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What is isolation?

I Isolation of the real roots of a polynomial is the process of
finding real open intervals such that each interval contains exactly
one real root and every real root is contained in some interval.

I To determine the values of the real roots, isolation is followed by
approximation to any desired degree of accuracy.

I One of — if not — the first to employ the isolation /
approximation approach was Budan and we begin our talk with
him.
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Outline of the talk

Budan’s theorem and some other discoveries described in his
book of 1807.

Vincent’s theorem of 1836, which is based on the one by
Budan.

Uspensky’s extension of Vincent’s theorem, which appeared in
his book published posthumously in 1948.

VAS, one of the three methods derived from Vincent’s
theorem for the isolation of the real roots of polynomials.

Bounds on the values of the positive roots, which determine
the efficiency of VAS.
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Descartes’ rule of signs (1637) — saved from oblivion by
Budan

Consider the polynomial

p(x) = anx
n + · · ·+ a1x + a0,

where p(x) ∈ R[x ] and let var(p) represent the number of sign
changes or variations (positive to negative and vice-versa) in the
sequence of coefficients an, an−1, . . . , a0.

Theorem

The number %+(p) of real roots — multiplicities counted — of the
polynomial p(x) ∈ R[x ] in the open interval (0,∞) is bounded
above by var(p); that is, we have var(p) ≥ %+(p). If
var(p) > %+(p) then their difference is an even number.
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Special cases of Descartes’ rule of signs

I var(p) = 0 ⇔ %+(p) = 0.

I var(p) = 1 ⇒ %+(p) = 1.

Obreschkoff in 1920-23 provided the conditions under which
var(p) = 1 ⇐ %+(p) = 1.

These two special cases above will be used as termination criteria
in the real root isolation method VAS.
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Historical Note on Budan (1761-1840)

I From Wikipedia we see that Ferdinand Francois Desire Budan
de Boislaurent is considered an amateur mathematician, who is
best remembered for his discovery of a rule which gives the
necessary condition for a polynomial equation to have no real roots
within an open interval.

I Taken together with Descartes’ Rule of signs, his theorem leads
to an upper bound on the number of the real roots a polynomial
has inside an open interval.
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Budan’s Book of 1807

Figure:
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Budan’s theorem of 1807 — to be found in Budan’s book,
Vincent’s paper of 1836 and our publications

If in an equation p(x) = 0 we make two substitutions, x ← x + a
and x ← x + b, where a and b are real numbers such that a < b,
then:

I var(p(x + a)) ≥ var(p(x + b)).
I the number %ab(p) of real roots of p(x) located between a and
b, satisfies the inequality %ab(p) ≤ var(p(x + a))− var(p(x + b)).
I if %ab(p) < var(p(x + a))− var(p(x + b)), then
{var(p(x + a))− var(p(x + b))} − %ab(p) = 2k , k ∈ N.
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Remarks on Budan’s theorem

I From Budan’s theorem it follows that if the polynomials p(x)
and p(x + 1) have the same number of sign variations then p(x)
has no real roots in the interval (0, 1).

I On the other hand, if p(x) has more sign variations than
p(x + 1), Budan investigates the existence or absence of real roots
in the interval (0, 1) by mapping those roots in the interval (0,∞)
so that he can use Descartes’ rule of signs.
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Budan’s termination criterion for the interval (0, 1)

I To map the real roots of the interval (0, 1) in the interval (0,∞)
Budan makes the pair of substitutions x ← 1

x and x ← 1 + x
(which is equivalent to the substitution x ← 1

1+x ). His termination
criterion states that ...

I The number %01(p) of real roots in the open interval (0, 1) —
multiplicities counted — of the polynomial p(x) ∈ R[x ], is
bounded above by the number of sign variations var01(p), where

var01(p) = var((x + 1)deg(p)p(
1

x + 1
)).

That is, we have var01(p) ≥ %01(p).
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Budan’s Theorem overshadowed by Fourier’s Theorem — a

I Following a priority dispute, Budan’s theorem was overshadowed
by an equivalent theorem by Fourier, which appears under the
names Budan or Fourier or Fourier-Budan or Budan-Fourier.

Figure: Fourier’s theorem in Serret’s Algebra, Vol. 1, 1877.
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Budan’s Theorem overshadowed by Fourier’s Theorem — b

I CAVEAT: From Budan’s statement it is easier to deduce that
var(p(x))− var(p(x + 1)) = 0⇒ %01(p) = 0, than it is from
Fourier’s statement.

I In his paper of 1836, Vincent presented both the Budan and the
Fourier statement of this crucial theorem.
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Recapping Budan’s achievements — a

I He had developed all the basic ingredients needed for the
isolation of the real roots of polynomials and had a very modern
point of view. However, he did not present a unifying theorem.

I He revived Descartes’ rule of signs — forgotten for about 160
years — and first isolates the positive roots. To isolate the
negative roots he sets x ← −x and treats them as positive.

I To compute the coefficients of p(x + 1) Budan developed in
1803 the special case, a = 1, of the Ruffini method to compute the
coefficients of p(x + a). Ruffini’s method appeared in 1804 — and
was independently rediscovered by Horner in 1819.
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Recapping Budan’s achievements — b

I He uses his method to compute radicals, as in x3 − 1745.

I If he knows the roots to be “far” away from 0 he can speed up
his method by introducing substitutions of the form x ← kx , for
k = 10, 20, etc . For example, with seven substitutions he can
determine that 3

√
1745 is in the interval (12, 13).

I However, in general, his method for real root isolation has
exponential computing time.
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I In other words, searching for a real root Budan proceeds by
taking unit steps of the form x ← x + 1.

 

Figure: Budan searching for a root.
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Historical Note on Vincent (1797-1868)

I Until 1979 he was known as M. Vincent. (M. for Monsieur; see
Lloyd, E. K.: “On the forgotten Mr. Vincent”; Historia
Mathematica, 6, (1979), 448–450).

I Vincent is best known for his Cours de Géométrie Élémentaire,
1826, which reached a sixth edition and was published in German
as well.

I He was a polymath. He wrote at least 30 papers on topics such
as Mathematics, Archaeology, Philosophy, Ancient Greek Music
etc.
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Vincent’s Publications Timeline

Figure:
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Vincent’s theorem of 1836

If in a polynomial, p(x), of degree n, with rational coefficients and
simple roots we perform sequentially replacements of the form

x ← α1 +
1

x
, x ← α2 +

1

x
, x ← α3 +

1

x
, . . .

where α1 ≥ 0 is an arbitrary non negative integer and α2, α3, . . . are
arbitrary positive integers, αi > 0, i > 1, then the resulting polynomial
either has no sign variations or it has one sign variation. In the first
case there are no positive roots whereas in the last case the equation
has exactly one positive root, represented by the continued fraction

α1 +
1

α2 + 1
α3+

1

...
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Remarks on Vincent’s Theorem — a

I The requirement of the theorem that the roots of the
polynomial be simple, does not restrict its generality, because we
can always apply square free factorization and obtain polynomials
with simple roots. That is, employing polynomial gcd
computations, we can always obtain the factorization

p(x) = p1(x)p2(x)2 · · · pk(x)k ,

where the roots of each pi (x), i = 1, . . . , k are simple.
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Remarks on Vincent’s Theorem — b

I The substitutions of the form x ← α1 + 1
x , . . . can be compactly

written in the form of a Möbius substitution M(x) = ax+b
cx+d .

I It employs Descartes’ termination test, which is very efficiently
executed.

I The theorem does not provide a bound on the number of
substitutions x ← α1 + 1

x , x ← α2 + 1
x , x ← α3 + 1

x , . . . that need
to be performed in order to obtain a polynomial with at most one
sign variation.
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Vincent’s search for a root

Like Budan, Vincent searches for roots — that is, he computes
each partial quotient αi — by performing substitutions of the form
x ← x + 1 — which correspond to αi ← αi + 1 — until the
number of sign variations changes. Then he needs to investigate
the existence or absence of real roots in (0, 1) using Budan’s
termination criterion.

 

Figure: Vincent searching for root using Budan’s no-roots test.
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References to Vincent’s theorem — a

I Vincent’s article appeared a few years after Sturm had already
solved the real root isolation problem using bisections (1827).
Hence, there was little or no interest in Vincent’s method, which
was correctly perceived as exponential.

I In the 19-th century the theorem appeared with its proof but
without examples only in Serret’s Algebra — at least in the fourth
edition of 1877 — and in its Russian translation.
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References to Vincent’s theorem — b

I The theorem was kept alive by Uspensky — in his book Theory
of Equations (1948)...

I ... where it was rediscovered by me in 1975 and formed the
subject of my Ph.D. Thesis (1978).
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Recapping Vincent’s achievements — a

I He presented and proved a theorem that unified the basic
ingredients needed for the isolation of the real roots of
polynomials. His theorem lacked a certain feature, but nonetheless
was a significant step forward.

I He was fully aware of Budan’s work and used almost all the
tools developed by Budan in 1807.

I What can be considered a step backward, is that he did not use
Budan’s method for computing the coefficients of p(x + 1).
Instead, he computes them by employing Pascal’s triangle.
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I The nature of the partial quotients α1, α2, α3. . . is not clear.

I Unclear is also the effect of the substitutions
x ← α1 + 1

x , x ← α2 + 1
x , x ← α3 + 1

x , . . . on the roots with
positive real part.

I Finally, as in Budan’s case, his real root isolation method has
exponential computing time.

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Budan’s work of 1807
Vincent’s Theorem of 1836

Uspensky’s Extension of Vincent’s Theorem
Various Implementations of Vincent’s Theorem

Statement of the Theorem
Fate of Vincent’s theorem
Recapping

Recapping Vincent’s achievements — b

I The nature of the partial quotients α1, α2, α3. . . is not clear.

I Unclear is also the effect of the substitutions
x ← α1 + 1

x , x ← α2 + 1
x , x ← α3 + 1

x , . . . on the roots with
positive real part.

I Finally, as in Budan’s case, his real root isolation method has
exponential computing time.

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Budan’s work of 1807
Vincent’s Theorem of 1836

Uspensky’s Extension of Vincent’s Theorem
Various Implementations of Vincent’s Theorem

Statement of the Theorem
Fate of Vincent’s theorem
Recapping

Recapping Vincent’s achievements — b

I The nature of the partial quotients α1, α2, α3. . . is not clear.

I Unclear is also the effect of the substitutions
x ← α1 + 1

x , x ← α2 + 1
x , x ← α3 + 1

x , . . . on the roots with
positive real part.

I Finally, as in Budan’s case, his real root isolation method has
exponential computing time.

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Budan’s work of 1807
Vincent’s Theorem of 1836

Uspensky’s Extension of Vincent’s Theorem
Various Implementations of Vincent’s Theorem

Statement of the Theorem
Fate of Vincent’s theorem
Recapping

Recapping Vincent’s achievements — b

I The nature of the partial quotients α1, α2, α3. . . is not clear.

I Unclear is also the effect of the substitutions
x ← α1 + 1

x , x ← α2 + 1
x , x ← α3 + 1

x , . . . on the roots with
positive real part.

I Finally, as in Budan’s case, his real root isolation method has
exponential computing time.

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Budan’s work of 1807
Vincent’s Theorem of 1836

Uspensky’s Extension of Vincent’s Theorem
Various Implementations of Vincent’s Theorem

Uspensky’s Bound on the Number of Substitutions
An Example
Recapping

Table of contents

1 Budan’s work of 1807

2 Vincent’s Theorem of 1836

3 Uspensky’s Extension of Vincent’s Theorem
Uspensky’s Bound on the Number of Substitutions
An Example
Recapping

4 Various Implementations of Vincent’s Theorem

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Budan’s work of 1807
Vincent’s Theorem of 1836

Uspensky’s Extension of Vincent’s Theorem
Various Implementations of Vincent’s Theorem

Uspensky’s Bound on the Number of Substitutions
An Example
Recapping

Historical Note on Uspensky (1883-1947)

I Uspensky was born in Mongolia, the son of a Russian diplomat.

I He graduated from the University of St. Petersburg in 1906 and
received his doctorate from the University of St. Petersburg in
1910. He was a member of the Russian Academy of Sciences from
1921.

I He joined the faculty of Stanford University in 1929-30 and
1930-31 as acting professor of mathematics. He was professor of
mathematics at Stanford from 1931 until his death.
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Extension of Vincent’s theorem by Uspensky

If ∆ is the smallest distance between any two roots of p(x) having
simple roots and degree n and Fi is the i-th Fibonacci number (seed
numbers 1, 1) we need to perform at most m substitutions

x ← α1 +
1

x
, x ← α2 +

1

x
, x ← α3 +

1

x
, . . . , x ← αm +

1

ξ

to obtain a polynomial with at most 1 sign variation. The index m is
defined by

Fm−1∆ >
1

2
, ∆FmFm−1 > 1 +

1

ε

where

ε = (1 +
1

n
)

1
n−1 − 1.
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Remarks on Uspensky’s Theorem

I Uspensky’s proof is unnecessarily complicated and the bound m
on the number of substitutions is way too high.

I From his theorem it follows that if a polynomial p(x) has one
positive root and all other roots with positive real part have been
moved — through a suitable Möbius substitution — inside a circle
with center at -1 and radius ε, then var(p) = 1.

I As we will see, the circle at -1 with radius ε greatly
underestimates the sector into which all other roots have to move,
so that var(p) = 1 ⇐ %+(p) = 1.
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Uspensky Uses the Same Example as Vincent — a

Figure: Uspensky uses Budan’s method, by then a special case of the
established Ruffini-Horner method.
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Uspensky Uses the Same Example as Vincent — b

Figure: At the terminal nodes we have ML(x) = 2x+3
x+2 and MR(x) = x+3

x+2 .
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Uspensky’s search for a root — a

Uspensky was not able to deduce from Fourier’s statement that
var(p(x))− var(p(x + 1)) = 0 implies %01(p) = 0. So the fact that
there is no sign variation loss after the substitution x ← x + 1
means nothing to him.

To make sure there is no root in (0, 1) Uspensky “reinvented”
Budan’s termination test and after each substitution of the form
x ← x + 1, he also performs the reduntant substitution

x ← (x + 1)deg(p)p(
1

x + 1
).
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Uspensky’s search for a root — b

Therefore, Uspensky proceeds as shown in the next slide, and
doubles the amount of work done by Vincent.

 

Figure: Uspensky searching for roots using redundant substitutions.
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Recapping Uspensky’s achievements — a

I He definitely kept Vincent’s theorem alive, and extended it by
including the missing feature.

I He proved that the purpose of the substitutions
x ← α1 + 1

x , x ← α2 + 1
x , x ← α3 + 1

x , . . . is to force the roots with
positive real part inside a circle with center at -1 and radius ε.

I He presented the real root isolation process in tree form and
reintroduced Budan’s method for computing the coefficients of
p(x + 1).
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Recapping Uspensky’s achievements — b

I The nature of the partial quotients α1, α2, α3, . . ., αm is still not
clear.

I Uspensky unwittingly claimed in the preface of his book that he
had developed a new method based on Vincent’s theorem.

I As we saw, he just doubled the computing time of Vincent’s
method.

I Therefore, as in Budan’s and Vincent’s cases, the presented real
root isolation method has exponential computing time.
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Historical note on Alesina and Galuzzi

I Alesina and Galuzzi understood Vincent’s theorem so thoroughly
that they gave an equivalent version of it — the bisections version
— and provided a generalization of Budan’s termination test for
the interval (0, 1).

I Moreover, they were the ones who discovered Obreschkoff’s
Sector (or Cone) and Circles theorem in his book of 1963 and used
it to prove Vincent’s theorem.
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I Alesina and Galuzzi understood Vincent’s theorem so thoroughly
that they gave an equivalent version of it — the bisections version
— and provided a generalization of Budan’s termination test for
the interval (0, 1).

I Moreover, they were the ones who discovered Obreschkoff’s
Sector (or Cone) and Circles theorem in his book of 1963 and used
it to prove Vincent’s theorem.
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Vincent’s Bisections theorem — by Alesina and Galuzzi,
2000

Let f (z), be a real polynomial of degree n, which has only simple
roots. It is possible to determine a positive quantity δ so that for
every pair of positive real numbers a, b with |b − a| < δ, every
transformed polynomial of the form

φ(z) = (1 + z)nf (
a + bz

1 + z
)

has exactly 0 or 1 variations. The second case is possible if and
only if f (z) has a simple root within the open interval (a, b).
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Sketch of the proof of Vincent’s theorem

I Obreschkoff’s theorem of 1920-23, gives a much superior bound
(to Uspensky’s) on the number of interval bisections (or
equivalently substitutions) that need to be performed in order to
obtain a polynomial with one sign variation. It states that ...

If a real polynomial has one positive simple root x0 and all the
other — possibly multiple — roots lie in the sector

S√3 = {x = −α + ıβ | α > 0 and β2 ≤ 3α2}

then the sequence of its coefficients has exactly one sign variation.
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View of Obreschkoff’s Cone and Circles. Diagram by
Alesina and Galuzzi, 2000.

 

Figure: Diagram by Alesina and Galuzzi.
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Real root isolation using Vincent’s theorem

To isolate the positive roots of a polynomial p(x), all we have to
do is compute — for each root — the variables a, b, c , d of the
corresponding Möbius substitution

M(x) =
ax + b

cx + d

that leads to a transformed polynomial

f (x) = (cx + d)np(
ax + b

cx + d
)

with one sign variation.
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Two different ways to isolate the real roots:

Crucial observation:

The variables a, b, c, d of a Möbius substitution M(x) = ax+b
cx+d (in

Vincent’s theorem) leading to a transformed polynomial with one
sign variation can be computed:

I either by continued fractions, leading to the continued fractions
method developed by Vincent, Akritas and Strzeboński, (1978 /
1993 / 2008) the VAS continued fractions method,
I or, by bisections, leading to the methods developed by:
(a) Vincent, Collins and Akritas (1976), the VCA bisection method,
and
(b) Vincent, Alesina and Galuzzi (2000), the VAG bisection method.
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The second method derived from Vincent’s Theorem

I As we pointed out, Vincent’s method is exponential because each
partial quotient αi is computed by a series of unit increments
αi ← αi + 1 — equivalent to substitutions of the form x ← x + 1

I In 1978 I completed my Ph.D. thesis where I computed each partial
quotient αi as the lower bound, `b, on the values of the positive roots
of a polynomial. This made Vincent’s method polynomial.

I In my thesis I made 2 plausible assumptions: (a) that `b computes
the integer part of the smallest positive root, and (b) that its value is
bounded by the size of the polynomial coefficients.

I That is, we now set αi ← `b or, equivalently, we perform the
substitution x ← x + `b, which takes about the same time as the
substitution x ← x + 1.
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The ideal step

Figure: This way the theoretical computing time of Vincent’s method
became polynomial.
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Ideal vs computed lower bound

I Note that in general the ideal lower bound is bigger than the
computed bound, i.e.

`b > `bcomputed .

I The efficiency of the VAS algorithm depends on the algorithm
used to evaluate `bcomputed .

I In the next section we will present two algorithms for evaluating
`bcomputed .
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The VAS algorithm — Input / Output

Figure: The fastest implementation of Vincent’s theorem.
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Computing time analysis of VAS

I Because of the assumptions made in my thesis, VAS was
considered exponential until Sharma’s Ph.D. Thesis came out in
2007.

I With the help of the Alesina-Galuzzi papers and without any
assumptions, Sharma proved that VAS has polynomial computing
time.

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Budan’s work of 1807
Vincent’s Theorem of 1836

Uspensky’s Extension of Vincent’s Theorem
Various Implementations of Vincent’s Theorem

Vincent’s theorem by Alesina and Galuzzi (2000)
The VAS continued fractions method
Bounds on the values of the positive roots of polynomials

Computing time analysis of VAS

I Because of the assumptions made in my thesis, VAS was
considered exponential until Sharma’s Ph.D. Thesis came out in
2007.

I With the help of the Alesina-Galuzzi papers and without any
assumptions, Sharma proved that VAS has polynomial computing
time.

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Budan’s work of 1807
Vincent’s Theorem of 1836

Uspensky’s Extension of Vincent’s Theorem
Various Implementations of Vincent’s Theorem

Vincent’s theorem by Alesina and Galuzzi (2000)
The VAS continued fractions method
Bounds on the values of the positive roots of polynomials

Computing time analysis of VAS

I Because of the assumptions made in my thesis, VAS was
considered exponential until Sharma’s Ph.D. Thesis came out in
2007.

I With the help of the Alesina-Galuzzi papers and without any
assumptions, Sharma proved that VAS has polynomial computing
time.

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Budan’s work of 1807
Vincent’s Theorem of 1836

Uspensky’s Extension of Vincent’s Theorem
Various Implementations of Vincent’s Theorem

Vincent’s theorem by Alesina and Galuzzi (2000)
The VAS continued fractions method
Bounds on the values of the positive roots of polynomials

Strzeboński’s contribution to Vincent’s method

I It was Adam Strzeboński of Wolfram Research, who in 1993
implemented “VAS” in Mathematica and at the same time
introduced the substitution x ← `bcomputed · x , whenever
`bcomputed > 16. The value 16 was determined experimentally.

I The Strzeboński substitution improved VAS even further.
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I The Strzeboński substitution improved VAS even further.

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Budan’s work of 1807
Vincent’s Theorem of 1836

Uspensky’s Extension of Vincent’s Theorem
Various Implementations of Vincent’s Theorem

Vincent’s theorem by Alesina and Galuzzi (2000)
The VAS continued fractions method
Bounds on the values of the positive roots of polynomials

Bounds on the values of the positive roots

I To compute the lower bound `b of p(x) we replace x ← 1
x ,

compute the upper bound ub of p( 1
x ) and set `b = 1

ub .

I Snag in 1978: Even though Cauchy and Lagrange had presented
upper bounds on the values of the positive roots of a real polynomial,
the only suitable bounds available in the English mathematical
literature before my Ph.D, thesis in 1978 were on the absolute values
of the roots.

I Bounds on the absolute values of the roots work fine for the
bisection methods, where they are computed only once at the start of
the process.

I By contrast, at each step of the process, the VAS continued
fractions method relies heavily on the repeated estimation of lower
bounds on the values of the positive roots of polynomials.
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bounds on the values of the positive roots of polynomials.

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Budan’s work of 1807
Vincent’s Theorem of 1836

Uspensky’s Extension of Vincent’s Theorem
Various Implementations of Vincent’s Theorem

Vincent’s theorem by Alesina and Galuzzi (2000)
The VAS continued fractions method
Bounds on the values of the positive roots of polynomials

Bounds on the values of the positive roots

I To compute the lower bound `b of p(x) we replace x ← 1
x ,

compute the upper bound ub of p( 1
x ) and set `b = 1

ub .

I Snag in 1978: Even though Cauchy and Lagrange had presented
upper bounds on the values of the positive roots of a real polynomial,
the only suitable bounds available in the English mathematical
literature before my Ph.D, thesis in 1978 were on the absolute values
of the roots.

I Bounds on the absolute values of the roots work fine for the
bisection methods, where they are computed only once at the start of
the process.

I By contrast, at each step of the process, the VAS continued
fractions method relies heavily on the repeated estimation of lower
bounds on the values of the positive roots of polynomials.

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Budan’s work of 1807
Vincent’s Theorem of 1836

Uspensky’s Extension of Vincent’s Theorem
Various Implementations of Vincent’s Theorem

Vincent’s theorem by Alesina and Galuzzi (2000)
The VAS continued fractions method
Bounds on the values of the positive roots of polynomials

Bounds on the values of the positive roots

I To compute the lower bound `b of p(x) we replace x ← 1
x ,

compute the upper bound ub of p( 1
x ) and set `b = 1

ub .

I Snag in 1978: Even though Cauchy and Lagrange had presented
upper bounds on the values of the positive roots of a real polynomial,
the only suitable bounds available in the English mathematical
literature before my Ph.D, thesis in 1978 were on the absolute values
of the roots.

I Bounds on the absolute values of the roots work fine for the
bisection methods, where they are computed only once at the start of
the process.

I By contrast, at each step of the process, the VAS continued
fractions method relies heavily on the repeated estimation of lower
bounds on the values of the positive roots of polynomials.

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Budan’s work of 1807
Vincent’s Theorem of 1836

Uspensky’s Extension of Vincent’s Theorem
Various Implementations of Vincent’s Theorem

Vincent’s theorem by Alesina and Galuzzi (2000)
The VAS continued fractions method
Bounds on the values of the positive roots of polynomials

Cauchy’s bound

I I came across Cauchy’s theorem in N. Obreschkoff’s book
Verteilung und Berechnung der Nullstellen reeller Polynome, (East)
Berlin, 1963. It states the following:

Let p(x) = αnx
n + αn−1x

n−1 + . . .+ α0, (αn > 0) be a
polynomial of degree n > 0, with αn−k < 0 for at least one k ,
1 ≤ k ≤ n. If λ is the number of negative coefficients, then an
upper bound on the values of the positive roots of p(x) is given by

ubC = max
{1≤k≤n:αn−k<0}

k

√
−λαn−k

αn
.
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Ştefănescu’s theorem for pairing terms

I (Ştefănescu’s theorem, 2005) Let p(x) ∈ R[x ] be such that the
number of variations of signs of its coefficients is even. If

p(x) = c1x
d1−b1x

m1 +c2x
d2−b2x

m2 + . . .+ckx
dk −bkx

mk +g(x),

with g(x) ∈ R+[x ],ci > 0, bi > 0, di > mi > di+1 for all i , the
number

ubS = max

{(
b1
c1

)1/(d1−m1)

, . . . ,

(
bk
ck

)1/(dk−mk )
}

is an upper bound for the positive roots of the polynomial p for
any choice of c1, . . . , ck .
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Ştefănescu’s theorem for pairing terms
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Our splitting and pairing of terms in Cauchy’s bound

I We were inspired by Ştefănescu’s theorem of 2005 and
introduced the concept of splitting terms. By employing the
principle of splitting and pairing terms they developed various
improved bounds of linear and quadratic computational complexity.

I For Cauchy’s bound, the splitting and pairing of terms can be
seen if we rewrite the formula as

ubC = max
{1≤k≤n:αn−k<0}

k

√
−αn−k

αn
λ
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Bounds with quadratic complexity

I Cauchy’s upper bound has linear time complexity; that is, each
negative coefficient is paired with just one positive coefficient.

Main idea of quadratic bounds:

I Each negative coefficient of the polynomial is paired with all the
preceding positive coefficients and the minimum of the computed
values is associated with this coefficient. The maximum of all
those minimums is taken as the estimate of the bound.
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Local Max Quadratic, (LMQ)

I For the polynomial p(x) ∈ R[x ]

p(x) = αnx
n + αn−1x

n−1 + . . .+ α0, (αn > 0),

each negative coefficient ai < 0 is “paired” with each one of the
preceding positive coefficients aj divided by 2tj — where tj is
initially set to 1 and is incremented each time the positive
coefficient aj is used — and the minimum is taken over all j ;
subsequently, the maximum is taken over all i .

That is, we have:

ubLMQ = max
{ai<0}

min
{aj>0:j>i}

j−i

√
− ai

aj
2
tj

.
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Example

Consider the polynomial

x3 + 10100x2 − 10100x − 1,

which has one sign variation and, hence, one positive root equal to 1
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Example

Consider the polynomial

x3 + 10100x2 − 10100x − 1,

which has one sign variation and, hence, one positive root equal to 1

With Cauchy’s linear bound, we pair the terms:

I { x32 ,−10100x} and { x32 ,−1},

and taking the maximum of the radicals we obtain a bound estimate
of 1.41421 ∗ 1050.
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Example

Consider the polynomial

x3 + 10100x2 − 10100x − 1,

which has one sign variation and, hence, one positive root equal to 1

With LMQ, the “Local Max” quadratic bound, we compute:

I the minimum of the two radicals obtained from the pairs of terms
{ x32 ,−10100x} and {10100x22 ,−10100x} which is 2, and
I the minimum of the two radicals obtained from the pairs of terms
{ x3
22
,−1} and {10100x2

22
,−1} which is 2

1050
.

I Therefore, the obtained estimate of the bound is max{2, 2
1050
} = 2.
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Good old quadratic complexity bounds

I Using LMQ, the performance of the VAS real root isolation
method was speeded up by an average overall factor of 40%.
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VAS vs VCA on Mignotte polynomials

I The Mignotte polynomials are of the form xn − 2(c · x − 1)2, for
c , n ≥ 3, have only 4 real roots and as the degree increases, 2 of the 3
positive roots get closer and closer together.

I We test our methods on the Mignotte polynomial

x300 − 2(5x − 1)2

.
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VAS has been implemented in Mathematica — version 7
shown below

I — and it takes 0.046 seconds to isolate and approximate the
roots of Mignotte’s polynomial of degree 300.

Figure: Isolating and approximating real roots with Mma 7
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VCA has been implemented in maple — version 11 shown
below

— and it takes 170 seconds to just isolate the roots of Mignotte’s
polynomial of degree 300.

Figure: To isolate Mignotte’s poly of degree 300
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Therefore, ...

VAS can be many thousand times faster than the fastest
implementation of VCA.

Moreover, as the following frames indicate, VAS can be many
times faster than numeric methods, which cannot compute just the
positive roots! They compute all the roots (real and complex).
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Using Mma 7 (1/3 frames)

Consider the polynomial

f = 10999(x − 1)50 − 1

with the 2 positive roots 6= 1.

I The numeric method NRoots used in Mma 7 takes 12.933
seconds to find the two positive roots with 30 digits of accuracy.

Figure: Using the function NRoots in Mma 7
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Consider the polynomial

f = 10999(x − 1)50 − 1

with the 2 positive roots 6= 1.

I The numeric method NRoots used in Mma 7 takes 12.933
seconds to find the two positive roots with 30 digits of accuracy.
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Using Mma 7 (2/3 frames)

I On the other hand, the function RootIntervals, i.e. the VAS
continued fractions method, isolates the two positive roots in
5 ∗ 10−16 seconds ...
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Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Budan’s work of 1807
Vincent’s Theorem of 1836

Uspensky’s Extension of Vincent’s Theorem
Various Implementations of Vincent’s Theorem

Vincent’s theorem by Alesina and Galuzzi (2000)
The VAS continued fractions method
Bounds on the values of the positive roots of polynomials

Using Mma 7 (2/3 frames)

I On the other hand, the function RootIntervals, i.e. the VAS
continued fractions method, isolates the two positive roots in
5 ∗ 10−16 seconds ...

Figure: Using the function RootIntervals in Mma 7

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Budan’s work of 1807
Vincent’s Theorem of 1836

Uspensky’s Extension of Vincent’s Theorem
Various Implementations of Vincent’s Theorem

Vincent’s theorem by Alesina and Galuzzi (2000)
The VAS continued fractions method
Bounds on the values of the positive roots of polynomials

Using Mma 7 (2/3 frames)

I On the other hand, the function RootIntervals, i.e. the VAS
continued fractions method, isolates the two positive roots in
5 ∗ 10−16 seconds ...

Figure: Using the function RootIntervals in Mma 7

Alkiviadis G. Akritas October 2018, Swansea, Wales, UK



Budan’s work of 1807
Vincent’s Theorem of 1836

Uspensky’s Extension of Vincent’s Theorem
Various Implementations of Vincent’s Theorem

Vincent’s theorem by Alesina and Galuzzi (2000)
The VAS continued fractions method
Bounds on the values of the positive roots of polynomials

Using Mma 7 (3/3 frames)

I . . . and approximates them to 30 digits of accuracy in practically
no time at all!

Figure: Using the function FindRoot in Mma 7
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Concluding remarks

I The theoretical results by Alesina-Galuzzi and Sharma improved
our understanding of Vincents theorem.

I Additionaly, Ştefănescu’s theorem of 2005 and our discovery and
use of LMQ, the quadratic complexity bound on the values of the
positive roots, made VAS the fastest real root isolation method.

I However, when we try to isolate the roots of a sparse polynomial
of very large degree, say 100000, most CASs run out of memory.

I To solve the problem the VAS continued fractions method has
been implemented using interval arithmetic.
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