LAGRANGE'S BOUND ON THE VALUES OF THE POSITIVE ROOTS OF POLYNOMIALS

Alkiviadis G. Akritas, Adam W. Strzeboński, Panagiotis S. Vigklas

Abstract. In this paper we present Lagrange's theorem of 1767 for computing a bound on the values of the positive roots of polynomials, along with its interesting history and a short proof of it dating back to 1842. Since the bound obtained by Lagrange's theorem is of linear complexity, in the sequel it is called "Lagrange Linear", or LL for short.

Despite its average good performance, LL is endowed with the weaknesses inherent in all bounds with linear complexity and, therefore, the values obtained by it can be much bigger than those obtained by our own bound "Local Max Quadratic", or LMQ for short.

To level the playing field, we incorporate Lagrange's theorem into our LMQ and we present the new bound "Lagrange Quadratic", or LQ for short, the quadratic complexity version of LL. It turns out that LQ is one of the most efficient bounds available since, at best, the values obtained by it are half of those obtained by LMQ.

Empirical results indicate that when LQ replaces LMQ in the Vincent–Akritas–Strzeboński Continued Fractions (VAS-CF) real root isolation method, the latter becomes measurably slower for some classes of polynomials.
1. Introduction. In our earlier attempts to develop the most efficient bound on the values of the positive roots of polynomials \(f \in \mathbb{Z}[x] \) — for use in the VAS-CF real root isolation method [2], [3] — we totally missed Lagrange’s theorem of 1767 on the topic ([12], p. 553), [13], [14], ([16], pp. 2–3), ([19], VIII, pp. 32). This omission was due to the fact that Lagrange’s theorem was almost totally forgotten, having being overshadowed by what is often encountered in the literature as the Lagrange-Maclaurin theorem ([17], Theorem 11.1, p. 48), [22], ([23], p. 150, Exercise 6.2.3(i)).

The Lagrange-Maclaurin theorem also appears without any name associated with it; see for example the books by Burnside and Panton ([4], pp. 180–181) and Dickson ([7], p. 57), or the paper by Grinstein ([8], formula III.A). We present the “culprit” following Obreschkoff ([17], p. 48).

Theorem 1. (Lagrange-Maclaurin) Consider the polynomial

\[
\tag{1} f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0,
\]

and let \(\alpha \) be the largest absolute value of the negative coefficients. If \(a_{n-m} \) is the first negative coefficient in (1), then an upper bound, \(b \), on the real roots of \(f(x) \) is given by

\[
\tag{2} b = 1 + \sqrt[n]{\alpha}.
\]

Proof. See Obreschkoff ([17], p. 48). \(\square \)

Historical Note: When \(\alpha > 1 \), the bound computed above (2) is certainly an improvement over the bound

\[
\tag{3} b = 1 + \alpha.
\]

which Lagrange ([19], VIII, p. 32) — and later Grinstein ([8], formula III:B:1) — believed to be due to Maclaurin. However, according to the excellent work by J. Stedall, ([20], pp. 69, 160) Michel Rolle was the first to introduce the latter (3) in his *Traité d’algébre*, published in 1690 in Paris. Namely, Rolle stated without proof that an upper bound on the real roots of a polynomial can be found if:\(^2\)

\begin{quote}
“One selects from the negative terms of the equation that with the greatest coefficient; one ignores the sign and the unknown in this term, one divides the result by the coefficient of the first term, and to the quotient one adds unity, or a positive number greater than unity.”
\end{quote}

\(^2\)The translation from French is by Stedall.
For a proof that the last equation (3) gives an upper bound on the values of the real roots of the polynomial (1), in the case of cubics, Stedall ([20], pp. 69, 160) refers to Reyneneau (1708) and Maclaurin (1748).

Therefore, one can say with certainty that Maclaurin was involved in the development of (3). Moreover, in case the polynomial (1) has only one negative coefficient then, as we will see in Lemma 1 below, Lagrange’s bound (4) reduces to simply $\sqrt[3]{\alpha}$. Hence, the bound (2) in Theorem 1 can be considered a combination of the theorems by Lagrange and by (Rolle, which was partially proved by) Maclaurin, and voilà the name Lagrange-Maclaurin.

We believe Theorem 1 forced Lagrange’s own theorem of 1767 into oblivion, because in the 19th century it was much more convenient to compute just one radical instead of the many more analogous computations required by the latter (see Theorem 2 below). The only time Lagrange’s theorem appeared in the 20th century⁵ - in the form of a formula - was in Grinstein’s excellent review paper ([8], p. 613, formula IV:B).

The appearance of a recent paper on the subject [6] verifies our point. Indeed, looking at Theorem 3 of that paper, we see that the author - by requiring that the polynomial has “at least two negative coefficients” - has unnecessarily altered Lagrange’s theorem and restricted its range of applications. What is even worse is the fact that, despite the otherwise very interesting “Literature review” section of the paper, the author missed - among other sources - the very short, clever and elegant proof by Pury dating back to 1842 [18]. In this respect see also Batra’s proof who reduced “the technicalities in the Collins-Krandick proof to a single line, bringing out the essence of the proof” [5].

Outline of the paper. In Section 2 we present Lagrange’s original theorem as found in Mignotte and Ștefănescu’s paper ([16], pp. 2–3), along with Pury’s proof of 1842 [18]. Based on this theorem we derive the algorithm “Lagrangian Linear”, or LLAG, which is of linear complexity and, hence, unsuitable for use in the VAS-CF real root isolation method.

In Section 3 we present our quadratic complexity method “Local Max Quadratic”, or LMQ [1], [22]. This algorithm is currently used - in various Computer Algebra Systems⁴ - in the implementation, among other things, of the VAS-CF real root isolation method.

In Section 4 we incorporate Lagrange’s theorem into LMQ and come up with the algorithm “Lagrangian Quadratic”, or LQ. It turns out that - at its best -

⁵Besides the references to it by Ostrowski as explicitly cited in [6].

⁴*Mathematica*, SymPy and Xcas to name a few. *Sage* on the other hand uses $\text{min}(\text{FL}, \text{LM})$, the minimum of our linear complexity methods “First Lambda” and “Local Max.”
the values obtained by \(L_Q \) are half of those obtained by \(L_M Q \), making it thus one of the best bounds available. Tests run on a large number of random (monic) polynomials indicate that it is hard to tell whether \(L_M Q \) or \(L_Q \) will compute the better bound.

In Section 5 we present two tables comparing the bounds obtained by \(L_M Q \), \(L_L \) and \(L_Q \). Additionally, in three tables, we time the performance of the \(\text{VAS-CF} \) real root isolation method using \(L_M Q \), \(L_Q \) and \(L_M Q + L_Q \), where the latter uses the minimum value obtained by the two bounds.

Finally, in Section 6 we present our conclusions.

2. Lagrange’s Theorem and the Linear Algorithm \(L_L \). On p. 553 of his original paper [12] or on p. 32 of his famous book [14], which constitutes the 8th volume of \(\text{Œuvres de Lagrange} \), edited by Joseph Alfred Serret [19] – Lagrange only states that given the polynomial \(F \), where

\[
-\mu y^{r-m} - \nu y^{r-n} - \bar{\omega} y^{r-p} - \ldots
\]

are its “negative terms”, an upper bound for the real roots of \(F \) is given by the sum of the first two largest of the quantities

\[
\sqrt[\mu], \sqrt[\nu], \sqrt[\bar{\omega}], \ldots
\]

or “a number larger than this sum”.

Due to the importance of Lagrange’s statement we also present a modern version of it as (partially) found in Mignotte and Ştefănescu’s paper ([16], p. 3).

Note that Lagrange gave no proof of his statement; he simply mentioned that it is similar to the proof of (3) and moved on.

Theorem 2. (Lagrange, 1767) Let \(f \), as in (1), be a non constant monic polynomial of degree \(n \) over \(\mathbb{R} \) and let \(a_{n-j} : j \in J \) be the set of its negative coefficients. Then an upper bound for the positive real roots of \(f \) is given by the sum of the largest and the second largest members in the set \(\left\{ \sqrt{|a_{n-j}|} : j \in J \right\} \). That is,

\[
b = \max_{\{a_{n-1}, a_{n-k} \in J\}} \left(\sqrt{|-a_{n-1}|} + \sqrt{|a_{n-k}|} \right).
\]

\({^5}\) Presented to the Berlin Academy on April 20, 1769.
Lagrange’s Bound on the Values of the Positive Roots of Polynomials... 231

Proof. (Pury, 1842) The worst possible case to consider is obviously when, starting from the second term, all the coefficients of the polynomial are negative, of the form

$$(5) \quad x^n - A_1 x^{n-1} - A_2 x^{n-2} - A_3 x^{n-3} - \cdots - A_p x^{n-p} - \cdots - A_r x^{n-r} - \cdots - A_n = 0,$$

from which we conclude that

$$(6) \quad 1 = \frac{A_1}{x} + \left(\frac{\sqrt[n]{A_2}}{x}\right)^2 + \left(\frac{\sqrt[n]{A_3}}{x}\right)^3 + \cdots + \left(\frac{\sqrt[n]{A_p}}{x}\right)^p + \cdots + \left(\frac{\sqrt[n]{A_r}}{x}\right)^r + \cdots + \left(\frac{\sqrt[n]{A_n}}{x}\right)^n.$$

Let $\sqrt[n]{A_p}$ and $\sqrt[n]{A_r}$ be the two largest quantities of the sequence $A_1, \sqrt[n]{A_2}, \sqrt[n]{A_3},\ldots, \sqrt[n]{A_n}$ and let $\sqrt[n]{A_p} = \lambda \sqrt[n]{A_r}$, where λ is initially considered greater than 1.

Setting $x = \sqrt[n]{A_p} + \sqrt[n]{A_r} = (\lambda + 1) \sqrt[n]{A_r}$, the fraction $\frac{\sqrt[n]{A_p}}{x}$ becomes equal to $\frac{\lambda}{\lambda + 1}$, whereas all the other fractions in (6) become smaller than $\frac{1}{\lambda + 1}$ since $\sqrt[n]{A_r}$ is greater than any of the other quantities $A_1, \sqrt[n]{A_2}, \sqrt[n]{A_3}$, etc. Hence, if we replace x by this value, the right-hand side of (6) becomes smaller than the sum

$$(7) \quad \frac{1}{1 + \lambda} + \frac{1}{(1 + \lambda)^2} + \frac{1}{(1 + \lambda)^3} + \cdots + \frac{1}{(1 + \lambda)^p} + \cdots + \frac{1}{(1 + \lambda)^n} + \left(\frac{\lambda}{1 + \lambda}\right)^p - \frac{1}{(1 + \lambda)^p},$$

and, since $\lambda + 1 > 1$, the sum in (7) is smaller than $\frac{1}{\lambda} + \left(\frac{\lambda}{1 + \lambda}\right)^p - \frac{1}{(1 + \lambda)^p}$.

However, for the trinomial, we have

$$\frac{1}{\lambda} + \left(\frac{\lambda}{1 + \lambda}\right)^p - \frac{1}{(1 + \lambda)^p} < 1,$$

which is easily seen from $\frac{\lambda^p - 1}{(1 + \lambda)^p} < \frac{\lambda - 1}{\lambda}$ if we divide both sides by $\lambda - 1$.

Therefore, replacing x by the sum $\sqrt[n]{A_p} + \sqrt[n]{A_r}$, the first part of equation (6) becomes à fortiori greater than the second part, and the same is true for equation (5).

In case $\lambda = 1$, the sum in equation (7) is replaced by the geometric series

$$\frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^n} = 1 - \frac{1}{2^n} < 1.$$

Note in Theorem 2 that if the set J is empty then the polynomial f has no positive root and 0 is a bound. If, on the other hand, the set J is a singleton, then a bound is computed by the following lemma.
Lemma 1. Let f, as in (1), be a non constant monic polynomial of degree n and let α be the absolute value of the single negative coefficient in the term of degree $n - m$. Then an upper bound on the positive root of f is given by

$$b = \sqrt[6]{\alpha}. \quad (8)$$

Proof. For $x > \sqrt[6]{\alpha}$ we have

$$f \geq x^n - a_{n-m}x^{n-m} = x^{n-m}(x^m - a_{n-m}) > 0. \quad \square$$

Therefore, for the class of polynomials with one negative coefficient, Lagrange’s bound (4), in Theorem 2, reduces to (8), which is better than the Lagrange-Maclaurin bound (2).

The requirement in Theorem 2 – and in Lemma 1 – that the polynomial be monic makes the proof easier but is not actually needed for its algorithmic implementation. As a matter of fact it helps the presentation in Section 2 – and in subsequent sections – if the polynomial is not monic. However, the leading coefficient has to be positive.

Algorithmic Implementation of Lagrange’s Theorem. Consider the polynomial

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0, \quad (9)$$

with $a_n \geq 1$. To compute a bound on the positive roots of f using Lagrange’s theorem we proceed as follows:

- each negative coefficient a_{n-j} of f is "paired" with the leading coefficient a_n and the radical $\sqrt[6]{-\frac{a_{n-j}}{a_n}}$ is computed,

- the bound is the sum of the largest two radicals.

An algorithmic description of the above is presented in Algorithm 1 below.

Obviously, L_L is of linear complexity and, as discussed elsewhere [1], [22], it cannot be used in the VAS-CF real root isolation method [2], [3]. The following example explains the reason why.

\footnote{See also Ştefănescu’s work [21].}
Input: A univariate polynomial \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in \mathbb{Z}[x] \), with \(a_n > 0 \).

Output: An upper bound on the values of the positive roots of \(f(x) \).

// form \(\text{cl} \), the coefficients list
1 \(\text{cl} \leftarrow [a_n, a_{n-1}, a_{n-2}, \ldots, a_0]; \) /* list enumeration begins with 0 */

// form \(\text{ncl} \), the negative coefficients list of pairs \([\frac{a_{n-j}}{a_n}, j] \).
2 \(\text{ncl} \leftarrow [\text{for } 1 \leq j \leq n \text{ if } \text{cl}[j] < 0 \text{ form the pair } [\frac{\text{cl}[j]}{a_n}, j]]; \) /* OK to contain just one pair */
3 \(\text{if } \text{ncl} = [] \text{ then return 0}; \) /* no positive roots */

// form \(\text{rl} \), the list of radicals
4 \(\text{rl} \leftarrow [\text{for each pair } [\frac{\text{cl}[j]}{a_n}, j] \in \text{ncl evaluate } \sqrt{-\frac{\text{cl}[j]}{a_n}}]; \) /* OK to contain just one radical */
5 \(\text{rl} \leftarrow \text{sort(rl)}; \) /* sort \(\text{rl} \) in increasing order */
6 \(\text{return sum(rl[\cdot -2 :])}; \) /* the sum of the largest two values. */

Algorithm 1. LL(\(f, x \)), Lagrange’s Linear algorithm.

Example 1. Consider the third degree polynomials

\[
\begin{align*}
f_1 &= x^3 + 1000000x^2 - 1000000x - 1, \\
f_2 &= x^3 - x^2 + 10000000x - 10000000,
\end{align*}
\]

where, for both polynomials, the only positive root is 1. The bounds obtained by Lagrange’s theorem are

\[
\begin{align*}
\text{LL}(f_1, x) &= 1001.00, \\
\text{LL}(f_2, x) &= 216.44.
\end{align*}
\]

To see why these bounds are unacceptable, we run ahead of ourselves and present the bounds obtained with: (a) LMQ, the “Local Max Quadratic” method, described in Section 3, and (b) LQ, the “Lagrange Quadratic” method, described in Section 4.

The bounds obtained by our LMQ are

\[
\begin{align*}
\text{LMQ}(f_1, x) &= 2.00, \\
\text{LMQ}(f_2, x) &= 2.00,
\end{align*}
\]

whereas, the bounds obtained by the newly developed method LQ are

\[
\begin{align*}
\text{LQ}(f_1, x) &= 1.001, \\
\text{LQ}(f_2, x) &= 1.00.
\end{align*}
\]
From Example 1, it becomes clear that we need to develop \(\text{LQ} \), the quadratic complexity version of \(\text{LL} \). However, to do so we need a thorough understanding of the \(\text{LMQ} \) algorithm, in which we will embed Lagrange’s theorem.

3. Our Local Max Quadratic Algorithm \(\text{LMQ} \). \(\text{LMQ} \) is one of the best algorithms with quadratic complexity for computing bounds on the values of positives roots of polynomials.\(^7\) It is an implementation of Theorem 2 in [3] – which is the same as Theorem 5 in [1] – and has been used to improve the performance of the VAS-CF real root isolation method.

\(\text{LMQ} \) is a max-min algorithm, which – given \(f \) as in (9) – computes the bound as follows:\(^8\)

- each negative coefficient \(a_{n-i} \) of the polynomial is “paired” with each one of the preceding positive coefficients \(a_{n-j}, (i > j) \) and the minimum is taken of all the radicals of the form

\[
\hat{b} = \min_{\{a_{n-i} < 0\}} \min_{\{a_{n-j} > 0; i > j\}} \sqrt[2t_{n-j}]{\frac{-a_{n-i}}{2^{n-j}}},
\]

where the exponent \(t_{n-j} \) is explained below, and next
- the maximum of all those minimums is taken as the estimate of the bound.

In other words we have:

\[
b = \max_{\{a_{n-i} < 0\}} \min_{\{a_{n-j} > 0; i > j\}} \sqrt[2t_{n-j}]{\frac{-a_{n-i}}{2^{n-j}}},
\]

What is unusual about our method is the exponent \(t_{n-j} \) in the expression \(2^{t_{n-j}} \) in (11); \(t_{n-j} \) counts the number of times the corresponding positive coefficient \(a_{n-j} \) has been “paired” with various negative coefficients to produce a minimum. That is, \(t \) is a list of length \(n + 1 \), and it is through this list that we will embed Lagrange’s theorem in \(\text{LMQ} \) (in Section 4), to develop \(\text{LQ} \).

By comparison, Hong’s method [9] – which is equivalent to \(\text{KQ} \), Kioustelidis’ quadratic complexity method [1], [10] – uses a formula almost identical to (11). The difference is that \(\text{KQ} \) uses the expression \(2^{t_{n-j}} \) instead of \(2^{t_{n-j}} \) and,

\(^7\) It should be noted that time is not of importance in our case since, in the VAS-CF real root isolation method, these bounds are estimated before a translation of complexity at least \(O(n^2) \) is executed.

\(^8\) To make the transition to \(\text{LQ} \) easier, we present here a slight variation of the original version of \(\text{LMQ} \) [22].
hence, the bounds obtained by it are greater than or equal to those obtained by LMQ. Details can be found elsewhere [1].

An algorithmic description of our method LMQ is presented in Algorithm 2.

Algorithm 2. LMQ(f, x), the “Local Max Quadratic” algorithm.

4. Lagrange’s Quadratic Algorithm LQ. As we saw in the previous section, the Local Max Quadratic algorithm, LMQ, uses the list \(t \) of length \(n + 1 \), in which initially all entries are 1. The entry \(t_{n-j} \) of the polynomial and if \(a_{n-j} > 0 \), then \(t_{n-j} \) counts the number of times \(a_{n-j} \) has been “paired” with various negative coefficients \(a_{n-i} \), with \(i > j \),
to produce a minimum value.

In LQ we use the list (of lists) t of length $n+1$, in which initially each entry is $[]$, the empty list. Again, the list $t_{n-j} = t[n-j]$ corresponds to the coefficient a_{n-j} of the polynomial but now, if $a_{n-j} > 0$, then the list $t[n-j]$ contains all the minimum values produced by $a_{n-j} > 0$ when “paired” with various negative coefficients a_{n-i}, with $i > j$.

Clearly, for any given $a_{n-j} > 0$, the list $t[n-j]$ may be the empty list, or a singleton, or it may contain more than one value.

Therefore, the Lagrange Quadratic algorithm LQ is a variation of LMQ and - given f as in (9) - the bound is computed as follows:

* each negative coefficient a_{n-i} of the polynomial is “paired” with each one the preceding positive coefficients a_{n-j}, $(i > j)$ and the minimum is taken of all the radicals of the form

$$\sqrt{-\frac{a_{n-i}}{a_{n-j}}}$$

as indicated in Lagrange’s theorem (Theorem 2); each minimum is then appended to the corresponding list $t[n-j]$,

* we initialize a temporary bound to 0, and then for each non-empty list $t[n-j]$ we proceed as follows: (a) if the list $t[n-j]$ has a single element, and its value is greater than the temporary bound, then it (the single element) becomes the temporary bound and, (b) if the list $t[n-j]$ has more than one element, we sort them in increasing order and take the sum of the largest two; if the sum is greater than the temporary bound, then it (the sum) becomes the temporary bound; at the end the temporary bound is taken as the estimate of the bound.

An algorithmic description of Lagrange’s quadratic method LQ is presented in Algorithm ?? below.

The following theorem establishes a relation between the bounds computed by the quadratic algorithms LMQ and LQ.

Theorem 3. Let b_{LMQ} and b_{LQ} denote bounds computed using, respectively, algorithm LMQ and LQ. Then we have

$$\frac{b_{LMQ}}{2} \leq b_{LQ} < 2 \cdot b_{LMQ}.$$
Input: A univariate polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in \mathbb{Z}[x]$, with $a_n > 0$.

Output: An upper bound on the values of the positive roots of $f(x)$.

// at least one sign variation ($v \geq 1$)?
1 $c_1 \leftarrow [a_0, a_1, a_2, \ldots, a_{n-1}, a_n]$; /* list of length $n+1$ */
2 $v \leftarrow$ number of sign variations in c_1;
3 if $v = 0$ then return 0;
4 :
5 if $v = 1$ then return value computed by Lemma 1;
6 :

// initialize variables
7 $m \leftarrow \text{length}(c_1)$;
8 $t \leftarrow [\emptyset, \emptyset, \emptyset, \ldots, \emptyset, \emptyset]$; /* list of length $n+1$ */

// main loop, which is almost identical to the one in LMQ
10 for $j = 0$ to $m - 1$ step 1 do
12 if $c_1(j) < 0$ then
14 $b \leftarrow +\infty$;
15 $\text{index} \leftarrow m$;
16 for $k = j + 1$ to $m - 1$ step 1 do
17 if $c_1(k) > 0$ then
18 $q \leftarrow (c_1[j] / c_1[k])^{1/(k-j)}$;
19 if $q < b$ then
20 $b \leftarrow q$;
21 $\text{index} \leftarrow k$;
22 end
24 end
26 $t[\text{index}] \leftarrow \text{append}(t[\text{index}], b)$;
27 end
28 end

// secondary loop to process the list of lists t
31 $b \leftarrow 0$;
33 for $j = 0$ to $m - 1$ step 1 do
35 if $t[j] \neq \emptyset$ then
37 if $\text{length}(t[j]) = 1$ then
39 $t[j] \leftarrow t[j][0]$; /* enumeration starts from 0 */
41 else
43 $t[j] \leftarrow \text{sort}(t[j])$; /* sort t in increasing order */
45 $t[j] \leftarrow \text{sum}(t[j][1:])$; /* sum of the largest two values */
49 end
51 end
53 $b \leftarrow t[j]$;
55 end
57 end
59 return b

Algorithm 3. LQ(f, x), Lagrange’s Quadratic Algorithm.
Proof. The value of t_{n-j} in (11) counts the number of times a_{n-j} has been “paired” with various negative coefficients a_{n-k}, with $j < k \leq i$, to produce a minimum value. Hence $t_{n-j} \leq i - j$. Therefore,

$$b_{LMQ} = \max \{ a_{n-i} \mid a_{n-j} > 0 \} \cdot \sqrt[2]{\frac{a_{n-i}}{a_{n-j}}},$$

which, for $k = 1, 2$, we have

$$i_{k-j} \sqrt[2]{\frac{a_{n-i_k}}{a_{n-j_0}}} = \min \{ a_{n-j} \mid a_{n-j} > 0 \} \cdot \sqrt[2]{\frac{a_{n-i_k}}{a_{n-j}}},$$

It follows that $b_{LMQ} \leq 2 \cdot b_{LQ}$.

On the other hand, let $a_{n-j_0} > 0$ be such that b_{LQ} is obtained as the sum of the largest two radicals in the list $t_{n-j_0} = t[n - j_0]$. Then,

$$b_{LQ} \leq i_{1-j} \sqrt[2]{\frac{a_{n-i_1}}{a_{n-j_0}}} + i_{2-j} \sqrt[2]{\frac{a_{n-i_2}}{a_{n-j_0}}}$$

where, for $k = 1, 2$, we have

$$i_{k-j} \sqrt[2]{\frac{a_{n-i_k}}{a_{n-j_0}}} = \min \{ a_{n-j} \mid a_{n-j} > 0 \} \cdot \sqrt[2]{\frac{a_{n-i_k}}{a_{n-j}}},$$

If $t[n - j_0]$ is a singleton the inequality (14) is obtained by taking $i_1 = i_2$. Since in (11) $t_{n-j} \geq 1$, it follows that $i_{1-j} \sqrt[2]{2^{n-j-1}} > 1$. Hence, for $k = 1, 2$, we have

$$i_{k-j} \sqrt[2]{\frac{a_{n-i_k}}{a_{n-j_0}}} \leq \max \{ a_{n-j} \mid a_{n-j} > 0 \} \cdot \sqrt[2]{\frac{a_{n-i_k}}{a_{n-j}}},$$

If $t[n - j_0]$ is a singleton the inequality (14) is obtained by taking $i_1 = i_2$. Since in (11) $t_{n-j} \geq 1$, it follows that $i_{1-j} \sqrt[2]{2^{n-j} \cdot i_{2-j}} > 1$. Hence, for $k = 1, 2$, we have

$$i_{k-j} \sqrt[2]{\frac{a_{n-i_k}}{a_{n-j_0}}} \leq \max \{ a_{n-j} \mid a_{n-j} > 0 \} \cdot \sqrt[2]{\frac{a_{n-i_k}}{a_{n-j}}},$$

Therefore $b_{LQ} < 2 \cdot b_{LMQ}$.

\[\square\]

In which case (14) is a strict inequality.
In other words, the advantage of \(LQ \) over \(LMQ \) is only in the strict inequality on the right vs. the weak inequality on the left. The second inequality in (13) is approached for \(x^n - x - 1 \), when \(n \to \infty \).

To demonstrate Theorem 3 we run several experiments with a large number of random polynomials and random monic polynomials and the results were quite interesting. Namely, we found out that:

- for random polynomials \(LMQ \) gives – on average – better bounds than \(LQ \), whereas,
- for random monic polynomials \(LQ \) gives – on average – better bounds than \(LMQ \).

In Tables 1 and 2 that follow, each result is based on a sample of 1000 polynomials. As in Theorem 3, \(b_{LMQ} (b_{LQ}) \) denote bounds computed using the algorithm \(LMQ \) (LQ). The column marked Mean gives the geometric mean of the ratio \(b_{LMQ}/b_{LQ} \). The columns marked Min and Max give the minimal and the maximal value of the ratio \(b_{LMQ}/b_{LQ} \). The column marked \(LMQ \) better (resp. \(LQ \) better) gives the number of polynomials (out of 1000) for which \(b_{LMQ} < b_{LQ} \) (resp. \(b_{LMQ} < b_{LQ} \)).

In Table 1 we used dense polynomials of degree \(n \) with uniformly distributed randomly generated coefficients with \(s \) decimal digits.

Table 1. For random polynomials \(LMQ \) gives better bounds. Notice that the mean value of the ratio \(b_{LMQ}/b_{LQ} \) is (almost) always smaller than 1.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(s)</th>
<th>Mean ((b_{LMQ}))</th>
<th>Min ((b_{LMQ}))</th>
<th>Max ((b_{LMQ}))</th>
<th>(LMQ) better</th>
<th>(LQ) better</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3</td>
<td>1.04568</td>
<td>0.611428</td>
<td>2</td>
<td>492</td>
<td>507</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>1.0495</td>
<td>0.577506</td>
<td>2</td>
<td>486</td>
<td>514</td>
</tr>
<tr>
<td>100</td>
<td>3</td>
<td>0.941566</td>
<td>0.650993</td>
<td>2</td>
<td>644</td>
<td>356</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>0.938535</td>
<td>0.637656</td>
<td>2</td>
<td>666</td>
<td>334</td>
</tr>
<tr>
<td>1000</td>
<td>3</td>
<td>0.933784</td>
<td>0.67628</td>
<td>2</td>
<td>663</td>
<td>337</td>
</tr>
<tr>
<td>1000</td>
<td>100</td>
<td>0.920236</td>
<td>0.644298</td>
<td>2</td>
<td>697</td>
<td>303</td>
</tr>
</tbody>
</table>

In Table 2 we used dense monic polynomials of degree \(n \) with uniformly distributed randomly generated coefficients with \(s \) decimal digits.

5. **Empirical results.** In this section we compare the bounds obtained by the three methods \(LMQ \), \(LL \) and \(LQ \) described above. Along with the bounds we
Table 2. For random monic polynomials \(LQ \) gives better bounds. Notice that the mean value of the ratio \(b_{LMQ}/b_{LQ} \) is always greater than 1.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(n)</th>
<th>(s)</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>LMQ better</th>
<th>LQ better</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3</td>
<td>1.4382</td>
<td>0.59386</td>
<td>2.</td>
<td>215</td>
<td>784</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>1.48369</td>
<td>0.577506</td>
<td>2.</td>
<td>211</td>
<td>788</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>3</td>
<td>1.34263</td>
<td>0.652529</td>
<td>2.</td>
<td>323</td>
<td>677</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>1.39559</td>
<td>0.646699</td>
<td>2.</td>
<td>316</td>
<td>684</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>3</td>
<td>1.35768</td>
<td>0.670705</td>
<td>2.</td>
<td>329</td>
<td>671</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>100</td>
<td>1.35888</td>
<td>0.664029</td>
<td>2.</td>
<td>343</td>
<td>657</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

also compute numerically the maximum positive root, \(\text{MaxRoot} \), of each polynomial. Moreover, in Subsection 5 we time the performance of the VAS-CF real root isolation method, implemented with \(LMQ, LQ \) and \(LMQ+LQ = \min(LMQ, LQ) \) to compute the bounds.

In Table 3 we follow the standard practice and use as benchmark the Laguerre\(^{11}\), Chebyshev (first\(^{12}\) kind), Wilkinson\(^{13}\) and Mignotte\(^{14}\) polynomials, of degrees \(\{10, 100, 1000\} \). Notice how well both \(LL \) and \(LQ \) are doing.

In Table 4 we test two extreme-case polynomials. The weakness of \(LL \) is revealed by the first polynomial. This table shows clearly the inequalities of Theorem 3.

VAS-CF implemented with \(LMQ, LQ \) and \(LMQ+LQ \). In this subsection we time the performance of the VAS-CF real root isolation method, implemented with three different quadratic algorithms for computing bounds: \(LMQ, LQ \) and \(LMQ+LQ = \min(LMQ, LQ) \).

The tests were run on a Linux virtual machine with 8 GB of RAM on a laptop with Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz processor (it has 4 physical/8 virtual cores, but the implementation of VAS-CF is sequential). The

\(^{11}\) recursively defined as: \(L_0(x) = 1, L_1(x) = 1 - x, \) and \(L_{n+1}(x) = \frac{1}{n+1}((2n+1-x)L_n(x) - nL_{n-1}(x)) \)

\(^{12}\) recursively defined as: \(T_0(x) = 1, T_1(x) = x, \) and \(T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) \)

\(^{13}\) defined as: \(W(x) = \prod_{i=1}^{n}(x - i) \)

\(^{14}\) defined as: \(M_n(x) = x^n - 2(5x - 1)^2 \)
Lagrange’s Bound on the Values of the Positive Roots of Polynomials...

Table 3. Special Polynomials: 1. Laguerre (L_{10}), 2. Laguerre (L_{100}), 3. Laguerre (L_{1000}), 4. Tchebyshev (T_{10}), 5. Tchebyshev (T_{100}), 6. Tchebyshev (T_{1000}), 7. Wilkinson (W_{10}), 8. Wilkinson (W_{100}), 9. Wilkinson (W_{1000}), 10. Mignotte (M_{10}), 11. Mignotte (M_{100}), 12. Mignotte (M_{1000})

<table>
<thead>
<tr>
<th>Polynomials</th>
<th>LMQ</th>
<th>LL</th>
<th>LQ</th>
<th>Max Root</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
<td>144.208</td>
<td>100</td>
<td>29.9207</td>
</tr>
<tr>
<td>2</td>
<td>20000</td>
<td>15393.3</td>
<td>10000</td>
<td>374.984</td>
</tr>
<tr>
<td>3</td>
<td>2.0×10^6</td>
<td>1.54922×10^6</td>
<td>1.0×10^6</td>
<td>3943.25</td>
</tr>
<tr>
<td>4</td>
<td>2.23607</td>
<td>2.54083</td>
<td>1.58114</td>
<td>0.987688</td>
</tr>
<tr>
<td>5</td>
<td>7.07107</td>
<td>8.65267</td>
<td>5</td>
<td>0.999877</td>
</tr>
<tr>
<td>6</td>
<td>22.3607</td>
<td>27.5232</td>
<td>15.8114</td>
<td>0.999999</td>
</tr>
<tr>
<td>7</td>
<td>110</td>
<td>81.28</td>
<td>55</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>100100</td>
<td>7792.13</td>
<td>5050</td>
<td>100.</td>
</tr>
<tr>
<td>9</td>
<td>1.001×10^6</td>
<td>775569</td>
<td>500500</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>1.77828</td>
<td>2.70246</td>
<td>1.63069</td>
<td>1.5763</td>
</tr>
<tr>
<td>11</td>
<td>1.04811</td>
<td>2.04768</td>
<td>1.04073</td>
<td>1.03618</td>
</tr>
<tr>
<td>12</td>
<td>1.00463</td>
<td>2.00462</td>
<td>1.00393</td>
<td>1.00348</td>
</tr>
</tbody>
</table>

Table 4. Extreme-case polynomials: 1. $x^3 + 10^{100}x^2 - 10^{100}x - 1$, 2. $x^{100} - x - 1$

<table>
<thead>
<tr>
<th>Polynomials</th>
<th>LMQ</th>
<th>LL</th>
<th>LQ</th>
<th>Max Root</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1.0×10^{50}</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1.01396</td>
<td>2</td>
<td>2</td>
<td>1.00699</td>
</tr>
</tbody>
</table>
times are all in milliseconds.

In Table 5 we use the benchmark polynomials Laguerre, Chebyshev (first kind), Wilkinson and Mignotte, of degrees \(\{100, 500, 1000\} \). As we see, in most cases, \(\text{VAS-CF (LMQ)} \) is measurably faster than \(\text{VAS-CF (LQ)} \).

<table>
<thead>
<tr>
<th>Degree</th>
<th>(\text{VAS-CF (LMQ)})</th>
<th>(\text{VAS-CF (LQ)})</th>
<th>(\text{VAS-CF (LMQ+LQ)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>56.991</td>
<td>52.992</td>
<td>44.993</td>
</tr>
<tr>
<td>500</td>
<td>200.00</td>
<td>153.933</td>
<td>100.00</td>
</tr>
<tr>
<td>1000</td>
<td>7675.83</td>
<td>9682.53</td>
<td>8061.78</td>
</tr>
<tr>
<td>100</td>
<td>26.997</td>
<td>18.997</td>
<td>12.998</td>
</tr>
<tr>
<td>500</td>
<td>700.894</td>
<td>948.856</td>
<td>727.888</td>
</tr>
<tr>
<td>1000</td>
<td>5828.11</td>
<td>8324.73</td>
<td>5922.1</td>
</tr>
<tr>
<td>100</td>
<td>6.998</td>
<td>7.999</td>
<td>6.999</td>
</tr>
<tr>
<td>500</td>
<td>855.87</td>
<td>876.866</td>
<td>886.866</td>
</tr>
<tr>
<td>1000</td>
<td>9976.48</td>
<td>10162.5</td>
<td>10214.4</td>
</tr>
<tr>
<td>100</td>
<td>5</td>
<td>3.999</td>
<td>3</td>
</tr>
<tr>
<td>500</td>
<td>54.991</td>
<td>47.993</td>
<td>43.993</td>
</tr>
<tr>
<td>1000</td>
<td>207.969</td>
<td>219.966</td>
<td>205.969</td>
</tr>
</tbody>
</table>

In Table 6 we test random polynomials of degrees \(\{10, 100, 1000\} \) and coefficient sizes \(\{3, 100\} \). The entries are averages of 1000 runs.

In Table 7 we test random monic polynomials of degrees \(\{10, 100, 1000\} \) and coefficient sizes \(\{3, 100\} \). The entries are averages of 1000 runs.

6. Conclusions. In this paper we have presented Lagrange’s original theorem of 1767 for computing upper bounds on the positive roots of polynomials and have provided a simple, short proof to it by Pury, dating back to 1842.

The bounds computed by Lagrange’s Linear complexity algorithm \(\text{LL} \) are, on average, very good but the algorithm itself cannot be recommended for use in the \(\text{VAS-CF} \) real root isolation method.

Based on our previous experience, we have developed \(\text{LQ} \), the quadratic
Table 6. Here again, as the degree of the polynomials gets bigger and bigger, VAS-CF(LMQ) becomes measurably faster than VAS-CF(LQ).

<table>
<thead>
<tr>
<th>Degree</th>
<th>Size</th>
<th>VAS-CF (LMQ)</th>
<th>VAS-CF (LQ)</th>
<th>VAS-CF (LMQ+LQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3</td>
<td>0.036994</td>
<td>0.037994</td>
<td>0.036995</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>0.027996</td>
<td>0.026996</td>
<td>0.029995</td>
</tr>
<tr>
<td>100</td>
<td>3</td>
<td>2.42563</td>
<td>2.80457</td>
<td>2.6056</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>1.08084</td>
<td>1.3468</td>
<td>1.08184</td>
</tr>
<tr>
<td>1000</td>
<td>3</td>
<td>373.016</td>
<td>507.339</td>
<td>376.122</td>
</tr>
<tr>
<td>1000</td>
<td>100</td>
<td>146.753</td>
<td>271.506</td>
<td>147.312</td>
</tr>
</tbody>
</table>

Table 7. Contrary to expectations – founded on Table 2 – for random monic polynomials, VAS-CF(LMQ) becomes measurably faster than VAS-CF(LQ), as the degree of the polynomials get bigger and bigger.

<table>
<thead>
<tr>
<th>Degree</th>
<th>Size</th>
<th>VAS-CF (LMQ)</th>
<th>VAS-CF (LQ)</th>
<th>VAS-CF (LMQ+LQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3</td>
<td>0.040993</td>
<td>0.040994</td>
<td>0.040994</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>0.031995</td>
<td>0.032995</td>
<td>0.033995</td>
</tr>
<tr>
<td>100</td>
<td>3</td>
<td>2.49662</td>
<td>2.80557</td>
<td>2.53062</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>1.07584</td>
<td>1.39479</td>
<td>1.10283</td>
</tr>
<tr>
<td>1000</td>
<td>3</td>
<td>371.947</td>
<td>503.066</td>
<td>374.647</td>
</tr>
<tr>
<td>1000</td>
<td>100</td>
<td>152.933</td>
<td>297.876</td>
<td>154.951</td>
</tr>
</tbody>
</table>
version of L2, by embedding Lagrange’s theorem into our “Local Max Quadratic” (LMQ) method.

The bounds computed by Lagrange’s Quadratic complexity algorithm LQ, are comparable to – and at best half of – those computed by LMQ.

Despite the overall very good performance of LQ, empirical results have demonstrated that we have nothing to gain by implementing it in the VAS-CF real root isolation method. However, as we have shown – both theoretically and empirically – the combined method LQ+LMQ is today the best method to obtain a bound on the values of the positive roots of polynomials. We plan to implement this method in the future in a computer algebra package.

REFERENCES

Lagrange's Bound on the Values of the Positive Roots of Polynomials...

[14] Lagrange J.-L. Traité de la résolution des équations numériques de tous les degrés. Paris, 1808. This is volume 8 of [19].

15The digitized form of Œuvres de Lagrange [19], Lagrange’s collected work, can be found on the sites http://sites.mathdoc.fr/ŒUVRES/, and https://gdz.sub.uni-goettingen.de/. Following Stedall’s remark ([10], p. 209), Lagrange’s article is listed here with two dates: the first one is the year when the paper is known to have been written – as recorded by Lagrange himself ([11], p. 384) – and the other one is the year in which the volume of papers was published.

Alkiviadis G. Akritas, Panagiotis S. Vigklas
Department of Electrical and Computer Engineering
University of Thessaly
GR-38221, Volos, Greece
e-mail: \{akritas, pviglas\}@uth.gr

Adam W. Strzebonski
Wolfram Research
100 Trade Center Drive
Champaign, IL 61820, USA
e-mail: adams@wolfram.com

Received 23 April 2018
Final Accepted 25 July 2018