|z_{2}\right| \leq \ldots \leq\left|z_{k}\right|$. Then

$$
\left|a_{d}\right| \prod_{i=1}^{k}\left|z_{i}\right| \leq\|P\|,
$$

where $\|P\|=\left(\sum\left|a_{i}\right|^{2}\right)^{\frac{1}{2}}$.

Given its importance to Computer Algebra, I would like to point out that this very theorem (along with several other interesting inequalities) was first proved by Wilhelm Specht in his 1949 paper [2].

References:

1. M. Mignotte, "An Inequality About Factors of Polynomials", Mathematics of Computation, v. 28, 1974, pp. 1153-1157.
2. W. Specht, "Abschätzungen der Wurzeln algebraischer Gleichungen", Mathematische Zeitschrift, v. 52, 1949, pp. 310-321.
