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» Isolation of the real roots of a polynomial is the process of
finding real open intervals such that each interval contains exactly
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What is isolation?

» Isolation of the real roots of a polynomial is the process of
finding real open intervals such that each interval contains exactly
one real root and every real root is contained in some interval.

» To determine the values of the real roots, isolation is followed by
approximation to any desired degree of accuracy.

» One of — if not — the first to employ the isolation /
approximation approach was Budan and we begin our talk with
him.
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Outline of the talk

@ Budan’s theorem and some other discoveries described in his
book of 1807.
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Outline of the talk

@ Budan’s theorem and some other discoveries described in his
book of 1807.

@ Vincent's theorem of 1836, which is based on the one by
Budan.

@ Uspensky's extension of Vincent's theorem, which appeared in
his book published posthumously in 1948.

@ VAS, one of the three methods derived from Vincent's
theorem for the isolation of the real roots of polynomials.

@ Bounds on the values of the positive roots, which determine
the efficiency of VAS.
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Descartes' rule of signs (1637) — saved from oblivion by
Budan
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Descartes' rule of signs (1637) — saved from oblivion by
Budan

Consider the polynomial
p(x) = anx" + - + a1x + ao,

where p(x) € R[x] and let var(p) represent the number of sign
changes or variations (positive to negative and vice-versa) in the
sequence of coefficients a,, ap—1, . .., ao.
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Descartes' rule of signs (1637) — saved from oblivion by

Budan

Consider the polynomial

p(x) = anx" + - + a1x + ao,

where p(x) € R[x] and let var(p) represent the number of sign
changes or variations (positive to negative and vice-versa) in the

sequence of coefficients a,, ap—1, ..., ao-

The number o (p) of real roots — multiplicities counted — of the
polynomial p(x) € R[x] in the open interval (0,00) is bounded
above by var(p), that is, we have var(p) > o4 (p). If

var(p) > o+(p) then their difference is an even number.

October 2018, Swansea, Wales, UK
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Special cases of Descartes’ rule of signs

» var(p) =0 < o4 (p) = 0. J
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> var(p) =1 = o4(p) = 1. J

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Special cases of Descartes’ rule of signs

» var(p) =0 < o4 (p) = 0.

> var(p) =1 = o4(p) = 1.

Obreschkoff in 1920-23 provided the conditions under which
var(p) =1 < o4(p) = 1.
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Special cases of Descartes’ rule of signs

» var(p) =0 < o4 (p) = 0. |

> var(p) =1 = o4(p) = 1. |

Obreschkoff in 1920-23 provided the conditions under which
var(p) =1 < o4(p) = 1. \

These two special cases above will be used as termination criteria l
in the real root isolation method VAS.
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Historical Note on Budan (1761-1840)

» From Wikipedia we see that Ferdinand Francois Desire Budan
de Boislaurent is considered an amateur mathematician, who is
best remembered for his discovery of a rule which gives the
necessary condition for a polynomial equation to have no real roots
within an open interval.
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Historical Note on Budan (1761-1840)

» From Wikipedia we see that Ferdinand Francois Desire Budan
de Boislaurent is considered an amateur mathematician, who is
best remembered for his discovery of a rule which gives the
necessary condition for a polynomial equation to have no real roots
within an open interval.

» Taken together with Descartes’ Rule of signs, his theorem leads
to an upper bound on the number of the real roots a polynomial
has inside an open interval.
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Budan's Book of 1807
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Budan's Book of 1807

NOUVELLE METHODE
POUR LA RESOLUTION

DES EQUATIONS NUMERIQUES

D'UN DEGRE QUELCONQUE;
Draprés laquelle tout le calcul exigé pour cette Résolution
se réduit & Pemploi des deuz premiéres rgles de I Arith- A I’EMPEREUR ET ROL

métique :

PAR F. D. BUDAN, D. M. P.

et el o e it e e A
e R g e s i
* B e, e s renope s Ao b b & b
B g :

» du e antonr ens Ecols normales ).

A PARIS,

Ches Councizr, Imprimeur-Libraire pour les Mathématiques,
quai des Augustins, n* 57.

AxnEs 1807,

Figure:
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Budan's theorem of 1807 — to be found in Budan's book,
Vincent's paper of 1836 and our publications
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Budan's theorem of 1807 — to be found in Budan's book,
Vincent's paper of 1836 and our publications

If in an equation p(x) = 0 we make two substitutions, x <— x + a
and x <= x + b, where a and b are real numbers such that a < b,
then:
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Budan's theorem of 1807 — to be found in Budan's book,
Vincent's paper of 1836 and our publications

If in an equation p(x) = 0 we make two substitutions, x <— x + a
and x <= x + b, where a and b are real numbers such that a < b,

then:

» var(p(x + a)) > var(p(x + b)).
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Budan's theorem of 1807 — to be found in Budan's book,
Vincent's paper of 1836 and our publications

If in an equation p(x) = 0 we make two substitutions, x <— x + a
and x <= x + b, where a and b are real numbers such that a < b,
then:

» var(p(x + a)) > var(p(x + b)).
» the number o,5(p) of real roots of p(x) located between a and
b, satisfies the inequality 0.p(p) < var(p(x + a)) — var(p(x + b)).
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Budan's theorem of 1807 — to be found in Budan's book,
Vincent's paper of 1836 and our publications

If in an equation p(x) = 0 we make two substitutions, x <— x + a
and x <= x + b, where a and b are real numbers such that a < b,
then:

» var(p(x + a)) > var(p(x + b)).

» the number o,5(p) of real roots of p(x) located between a and
b, satisfies the inequality 0.p(p) < var(p(x + a)) — var(p(x + b)).
» if 0ap(p) < var(p(x + a)) — var(p(x + b)), then

{var(p(x + a)) — var(p(x + b))} — 0ab(p) = 2k, k € N,
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Remarks on Budan's theorem

» From Budan’s theorem it follows that if the polynomials p(x)
and p(x + 1) have the same number of sign variations then p(x)
has no real roots in the interval (0,1).
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Remarks on Budan's theorem

» From Budan’s theorem it follows that if the polynomials p(x)
and p(x + 1) have the same number of sign variations then p(x)
has no real roots in the interval (0,1).

» On the other hand, if p(x) has more sign variations than

p(x 4+ 1), Budan investigates the existence or absence of real roots
in the interval (0,1) by mapping those roots in the interval (0, c0)
so that he can use Descartes’ rule of signs.
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Budan's termination criterion for the interval (0, 1)
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Budan's termination criterion for the interval (0, 1)

» To map the real roots of the interval (0, 1) in the interval (0, c0)
Budan makes the pair of substitutions x < % and x + 1+ x
(which is equivalent to the substitution x <« 1%{) His termination
criterion states that ...

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK
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Fate of Budan’s theorem
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Budan's termination criterion for the interval (0, 1)

» To map the real roots of the interval (0, 1) in the interval (0, c0)
Budan makes the pair of substitutions x < % and x + 1+ x
(which is equivalent to the substitution x <« 1%) His termination
criterion states that ...

» The number go1(p) of real roots in the open interval (0,1) —
multiplicities counted — of the polynomial p(x) € R[x], is
bounded above by the number of sign variations varp1(p), where

1

varon(p) = var((x + 1) *€®)p(- +1

))-

That is, we have varp1(p) > 0o1(p).
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Budan's Theorem overshadowed by Fourier's Theorem — a

» Following a priority dispute, Budan's theorem was overshadowed
by an equivalent theorem by Fourier, which appears under the
names Budan or Fourier or Fourier-Budan or Budan-Fourier.
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Budan's Theorem overshadowed by Fourier's Theorem — a

» Following a priority dispute, Budan's theorem was overshadowed
by an equivalent theorem by Fourier, which appears under the
names Budan or Fourier or Fourier-Budan or Budan-Fourier.

121. Tutorime pE Bupan. — Ztant donnée une
équation quelconque f(x)= o de degré m, si dans les
m -1 _fonctions

(1) (=) Fl=h Frad oo S7(2)

on substitue deux quantités réelles quelconques o et

Figure: Fourier's theorem in Serret's Algebra, Vol. 1, 1877.
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Budan's Theorem overshadowed by Fourier's Theorem — b

» CAVEAT: From Budan’s statement it is easier to deduce that
var(p(x)) — var(p(x + 1)) = 0 = po1(p) = 0, than it is from
Fourier's statement.
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Budan's Theorem overshadowed by Fourier's Theorem — b

» CAVEAT: From Budan’s statement it is easier to deduce that
var(p(x)) — var(p(x + 1)) = 0 = po1(p) = 0, than it is from
Fourier's statement.

» In his paper of 1836, Vincent presented both the Budan and the
Fourier statement of this crucial theorem.
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Recapping Budan's achievements — a

» He had developed all the basic ingredients needed for the
isolation of the real roots of polynomials and had a very modern
point of view. However, he did not present a unifying theorem.
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Recapping Budan's achievements — a

» He had developed all the basic ingredients needed for the
isolation of the real roots of polynomials and had a very modern
point of view. However, he did not present a unifying theorem.

» He revived Descartes’ rule of signs — forgotten for about 160
years — and first isolates the positive roots. To isolate the
negative roots he sets x <— —x and treats them as positive.
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Recapping Budan's achievements — a

» He had developed all the basic ingredients needed for the
isolation of the real roots of polynomials and had a very modern
point of view. However, he did not present a unifying theorem.

» He revived Descartes' rule of signs — forgotten for about 160
years — and first isolates the positive roots. To isolate the
negative roots he sets x <— —x and treats them as positive.

» To compute the coefficients of p(x 4+ 1) Budan developed in
1803 the special case, a = 1, of the Ruffini method to compute the
coefficients of p(x + a). Ruffini’s method appeared in 1804 — and
was independently rediscovered by Horner in 1819.

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Budan’s work of 1807 Statement of Budan’s theorem

Fate of Budan’s theorem
Recapping

Recapping Budan's achievements — b

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Budan’s work of 1807 Statement of Budan’s theorem

Fate of Budan’s theorem
Recapping

Recapping Budan's achievements — b

» He uses his method to compute radicals, as in x3 — 1745. J
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Recapping Budan's achievements — b

» He uses his method to compute radicals, as in x3 — 1745. J

» If he knows the roots to be “far” away from 0 he can speed up
his method by introducing substitutions of the form x < kx, for
k =10, 20, etc. For example, with seven substitutions he can
determine that v/1745 is in the interval (12,13).
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Recapping Budan's achievements — b

» He uses his method to compute radicals, as in x3 — 1745. J

» If he knows the roots to be “far” away from 0 he can speed up
his method by introducing substitutions of the form x < kx, for
k =10, 20, etc. For example, with seven substitutions he can
determine that v/1745 is in the interval (12,13).

» However, in general, his method for real root isolation has
exponential computing time.

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Budan’s work of 1807 Statement of Budan’s theorem

Fate of Budan’s theorem
Recapping

Recapping Budan's achievem

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Budan’s work of 1807 Statement of Budan’s theorem

Fate of Budan’s theorem
Recapping

Recapping Budan's achievements — ¢

» In other words, searching for a real root Budan proceeds by
taking unit steps of the form x < x + 1.

XX+l KX+l Kex+l  Hex+l  xex+l

P(x) = 0 1 2 3 4 5
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Vincent’s Theorem of 1836

Historical Note on Vincent (1797-1868)

» Until 1979 he was known as M. Vincent. (M. for Monsieur; see
Lloyd, E. K.: “On the forgotten Mr. Vincent"; Historia
Mathematica, 6, (1979), 448-450).
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Vincent’s Theorem of 1836

Historical Note on Vincent (1797-1868)

» Until 1979 he was known as M. Vincent. (M. for Monsieur; see
Lloyd, E. K.: “On the forgotten Mr. Vincent"; Historia
Mathematica, 6, (1979), 448-450).

» Vincent is best known for his Cours de Géométrie Elémentaire,
1826, which reached a sixth edition and was published in German
as well.
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Vincent’s Theorem of 1836

Historical Note on Vincent (1797-1868)

» Until 1979 he was known as M. Vincent. (M. for Monsieur; see
Lloyd, E. K.: “On the forgotten Mr. Vincent"; Historia
Mathematica, 6, (1979), 448-450).

» Vincent is best known for his Cours de Géométrie Elémentaire,
1826, which reached a sixth edition and was published in German
as well.

» He was a polymath. He wrote at least 30 papers on topics such
as Mathematics, Archaeology, Philosophy, Ancient Greek Music
etc.
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Vincent’s Theorem of 1836

Vincent's Publications Timeline

< [in} Y= worldcatorg

Vincent, A. J. H, 1767-1868 (Alexandre Joseph Hidulphe) [WorldCat Idenities] influences - a

= o
&)“ WorldCat' Identities

Vincent, A. J. H. (Alexandre Joseph Hidulphe) 1797-1868

Overview
Works: 237 works in 516 publications in 2 languages and 1,066 library holdings

Genres: History Catalogs i atal Textbooks

Roles: Author, Editor, Other, Honoree, Translator, Composer, Former owner, Author of introduction
Publication Timeline

N By WM Posthumously by [l About

ARV \%’5 AR AR AR Bl AR »\%‘3 R S A ARG S LR I PG PG {RC R RS Pt St

Most widely held works about A. J. H Vincent
« Notice sur A.J.H. Vincent, lue le 10 janvier, 1869 by Emest Havet ( Book )

« Travaux scientifiques de M.A.-J.-H. Vincent by A. J. H Vincent ( Book )

des livres 1a de feu M.L.J.S.E. marquis de Laborde ... La vente aura lieu le ... 8 janvier 1872 et les 11 jours
suivants by Léon Laborde ( Book )
. des livres a bibli de feu m. A.J.H. Vincent by A. J. H Vincent ( Book )

« AM. Le Rédacteur en chef du *Correspondant® by B Jullien ( Book)
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Vincent's theorem of 1836
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Vincent's theorem of 1836

If in a polynomial, p(x), of degree n, with rational coefficients and
simple roots we perform sequentially replacements of the form

1 1 1
X401+ — X< o+ —,x<—az+ —,...
X X X

where ai; > 0 is an arbitrary non negative integer and ap, as, ... are
arbitrary positive integers, a; > 0, i > 1, then the resulting polynomial
either has no sign variations or it has one sign variation. In the first
case there are no positive roots whereas in the last case the equation

has exactly one positive root, represented by the continued fraction
1
o+ ———

oo +

T
az+——
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Remarks on Vincent's Theorem — a

» The requirement of the theorem that the roots of the
polynomial be simple, does not restrict its generality, because we
can always apply square free factorization and obtain polynomials
with simple roots. That is, employing polynomial gcd
computations, we can always obtain the factorization

p(x) = P1(X)132(X)2 ‘ "Pk(X)k,

where the roots of each p;(x),i =1,..., k are simple.

Alkiviadis G. Akritas
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Vincent’s Theorem of 1836

Remarks on Vincent's Theorem — b
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Vincent’s Theorem of 1836

Remarks on Vincent's Theorem — b

» The substitutions of the form x < a; + %, ... can be compactIyJ

written in the form of a Mdbius substitution M(x) = i;(ig
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Vincent’s Theorem of 1836

Remarks on Vincent's Theorem — b

» The substitutions of the form x < a; + %, ... can be compactly

written in the form of a Mdbius substitution M(x) = ij:ig

» It employs Descartes’ termination test, which is very efficiently
executed.
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Vincent’s Theorem of 1836

Remarks on Vincent's Theorem — b

» The substitutions of the form x < a; + %, ... can be compactly

written in the form of a Mdbius substitution M(x) = Z’fig

» It employs Descartes’ termination test, which is very efficiently
executed.

» The theorem does not provide a bound on the number of
substitutions x < a3 + %,x — ap + %,x — a3+ %, ... that need
to be performed in order to obtain a polynomial with at most one
sign variation.
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Vincent's search for a root

Like Budan, Vincent searches for roots — that is, he computes
each partial quotient «;; — by performing substitutions of the form
x < x + 1 — which correspond to «; < «; + 1 — until the
number of sign variations changes. Then he needs to investigate
the existence or absence of real roots in (0, 1) using Budan's
termination criterion. )
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Vincent’s Theorem of 1836

Vincent's search for a root

Like Budan, Vincent searches for roots — that is, he computes
each partial quotient «;; — by performing substitutions of the form
x < x + 1 — which correspond to «; < «; + 1 — until the
number of sign variations changes. Then he needs to investigate
the existence or absence of real roots in (0, 1) using Budan's
termination criterion. )

XX+l KX+l ¥kl xex+l  xex+l

P(x) = 0 1 2 3 4
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References to Vincent's theorem — a

» Vincent's article appeared a few years after Sturm had already
solved the real root isolation problem using bisections (1827).
Hence, there was little or no interest in Vincent's method, which
was correctly perceived as exponential.
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Vincent’s Theorem of 1836

References to Vincent's theorem — a

» Vincent's article appeared a few years after Sturm had already
solved the real root isolation problem using bisections (1827).
Hence, there was little or no interest in Vincent's method, which
was correctly perceived as exponential.

» In the 19-th century the theorem appeared with its proof but
without examples only in Serret’'s Algebra — at least in the fourth
edition of 1877 — and in its Russian translation.
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of Equations (1948)... J

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Statement of the Theorem
Fate of Vincent’s theorem
Recapping

Vincent’s Theorem of 1836

References to Vincent's theorem — b

» The theorem was kept alive by Uspensky — in his book Theory
of Equations (1948)... J

» ... where it was rediscovered by me in 1975 and formed the
subject of my Ph.D. Thesis (1978). ’
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Recapping Vincent's achievements — a

» He presented and proved a theorem that unified the basic
ingredients needed for the isolation of the real roots of
polynomials. His theorem lacked a certain feature, but nonetheless
was a significant step forward.
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Recapping Vincent's achievements — a

» He presented and proved a theorem that unified the basic
ingredients needed for the isolation of the real roots of
polynomials. His theorem lacked a certain feature, but nonetheless
was a significant step forward.

» He was fully aware of Budan's work and used almost all the
tools developed by Budan in 1807.
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Vincent’s Theorem of 1836

Recapping Vincent's achievements — a

» He presented and proved a theorem that unified the basic
ingredients needed for the isolation of the real roots of
polynomials. His theorem lacked a certain feature, but nonetheless
was a significant step forward.

» He was fully aware of Budan's work and used almost all the
tools developed by Budan in 1807.

» What can be considered a step backward, is that he did not use
Budan’s method for computing the coefficients of p(x + 1).
Instead, he computes them by employing Pascal’s triangle.
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Recapping Vincent's achievements — b

» The nature of the partial quotients a1, ap, a3. . . is not clear. J

» Unclear is also the effect of the substitutions
x%a1+%,x<—a2+%,x<—a3+%,... on the roots with
positive real part.
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Vincent’s Theorem of 1836

Recapping Vincent's achievements — b

» The nature of the partial quotients a1, ap, a3. . . is not clear. J

» Unclear is also the effect of the substitutions
x%a1+%,x<—a2+%,x<—a3+%,... on the roots with
positive real part.

» Finally, as in Budan's case, his real root isolation method has
exponential computing time.
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Historical Note on Uspensky (1883-1947)

» Uspensky was born in Mongolia, the son of a Russian diplomat. ]

» He graduated from the University of St. Petersburg in 1906 and
received his doctorate from the University of St. Petersburg in
1910. He was a member of the Russian Academy of Sciences from
1921.
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Historical Note on Uspensky (1883-1947)

» Uspensky was born in Mongolia, the son of a Russian diplomat. ]

» He graduated from the University of St. Petersburg in 1906 and
received his doctorate from the University of St. Petersburg in
1910. He was a member of the Russian Academy of Sciences from
1921.

» He joined the faculty of Stanford University in 1929-30 and
1930-31 as acting professor of mathematics. He was professor of
mathematics at Stanford from 1931 until his death.
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Extension of Vincent's theorem by Uspensky

If A is the smallest distance between any two roots of p(x) having
simple roots and degree n and F; is the i-th Fibonacci number (seed
numbers 1, 1) we need to perform at most m substitutions

1 1 1
X—a1+ —,X—a+ —,X—oa3+—,...,. X< am+ =
X X X &
to obtain a polynomial with at most 1 sign variation. The index m is
defined by
1 1
Fn_1A > 5 AFnFno1 > 14—
€

where
1

1
=(1+32)71 —1.
e=(1+")

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Uspensky’s Bound on the Number of Substitutions
An Example

Uspensky’s Extension of Vincent's Theorem .
Recapping

Remarks on Uspensky’s Theorem

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Uspensky’s Bound on the Number of Substitutions
An Example

Uspensky’s Extension of Vincent's Theorem .
Recapping

Remarks on Uspensky’s Theorem

» Uspensky's proof is unnecessarily complicated and the bound m
on the number of substitutions is way too high. J

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Uspensky’s Bound on the Number of Substitutions
An Example

Uspensky’s Extension of Vincent's Theorem .
Recapping

Remarks on Uspensky’s Theorem

» Uspensky's proof is unnecessarily complicated and the bound m
on the number of substitutions is way too high.

» From his theorem it follows that if a polynomial p(x) has one
positive root and all other roots with positive real part have been
moved — through a suitable Mobius substitution — inside a circle
with center at -1 and radius ¢, then var(p) = 1.
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Remarks on Uspensky’s Theorem

» Uspensky's proof is unnecessarily complicated and the bound m
on the number of substitutions is way too high.

» From his theorem it follows that if a polynomial p(x) has one
positive root and all other roots with positive real part have been
moved — through a suitable Mobius substitution — inside a circle
with center at -1 and radius ¢, then var(p) = 1.

» As we will see, the circle at -1 with radius € greatly
underestimates the sector into which all other roots have to move,
so that var(p) =1 <= o4 (p) = 1.
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Uspensky’s Extension of cent’s Theorem

Uspensky Uses the Same Example as Vincent — a

pional transiormation of the type v = 1/1 does not

Mhe number of variations. Thus, it s certain. that the above
vess will lead to equations with not more than one variation,

be better understood by examples to

sase when 1 is a rog)
form =
> form z = 1/(1 4
ion is transformeq
ind these transformg.
additions as will be
10 variations
the equation
variations, it means
the presence of just
just one root > 1
ld for the equation

o1, To separate the roots of the equation
pant! BTz T =0

ot the positive roots. Now, if 1is not a root, the positive roots are
e s 4 e than 1. The positive roots > 1 are of theformz = 1 4 y,
@ ta < 1 are of the form z = 1/(1 + 1) with positive y. Hence, to
o the PO T v roots > 1 we transform the equation by the subatitution
o the mumber of positive roots of the transformed. equation.
sel ,:;.ay. ﬁ:'; are roquired to effect this transformation. In our example the
follows:
aperstions are 85
o 1

0 -7 1

1

1ave more than one
stitutions y =142,
sformations by sub-
Juations obtained by
'his necessarily must
rmations of the form
‘mation of the form
1s: one of the type

ot the transformed equation i
P-4 +1=0

und the number of positive roots of it may be zero or two. To perform the trans-

rmaton

1
Doealls
1+y
z. »
f the ty'w'ﬂn' " +m " ke two steps, First,  is replaced by 1/z, which leads to
ned eqnagzm T =T+ 1 =0,
e 1 m‘;‘ of this preliminary transformation is the reversal of the order of the
L =y Caiet, N, etz = 1+ y in the new equation and perform the perations
4+ :
v

Figure: Uspensky uses Budan's method, by then a special case of the
established Ruffini-Horner method.
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Uspensky Uses the Same Example as Vincent — b
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Uspensky Uses the Same Example as Vincent — b

Figure: At the terminal nodes we have M (x) = 2523 and Mg(x) =

x+3
x+2°
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Uspensky's search for a root — a

Uspensky was not able to deduce from Fourier's statement that
var(p(x)) — var(p(x + 1)) = 0 implies go1(p) = 0. So the fact that
there is no sign variation loss after the substitution x < x + 1
means nothing to him.
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An Example
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Uspensky's search for a root — a

Uspensky was not able to deduce from Fourier's statement that
var(p(x)) — var(p(x + 1)) = 0 implies go1(p) = 0. So the fact that
there is no sign variation loss after the substitution x < x + 1
means nothing to him.

To make sure there is no root in (0,1) Uspensky “reinvented”
Budan’s termination test and after each substitution of the form
X < x + 1, he also performs the reduntant substitution

x  (x+ 1)deg(p)p(i

x—l—l)'
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Uspensky's search for a root — b

Therefore, Uspensky proceeds as shown in the next slide, and
doubles the amount of work done by Vincent. J
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Therefore, Uspensky proceeds as shown in the next slide, and
doubles the amount of work done by Vincent. J
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Recapping Uspensky's achievements — a

» He definitely kept Vincent's theorem alive, and extended it by
including the missing feature.

» He proved that the purpose of the substitutions
X < o1 + %,x — a2+%,x — a3+ %, is to force the roots with
positive real part inside a circle with center at -1 and radius e.
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Uspensky’s Extension of Vincent’'s Theorem q
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Recapping Uspensky's achievements — a

» He definitely kept Vincent's theorem alive, and extended it by
including the missing feature.

» He proved that the purpose of the substitutions
X < o1 + %,x — a2+%,x — a3+ %, is to force the roots with
positive real part inside a circle with center at -1 and radius e.

» He presented the real root isolation process in tree form and
reintroduced Budan's method for computing the coefficients of
p(x +1).
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» The nature of the partial quotients a;q, an, as, .. ., apn is still notJ
clear.
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Recapping Uspensky's achievements — b

» The nature of the partial quotients a;q, an, as, .. ., apn is still notJ
clear.

» Uspensky unwittingly claimed in the preface of his book that he
had developed a new method based on Vincent's theorem.
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Recapping Uspensky's achievements — b

» The nature of the partial quotients a;q, ap, as, ..., any is still not
clear.

» Uspensky unwittingly claimed in the preface of his book that he
had developed a new method based on Vincent's theorem.

» As we saw, he just doubled the computing time of Vincent's
method.
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Uspensky’s Extension of Vincent’'s Theorem q
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Recapping Uspensky's achievements — b

» The nature of the partial quotients a;q, ap, as, ..., any is still not
clear.

» Uspensky unwittingly claimed in the preface of his book that he
had developed a new method based on Vincent's theorem.

» As we saw, he just doubled the computing time of Vincent's
method.

» Therefore, as in Budan's and Vincent's cases, the presented real
root isolation method has exponential computing time.
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Vincent's theorem by Alesina and Galuzzi (2000)

The VAS continued fractions method
Bounds on the values of the positive roots of polynomials

Various Implementations of Vincent’s Theorem

Historical note on Alesina and Galuzzi

» Alesina and Galuzzi understood Vincent's theorem so thoroughly
that they gave an equivalent version of it — the bisections version
— and provided a generalization of Budan's termination test for

the interval (0, 1).

October 2018, Swansea, Wales, UK
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Vincent's theorem by Alesina and Galuzzi (2000)
The VAS continued fractions method
Bounds on the values of the positive roots of polynomials

Various Implementations of Vincent’s Theorem

Historical note on Alesina and Galuzzi

» Alesina and Galuzzi understood Vincent's theorem so thoroughly
that they gave an equivalent version of it — the bisections version
— and provided a generalization of Budan's termination test for
the interval (0, 1).

» Moreover, they were the ones who discovered Obreschkoff’s
Sector (or Cone) and Circles theorem in his book of 1963 and used
it to prove Vincent's theorem.
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Vincent's Bisections theorem — by Alesina and Galuzzi,
2000

Let f(z), be a real polynomial of degree n, which has only simple
roots. It is possible to determine a positive quantity ¢ so that for
every pair of positive real numbers a, b with |b — a| < 4, every
transformed polynomial of the form

8(2) = L+ 2 (TE)

has exactly 0 or 1 variations. The second case is possible if and
only if f(z) has a simple root within the open interval (a, b).
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Sketch of the proof of Vincent's theorem
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Bounds on the values of the positive roots of polynomials

Various Implementations of Vincent’s Theorem

Sketch of the proof of Vincent's theorem

» Obreschkoff's theorem of 1920-23, gives a much superior bound
(to Uspensky's) on the number of interval bisections (or
equivalently substitutions) that need to be performed in order to
obtain a polynomial with one sign variation. It states that ...
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Sketch of the proof of Vincent's theorem

» Obreschkoff's theorem of 1920-23, gives a much superior bound
(to Uspensky's) on the number of interval bisections (or
equivalently substitutions) that need to be performed in order to
obtain a polynomial with one sign variation. It states that ...

If a real polynomial has one positive simple root xg and all the
other — possibly multiple — roots lie in the sector

Spr={x=—-a+:f | a>0 and B2 < 302}

then the sequence of its coefficients has exactly one sign variation.
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View of Obreschkoff’'s Cone and Circles. Diagram by
Alesina and Galuzzi, 2000.

Imiy) = s Re(y)
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Real root isolation using Vincent's theorem

To isolate the positive roots of a polynomial p(x), all we have to
do is compute — for each root — the variables a, b, ¢, d of the
corresponding Mobius substitution

ax+ b
cx+d

M(x) =

that leads to a transformed polynomial

ax+b
cx +d

F(x) = (ex + d)"p( 22

with one sign variation.

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Vincent's theorem by Alesina and Galuzzi (2000)
The VAS continued fractions method

. . . , Bounds on the values of the positive roots of polynomials
Various Implementations of Vincent’s Theorem P poly

Two different ways to isolate the real root
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Various Implementations of Vincent’s Theorem

Two different ways to isolate the real roots:

Crucial observation:

The variables a, b, ¢, d of a Mdbius substitution M(x) = ;’:ig (in

Vincent's theorem) leading to a transformed polynomial with one
sign variation can be computed:
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Various Implementations of Vincent’s Theorem

Two different ways to isolate the real roots:

Crucial observation:

The variables a, b, ¢, d of a Mdbius substitution M(x) = ;’:ig (in

Vincent's theorem) leading to a transformed polynomial with one
sign variation can be computed:

» either by continued fractions, leading to the continued fractions
method developed by Vincent, Akritas and Strzebonski, (1978 /
1993 / 2008) the VAS continued fractions method,
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Two different ways to isolate the real roots:

Crucial observation:

The variables a, b, ¢, d of a Mdbius substitution M(x) = ;’:ig (in

Vincent's theorem) leading to a transformed polynomial with one
sign variation can be computed:

» either by continued fractions, leading to the continued fractions
method developed by Vincent, Akritas and Strzebonski, (1978 /
1993 / 2008) the VAS continued fractions method,

» or, by bisections, leading to the methods developed by:

(a) Vincent, Collins and Akritas (1976), the VCA bisection method,
and

(b) Vincent, Alesina and Galuzzi (2000), the VAG bisection method.
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The second method derived from Vincent's Theorem
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The second method derived from Vincent's Theorem

» As we pointed out, Vincent's method is exponential because each
partial quotient «; is computed by a series of unit increments
«; < «aj + 1 — equivalent to substitutions of the form x < x +1
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The second method derived from Vincent's Theorem

» As we pointed out, Vincent's method is exponential because each
partial quotient «; is computed by a series of unit increments
«; < «aj + 1 — equivalent to substitutions of the form x < x +1

» In 1978 | completed my Ph.D. thesis where | computed each partial
quotient «; as the lower bound, ¢b, on the values of the positive roots
of a polynomial. This made Vincent's method polynomial.
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The second method derived from Vincent's Theorem

» As we pointed out, Vincent's method is exponential because each
partial quotient «; is computed by a series of unit increments
«; < «aj + 1 — equivalent to substitutions of the form x < x +1

» In 1978 | completed my Ph.D. thesis where | computed each partial
quotient «; as the lower bound, ¢b, on the values of the positive roots
of a polynomial. This made Vincent's method polynomial.

» In my thesis | made 2 plausible assumptions: (a) that £b computes
the integer part of the smallest positive root, and (b) that its value is
bounded by the size of the polynomial coefficients.
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The second method derived from Vincent's Theorem

» As we pointed out, Vincent's method is exponential because each
partial quotient «; is computed by a series of unit increments
«; < «aj + 1 — equivalent to substitutions of the form x < x +1

» In 1978 | completed my Ph.D. thesis where | computed each partial
quotient «; as the lower bound, ¢b, on the values of the positive roots
of a polynomial. This made Vincent's method polynomial.

» In my thesis | made 2 plausible assumptions: (a) that £b computes
the integer part of the smallest positive root, and (b) that its value is
bounded by the size of the polynomial coefficients.

» That is, we now set «; < ¢b or, equivalently, we perform the
substitution x < x + ¢b, which takes about the same time as the
substitution x + x + 1.
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The step

X -— X+5

P(x)}=0 0 1 2 3 4 5 ‘T 6
VAS searching for a root: The ideal lower bound is 5, hence x « x + 5. &1

Figure: This way the theoretical computing time of Vincent's method
became polynomial.
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Ideal vs computed lower bound

» Note that in general the ideal lower bound is bigger than the
computed bound, i.e.

b > gbcomputed~
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Ideal vs computed lower bound

» Note that in general the ideal lower bound is bigger than the
computed bound, i.e.

(b > gbcomputed~

» The efficiency of the VAS algorithm depends on the algorithm
used to evaluate /bcompyted-
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Ideal vs computed lower bound

» Note that in general the ideal lower bound is bigger than the
computed bound, i.e.

b > gbcomputed~

» The efficiency of the VAS algorithm depends on the algorithm
used to evaluate /bcompyted-

» In the next section we will present two algorithms for evaluating

Ebcomputed-
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The VAS algorithm — Input / Output

Input: The square-free polynomial p(x) € Z[x], p(0) # 0, and the

Mabius transformation M(x) = 2+ = x, a,b,c,d € Z

Output: A list of isolating intervals of the positive roots of p(x)

Figure: The fastest implementation of Vincent's theorem.
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The VAS algorithm

1 var «— the number of sign changes of p(x);

2 if var = 0 then RETURN 0);

3 if var = 1 then RETURN {]a, b[} // a = min(M(0),M(c0)), b =
max(M(0),M(c0));

4 (b +«— alower bound on the positive roots of p(x);

5 if b > 1 then {p «— p(x + £b),M «—— M(x + £b)};

6 po1— (x+ l)dcg[”)p(x}l). Moy «— M(xh) // Look for real roots in
]o.1[;

7 me— M(1)// Is 1 a root? ;

8 proc — p(x +1), Mioe — M(x+ 1) // Look for real roots in
J1, 4+o0[ ;

9 if p(1) # 0 then

10 | RETURN VAS(po1, Mo1) U VAS(p1oc, Mioo)

11 else

12 | RETURN Vas(po1, Mor) UH{[m, m]} U VAS(proc, M)

13 end

Figure: The fastest implementation of Vincent’s theorem.
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Computing time analysis of VAS

» Because of the assumptions made in my thesis, VAS was
considered exponential until Sharma’s Ph.D. Thesis came out in
2007.
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Computing time analysis of VAS

» Because of the assumptions made in my thesis, VAS was
considered exponential until Sharma’s Ph.D. Thesis came out in

2007.

» With the help of the Alesina-Galuzzi papers and without any
assumptions, Sharma proved that VAS has polynomial computing
time.
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Strzebonski's contribution to Vincent's method
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Strzebonski's contribution to Vincent's method

» It was Adam Strzeboniski of Wolfram Research, who in 1993
implemented “VAS" in Mathematica and at the same time
introduced the substitution x <= {bcomputed - X, Whenever
Lbcomputed > 16. The value 16 was determined experimentally.
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Strzebonski's contribution to Vincent's method

» It was Adam Strzeboniski of Wolfram Research, who in 1993
implemented “VAS" in Mathematica and at the same time
introduced the substitution x <= {bcomputed - X, Whenever
Lbcomputed > 16. The value 16 was determined experimentally.

» The Strzeboniski substitution improved VAS even further. J
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Bounds on the values of the positive roots

» To compute the lower bound £b of p(x) we replace x + %

compute the upper bound ub of p(%) and set /b = ﬁ.
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Bounds on the values of the positive roots

» To compute the lower bound £b of p(x) we replace x + %

compute the upper bound ub of p(%) and set /b = ﬁ.

» Snag in 1978: Even though Cauchy and Lagrange had presented
upper bounds on the values of the positive roots of a real polynomial,
the only suitable bounds available in the English mathematical
literature before my Ph.D, thesis in 1978 were on the absolute values
of the roots.
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Bounds on the values of the positive roots

» To compute the lower bound £b of p(x) we replace x + %

compute the upper bound ub of p(%) and set /b = ﬁ.

» Snag in 1978: Even though Cauchy and Lagrange had presented
upper bounds on the values of the positive roots of a real polynomial,
the only suitable bounds available in the English mathematical
literature before my Ph.D, thesis in 1978 were on the absolute values
of the roots.

» Bounds on the absolute values of the roots work fine for the
bisection methods, where they are computed only once at the start of
the process.
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Bounds on the values of the positive roots

» To compute the lower bound £b of p(x) we replace x + %

compute the upper bound ub of p(%) and set /b = ﬁ.

» Snag in 1978: Even though Cauchy and Lagrange had presented
upper bounds on the values of the positive roots of a real polynomial,
the only suitable bounds available in the English mathematical
literature before my Ph.D, thesis in 1978 were on the absolute values
of the roots.

» Bounds on the absolute values of the roots work fine for the
bisection methods, where they are computed only once at the start of
the process.

» By contrast, at each step of the process, the VAS continued
fractions method relies heavily on the repeated estimation of lower
bounds on the values of the positive roots of polynomials.
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Cauchy’s bound

» | came across Cauchy’s theorem in N. Obreschkoff’'s book
Verteilung und Berechnung der Nullstellen reeller Polynome, (East)
Berlin, 1963. It states the following:
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Cauchy’s bound

» | came across Cauchy’s theorem in N. Obreschkoff’'s book
Verteilung und Berechnung der Nullstellen reeller Polynome, (East)
Berlin, 1963. It states the following:

Let p(x) = anx" + ap_1x" 1 +...+ a9, (o, >0)bea
polynomial of degree n > 0, with a;,_, < 0 for at least one k,

1 < k < n. If \is the number of negative coefficients, then an
upper bound on the values of the positive roots of p(x) is given by

Ak
ubc = max (-1
{1<k<nma,_x<0} Qp
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» (Stefdnescu’s theorem, 2005) Let p(x) € R[x] be such that the
number of variations of signs of its coefficients is even. If

p(x) = 1xN — by x™ 4 cox® — box™ 4 ..+ cpx% — by x™k +g(x),

with g(x) € Ry[x],c; > 0,b; > 0,d; > m; > d;11 for all i, the

number
(bl>1/(d1—m1) <bk)1/(dk_mk)
ubs = max — R
a Ck

is an upper bound for the positive roots of the polynomial p for
any choice of ¢y, ..., ck.
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in Cauchy’s bound

» We were inspired by Stefdnescu’s theorem of 2005 and
introduced the concept of splitting terms. By employing the
principle of splitting and pairing terms they developed various
improved bounds of linear and quadratic computational complexity.
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in Cauchy’s bound

» We were inspired by Stefdnescu’s theorem of 2005 and
introduced the concept of splitting terms. By employing the
principle of splitting and pairing terms they developed various
improved bounds of linear and quadratic computational complexity.

» For Cauchy’s bound, the splitting and pairing of terms can be
seen if we rewrite the formula as
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in Cauchy's bound

» We were inspired by Stefdnescu’s theorem of 2005 and
introduced the concept of splitting terms. By employing the
principle of splitting and pairing terms they developed various
improved bounds of linear and quadratic computational complexity.

» For Cauchy’s bound, the splitting and pairing of terms can be
seen if we rewrite the formula as

Op—k
ubc = max =
{1<k<n:a,_x<0} by
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Bounds with quadratic complexity

» Cauchy's upper bound has linear time complexity; that is, each
negative coefficient is paired with just one positive coefficient. J
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Bounds with quadratic complexity

» Cauchy's upper bound has linear time complexity; that is, each
negative coefficient is paired with just one positive coefficient.

| \

Main idea of quadratic bounds:

» Each negative coefficient of the polynomial is paired with all the
preceding positive coefficients and the minimum of the computed
values is associated with this coefficient. The maximum of all
those minimums is taken as the estimate of the bound. )
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» For the polynomial p(x) € R[x]
p(x) = anx" + an_1xX"N L+ ag, (an > 0),

each negative coefficient a; < 0 is “paired” with each one of the
preceding positive coefficients a; divided by 2% — where ¢ is
initially set to 1 and is incremented each time the positive
coefficient aj is used — and the minimum is taken over all j;
subsequently, the maximum is taken over all /.

That is, we have:

ubipmo = max  min
© {aj<0} {a;>0:>i}

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Vincent's theorem by Alesina and Galuzzi (2000)
The VAS continued fractions method

Various Implementations of Vincent’s Theorem Herils I e s @ die (e Goes of po bkl

Example

Consider the polynomial
X3 + 1010 — 10'%x — 1,

which has one sign variation and, hence, one positive root equal to 1
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Example

Consider the polynomial
X3 + 1010 — 10'%x — 1,

which has one sign variation and, hence, one positive root equal to 1

's linear bound, we pair the terms:

> {%3,—10100x} and {ij,—l},

and taking the maximum of the radicals we obtain a bound estimate
of 1.41421 % 10%°.
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Example

Consider the polynomial
X3 + 1010 — 10'%x — 1,

which has one sign variation and, hence, one positive root equal to 1

, the “Local Max" quadratic bound, we compute:

» the minimum of the two radicals obtained from the pairs of terms

(%, -101%0x} and {19222 10190} which is 2, and

» the minimum of the two radicals obtained from the pairs of terms
22, —1} and {10100 = ,—1} which is %.

» Therefore, the obtained estimate of the bound is max{2, 10%} =
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Good old quadratic complexity bounds

» Using LMQ, the performance of the VAS real root isolation
method was speeded up by an average overall factor of 40%. J
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VAS vs VCA on Mignotte polynomials

» The Mignotte polynomials are of the form x” — 2(c - x — 1)?, for
¢, n > 3, have only 4 real roots and as the degree increases, 2 of the 3
positive roots get closer and closer together.
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VAS vs VCA on Mignotte polynomials

» The Mignotte polynomials are of the form x” — 2(c - x — 1)?, for
¢, n > 3, have only 4 real roots and as the degree increases, 2 of the 3
positive roots get closer and closer together.

» We test our methods on the Mignotte polynomial

X300 _2(5x — 1)?
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VAS has been implemented in Mathematica — version 7
shown below
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VAS has been implemented in Mathematica — version 7
shown below

» — and it takes 0.046 seconds to isolate and approximate the
roots of Mignotte's polynomial of degree 300. J
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VAS has been implemented in Mathematica — version 7
shown below

» — and it takes 0.046 seconds to isolate and approximate the
roots of Mignotte's polynomial of degree 300.

s £ = %x4300-2 (Sx=-1)42;
inf9]= ints = RootIntervals[£][[1]] // Timing

1 1 1, 1
oufl {0.031, {(-2, 03, {0, I}, {50 o} @2, a1))

infio]= ints = Last[ints];

FindRoot[f, {x, #[[1]], #[[2]]}, Method -+ Brent, WorkingP:

+ 150, MaxI
Timing

-+ 200] & /@ints //
outrio)= {0.015, {{x =

-1.01443853206692614868172557391616077462987206
44136979952554
0.199999999

6841077512172795851336428688348

49717138989955701583757
999999999999999999999999¢

999999999
999999999999939999999999999

99999999958861793771948
0.200000000000000000000000000000000
00000000000000000000000000000000000
1.01171750912910732155315472587887158!
4014822306546525851076957576514 6865950

000000000

524805339 41772534125171
434417439515722) }}

Figure: Isolating and approximating real roots with Mma 7
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VCA has been implemented in maple — version 11 shown
below
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VCA has been implemented in maple — version 11 shown
below

— and it takes 170 seconds to just isolate the roots of Mignotte's
polynomial of degree 300.
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VCA has been implemented in maple — version 11 shown
below

— and it takes 170 seconds to just isolate the roots of Mignotte's
polynomial of degree 300.

> with(RootFinding) :
> f=x0-2(5x—1)%
f=% -2 (5x—1)*

-> st = time( ) : Isolate( f, digits = 250) : time( ) — st,
170.431

=

Figure: To isolate Mignotte's poly of degree 300
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Therefore,

VAS can be many thousand times faster than the fastest
implementation of VCA. J
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Therefore,

VAS can be many thousand times faster than the fastest
implementation of VCA.

Moreover, as the following frames indicate, VAS can be many
times faster than numeric methods, which cannot compute just the
positive roots! They compute all the roots (real and complex).
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Using Mma 7 (1/3 frames)

Consider the polynomial
f=10"(x-1)° -1

with the 2 positive roots # 1.
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Using Mma 7 (1/3 frames)

Consider the polynomial
f=10"(x-1)° -1

with the 2 positive roots # 1.

» The numeric method NRoots used in Mma 7 takes 12.933
seconds to find the two positive roots with 30 digits of accuracy.

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Vincent’s theorem by Alesina and Galuzzi (2000)
The VAS continued fractions method

Various Implementations of Vincent’s Theorem (Eterls @ i eeilies off i (e e o pobiemEs

Using Mma 7 (1/3 frames)

Consider the polynomial
f=10"(x-1)° -1

with the 2 positive roots # 1.

» The numeric method NRoots used in Mma 7 takes 12.933
seconds to find the two positive roots with 30 digits of accuracy.

£:=210%% (x-1)%9_1
Select[NRoots[f =0, x, 30], Im[#[[2]]] =0 &] //
Timing

{12.933, x =0.595995955995955555959585952871451%9 | |
x = 1.00000000000000000001047128548}
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Using Mma 7 (2/3 frames)

» On the other hand, the function RootIntervals, i.e. the VAS
continued fractions method, isolates the two positive roots in
5% 10710 seconds ...
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Using Mma 7 (2/3 frames)

» On the other hand, the function RootIntervals, i.e. the VAS
continued fractions method, isolates the two positive roots in
5% 10710 seconds ...

ints = RootIntervals[f][[1]] // Timing

-

{s.60316x107%¢, ({0, 1}, {1, 2}}

L L g |
4

Figure: Using the function RootlIntervals in Mma 7
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Using Mma 7 (3/3 frames)

» ...and approximates them to 30 digits of accuracy in practically
no time at alll J
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Using Mma 7 (3/3 frames)

» ...and approximates them to 30 digits of accuracy in practically
no time at alll

ints = Last[ints];
FindRoot[£f, {x, #[[1]], #[[2]]}, Method —» Brent,
WorkingPrecision -+ 30, MaxIterations - 200] & /@ ints //
Timing
{0., {{x—=0.999599999999999959989528714519},
{x -+ 1.00000000000000000001047128548}1}]

Figure: Using the function FindRoot in Mma 7

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Vincent's theorem by Alesina and Galuzzi (2000)
The VAS continued fractions method

Various Implementations of Vincent’s Theorem Herils am e Ellies @ e presiie Gees of pobmemik

Concluding remarks

is G. Akritas October 2018, Swansea, Wales, U



Vincent's theorem by Alesina and Galuzzi (2000)
The VAS continued fractions method

Various Implementations of Vincent’s Theorem Herils I e s @ die (e Goes of po bkl

Concluding remarks

» The theoretical results by Alesina-Galuzzi and Sharma improved
our understanding of Vincents theorem.
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Concluding remarks

» The theoretical results by Alesina-Galuzzi and Sharma improved
our understanding of Vincents theorem.

» Additionaly, Stefanescu’s theorem of 2005 and our discovery and
use of LMQ, the quadratic complexity bound on the values of the
positive roots, made VAS the fastest real root isolation method.
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Concluding remarks

» The theoretical results by Alesina-Galuzzi and Sharma improved
our understanding of Vincents theorem.

» Additionaly, Stefanescu’s theorem of 2005 and our discovery and
use of LMQ, the quadratic complexity bound on the values of the
positive roots, made VAS the fastest real root isolation method.

» However, when we try to isolate the roots of a sparse polynomial
of very large degree, say 100000, most CASs run out of memory.
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Concluding remarks

» The theoretical results by Alesina-Galuzzi and Sharma improved
our understanding of Vincents theorem.

» Additionaly, Stefanescu’s theorem of 2005 and our discovery and
use of LMQ, the quadratic complexity bound on the values of the
positive roots, made VAS the fastest real root isolation method.

» However, when we try to isolate the roots of a sparse polynomial
of very large degree, say 100000, most CASs run out of memory.

» To solve the problem the VAS continued fractions method has
been implemented using interval arithmetic.
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» Alesina, A., Galuzzi, M.: “A new proof of Vincent's theorem”;
L’Enseignement Mathemathique 44, (1998), 219-256.

» Alesina, A., Galuzzi, M.: Addentum to the paper “A new proof of
Vincent's theorem”; L’'Enseignement Mathemathique 45, (1999),
379-380.

» Alesina, A., Galuzzi, M.: “Vincent's Theorem from a Modern Point
of View"; (Betti, R. and Lawvere W.F. (eds.)), Categorical Studies in
Italy 2000, Rendiconti del Circolo Matematico di Palermo, Serie Il, n.
64, (2000), 179-191.
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» Herbert Schroder: Der Fundamentalsatz der Algebra, Dortmund
2017.

» Stefanescu, D.:“New bounds for positive roots of polynomials”;
Journal of Universal Computer Science 11(12), (2005), 2132-2141.

» Vincent, A. J. H.:"Sur la resolution des équations numériques”;
Journal de Mathématiques Pures et Appliquées 1, (1836), 341-372.
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