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VINCENT’S THEOREM OF 1836: OVERVIEW AND FUTURE RESEARCH
A. G. Akritas* UDC 519 61

In this paper, we present two different versions of Vincent’s theorem of 1836 and discuss various real root isolation
methods derived from them: one using continued fractions and two using bisections, the former being the fastest
real root isolation method. Regarding the continued fractions method, we first show how, using a recently developed
quadratic complexity bound on the values of the positive roots of polynomials, its performance has been improved by
an average of 40% over its initial implementation, and then we indicate directions for future research. Bibliography:
45 titles.

1. INTRODUCTION

The isolation of the real roots of a polynomial is the process of finding real disjoint intervals such that each
interval contains one real root and every real root is contained in some interval

Since the beginning of the 19th century, and according to the French “school” of mathematics, the isolation
has been considered the first step in finding the real roots of a polynomial equation, the second step being the
approximation of the roots to any degree of accuracy

Sturm was the first mathematician to present a theorem, in 1829, for isolating the real roots of a polynomial
using bisection, see [6] His theorem was widely used until 1980, when it was replaced in the major computer
algebra systems by versions of Vincent’s theorem

Vincent’s theorem of 1836 published in [44] has a very interesting and exciting history (see [11, 12, 20 22] and
[31]) This theorem was almost totally forgotten, until it was rediscovered, in 1976, by the author and formed
the basis of his Ph D thesis [1] Subsequently, scientists from all over the world made their own contributions
to various aspects of it, so that today we can claim that we have a very good understanding of this theorem

A short biography of Vincent (in French) can be found in p 1026, vol 31 of La Grande Encyclopédie, see
http://gallica.bnf.fr/ark:/12148/bpt6k24666x, whereas a copy of his portrait can be seen in
http://www.allposters.fr/-st/Lasnier-Affiches c25893 s88165 .htm, [25]

Vincent’s theorem depends on Descartes’ rule of signs, which gives us an upper bound on the number of positive
roots of a polynomial, see [24] Specifically, consider a polynomial p(z) € R[z], p(z) = apz™ + - - + a1z + ayo,
and let var (p) represent the number of sign variations or changes (positive to negative and vice versa) in the
sequence of coefficients a,,an_1, , do

Descartes’ rule of signs. The number o4 (p) of real roots (multiplicities counted) of a polynomial p(z) € R[z]
in the open interval ]0, +o00[ is bounded above by var (p); that is, we have var (p) > 04 (p)

According to Descartes’ rule of signs, var (p) = 0 implies g4 (p) =0

Additionally, according to Descartes’ rule of signs, the mean value theorem, and the fact that polynomial
functions are continuous, var (p) = 1 implies o4 (p) = 1, see [24]

Therefore, Descartes’ rule of signs yields the ezact number of positive roots only in the two special cases
mentioned above !

These two special cases of Descartes’ rule are used in both versions of Vincent’s theorem of 1836, which are
described below

The rest of the paper is structured as follows

In Sec 2, we present the two versions of Vincent’s theorem and provide a sketch of one of its proofs

In Sec 3, we explain how Vincent’s theorem can be used to isolate the real roots of polynomials and describe
the continued fractions method and two bisections methods derived from it

In Sec 4, we present recently developed, by us, linear and quadratic complexity bounds on the values of
the positive roots of polynomials and elaborate on their impact on the performance of the continued fractions
method

Finally, there is a conclusion, where we indicate directions for future research
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IThese two special cases were known to Cardano; in other words, what Descartes did was to generalize “Cardano’s special rule
of signs.” This detail is mentioned in [6].
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2. THE TWO DIFFERENT VERSIONS OF VINCENT’S THEOREM

We begin with Vincent’s original version, which was published in the first issue (1836) of the French Journal
of Pure and Applied Mathematics

Theorem 1 (Vincent’s theorem, “continued fractions” version, 1836). Given a polynomial p(z) of degree n with
rational coefficients and without multiple roots, if we sequentially perform replacements of the form

1 1
r<—oa+ , T—a+ , T—az+ |, R
T T T

where a; > 0 is an arbitrary nonnegative integer and as, as, are arbitrary positive integers, a; > 0, 1 > 1,
then the resulting polynomial has either no sign variations or one sign variation In the latter case, the equation
has exactly one positive root, which is represented by the continued fraction

ap + 1 )

whereas in the former case, there are no positive roots

The negative roots are treated in the same way as suggested by Sturm  after we transform them into positive
ones by the replacement x « —x performed on p(x) The requirement that p(x) have no multiple roots does not
restrict the generality of the theorem, because in the opposite case we first apply the square free factorization
and then isolate the roots of each of the square free factors

This theorem was kept “alive” by Uspensky in his book [42] of 1948, where it was rediscovered by the author
and formed the subject of his Ph D thesis [1] For a detailed discussion of the theorem, its extension, the
geometrical interpretation of the transformations involved, and three different proofs, see [20 22]; a fourth proof
is presented by Ostrowski [33], who rediscovered a special case of a previously stated theorem by Obreschkoff
[32, p 81] We sketch an outline of one of the proofs after presenting the second version of the theorem

In 2000, Alesina and Galuzzi published the so called bisection version of Vincent’s theorem, [20 22] This
modern version is stated as follows

Theorem 2 (Vincent’s theorem, “bisection” version, 2000). Let p(z) be a real polynomial of degree n that has
only simple roots One can determine a positive quantity § so that for every pair of positive real numbers a and
b with |b— a| < §, every transformed polynomial of the form

@) = earn( 410

has ezactly 0 or 1 variations The second case is possible if and only if p(x) has a simple root within |a,b|

Sketch of a proof. The proof by Alesina and Galuzzi is the most recent and, in the author’s opinion, the most
elegant of all existing proofs of Vincent’s theorem

To prove the theorem, Alesina and Galuzzi show that after a series of transformations (bisections) mentioned
in Theorem 1 (Theorem 2), a polynomial with one positive root will eventually have one sign variation, see Fig 1
To show this, they use the following theorem by Obreschkoff, of 1920 1923, which gives necessary conditions
under which a polynomial with one positive root has exactly one sign variation in the sequence of its coefficients,
see [32] 2

Theorem 3 (Obreschkoff’s cone or sector theorem, 1920 1923). If a real polynomial has one simple root x,
and all the other (possibly multiple) roots lie in the sector

S¢3:{x:—a+i6|a>0 and 62§3o¢2},

then the sequence of its coefficients has exactly one sign variation

2This is actually Obreschkoff’s theorem for the special case where the number of sign variations equals one.
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Im{y) = -s Re(y)

Imiy) = s Rely)

F1a. 1. Obreschkoff’s cone or sector theorem of 1920 1923, [22]

3. POLYNOMIAL REAL ROOT ISOLATION WITH VINCENT’S THEOREM

By cleverly utilizing the two special cases of Descartes’ rule, the cases of 0 or 1 sign variations, both versions
of Vincent’s theorem can be used to isolate the positive roots of a given polynomial p(z) To see this, note that
if we consider the Mobius transformation M (z) = g;”jrrg corresponding to the continued fraction that leads to a
transformed polynomial
ax + b)

f@) = (x+ayp( T

(1)
with one sign variation, then the single positive root of f(z) in the interval ]0,+oo[ corresponds to that
positive root of p(z) that lies in the open interval with endpoints g and ¢ These endpoints are not ordered and
correspond to M (0) and M (cc), respectively
Therefore, to isolate the positive roots of a polynomial, all we have to do is compute for each root the variables
ax+b

a,b,c,d of the corresponding Mé&bius transformation M(z) = 92 1d that leads to a transformed polynomial

f(@) = (cz +d)"p( ‘Z;”ig) with one sign variation

Crucial observation 1. As we will see in the sequel, the variables a, b, ¢, d of the Mdbius transformation
M(z) = ‘c’;_ts (in Vincent’s theorem) leading to a transformed polynomial with one sign variation can be
computed

e either via continued fractions, which leads to the continued fractions method developed by Akritas and

Strzebonski, which is called the Vincent Akritas Strzebonski (VAS) continued fractions method *

e or via bisection, which leads to two bisection methods: the first one was developed by Collins and Akritas
and is called the Vincent Collins Akritas (VCA) bisection method,® whereas the second one was developed
by Alesina and Galuzzi and is called the Vincent Alesina Galuzzi bisection method 6

It should be noted that the VCA bisection method was first developed in 1976 by Collins and Akritas [27],
and that its fastest implementation was developed in 2004 by Rouillier and Zimmermann [34] The VAS contin
ued fractions method was developed later, in 1978 by Akritas [2, 3], and in 1994 by Akritas, Botcharov, and
Strzeboriski [10] TIts fastest implementation was developed in 2008 by Akritas, Strzeboriski, and Vigklas [19]

At this point, the inquisitive reader might ask why not use numeric methods instead of the symbolic ones
mentioned above The answer is twofold:

e numeric methods cannot isolate just the positive roots; they isolate all roots, both real and complex; and

e numeric methods can give wrong answers, as the following example demonstrates

3As can be seen elsewhere ([7]), the endpoints can also be computed from M (0) and M (1) if we work in the interval ]0,1[; in
that case, Descartes’ rule of signs does not apply and we use Uspensky’s test instead.

4To distinguish it from other continued fraction methods, such as [13, 26, 40] cited in [45, pp. 470-478]. In [37], VAS is referred
to as the “Akritas’ continued fractions method.” See also [20] and [23].

5Erroneously referred to in the literature either as “modified Uspensky’s method” (1976-1986), [5], or as “Descartes’ method”
(1986-2006), [7).

6To distinguish them from Sturm’s bisection method [45].
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Example 1. Consider the polynomial
10999(1, _ 1)50 -1
whose real roots we want to isolate (it has only two, both positive and # 1) We solve this example using
different versions of Mathematica:
e Mathematica 5 or 6 In this case,
e a numeric method using 1010 digits takes 56ms and fails to find all 50 roots equal to 1;
e a numeric method using 1020 digits successfully isolates all fifty roots, but takes 18000ms;
e the VAS continued fractions method discussed below takes 4ms to isolate the two real roots
o Mathematica 7 In this case,

e as can be seen in Fig 2, the improved numeric method used in Mma 7 takes 12 933 seconds to find the
two positive roots with 30 digits of accuracy;

e on the other hand, as can be seen in Fig 3, the function RootIntervals,i e, the VAS continued fractions
method, isolates the two positive roots in 0 015 seconds;

° and the function FindRoot approximates them to 30 digits of accuracy in practically no time at all!
Having made clear the need for the above mentioned symbolic real root isolation methods, we proceed to their
description

£=107999 (x-1)"50-1;

Select[NRoots[f == 0, x, 30], Im[&#[[2]]] == 0 &] // Timing

{12.262, x = 0.9999

w

99

Y]

9999999959989528714519 | | x=1.00000000000000000001047128548}

Fia. 2. Using the function NRoots in Mma 7 to numerically compute
the two roots.

ints = RootIntervals[£f] [[1]] // Timing
{0.015, {{0, 1}, {1, 2}}}

ints = Last[ints]

{{0, 1}, {1, 2}}

FindRoot[f, {x, #[[1]], #[[2]]}, Method - Brent,
WorkingPrecision - 30, MaxIterations - 200] & /@ints // Timing

[5.42101 x 1079,

{{x > 0.999959599559595559585528714519}, {x - 1.00000000000000000001047128548}}}

Fic. 3. Using the function RootIntervals, the VAS continued fractions
method, to isolate the roots and the function FindRoot to approximate
them, in Mma 7.

3.1. The continued fractions method derived from Vincent’s theorem

The VAS continued fractions method is a direct implementation of Vincent’s theorem It was originally pre
sented by Vincent [44] in 1836 in an “exponential” form; namely, Vincent computed each partial quotient a; by
a series of unit increments a; < a; + 1, which are equivalent to substitutions of the form z «— xz + 1

In 1978, the method was converted into its “polynomial” form by Akritas, who in his Ph D thesis [1] computed
each partial quotient a; as a lower bound, £b, on the values of the positive roots of a polynomial the so called
“ideal’ positive lower root bound, which computes the integer part of the smallest positive root, see [16]; that
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is, we now set a; < £b, or, equivalently, we perform the substitution z « x + £b, which takes about the same
time as the substitution < x + 1 For details, also see [2 4] and [6, Chap 7]

Finally, since the ideal positive lower root bound does not exist, Strzebonski [14] introduced the substitution
2 — lbeomputed - T, Whenever €beomputed > 16, where, in general, b > £bcomputed @nd the value 16 was determined
experimentally

In [14], it was also shown that the VAS continued fractions method is faster than the fastest implementation
of the VCA bisection method [34], a result which was independently confirmed by Tsigaridas and Emiris [41]; also
see [17] In 2007, Sharma [36, 37] removed the hypothesis of the ideal positive lower bound and proved that VAS
is still polynomial in time!

In Algorithm 1, we present a recursive description of the VAS continued fractions method We follow [24],
which pedagogically seems to be the most appropriate style of presentation:

THE VAS CONTINUED FRACTIONS METHOD

Input: A univariate, square free polynomial p(z) € Z[z], p(0) # 0,
and the Mobius transformation M (z) = g;”j_‘g =z, a,b,c,d € Z
Output: A list of isolating intervals for the positive roots of p(x)
1 var «— the number of sign changes of p(z);
2 if var =0 then RETURN g;
3 ifvar =1 then RETURN ({]a,b[}//a = min(M(0), M (c0)),
b = max(M (0), M (c0));
4 b+<— alower bound on the positive roots of p(x);
5 if b > 1{p «— p(x + €b), M «—— M (x + £b)};
6 po1 «— (z+1)%8Pp( L), Mo — M(,},)//
Look for real roots in ]0, 1[;
7 m«—— M(1)//Is 1 a root?;
8 DPrec «—— p(x+1), Mioo «— M(z + 1)//Look for real roots in |1, +o0];
9 if p(1) # 0 then
10 | RETURN VAS(po1, Mo1) U VAS(p1oos Mico)

11 else
12 | RETURN VAS(pOl,Mm)U{[m,m]}UVAS(plm,Mlm)
13 end

Algorithm 1. The VAS (p, M) “continued fractions” algorithm, where
the second argument is the M6bius transformation M () associated with
p(x) For simplicity, Strzebonski’s contribution is not included

The VAS continued fractions method has been implemented in the computer algebra system Mathematica,
and, as we will see in the sequel, for the Mignotte polynomials it is several thousand times faster than the fastest
implementation of the VCA bisection method (also see Fig 4)

Please note that the VAS continued fractions method uses Descartes’ rule of signs as a termination test (lines
1 3) and that it relies heavily on the repeated estimation of lower bounds on the values of the positive roots of
polynomials (line 4) It should be emphasized that the efficiency of VAS depends on how good these estimates
are a fact that is exploited in the sequel (Sec 4) Moreover, note the following:

e If we remove lines 4 and 5 from VAS(p, M), we are left with an exponential algorithm

e Any substitution performed on the polynomial p(z) is also performed on its associated Mobius transfor
mation M (z) (lines 5, 6, and 8)

e To isolate the real roots of p(z) in the open interval ]0, +o0[, we proceed as follows:
e we first isolate the real roots in the interval ]0,1[ (lines 6 and 10 (or 12)),
e we then deal with the case where 1 is a root of p(x) (lines 7, 9, and 12),
e and, finally, we isolate the real roots in the interval ]1, +oo[ (lines 8 and 10 (or 12))

e The isolating intervals are computed from the Mobius transformations in line 3 except for the integer roots
which are computed in lines 7 and 12
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£f:=2x2300-2 (5x-1)72;

ints = RootIntervals([£][[1l]] // Timing

1 (11
4

{0.031, {{-2, 0}, {0, g}. = boo{1, 33}

ints = Last[ints];
FindRoot[f, {x, #[[1]], #[[2]]}, Method = Brent, WorkingPrecision = 150, MaxIterations = 200] & /@ints //
Timing
{0.015, {{x >
-1.01443853206692814881725573%16160774629872061900522308181258456841077512172795851336428688348-
441369799525549844971713898995570158375762282142622484198}, {x >
0.199999999999999999999999995999999999999999999999999999999999999999999999999999999999999999999-.
999999599999589999995990999999999599069999959958861793771948}, {x >
0.200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000~
000000000000000000000000000000000000000000041138206229655}, {x >
1.01171750912910732155315472587887158814555248053397586417725341251718006156540397¢€304671505353~
40148223065465258510769575765146865820995434417439918722}1}}

170
0.045

3777.78

Fic. 4. For the Mignotte polynomials, the VAS continued fractions
method is several thousand times faster than the VCA bisection method
(also see Fig 7).

Using the plausible hypothesis of the “ideal” lower bound on the values of the positive roots along with the fast
translation algorithm by von zur Gathen and Gerhard [29], the computing time of the VAS continued fractions
method is

O(n*7?),

where n is the degree of the polynomial and 7 bounds the coefficient bitsize, [1, 4]

However, the use of the plausible hypothesis mentioned above did not go unchallenged, and it was a widely
held belief that if it were removed, then the computing time of the VAS continued fractions method would be
exponential! This resulted in people shying away from VAS ignoring that:

e in the case of random polynomials, the VAS continued fractions method was several thousand times faster
than (the fastest implementation, [34], of) the VCA bisection method (described below), [14, 41],

e in the case of Mignotte polynomials, the VAS continued fractions method was about 50,000 times faster
than (the fastest implementation, [34], of) the VCA bisection method, [14, 41],

e only in the case of very many (> 20) very large (~ 103°0) roots, the VAS continued fractions method was
4 times slower than (the fastest implementation, [34] of) the VCA bisection method, [14, 41]; see Table 1 in
Sec 4

And all that using Cauchy’s bound (the only one available then, but also one of the worst, as we will see in
Sec 4) to compute the lower bounds on the values of the positive roots!
The situation changed in 2007, when Sharma [36, 37] proved that without any hypotheses the computing time
of the VAS continued fractions method is
O(n®r?),

where again n is the degree of the polynomial and 7 bounds the coefficient bitsize However, this indicates that
there must still be something we do not understand about this algorithm, since the gap between the two bounds
on the computing time is quite big, and the latter does not match the performance of VAS as the fastest real root
isolation method

3.2. The two bisection methods derived from Vincent’s theorem

The two bisection methods derived from Vincent’s theorem differ mainly in: (a) the termination criterion
they employ and (b) the interval they bisect
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The first bisection method derived from Vincent’s theorem, VCA,was developed in 1976, by Collins and Akritas
[27], in an attempt to improve the exponential behavior of Vincent’s original continued fractions algorithm It
uses Uspensky’s termination criterion (explained below) and bisects the interval ]0, 1]

Let p(z) be a polynomial whose roots we want to isolate, and let ub be an upper bound on the values of
its positive roots Then all the positive roots of p(ub - z) lie in the interval ]0, 1[, and the VCA method isolates
them by repeatedly bisecting the interval ]0, 1], while using an appropriate “criterion” to make inferences about
the number of positive roots certain transformed polynomials have in the interval ]0,1] Finally, the isolating
intervals for the roots of p(z) are easily computed from the bijection

o, ub[ = @ + ajo,17(b — a) (2)

which exists between the roots g 1; €]0, 1] of the transformed polynomial p(ub- x) and the roots g, . €]a, b[=
10, ub[ of the original polynomial p(z)

The appropriate criterion mentioned above is a “test” that determines an upper bound on the number of
positive roots in the interval 10, 1]

Please observe that Descartes’ rule of signs cannot be used in the interval ]0, 1], as it applies only to positive
roots in the interval ]0, +o0o[ Therefore, we have to resort to a different “rule” if we want to avoid reinventing
Sturm’s method for isolating the real roots; recall that Sturm’s theorem gives us the exact number of positive
roots in any interval ]a, b[, see [20]

Here is a test for determining an upper bound on the number of positive roots in the interval ]0, 1[; as explained
below, it is named after Uspensky, who was the first to use it

Uspensky’s test. The number gg;(p) of real roots in the open interval ]0,1[ (multiplicities counted) of a
polynomial p(z) € R[z] is bounded above by varg (p), where

varg; (p) :var((x+1)deg(p)p(x_1i_1>>, (3)

and we have varg; (p) > 001 (p) 7

As in the case of Descartes’ rule of signs, if varg; (p) = 0 it follows that go1(p) = 0, and if varg;(p) = 1 it
follows that go1(p) =1

Therefore, Uspensky’s test yields the ezact number of positive roots only in the two special cases mentioned
above; to wit, whenever varg; (p) = 0 or varg;(p) =1

Please note in Eq (3) that, after the substitution x «— w—li-l’ the positive roots of p(x) that were in the
interval ]0, 1[ are now in ]0, +o0], in which case Descartes’ rule of signs can be applied

Uspensky’s test is associated with Budan’s theorem [4] according to which for a given polynomial p(x) € Z[x]
the following two special cases hold:

o if var (p(z)) = var (p(z + 1)), then we can conclude that there are no positive real roots of p(z) in the
interval 0, 1],
and
e if var (p(z)) — var (p(z + 1)) = 1, then we can conclude that there is one positive real root of p(z) in the
interval 10, 1]
Vincent was fully aware of Budan’s theorem, and, consequently, the substitution z «— Iil is never used as
a test in the VAS method (line 6 of Algorithm 1); it is performed only whenever var (p(z)) — var (p(z + 1)) > 2,
in which case the existence of positive roots in ]0, 1[ has to be investigated In other words, Vincent approaches
a root as indicated in Fig 5

x<x+1 x<¢x+1 x<¢x+1 x<¢x+1 x<¢x+1
" LYY N N
xX) = ™
root
FiG. 5. Being aware of Budan’s theorem, Vincent proceeded accord

ingly.

"Uspensky’s test is a special case of the powerful “Vincent’s test,” which is described below.
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That, however, was not the case with Uspensky Whenever he encountered var (p(z)) = var (p(z + 1)) not
being aware of Budan’s theorem he could not conclude that there are no positive roots of p(z) in the interval
10, 1[; he could reach that conclusion only if varg; (p) = 0® Thus ([42, p 128]), the transformation x « 1iz was

performed before the transformation z < x + 1 In other words, Uspensky proceeded as indicated in Fig 6

x¢x+1 x¢x+1 x¢x+1 x¢x+1 x¢x+1

/—W\
P(x)zO\ 1\ 2\ 3\ 4\4\ 5
xel— xel— xel— xel— root

1+x 1+x 1+x

1+x

Fig. 6. Not being aware of Budan’s theorem, Uspensky proceeded
making unnecessary transformations.

Therefore, Uspensky was the first to use varg; (p) = 0 exclusively as a test, in order to verify that there are
no positive roots in the interval |0, 1[; hence, naming the test after him seems to be very appropriate That test
was used by Uspensky in his unsuccessful attempt to develop a new procedure for the isolation of the real roots
of polynomials [5, 20] ¢

Below is a recursive description of the VCA bisection method:

THE VCA BISECTION METHOD, ORIGINAL VERSION

Input: A univariate, square free polynomial p(ub-x) € Z[z], p(0) # 0,
and the open interval ]a,b[=]0, ub[, where ub is an upper bound
on the values of the positive roots of p(z) (The positive roots of p(ub- z)
are all in the open interval 10,1])
Output: A list of isolating intervals for the positive roots of p(x)
var «+— the number of sign changes of (z + 1)de8 (p)p(m_lﬂ);
if var = 0 then RETURN g;
if var = 1 then RETURN {]a, b[};
Poy 2de(P) (7 / /Look for real roots in ]0, 1;
m «— Tt //Is ! aroot?;
p1y —— 20% (P)p(“F1)//Look for real roots in |}, 1[;
if p(}) #0 then
| RETURN VCA(py1,Ja,m[) J VCA(p;1,]m, b))
else
| RETURN VCA(P(); sJa,m[) U{[m,m]} U VCA(péla Jm, b))
end

O © 00~ O Ut W

[y

[y
—_

Algorithm 2. The original version of the VCA(p, |a, b]) “bisection” algo
rithm, where the second argument is the open interval ]a, b associated
with p(z) The isolating intervals for the roots of p(z) are computed
directly, without using the bijection (2).

The VCA bisection method has been implemented in the computer algebra system Maple, where it can be used
after loading an appropriate package; see Fig 7 Please note that the VCA bisection method uses Uspensky’s test

80n the other hand, Uspensky used correctly, and to his advantage, the other special case, vargi(p) = 1, as well as the case
varo1 (p) > 2.

9 According to Professor Alexei Uteshev [43], of the St.Petersburg State University, the reason for Uspensky’s unsuccessful
attempt was the fact that he never saw Vincent’s actual paper of 1836, where Budan’s theorem is stated right at the beginning.
Instead, Uspensky relied on the Russian translation of J.-A. Serret’s Cours d’Algébre Supérieure [35]. Indeed, in Sec. 167, p. 315,
we read: “B ozHOM m3 MeMyapoB, COCTABIAIOMMUX YacTh mepBoro Toma Journal de Mathématiques Pures at Appliqués, Buncent
M3JI0KWUI TIPEKPACHOE CBOMCTBO HENPEPLIBHBIX APO0EN W BLIBEN U3 HErO [JSA BLIYUCICHUA BENIECTBEHHBLIX KOPHE! ypaBHEHUs CIOCO0,
BBITEKAIOMWI OJHOBPEMEHHO W m3 crmocoba HwloToma, m m3 cmocoba Jlarpamxa... ” Please note that Serret presents Fourier’s
theorem under the name “Budan.”
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as a termination criterion (lines 1 3) and that the upper bound on the values of the positive roots is computed
only once An excellent discussion of this algorithm can be found in [24]; another version of the same algorithm
as well as additional information can be found elsewhere, see [7]

> with(RootFinding) :
> f=x0—2(5x— )%
f=x0—2(5x—1)°

=X
= st = time( ) : Isolate( f, digits = 250) : time( ) — st
170.431

-
=

Fic. 7. For the Mignotte polynomials, the VCA bisection method is
several thousand times slower than the VAS continued fractions method
(see also Fig 4).

Moreover, note the following;:

e The substitutions in lines 4 and 6 are performed only on the polynomial p(z), whereas at the same time
in line 5 the interval ]a, b[ is divided into two equal parts |a, m[ and ]m, b[, to be used in line 8 or 10
e To isolate the real roots of p(z) in the open interval |0, 1], we proceed as follows:
e we first isolate the real roots in the interval ]0, ;[ (lines 4 and 8 or 10),
e we then deal with the case where | is a root of p(z) (lines 5, 7, and 10),
e and, finally, we isolate the real roots in the interval ]}, 1[ (lines 6 and 8 or 10)
e The isolating intervals are directly obtained from line 3  except for those roots that happen to coincide
with the midpoint of an interval that gets bisected, in which case they are computed in lines 5 and 10

The computing time of the VCA bisection method is
O(n*1?),

where n is the degree of the polynomial and 7 bounds the coefficient bitsize, see [37]

The second bisection method was developed by Alesina and Galuzzi [20, 22] in 2000 It uses Vincent’s powerful
test as a termination criterion and bisects the interval ]a, b[=]0, ub[, where ub is an upper bound on the values
of the positive roots Therefore, this method is a direct implementation of Theorem 2

Vincent’s test. If a > 0 and b > a, then the number g,;(p) of real roots in the open interval ]a, b[ (multiplicities
counted) of the polynomial p(z) € R[z] is bounded above by varq,(p), where

vargy(p) = var ((1 + x)deg (p)p(al_:_l?:)), (4)

and we have varq,(p) = vary,(p) > 0ab(p)

Note that this test can be applied also in the case ]a, b[=]1, 0], from which we obtain Uspensky’s test 1°

As in the case of Descartes’ rule of signs, if var,;(p) = 0 it follows that g.s(p) = 0, and if vare,(p) = 1 it
follows that gqp(p) =1

Therefore, Vincent’s test yields the ezact number of positive roots only in the two special cases mentioned
above; to wit, whenever varg,(p) = 0 or varg(p) =1

Below is a recursive description of the second bisection method derived from Vincent’s theorem; its simplicity
is unsurpassed, but we pay for it by using a much more complicated test Obviously, there is a trade off between
the simplicity of the method and the complexity of the termination test

Please note the following:

e Vincent’s test is a crucial component of the B(p,]a, b[) bisection algorithm (lines 1 3)

10By comparison, Uspensky’s test is rather weak, as it applies only in the interval ]a, b[=]0, 1[.
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e In line 4 the interval ]a, b[ is divided into two equal parts Ja, m[ and |m, b[, to be used in lines 6 or 8 Note
that there are no polynomial transformations at all; only polynomial evaluations in line 1
e To isolate the real roots of p(z) in the open interval ]a, b[, we proceed as follows:
e we first isolate the real roots in the interval ]a, *J°[ (lines 6 or 8),
e we then deal with the case where *}’ is a root of p(z) (lines 5 and 8),
e and, finally, we isolate the real roots in the interval |*J®, b[ (lines 6 or 8)

e The isolating intervals are directly obtained from line 3  except for those roots that happen to coincide
with the midpoint of an interval that gets bisected, in which case they are computed in lines 5 and 8

THE VINCENT-ALESINA—GALUZZI BISECTION METHOD: B

Input: A univariate, square free polynomial p(z) € Z[z], p(0) # 0,
and the open interval ]a, b[=]0, ub[, where ub is an upper bound
on the values of the positive roots of p(x)

Output: A list of isolating intervals for the positive roots of p(z)

1 var «— the number of sign changes of (14 z)de8 (P)p(107);
2 if var =0 then RETURN g;

3 if var =1 then RETURN {]a, b[};

4 m «— *t"//Subdivide the interval ]a,b[ into two equal parts;
5 if p(m) # 0 then

6 |RETURN (B)(p, Jm[)U (8 (p,]m, b))

7 else

8 |RETURN (B)(p, | m[) U{lm,m]} U (8 (p,]m,b])

9 end

Algorithm 3. The B(p,]a,b]) “bisection” algorithm, proposed by Ale
sina and Galuzzi [22]; the second argument is the open interval ]a, b,
whose endpoints a,b are used in Vincent’s test in line 1 The isolating
intervals for the roots of p(z) are computed directly, without using the
bijection (2).

A complete discussion and empirical comparison between the two bisection methods can be found elsewhere,
see [18] Tt turns out that the Vincent Alesina Galuzzi bisection method, despite its simplicity, is much slower
than the VCA bisection method and hence of little practical importance

4. IMPROVING THE PERFORMANCE OF THE VAS CONTINUED FRACTIONS METHOD

As was pointed out in the discussion of VAS, the efficiency of this continued fractions method depends heavily
on how good the estimates of the lower bounds on the values of the positive roots are

A lower bound, ¢b, on the values of the positive roots of a polynomial p(z) of degree n is found by first
computing an upper bound, ub, on the values of the positive roots of z"p() and then setting ¢b =}

So, clearly, what is needed is an efficient method for computing upper bounds on the values of (just) the
positive roots of polynomial equations

In the initial implementation of VAS, in 1978, the lower bounds were computed using a theorem by Cauchy,
see [32] To state it, we refer to polynomials of the type

p(r) = anz” +ap_ 12" 4+ 4 o (an, > 0) (5)
with real coefficients a,, a1, , g having at least one sign variation

Theorem 4 (Cauchy’s theorem). Let p(x) be a polynomial as in Eq (5), of degree n > 0, with a,— < 0 for
at least one k, 1 < k <mn If X is the number of negative coefficients, then an upper bound on the values of the

positive roots of p(x) is given by
Ay —
ube = max ﬁ/ n—k
{1<k<n:a, <0} (a7%

Note that if A = 0, then there are no positive roots

Subsequently, Kioustelidis’ bound appeared (in [30]), and was used in the SYNAPS implementation of VAS by
Tsigaridas and Emiris [41] in 2006 Kioustelidis’ theorem is closely related to Cauchy’s one and is stated below
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Kioustelidis’ bound
case, the VAS method was up to 4 times slower than VCA(rel)
method developed by Rouillier and Zimmermann [34]
(Table 4) found in [14]

Qg

ubg =2 max F
{1<k<n:a,_p<0} iy

However, both implementations of the VAS continued fractions method
showed that its “Achilles’ heel” was the case of very many very large rational roots In this
the fastest implementation of the VCA bisection
Table 1 presented below corresponds to the last table

Theorem 5 (Kioustelidis’ theorem). Let p(x) be a polynomial as in Eq (5), of degree n > 0, with ay,— < 0 for
at least one k, 1 <k <n Then an upper bound on the values of the positive roots of p(x) is given by

that is, using either Cauchy’s or

Roots Degree | No of roots VAS VCA(rel)
(bit length) t(s)/M(MB) | t(s)/M(MB)
10 100 100 08/182 061/192
10 200 200 245/207 10 1/2 64
10 500 500 339/3 34 878/8 4
1000 20 20 012/188 0044/1 83
1000 50 50 16 7/3 18 427/2 86
1000 100 100 550/8 9 133/6 49

TABLE 1. Products of factors (z randomly generated integer roots) All
computations were done on a 850 MHz Athlon PC with 256 MB RAM;
(s) stands for time in seconds, and (MB) for the amount of memory used
in MBytes

The last three lines of Table 1 demonstrate the weaker performance of VAS in the case of very many very large
rational roots

Therefore, the question was posed: can we improve the performance of VAS by discovering new bounds on the
values of the positive roots?

In order to answer this question, we needed to better understand the nature of these bounds, and this was
achieved with the help of Stefanescu’s theorem [38] of 2005

Theorem 6 (Stefanescu’s theorem, 2005). Let p(x) € R[x] be a polynomial such that the number of variations
of signs of its coefficients is even If

p(x) = ez — bix™ + coz® — byz™2 + + Ckwdk — bpa™* 4 g(x),

with g(x) € Rylz], ¢; >0, b; >0, d; > m; > diy1 for all i, then the number

H{damm) o\ L/ (demi)
ubszmax{<bl> , ,(bk> e
Cc1 Ck

is an upper bound for the positive roots of the polynomial p for any choice of ¢1, ,ci

Stefanescu’s theorem introduces the concept of matching or pairing a positive coefficient with an unmatched
negative coefficient of a lower order term; however, Stefanescu’s theorem worked only for polynomials with an
even number of sign variations

Note. More precisely, it is the term with a positive coefficient that is being matched to the term with a negative
coefficient

We generalized Stefinescu’s theorem, in the sense that Theorem 7 below applies to polynomials with any
number of sign variations, see [15] To accomplish this, we introduced the concept of breaking up a positive
coefficient into several parts to be paired with negative coefficients of lower order terms,'! see [16]

1 After our work [16], Stefinescu also extended his Theorem 6 in [39].
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Theorem 7 (Akritas Strzeborski Vigklas, 2006). Let
p(z) = apz" +ap 12" 4+ 4 (o, > 0)

be a polynomial with real coefficients, and let d(p) and t(p) denote its degree and the number of its terms,
respectively
Moreover, assume that p(x) can be written as

p(@) = q1(z) — @2(2) + g3(2) — u(@) + - + Gm-1(2) — @2m(z) + g(2), (6)
where all the polynomials q;(x), i = 1,2, ,2m, and g(x) have only positive coefficients In addition, assume
that for i =1,2, ,m we have

— €2i— €2i—1 i
@2i-1(T) = C2i—11T 7 e O g(gaey) T )

and

q2i(g;) = b2i71w32i T4 .. 4 b2i,t(q2i)l'e2i tai) |

where e2;_1,1 = d(g2i—1) and e2; 1 = d(g2;), and the exponent of each term in g2;_1 () is greater than the exponent
of each term in qoi(x) If for all indices i =1,2, ,m, we have

t(qai—1) > t(q2:),

then an upper bound on the values of the positive roots of p(x) is given by

1 1
b2i1 €2i-117¢21 b24,¢(go: €2i—1 t(g;) ~ 20 t(ag;)
ub=  max < ’ o ) ) (7)
{i=1,2, ,m} C2i—1,1 C2i—1,t(g2:)

for any permutation of the positive coefficients ca;—1,5, j = 1,2, , t(g2i—1) Otherwise, for each of the indices
i for which we have
t(g2i-1) < t(q2i),

we break up one of the coefficients of qzi—1(x) into t(qz2;) — t(qei—1) + 1 parts, so that now t(qz;) = t(g2i—1),
and apply the same formula (7) given above

For a proof of this theorem, see [16] Please note that the partial extension of Theorem 6 presented in [15]
does not treat the case t(qga;—1) < t(g2;)

Crucial observation 2. Pairing up positive with negative coefficients and breaking up a positive coefficient
into a required number of parts to match the corresponding number of negative coefficients are the key ideas
of this theorem In general, formulas analogous to (7) hold for the cases where: (a) we pair coefficients from
nonadjacent polynomials go;—1(z) and g2;(x), for 1 <1 < i, and (b) we break up one or more positive coefficients
into several parts to be paired with negative coefficients of lower order terms

Using Theorem 7, we obtain the following interpretation of Cauchy’s and Kioustelidis’ theorems:

C Cauchy’s “leading coefficient” implementation of Theorem 7 For a polynomial p(z) as in Eq (5) with A
negative coefficients, the Cauchy method first breaks up its leading coefficient a,, into A equal parts and then
pairs each part with the first unmatched negative coefficient

K Kioustelidis’ “leading coefficient” implementation of Theorem 7 For a polynomial p(x) as in Eq (5), the
Kioustelidis method matches the coefficient —a,_j of the term —a,_rz" * in p(z) with 5%, the leading
coefficient divided by 2%

Kioustelidis’ “leading coefficient” implementation of Theorem 7 differs from that of Cauchy only in that the
leading coefficient is now broken up into unequal parts, since we divide it by different powers of 2

It turns out that all methods for computing upper bounds on the values of the positive roots of a polynomial
are derived from Theorem 7 In what follows, we present linear and quadratic complexity bounds derived from
Theorem 7 and elaborate on their impact on the efficiency of VAS
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4.1. Improving VAS with linear complexity bounds derived from Theorem 7
The bounds in the literature, such as Cauchy’s and Kioustelidis’ ones, are of linear complexity
The general idea of linear complexity bounds. These bounds are computed as follows:

e cach negative coefficient of the polynomial is paired with one of the preceding unmatched positive coeffi
cients;

e the maximum of all the computed radicals is taken as the estimate of the bound

Using Theorem 7, we developed first A, a new linear complexity method for computing an upper bound on
the values of the positive roots of polynomials

FL The “first \” implementation of Theorem 7 For a polynomial p(z) as in (6) with X\ negative coefficients,
we first take care of all cases for which #(g2;) > #(g2i—1), by breaking up the last coefficient cz;_1 4(g,;) Of
@2i—1(x) into t(go;) — t(gei—1) + 1 equal parts We then pair each of the first A positive coefficients of p(z),
encountered as we move in nonincreasing order of exponents, with the first unmatched negative coefficient

This is an improvement over the other two bounds due to Cauchy and Kioustelidis, but, as the following
example demonstrates, all three methods can fail miserably

Example 2. Consider the polynomial
.’173 + 10100:1:2 _ 10100,’17 _ 17

which has one sign variation and hence only one positive root equal to 1

e For Cauchy’s theorem, we pair the terms {z; ,—1019%z} and {I; ,—1}, and obtain the bound of 1 41421 %
1050

e For Kioustelidis’ theorem, we pair the terms {”2”: ,—10'%92} and {”2”2 ,—1}, and obtain the bound of 2 10°
e For first \, we pair the terms {z%, —10'%z} and {10'°°z2, —1}, and obtain the bound of 10°°

To correct this inadequacy, we developed local maz, yet another new linear complexity method for computing
an upper bound on the values of the positive roots of polynomials

LM The “local-max” implementation of Theorem 7 For a polynomial p(z) as in (5), the coefficient —ay, of
the term —ay2* in p(z) as given in Eq (5) is paired with the coefficient e, of the term «a,,, 2™, where
Q. is the largest positive coefficient with n > m > k and t indicates the number of times the coefficient

a,, has been used

Example 2, continued. For local maz, we pair the terms
10100 2 10100 2
{ 9 v ,10100x} and { 22x ,1},

We have tested extensively on various classes of specific and random polynomials  all four linear complexity
bounds mentioned above, and the following is a summary of our findings, see [16]:

and obtain the bound of 2

e Kioustelidis’ bound is, in general, better (or much better) than Cauchy’s one; this happens because the
former breaks up the leading coefficient into unequal parts, whereas the latter breaks it up into equal parts

e Our first A bound, as the name indicates, uses additional coefficients, and, therefore, it is not surprising that
it is, in general, better (or much better) than both previous bounds In the few cases where Kioustelidis’
bound is better than first A, our local maz bound takes the lead again

Therefore, given their linear execution cost, min(F L, LM ) or F L+ LM is the best among the linear complexity
bounds on the values of the positive roots of a polynomial, see [16]

In Table 2 below we recalculate the results of Table 1 and compare the timings in seconds, #(s), for
(a) VAS(Cauchy), the VAS continued fractions method using Cauchy’s rule (the “old’ method), (b) VAS(£1+1m),
the VAS continued fractions method using min(FL,LM) or FL + LM (the “new” method), and (c) VCA(rel),
the fastest implementation of the VCA bisection method (Table 2 corresponds to the last table (Table 2) found
in [17])
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Roots | Deg | VAS(Cauchy)#(s) VAS (£1+1m)t(s)
Average (Min/Max) | Average (Min/Max)
10 | 100 | 0314(0248/0392) | 0 253(0228/0 280)
10 200 174(1 42/2 33) 151(1 34/1 66)
10 | 500 17 6(16 9/18/7) 174(16 3/18 1)
000 | 20 | 0066(0040/0084) | 0 031(0024/0 040)
1000 | 50 196(1 45/2 44) 0 633(0 512/0 840)
1000 | 100 52 3(36 7/81 3) 12 7(11 3/14 6)
Roots | Deg VCA(rel)i(s) Memory (MB)
Average (Min/Max) old/new /rel
10 | 110 | 0 346(0 308/0 384) 446/4 48/4 56
10 | 200 390(3 72/4 05) 473/477/5 35
10 | 500 129(122/140) 628/6 54/11 8
000 | 20 | 0038(0028/0 044) 457/462/4 51
1000 | 50 103(0916/1 27) 587/650/5 55
1000 | 100 172(16 1/18 7) 104/117/9 17

TABLE 2. Products of the terms x — r with a random integer » The
tests were run on a laptop computer with 1 8 Ghz Pentium M processor,
running a Linux virtual machine with 1 78 GB of RAM

Due to different computational environments, the times ¢(s) differ substantially, but they confirm the fact
that VAS(£f1+1m) is now always faster than VCA(rel)

Again, it is interesting to look at the last three lines of Table 2, where, as in Table 1, the performance of
VAS(Cauchy) is worse than that of VCA(rel) at worst 3 times slower, as the last entry indicates However,
from these same lines of Table 2 we observe that VAS (f1+1m) is now always faster than VCA(rel) at best twice
as fast, as can be seen in the 5th line

When we compare on various classes of specific and random polynomials
those of VAS(£1+1m), we observe an overall speed up of 15%, see [19]

the times of VAS (Cauchy) with

4.2. Improving VAS with quadratic complexity bounds derived from Theorem 7

To further improve the performance of the VAS continued fractions method, we decided to use quadratic com
plexity bounds on the values of the positive real roots, hoping that their improved estimates should compensate
for the extra time needed to compute them

The general idea of quadratic complexity bounds. These bounds are computed as follows:

e cach negative coefficient of the polynomial is paired with all the preceding positive coefficients, and the
minimum of the computed values is taken;

e the maximum of all those minimums is taken as the estimate of the bound

In general, the estimates obtained from quadratic complexity bounds are better than those obtained from the
corresponding linear complexity bounds, as the former are computed with much more effort and time 2

We developed several new quadratic complexity bounds by extending three (of the four) linear complexity
ones, see [8]; by contrast, Kioustelidis’ linear complexity bound was extended by Hong [28] in 1998 We were
able to demonstrate that one of them, FLQ, the “first \” quadratic complexity bound, is not only one of the
best to be used in VAS, but also the fastest, see [9] However, we decided that the following quadratic complexity
bound should be used in VAS instead, see [19]

LMQ The “local-max” quadratic complexity implementation of Theorem 7 For a polynomial p(z) as in (5),
each negative coefficient a; < 0 is “paired” with each of the preceding positive coefficients a; divided by
2'3; that is, each positive coefficient a; is “broken up” into unequal parts, as is done with just the locally
maximal coeflicient in the local max bound; ¢; is initially set to 1 and is incremented each time the
positive coeflicient a; is used; and the minimum is taken over all j; subsequently, the maximum is taken
over all ¢

121t should be noted that time is not so important in our case, since — as can be seen from the description of the VAS algorithm,
line 4, — these bounds are estimated before a translation of complexity at least O(n?) is executed, see [29].
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That is, we have

ubLMQ = maX

min

2]
1 IS e
{a;<0} {a;>0:j>i} ot

Today LMQ is theoretically the sharpest bound on the values of the positive roots of a polynomial, and using
it in VAS has resulted in an overall speed up of 40% over its initial implementation

We finally present Table 3

corresponding to Table 8 in [19]

where we demonstrate the performance of

VAS using quadratic complexity bounds This is actually the only case where the best linear complexity bound

FL + LM is slightly better than LMQ

Bit length

of roots
10
10
10
1000
1000
1000

TABLE 3. Products of the terms x — r with random integer r

Degree

100
200
500
20
50
100

VAS(Cauchy)
t(s)
Avg(Min/Max)
046(0 28/0 94)
146(1 24/1 85)
18 1(16 5/18 9)
007(0 04/0 14)
3 69(2 38/6 26)
47 8(376/56 9)

VAS(fl+1m)
t(s)
Avg(Min/Max)
024(0 18/0 28)
140(1 28/1 69)
18 1(16 6/18 8)
0 02(0 02/0 03)
081(060/1 28)
13 8(10 3/19 2)

average speed up for this table is about 35%

5. CONCLUSION

VAS(Imq)
t(s)
Avg(Min/Max)
0 34(0 30/0 41)
140(1 20/1 69)
22 1(18 7/24 2)
0 03(0 02/0 04)
0 81(0 52/1 11)
15 8(11 3/21 3)

The

We have presented Vincent’s theorem of 1836, along with various methods derived from it for isolating the
real roots of polynomials with rational coefficients It was shown that the VAS continued fractions method has

always been the fastest, and recently with the development of quadratic complexity bounds

has increased by an overall factor of 40%
We end our presentation with a list of topics for future research:

its performance

e Sharma’s bound on the computing time of the VAS continued fractions method is greatly overestimated
Hence, theoretical research is needed to see if we can bring it down

e The VAS continued fractions method works for integer or rational coefficients Hence, we need to discover
new ways to deal with coefficients that are algebraic numbers or approzimate reals

e The VAS continued fractions method is the fastest real root isolation method when the polynomials are not
sparse and their degree is less than a few thousand However, Mathematica runs out of memory when we
try to isolate the roots of a sparse polynomial of degree 100000 or greater Hence, we need to discover new
ways to deal with sparse polynomials of extremely high degrees

e Last, but not least, we need to investigate the performance of the VAS continued fractions method in a
multiprocessor environment

This paper is based on the plenary talk the author gave at ACA 2008, the International Conference on

Applications of Computer Algebra, held at RISC Linz, Hagenberg, Austria (July 27 30, 2008)
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