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Abstract—With network coding, two data packets are trans-
formed into one by a simple XOR-operation. The transformed
packet is transmitted and each original packet can be retrieved at
its destination node through a similar XOR-operation. Network
coding is an important research topic as it radically challenges
existing networking paradigms.

In this paper we provide an analytical study of the impact
network coding has on the delivery of real-time packets (i.e.,
packets with deadlines). We model a router as a queueing system
where packets arrive from two independent Poisson flows. We
obtain an exact expression for the goodput of the system and
study the goodput gain that can be achieved by performing
network coding. We verify the validity of the model through
simulations.

I. INTRODUCTION

The idea of coding packets in data networks prior to routing

has spurred a plethora of research activities in the networking

area. Network coding gained a lot of interest in both wireline

and wireless networks because of its potential to radically

affect the way networks operate.

The increased interest in network coding comes at a time

when the Internet becomes a carrier of more time-sensitive

information and new generation of systems such as wireless

sensor networks offer unprecedent monitoring capability of

time-critical physical environments. High data rate applica-

tions like video-on-demand and high quality interactive video

communications demand timeliness guarantees as well.

When packets with timeliness restrictions undergo network

coding, key QoS parameters might be improved but also

compromised, so additional insight into the performance of

systems with network coding and timeliness requirements is

needed. In this paper we therefore develop an analytical model

of network coding in the presence of real-time packets, i.e.

packets with delivery deadlines.

We model a router node to which two types of packets

arrive and must be forwarded, and we provide a detailed

derivation of its real-time goodput. The model we propose is

an M/M/1/2 queueing system, adjusted in such a way that it

can perform network coding. We provide exact expressions for

the stationary real-time goodput at the router node, and verify

them with simulations. Our work provides analytical tools for

further exploration of the network coding concept. To the best

of our knowledge, our work is the first to model network

coding while looking at it from a real-time perspective.

II. RELATED WORK

This paper advances network coding in the direction of

performance modeling in the presence of real-time flows

associated with specific packet deadlines. We review the most

noteworthy of the research works related to this area next.

In the real-time queueing theory domain, Lehoczky [7]

analysed an M/M/1 queue with deadlines to service endings

and the edf-policy in heavy traffic. He argued that, since the

deadlines of all stored packets have to be taken into account,

this queue gives rise to a Markov process on a statespace of

infinite dimension. Lehoczky shows that the Markov process

collapses to a tractable one-dimensional process in heavy

traffic. Lehozcky later used these results to analyse control

policies in [8], and extended his analysis to Jackson networks

in [9]. Doytchinov et al. [3] extended this analysis to a

GI/G/1 queue with deadlines, and Kruk et al. [6] to networks

of such queues.

Delay sensitive traffic in the presence of network coding was

studied in [10]. The authors adopted a statistical QoS measure

that expresses the decay rate of the buffer at the middle node

in a butterfly network. This router node is the bottleneck in

the butterfly case, which explains the reasons why the authors

focus on its buffer behavior. Although this metric is enough

for approximating the delivered QoS per flow, it does not

express it directly in terms of the achieved packet error rate

and goodput. Shah et al. [11] start with the goal of minimizing

the backlog of coded packets at receiving nodes. They design

an online algorithm so that the linear packet combinations that

are generated, are chosen in such a way that their actual span

excludes any linear combination that is already known to the

receivers.

Eryilmaz et al. [4] study the delay benefits of network cod-

ing in wireless multicast and multiple unicast scenarios. They

present a model that considers only a single-hop transmission

and the random coding across packets from the same flow

(intra-session network coding). Online network coding and

delay minimization was more recently presented in [2]. A

precise model is not presented in that work, although a simple

delay analysis for the wireless channel with Bernoulli erasures

is performed. Another interesting modeling work can be found

in [13] where the authors used stochastic network calculus for

calculating the throughput in a coded butterfly network. Never-
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theless, the model does not cover delay and timeliness aspects.

A recent work from Goseling et al. [5] aims at modeling the

performance of coded queueing systems. Instead of focusing

on providing exact expressions, the authors provide bounds on

the performance of a coded tandem queuing network with two

independent flows. Nevertheless, the extension of this work to

packets with deadline requirements is not straightforward.

III. MODEL

A. System and Queueing Model

We focus our analysis on a router element R to which two

flows of packets arrive and need to be routed. The router

node is capable of opportunistically coding two plain packets

belonging to different flows, and transmitting the resulting

coded packet instead of two plain transmissions.

We model the router R as a single server queueing system.

Packets from each of the two flows arrive to node R according

to a Poisson process with parameters λ1 and λ2, respectively.

Such packets will be referred to as plain, i.e. not coded.

Packets of the first flow are type-1 packets, those of the second

flow are type-2 packets, and a coded packet is referred to as

type-3. The service time of a packet at the router, i.e. the

time it takes node R to retransmit a received packet, follows

an exponential distribution with parameter µ. The sum of the

two arrival rates λ1 and λ2 is denoted by λ.

The queueing system has a single-space waiting buffer,

which can hold one packet while the server is busy. The buffer

is an overwrite one; a plain packet is overwritten by a newer

arriving one if they are of the same type, otherwise they are

coded together and the resulting coded packet occupies the

waiting buffer. A coded packet is overwritten by any newly

arriving packet. The server has an additional buffer that holds

the packet currently being served. The result is thus a modified

version of an M/M/1/2 queueing system (note that, in an

M/M/1/K system, the K refers to the number of buffer

positions, including the one in service).

We shall restrict our real-time requirements on the packets

to the same constant relative deadline d that is set once the

packet becomes available at node R. The absolute deadline

of a packet corresponds to the sum of its arrival moment at

node R and its relative deadline. For the packet to meet its

real-time requirement, it should be retransmitted by node R

before its absolute deadline expires. The restriction to one

relative deadline value d neither impacts the quality nor the

representativeness of the analysis. It is merely used to simplify

the underlying presentation. The extension of our analysis to

different deadline distributions is straightforward.

Any plain packet whose deadline has expired is removed

from the system. A coded packet is removed if the deadlines

of both of its plain packets have expired.

B. System State

The state of the queueing system at the router is fully

conveyed through the characterization of its waiting buffer’s

status and the status of its server. Two variables will be used

to keep track of the system state: variable L, that defines the

current number of packets in the system (included any packet

being served), and variable N, that defines the type of the

packet residing in the buffer, if any. Knowledge of the type of

a packet when it is in service is not required for the analysis.

Variable L can take one of three values: 0, 1, or 2. Note that

a coded packet is counted as a single packet in the system.

Variable N can also take one of three values: 1 (packet in

buffer is of type-1), 2 (packet in buffer is of type-2), or 3

(packet in buffer is a coded packet, type-3).

IV. GOODPUT ANALYSIS

We define the goodput of a flow as the number of packets

of that flow that are served by the router within their deadline

requirement, per unit of time. Given the symmetry of the

problem, we will concentrate our analysis on the goodput of

type-1 packets. The analysis for packets of type-2 is identical.

A packet of type-1 arriving to the system can find it in one

of five states:

1) Empty (L = 0): The server is available, and there is no

packet occupying the waiting buffer.

2) Busy Server (L = 1): The server is servicing a packet,

but the waiting buffer is free.

3) Full, type-1 packet in buffer (L = 2, N = 1): the server is

busy. The waiting buffer is occupied by a type-1 packet.

4) Full, type-2 packet in buffer (L = 2, N = 2): the server is

busy. The waiting buffer is occupied by a type-2 packet.

5) Full, type-3 packet in buffer (L = 2, N = 3): the server is

busy. The waiting buffer is occupied by a coded packet.

Theorem 1. The goodput of type-1 packets is given by the

following expression:

γ1 = λ1

∑

a,b

P(L = a,N = b)P(success|L = a,N = b),

(1)

where P(L = a,N = b) is the probability that the system is

in state (L = a,N = b) and P(success|L = a,N = b) is

the probability that an arbitrary type-1 packet arriving to the

system in state (L = a, N = b) meets its deadline.

Proof: The goodput γ1 of type-1 packets is by definition

equal to the probability that the service of an arbitrary packet

of flow 1 is successful, i.e. meets its deadline. By the PASTA

property (Poisson Arrivals See Time Averages, see [12]), the

probability that an arbitrary type-1 packet arrives to the system

in state (L = a,N = b) is equal to the steady-state probability

that the system is in state (L = a,N = b). The overall service

success probability is therefore given by summing, over the

entire state space, the probability that the system is in state

(L = a,N = b) times the success probability conditioned on

the occurrence of this state.

Finding γ1 amounts to finding the success probabilities per

system state, P(success|L = a,N = b), and the different state

probabilities P(L = a,N = b). We derive these probabilities

in the following two subsections.��



A. Success Probability per System State

We start by finding the probabilities P(success|L = a,N =
b) that a packet of type-1 arriving to the system when it is

in state (L = a,N = b) is served by the router server and

completes its service before the expiration of its deadline. The

arrival of the packet is considered as time origin. Therefore, the

absolute deadline of the packet is equal to its relative deadline.

1) Case 1: Arrival to an Empty System (L = 0): A packet

arriving to an empty system directly enters service. Its success

probability is equal to:

P(success|L = 0) = (1 − e−µd), (2)

which is equal to the probability that the service time it

experiences is smaller than its deadline d.

2) case 2: Arrival to a Busy Server (L = 1) or Full System

(L = 2) with N = 1 or 3: Due to the overwrite property of

the waiting buffer, an arrival of a type-1 packet to a Busy

Server state is identical to an arrival when the system is full

and the buffered packet is of type-1 or type-3. Indeed, in all

three cases, the new arriving packet will occupy (or overwrite)

the buffer and wait to be serviced. Therefore P(success|L =
2, N = 1) and P(success|L = 2, N = 3) are both equal to

P(success|L = 1), given by:

P(success|L = 1) =

d
∫

0

µe−µte−λ1t(1 + λ2t)e
−λ2t

× (1 − e−µ(d−t))dt.

(3)

To derive Equation (3), we first condition on the length of

the residual service time t of the current packet in the server.

Being exponentially distributed, this residual service time has

a density equal to µe−µt. Given that the residual service time

is t, a buffered packet is successfully serviced if all following

conditions are met:

1) The server becomes free before the deadline expiration

of the buffered packet, i.e., t ≤ d.

2) The packet is not overwritten while waiting in the buffer.

3) The service time of the packet is smaller than the

remaining time the packet has until deadline expiration.

Condition 1 is accounted for in the integration region (0 to

d). Condition 2 is met if and only if, starting from the arrival

moment 0 of the buffered packet until the residual service time

t is completed, no new type-1 packet arrives and at most one

arrival of type-2 occurs. Indeed, the first arrival of a type-2

packet will not result in overwriting the buffered packet, since

it will be coded with it (resulting in a type-3 packet). Any

arrival of type-1 is not tolerated since it overwrites both a

type-1 and a type-3 buffered packet. The term e−λ1t gives the

probability that no type-1 arrivals occur during t. The term

(1 + λ2t)e
−λ2t gives the probability that at most one type-2

arrival occurs.

Finally, condition 3 is met if the service time experienced

by the packet is at most equal to the remaining time (d − t)
until deadline expiration. The term (1− e−µ(d−t)) is equal to

the probability that the service time is smaller than d − t.
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Fig. 1: A cycle consisting of idle time and busy period.

3) case 3: Arrival to a Full System with Buffered Type-

2 Packet (L = 2, N = 2): If the type-1 packet arrives to

a system where the waiting buffer is occupied by a type-2

packet, both packets will be coded together, resulting in a

type-3 buffered packet. The success probability of the arriving

packet is therefore equal to the probability that the resulting

type-3 packet is served before the deadline d of the arriving

packet is expired. It is given by:

P(success|L = 2, N = 2) =

d
∫

0

µe−µte−λ1te−λ2t(1−e−µ(d−t))dt.

(4)

Equation (4) differs from Equation (3) in that no arrival of

type-2 is allowed at all, throughout the whole sojourn time of

the coded packet in the buffer. Indeed, any type-2 arrival will

overwrite the coded packet. This arrival restriction on type-2

packets is reflected in Equation (4) through the term e−λ2t.

B. System State Probabilities

In order to determine the probabilities P(L = a,N = b)
of finding the system in a particular state (L = a,N = b),
we introduce the notion of cycle time, which we define as the

time between two consecutive moments at which the system

becomes empty (i.e. L becomes equal to 0). The cycle time

C consists of two parts: A first part, the ‘idle time’ I, during

which the system is empty, and a second part, the ‘busy period’

BP, during which the system serves packets until it becomes

empty again. Fig. 1 illustrates an example of a cycle.

The busy period spreads throughout the time that the system

is not in a state L = 0. It consists of a collection of consecutive

states characterized by L = 1 or L = 2. We shall refer to the

case where L = 2 during a busy period as clearance period

(CP ), which is the amount of time the buffer is continuously

occupied. A clearance period ends when the buffer is cleared,

i.e. when either a dispatch to the server occurs, or when the

stored packet is deleted upon its deadline expiration.

The arrival that causes a state change from L = 1 to L = 2
(i.e. that starts a clearance period) is referred to as first arrival.

As a busy period might comprise multiple clearance periods,

there can be multiple first arrivals during a busy period.

The idle time lasts from the moment the system becomes

empty to the arrival of a packet of either type-1 or type-2.

Therefore, the mean idle time is equal to 1/(λ1 + λ2). ThePQ



mean cycle time is given by the sum of the mean idle time

and the mean busy period. We then have:

E[C] =
1

λ1 + λ2
+ E[BP ] (5)

The mean busy period is given by:

E[BP ] =
1

λ1 + λ2 + µ
+

λ1 + λ2

λ1 + λ2 + µ
(E[T ] + E[BP ]) , (6)

where E[T ] is the mean clearance period. We will derive E[T ]
shortly hereafter.

Equation (6) follows from a probabilistic argument: The

busy period starts when a packet arrives to an empty system.

After this, the expected time until the first event (an arrival

or service completion) is 1/(λ1 + λ2 + µ). Furthermore,

with probability µ/(λ1 + λ2 + µ), the first event is a ser-

vice completion, and the busy period ends. With probability

(λ1 + λ2)/(λ1 + λ2 + µ), the first event is an arrival. In this

case, the arriving packet is stored in the buffer and the buffer

has to be cleared, which takes in expectation E[T ] time units.

Once the buffer has been cleared, the expected time before

the system becomes empty is again equal to E[BP ] due to

the memorylessness of service times. Evaluating (6) yields

E[BP ] =
1

µ
+

λ1 + λ2

µ
E[T ]. (7)

It remains to determine E[T ], the expected length of the

buffer clearance period. Without loss of generality, we assume

that the clearance period starts at time 0. We condition on t,
the time at which the next event (arrival or service completion)

occurs. Because the time until the next event is exponentially

distributed with parameter λ1 + λ2 + µ, we obtain:

E[T ] =

∞
∫

d

(λ1 + λ2 + µ)e−(λ1+λ2+µ)td dt

+

d
∫

0

µ

λ1 + λ2 + µ
(λ1 + λ2 + µ)e−(λ1+λ2+µ)tt dt

+

d
∫

0

λ1 + λ2

λ1 + λ2 + µ
(λ1 + λ2 + µ)e−(λ1+λ2+µ)t(t + E[T ])dt.

(8)

The three integrals (from top to bottom) cover the following

three possibilities: First, if there are no events before time d,

the buffer is cleared at time d because the deadline of the

buffered packet becomes expired. Second, if the first event

occurs at time t < d, and the first event is a service completion,

the buffer is cleared at time t because the buffered packet

enters service. Third, if the first event occurs at time t < d and

is a packet arrival, the arriving packet overwrites the buffered

packet, and a new buffer clearance period begins.

After rewriting and evaluating the integrals (the first two

using partial integration), we obtain:

E[T ] =
1 − e−(λ1+λ2+µ)d

µ + (λ1 + λ2) e−(λ1+λ2+µ)d
. (9)

A standard argument from renewal theory implies that the

probability that the system is in a certain state is given by

the mean time the system spends in this state during a cycle,

divided by the mean cycle time. Let Ci be the total time the

system has a packet of type i in the buffer during a cycle time.

In other words, Ci is the total amount of time the system is

in state (L = 2, N = i) during a cycle. The system state

probabilities are then obtained using:

P(L = 0) =
E[I]

E[C]
, (10)

P(L = 2, N = i) =
E[Ci]

E[C]
, and (11)

P(L = 1) = 1 − P (L = 0) −
3

∑

i=1

P (L = 2, N = i). (12)

To find E[Ci], we define Ti,j as the cumulative amount of

time that the buffer is occupied by type-i packets during a

clearance period, given that the first arrival of that clearance

period was a type-j packet. The expected value of Ci is given

by:

E[Ci] =

2
∑

j=1

λj

λ + µ
(E[Ti,j ] + E[Ci]) (13)

=

2
∑

j=1

λj

µ
(E[Ti,j ]). (14)

It now finally remains to find the expected values of the

different Ti,j . The expected value of T1,1 is given by:

E[T1,1] =

d
∫

0

(λ + µ)e−(λ+µ)t

[

µ

λ + µ
t +

λ1

λ + µ
(E[T1,1] + t)

+
λ2

λ + µ
(E[T1,2] + t)

]

dt + de−(λ+µ)d.

(15)

Equation (15) conveys the following: After the first arrival

an event is bound to occur: either a service completion, or a

new arrival. We condition on t, the time at which the next

event occurs. Because of the memorylessness of the system, t
has density (λ+µ)e−(λ+µ)t. With probability µ

λ+µ
, this event

is a service completion, and the clearance period is equal to

t. With probability λ2

λ+µ
, the first event is a type-2 arrival.

Due to memorylessness, this can be seen as the beginning of

a new clearance period with a type-2 arrival as first arrival,

i.e., with expectation E[T1,2]. However, up to time t, there

was a type-1 packet in the buffer, so the expected cumulative

amount of time type-1 packets spend in the buffer is given by

t + E[T1,2]. With probability λ1

λ+µ
, the first event is a type-1

arrival. Likewise, this can be seen as a new clearance period

with a type-1 arrival as a first arrival, i.e., with expectation

E[T1,1] and cumulative amount of time equal to t + E[T1,1].
Finally, with probability e−(λ+µ)d, no event happens prior to��



the deadline expiration and subsequent removal of the type-1

first arrival. In that case, the buffer would have been occupied

by this type-1 packet for an amount of time equal to d.

Likewise, the expected values of T1,2 and that of T1,3 are

respectively given by:

E[T1,2] =

d
∫

0

(λ+µ)e−(λ+µ)t

[

λ1

λ + µ
E[T1,3] +

λ2

λ + µ
E[T1,2]

]

dt,

(16)

E[T1,3] =

d
∫

0

(λ+µ)e−(λ+µ)t

[

λ1

λ + µ
E[T1,1] +

λ2

λ + µ
E[T1,2]

]

dt.

(17)

Let α = 1 − e−(λ+µ)d. The upper set of integrals results

in the following set of three equations with three unknowns,

which can be solved to find E[T1,1], E[T1,2] and E[T1,3]:

E[T1,1] = α

[

1

λ + µ
+

λ1

λ + µ
E[T1,1] +

λ2

λ + µ
E[T1,3]

]

(18)

E[T1,2] = α

[

λ1

λ + µ
E[T1,3] +

λ2

λ + µ
E[T1,2]

]

(19)

E[T1,3] = α

[

λ1

λ + µ
E[T1,1] +

λ2

λ + µ
E[T1,2]

]

(20)

Following a similar reasoning,

E[T2,1] = α

[

λ1

λ + µ
E[T2,1] +

λ2

λ + µ
E[T2,3]

]

(21)

E[T2,2] = α

[

1

λ + µ
+

λ1

λ + µ
E[T2,3] +

λ2

λ + µ
E[T2,2]

]

(22)

E[T2,3] = α

[

λ1

λ + µ
E[T2,1] +

λ2

λ + µ
E[T2,2]

]

(23)

and

E[T3,1] = α

[

λ1

λ + µ
E[T3,1] +

λ2

λ + µ
E[T3,3]

]

(24)

E[T3,2] = α

[

λ1

λ + µ
E[T3,3] +

λ2

λ + µ
E[T3,2]

]

(25)

E[T3,3] = α

[

1

λ + µ
+

λ1

λ + µ
E[T3,1] +

λ2

λ + µ
E[T3,2]

]

(26)

Once the different E[Ti,j ] are found, they are used in

Equation (11) to find the state probabilities P(L = 2, N = i).
Replacing the result of Equations (10), (11), and (12) along

with the different conditional success probabilities (Equa-

tions (2)-(4)) into Equation (1) yields the type-1 goodput of

the system, which is a function of λ1, λ2, µ and d.

V. NUMERICAL RESULTS

In this section, we study numerically the goodput gain of

network coding relative to the no-coding base case. We are

particularly interested in finding how much the goodput can be

increased by applying network coding. We define γbase as the

total goodput of the router without coding, and γcoding as the

total goodput of the router with coding. An important remark

to be made here is that γbase can be found using Equation (1),

by considering the existence of a single arriving flow instead

of two, with parameter λ = λ1 + λ2. In other words,

γbase {λ1, λ2, µ, d} = γ1 {λ1 + λ2, 0, µ, d} . (27)

We define the goodput gain as the relative increase in goodput,

i.e., as (γcoding − γbase)/γbase.

In the sequel, we fix µ = 1. We can make this assumption

without loss of generality; all parameters are relative to each

other, so for any set of parameters, we can scale time in such

a way that µ = 1 without changing the goodput of the system.

Fig. 2 provides the goodput gain as a function of the arrival

rates λ1 and λ2, for d equal to 1. A major conclusion to

be drawn here is that the gain provided by network coding

is always maximized when λ1 is equal to λ2. This result is

logical, since equal arrival rates provide the most opportunities

for coding.

Fig. 3 provides the maximal goodput gain for d between 0

and 5, and λ between 0 and 5. Similarly, Fig. 4 provides the

maximal goodput gain for the same range of deadlines and

larger values of λ, between 5 and 15.

For a fixed arrival rate λ, the gain increases for an increasing

deadline value. A larger deadline provides a bigger probability

of success for coded packets, hence a positive return on

applying network coding. Similarly, for a fixed deadline d,

the gain increases for an increasing arrival rate; This can be

explained by the more efficient buffer usage that network

coding provides; In the base case, every arrival overwrites

the buffer. The higher the arrival rate, the more frequent such

overwritings occur. On the other hand, with network coding,

an arrival of type-1 when the buffer is occupied by a type-2

packet, or vice-versa, does not result in an overwriting, but in

a coding operation which maintains both packets.

As shown in Fig. 3, the gain provided by network coding

remains limited in the operation region (λ < 2, d < 1), where

low arrival rates limit the opportunities of coding, and the

short deadlines causes most of the coded packets to miss their

timeliness requirement anyway.

Finally, as conveyed in Fig. 4, the gain of network coding

for high arrival rates and large deadlines can reach up to 30%,

a substantial improvement compared to the base case scenario.

Numerical Results Validation

To assess the accuracy of our model and the obtained numer-

ical results, the queueing system was simulated in Java. The��
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barchart in Fig. 5 provides a comparison between numerical

and simulated maximum gain results, for integer values of λ
between 1 and 8, and a deadline equal to 1. Every simulation

outcome corresponds to the average of 50 simulation runs. The

corresponding standard deviation values have been omitted

from the barchart, due to their small values (the maximum

encountered standard deviation value was equal to 0.1%).

As conveyed in Fig. 5, the simulation output accurately

matches the numerical results.

VI. CONCLUSION

We developed in this paper an analytical model that captures

the impact of network coding on the delivery of real-time

packets. The proposed model is an M/M/1/2 router queueing

system with network coding capability and per-packet dead-

lines. We provided exact expressions for the stationary goodput

of the system and numerical results of the achievable goodput

gain. We further verified the validity of our model through

simulations. We show that depending on the operation region,

the gain of network coding can reach up to 30%.

In addition to the novel approach that looks at network

coding from a real-time perspective, our work paves the way

for future research; among the topics we foresee as interesting

is a comparative study between network coding and lead-time

based service reneging, where denial-of-service decisions can

be made based on remaining time until deadline expiration. We

further foresee the importance of qualitative and quantitative

studies of network coding in real-time wireless sensor net-

works, along with the different requirements, conditions and

new challenges pertaining to this emerging domain.
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Fig. 4: Goodput gain (%) for values of λ between 5 and 15.
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