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Abstract—We consider the problem of modeling the transmis-
sion of real-time data from a single node of a wireless sensor
network to the next hop or access point. Generated packets are
placed in a single position buffer and are transmitted over the
wireless medium to the next hop, or they are discarded and
replaced when a new data packet is generated from the sensor.
To increase the percentage of packets delivered on-time to the
next hop, we introduce a thresholding policy that is supported
by an analytical model and it is responsible for deciding whether
to transmit a data packet or drop it and transmit the next one.
Our model considers the behavior at single sensor where data
are generated with a Poisson process and have a fixed deadline
associated to them while the impact of the other sensors is
modeled through their effect on the MAC service time. However,
we also evaluate the performance of the packet dropping scheme
in a multi-hop sensor chain. The proposed policy leads to a higher
percentage of on-time delivered packets in both scenarios.

Index Terms—Real-time communication, wireless sensor net-
works, packet dropping, queuing model.

I. INTRODUCTION

In wireless sensor networks (WSNs) real-time data gener-

ation and transmission dominate the majority of application

scenarios. One of the main characteristics of sensor data that is

generated in real-time is that their value may become obsolete

when a new one is generated. In this paper, we investigate the

communication of real-time messages by developing a simple

queueing theory model and we use it for further optimization.

We model the transmitter of a sensor node as a single-server

queue. The generated data packets have to be transmitted

within a certain deadline. The queueing system is assumed

to have an overwrite-buffer with space for one packet; when a

new packet bearing more recent data arrives to the queueing

system, the buffered packet, if any, is discarded and the new

packet is stored in the buffer. Including the buffer space

at the transmitter, the system represents an M/M/1/2 queue

with deadlines. The important contribution of this work to

the aforementioned model is that it introduces a thresholding

mechanism. According to this mechanism, a buffered data

packet is dropped (removed from the buffer) if the remaining

time until its deadline is shorter than a certain threshold θ. The

intuition behind this policy is that a packet is not transmitted if

there is low probability of being received before its deadline

expires, saving thus transmission time for a newly arriving

packet and in addition wireless bandwidth. By dropping the

currently stored packet, and waiting on a new packet arrival

instead, the percentage of on-time packets is increased because
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Fig. 1: Multiple wireless sensors generate real-time data that

are delivered to a sink. With multi-hop communication the

wireless nodes closer to the sink may become the bottleneck

since they have to forward higher portion of the traffic.

a newly arriving packet has a higher probability of meeting its

deadline. Furthermore, with this proactive approach a packet

that would be characterized lost in the next hop, if it was late,

will not be transmitted over the wireless medium and consume

bandwidth.

II. RELATED WORKS

To the best of our knowledge, the problem of modeling

the real-time packet transmission in WSNs has not been ad-

equately addressed. Nevertheless, the second problem we are

interested in this paper, i.e. the phenomenon of overloading the

core of a WSN that operates under multiple sources and one

sink has been reported in several works [1]. Fig. 1 depicts a

simple wireless sensor network where problems like the above

may occur depending on the locally generated traffic load

at each sensor. Optimization efforts in this type of wireless

sensors networks have focused on reducing the traffic load and

also on designing medium access control (MAC) protocols

that prioritize the nodes that are closer to the sink [2], [3].

Nevertheless these mechanisms attempt to address the problem

from the perspective of the better utilization of the network

without looking at the sources themselves and how to prevent

unnecessary data from being injected into the network.

However, for optimizing the injection of real-time traffic

into the network, there is a need for analytical performance

models that characterize the impact of all possible actions

taken by a node. The works in this area are limited and focus

primarily on the queuing model itself without considering

its applicability in a network setting. Barrer was one of the

first to analyze an M/M/1 queue with deterministic dead-

lines [4], [5]. This analysis was extended to systems with state-

dependent arrival and service rates, and more general deadlines

by Brandt and Brandt [6], [7] and by Movaghar [8]. These



λ µ

Fig. 2: A schematic representation of the model for a sensor

node that adopts proactive packet dropping.

studies all deal with non-preemptive systems with deadlines to

service beginnings, but in [9], Movaghar considers deadlines to

service endings with preemption. Movaghar and Kargahi [10],

[11] have devised an approximation for an M/M/1 queue with

the earliest-deadline-first (EDF) discipline, which is known to

stochastically maximise the fraction of packets served before

their deadline (see, e.g., [12]). Lehoczky [13] analyzed an

M/M/1 queue with deadlines to service endings and the EDF-

policy in heavy traffic. He argued that, since the deadlines of

all stored packets have to be taken into account, this queue

gives rise to a Markov process on a statespace of infinite di-

mension. Lehoczky shows that the Markov process collapses to

a tractable one-dimensional process in heavy traffic. Lehozcky

later used these results to analyze control policies in [14], and

extended his analysis to Jackson networks in [15]. Doytchinov

et al. [16] extended this analysis to a GI/G/1 queue with

deadlines, and Kruk et al. [17] to networks of such queues.

III. PERFORMANCE ANALYSIS

A. Sensor System Model

We now provide further details for the performance analysis

of the proposed system model. Packets are generated at each

sensor according to a Poisson process with parameter λ.

The packets have exponentially distributed service times with

parameter µ that correspond to the behavior of the MAC

protocol and the impact of channel contention from other

nodes. A packet transmission is considered successful if it

is completed within d time units after the arrival of the packet

to the queue, i.e., if a packet arrives at time t, its transmission

must finish before its global deadline t + d, with d being

a fixed relative deadline. Packet transmission at the physical

layer (PHY) is non-preemptive, meaning that if a packet starts

being transmitted it will finish regardless of whether another

packet arrives. We define the packet delivery ratio (PDR)

of the system as the fraction of packets that are transmitted

successfully, i.e. within the deadline requirement.

B. PDR Calculation

In this section, we compute the PDR of the system in the

presence of packet dropping denoted by γ(θ). The parameter

θ denotes the packet dropping threshold given in seconds,

and it will be discussed in more detail later. We denote by

L the number of packets present in the system (including

the transmitter) immediately before a packet arrival. A packet

arriving to the system will find the latter in one of the

following three states:

• Empty (L = 0): The transmitter is available, and there is

no packet occupying the buffer spot.

• Busy Transmitter (L = 1): The transmitter is transmitting

a packet but the buffer is empty.

• Full, (L = 2): The transmitter is busy and the buffer

also contains a packet. In that case, an arriving packet

overwrites the buffered one.

The PDR γ(θ) is by definition equal to the probability

that the transmission of an arbitrary packet is successful. To

compute this probability, we condition on whether a packet

arrives at an empty system or not. Denoting by B the service

time that the arriving packet would experience, We have:

γ(θ) = P(L = 0)P(B ≤ d)

+ (1− P(L = 0))

d−θ
∫

0

µe−µt
P(B ≤ d− t)e−λtdt (1)

The rationale behind Eq. (1) is as follows: If an arbitrary

packet P arrives at an empty system, it is transmitted

successfully only if the required transmission time B is less

than d. This explains the term P(L = 0)P(B ≤ d). If P
arrives at a non-empty system (L = 1 or L = 2), we condition

on the length of the remaining (residual) transmission time t
of the packet that is currently being transmitted. The residual

service time is exponentially distributed, so its density is

µe−µt. Moreover, given that the residual service time is t, the

service of P is successful if the following three conditions

are all met: First, the time until the deadline is larger than θ
when the residual service ends, i.e., d − t ≥ θ. This is taken

into account in the integration region of Eq. (1). Second,

the service time is less than t − d, which explains the factor

P(B ≤ t − d). Third, there were no other arrivals during t
time units, which explains the term e−λt.

C. Probability of an Empty System

Next, we calculate P(L = 0), i.e. the probability that an

arbitrary packet arrives at an empty system. For this purpose

we define the cycle time C which is the time between two

consecutive time instants at which the system becomes empty

and it is depicted in Fig. 3. The cycle time is separated into

two periods: A first idle period during which the system

is empty, and a busy period during which the transmitter

is occupied until it becomes empty again. The busy period

spreads throughout the time that the system is not in a state

L = 0. It consists of a collection of consecutive states

characterized by L = 1 or L = 2. We shall refer to the

case where L = 2 during a busy period as clearance period

(CP ), which is the amount of time the buffer is continuously

occupied. A clearance period ends when the buffer is cleared,

i.e. when either a dispatch to the transmitter occurs, or when

the stored packet is denied service and removed from the

system following the thresholding procedure.

The idle time lasts until a packet arrives, so the mean idle

time is 1/λ. If the busy period is denoted by BP , we have:

E[C] =
1

λ
+ E[BP ]. (2)

From the PASTA-property [18], we have that the proba-

bility that a packet arrives at an empty system, P (L = 0),
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Fig. 3: A cycle consisting of idle time and busy period.

it is equal to the probability that the system is empty at an

arbitrary time. To derive this probability we divide the mean

idle time by the mean cycle time as follows:

P(L = 0) =
1/λ

E[C]
=

1/λ

1/λ+ E[BP ]
. (3)

Now we derive an expression for the busy period. The busy

period starts when a packet arrives to an empty system. After

this, the expected time until the first event (an arrival or service

completion) is 1/(λ+µ). Furthermore, with probability µ/(λ+
µ), the first event is a service completion, and the busy period

ends after 1/µ time units. With probability λ/(λ+µ), the first

event is an arrival. In this case, the arriving packet is stored

in the buffer and the buffer has to be cleared, which takes in

expectation E[T ] time units. Once the buffer has been cleared,

the expected time before the system becomes empty is again

equal to E[BP ] due to the memorylessness of service times.

From the above we have that the mean busy period is

E[BP ] =
1

λ+ µ
+

λ

λ+ µ
(E[T ] + E[BP ]) , (4)

where E[T ] is the mean buffer clearance period. We will derive

E[T ] next. With algebraic manipulations (4) yields

E[BP ] =
1

µ
+

λ

µ
E[T ]. (5)

Now, it remains to determine E[T ], the expected length of

the buffer clearance period. Without loss of generality, we

assume that the buffer clearance period starts at time 0. We

condition on t the time at which the next event (arrival or

service completion) occurs. Because the time until the next

event is exponentially distributed with parameter λ + µ, we

obtain:

E[T ] =

∞
∫

d−θ

(λ+ µ)e−(λ+µ)t(d− θ)dt

+

d−θ
∫

0

µ

λ+ µ
(λ+ µ)e−(λ+µ)ttdt

+

d−θ
∫

0

λ

λ+ µ
(λ+ µ)e−(λ+µ)t(t+ E[T ])dt.

The three integrals (from left to right) cover the following three

possibilities: First, if there are no events before time d − θ,
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Fig. 4: The PDR as a function of θ, with µ = λ = d = 1.

the buffer is cleared at time d− θ because the deadline of the

buffered packet becomes smaller than θ. Second, if the first

event occurs at time t < d− θ, and the first event is a service

completion, the buffer is cleared at time t because the buffered

packet enters service. Third, if the first event occurs at time

t < d−θ and is a packet arrival, the arriving packet overwrites

the buffered packet, and a new buffer clearance period begins.

After rewriting and evaluating the integrals (the rightmost

two using partial integration), we obtain:

E[T ] =
1− e−(λ+µ)(d−θ)

µ+ λe−(λ+µ)(d−θ)
. (6)

Combining Equations (3), (5), and (6) we have that

P(L = 0) = 1−
λ2 + λµ

µ2 + λµe−(λ+µ)(d−θ) + λ2 + λµ
(7)

Finally, by substituting (7) into (1) and evaluating the

integrals we have that the PDR γ(θ) is given by

γ(θ) = P(L = 0)(1− e−µd)+

(1 − P(L = 0))
[ µ

λ+ µ

(

1− e−(λ+µ)(d−θ)
)

−
µe−µd

λ

(

1− e−λ(d−θ)
) ]

. (8)

Note that if d → ∞, deadlines become irrelevant and two

special cases occur for specific values of θ. If θ = 0, packets

in the buffer are always transmitted, regardless of the time

until their deadline. The PDR of the system is thus equal to

that in an M/M/1/2 queue (see e.g., [19, Section 5.7]. If

θ = d → ∞, packets in the buffer are never transmitted. Only

packets arriving to an empty system are. In this case, the PDR

is equal to that in an M/M/1/1 queue. By substituting d and

θ, these values follow from Equation (8).

IV. NUMERICAL RESULTS FOR A SINGLE SENSOR

In this section, we study the PDR numerically. In Fig. 4,

we present γ(θ) for various values of θ, with µ = λ = d = 1.

We clearly see that the PDR of the system is indeed increased

by the threshold θ, as long as θ is chosen appropriately.

Having established that an appropriately chosen threshold

increases PDR, we study how much the PDR can be increased

by this threshold. Note that γ(0) is the PDR of the system
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Fig. 5: Maximal PDR improvement.

without thresholding. We define θ∗ as the threshold that

maximizes the relative increase in PDR, i.e., we define

θ∗ = arg max

{

γ(θ)− γ(0)

γ(0)
: 0 ≤ θ ≤ d

}

.

We define the maximal PDR improvement as the maximal

relative increase in PDR, i.e., as (γ(θ∗)− γ(0))/γ(0).
In the sequel, we set µ = 1. We can make this assumption

without loss of generality; all parameters are relative to each

other, so for any set of parameters, we can scale time in such

a way that µ = 1 without changing the PDR of the system.

In Fig. 5(a) we display the maximal PDR improvement for d
between 0 and 2, and λ between 0 and 5. Fig 5(a) implies

that, in this parameter region, we can obtain an increase of

up to 15% in PDR by setting the threshold to its optimal

value. Furthermore, we see that the relative increase in PDR

is maximal if d ≈ 0.3, but even for larger values of d there

can be a PDR enhancement. In addition to this, the maximal

PDR improvement grows as λ grows, so the PDR policy is

especially beneficial if the system is overloaded.

Likewise, in Fig. 5(b) we show the maximal PDR improve-
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Fig. 6: PDR gain for λ values equal to 3, 4 and 6.

ment for λ up to 10. In this region, the increase in PDR can

be as much as 30%. Furthermore, the value of d with the

largest relative increase in PDR, as well as the range of d for

which gain is achieved become smaller. This is conveyed by

Fig. 6, which plots the gain for three increasing values of λ,

equal to 3, 4 and 6. The narrower range of d where gain is

achieved is explained by a shorter sojourn time of buffered

packets that later enter service, due to more frequent buffer

overwriting for an increasing arrival rate. The shorter sojourn

time reflects itself in a larger lead-time when the buffered

packet is assessed, by the packet dropping mechanism, for

dispatch to the transmitter. This in turn presents itself in a

decrease of the upper value of d for which packet dropping

still results in transmission denials for some packets, and as

such, still results in PDR gain.

We also present values of the improvement for specific

values of λ and d in Table I for a single sensor. We clearly

see that, for this parameter region, the maximal PDR increase

grows as λ becomes larger. Furthermore, given a fixed dead-

line, the maximal improvement increases up to a certain value

of λ, and decreases beyond that value.

V. NUMERICAL RESULTS FOR A SENSOR CHAIN

According to our setup, each node in the sensor chain

generates locally a load λ and also forwards the successfully

received data packets from the previous node. Here, we assume

that this total load follows again an exponential distribution.

This assumption is necessary since if adopt a generalized

distribution for the arrival rate at a node, this will make the

problem intractable. The closed form analysis analysis was

only possible for a single queue as we have seen in the

previous sections.

n=1
d

0.1 0.2 0.3 0.4 0.5

λ

0.5 0.23 0.37 0.45 0.48 0.48
1 1.04 1.71 2.07 2.21 2.18
2 1.036 5.90 6.91 7.05 6.64
4 10.07 14.69 15.30 13.78 11.49
8 21.36 24.20 19.61 14.31 10.08

TABLE I: The maximal PDR improvement (%) for specific

values of λ and d.



n=5 nodes
d

0.1 0.2 0.3 0.4 0.5

λ

0.5 1.23 1.37 2.01 2.10 2.07
1 2.43 2.84 4.2 5.41 5.66
2 4.52 10.20 13.91 15.39 14.75
4 21.47 30.02 32.67 34.78 32.02
8 49.16 48.67 44.61 42.64 39.98

n=10 nodes
d

0.1 0.2 0.3 0.4 0.5

λ

0.5 3.42 3.3 2.99 2.80 2.48
1 8.49 7.98 6.34 6.01 5.99
2 10.21 11.27 17.11 16.87 15.31
4 50.78 39.21 34.46 32.66 29.49
8 75.89 65.41 62.34 60.08 58.08

TABLE II: The maximal PDR improvement (%) for specific

values of λ and d and for sensor chains of n=5 and n=10

nodes.

We now present values of the improvement for specific

values of λ and d in Table II for a chain of 5 and 10 sensors.

Regarding the results, we see that as the number of nodes

in the chain is increased, the load that must be forwarded

naturally increases. Therefore, contrary to the case of low λ
and n = 1 (seen in Table I) where the PDR improvement

of the proposed scheme is not that important, in the case of

n = 5 it is. The reason is that each node has to forward an

increased traffic load and not only the low λ that is generated

locally. As the number of nodes becomes even higher, and in

our case n becomes 10, the PDR improvement becomes even

higher. Recall that the results are relative to the case that does

not apply proactive packet dropping. The same trend follows

for higher d where the significant performance benefits are

preserved. The reason for the reduced importance of d is due

to the fact that the λ dominates the system behavior.

VI. CONCLUSIONS

In this paper, we developed an analytical model that captures

the impact of proactive packet dropping on the transmission

of real-time packets from a single sensor node. We showed

that with the use of the analytical model, an optimal dropping

policy can be identified, leading to PDR improvement of up

to 30% for a single hop. When this model is applied in

the case of a multi-hop chain network of sensors, the PDR

improvement is more significant. This is predominantly due

the ability of our model to predict the delayed arrival of

a packet and subsequently drop it before transmission. We

plan to extend our model to a system that exhibits different

service time distributions and larger buffer size. Nevertheless,

as it seems from our current analysis these extensions are not

trivial.
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